J. Math. Soc. Japan
Vol. 21, No. 3, 1969

A generalization of F. Schur’s theorem
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The following theorem, due to F. Schur, is well-known :

THEOREM A. Let M be a Riemannian manifold with dim M=3. If the
sectional curvature K of M is constant at each point of M, then K is actually
constant on M.

There are several other theorems of this type; we mention a few of them.

THEOREM B. Let M be an Einstein manifold, that is, assume the Ricci
curvature of M is a scalar multiple A of the metric tensor of M. If dim M=3,

then A is constant.
THEOREM C (Thorpe [2]). Let M be a Riemannian manifold with dim M

=2p+1. If the 2pth sectional curvature 7,y 1S constant at each point of M, then
72p 1S constant on M.
THEOREM D. Let M be a Kdhler manifold with dim M=4. If the holo-
morphic sectional curvature K, is pointwise constant, then it is actually constant.
THEOREM E (M. Berger, unpublished). Let M be a Riemannian manifold
with metric tensor g;; and Riemann curvature tensor R;j,. Suppose

.Z.kRijksRijkc = AZst -
1’]7

If dim M =5, then 1 is constant.

In this paper we prove a result (theorem 2) which includes theorems A, B,
C, and D as special cases. Although theorem E is not a consequence of theorem
2, it almost is, in the sense that it would be if a slightly different contraction
were used.

We shall use the notation of [I] Recall that a double form of type (p, q)
is a function w: X¥(M)**?— F(M) which is skew-symmetric in the first p vari-
ables and also in the last ¢ variables. Here, as usual, ¥(M) denotes the Lie
algebra of vector fields on the C*~ manifold M and #(M) the ring of C* real
valued functions on M. We write (X, ---, X,) (Y, -, Y,) for the value of w
on X, ,X,, Y, ,Y, If p=q and

w(Xp Tty XpXle ) Yp):w(yv Tt Yp)(Xp tty Xp)
for
Xy ooy Xp Yy o, Y, e X(M),
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the double form w is said to be symmetric.

Now assume that M has a Riemannian metric g, and let  be the cor-
responding connection. Then if w is a double form of type (p, p), s0 is F x(w)
for X = ¥(M) (see [1]). Furthermore a double form Dw of type (p-+1,4q) is
defined by

1
(Da))(X,. tty -Xp+])::§1 (—1)j+l‘7Xj(w)(Xlr Tty Xj’ ttt Xp+1) .

Here D is an analog of the exterior derivative d; however, unlike d, D is not
independent of F.

It will also be necessary to define the notion of the contraction operator C
on double forms. If w is a double form of type (p, ¢), then Cw is the double
form of type (p—1, ¢g—1) defined by

(Cw)(Xls ) Xp—l)(yp tty Yq—l): Elw(Xl’ Tty Xp-lr EXY,, -, Yq~1’ E))

where n=dim M and {E,, ---, E,} is any orthonormal frame field defined on an
open subset of M. Then C7, r=0,1, 2, -.- are defined inductively. We shall
agree that if p=0 or ¢=0, then Cw=0.

We shall need the following result.

THEOREM 1. Let A be a double form of type (p,q) such that DA=N0.
Then

M (DCTAYU, X1, » Xp-)(Va =+, Vo)

= (DT B AU, Xy s X )V Vours B

for U, Xy, -, Xpory Yy, oo, Y, € (M), where {E,, -+, E,} is a local ortho-
normal frame field on M.

PrROOF. We induct on », The assumption DA =0 implies that (1) is true
for r=0. Next suppose that (1) is true for general ». Then

0=(CDC"AWU. Xy, -+ » Xp-r-)XVyy o, Ygrod)
=D B (C AU, Xy ooy Xpmrd (Vs Yooy B
= (DC AU, Xy Koy V00, Vaerd)
DD B s C AU, Xy o Kyeg XV o0, Yomross ED

Hence (1) is true for »r+1. This completes the proof.
If w is a double form of type (9, q), then w’ is a double form of type
(p+1, ¢g—1) defined by

p+1 . A~
(U,(Xp Tty Xp-H)(st Tty Yq): 21(_1)]“(0()(1’ Tty Xj: Tt Xp+1)(Xj: Yz: Tty Yq)
j=



456 A. GrAY

for X, -, Xpy, Yy, -, Y, € X(M). We define a Riemannian double form (as
in to be a symmetric double form such that Dw =’ =0.

The best known examples of Riemannian double forms are the metric
tensor g (type (1, 1)) and the Riemannian curvature tensor R (type (2, 2)). (The
Bianchi identities state that R”=DR=0.) In the notion of exterior pro-
ducts of double forms is defined. In particular g?=gA --- Ag and RP =R A
-« A R (each p times) are double forms of types (p, p) and (2p, 2p) respectively.

We are now ready to prove our main result.

THEOREM 2. Let A and B be Riemannian double forms of types (p, p) and
(r,r) respectively and assume that (a) B is parallel (that is VxB=0 for all
Xe X(M)), (b) C™*B=ag for some ac F(M), not identically 0, (¢) p < n=dim M,
(d) there exist 2 F(M) and an integer q such that for all X,, -+, X,-q € X(M)
we have

(CqA)(Xl, Tty Xp-—q)(Xv E) Xp—q):Z(CT—ZH_qB)(Xl’ T Xp—q)(Xl’ o Xp~q) .

Then A is constant on M.

PrROOF. Since B is parallel, so is C"'B, and thus « is a nonzero constant.
Furthermore na=C"B. According to [1] condition (d) is equivalent to C?A
= AC™-?*B. Hence for U < X(M) we have

0=(DC*A—DQC"B))(U)

= p 3V 5, (AC BYUXE)—(UNC'B

= p 3 (B(C BXUXE)—(UNC'B

=(p—ma(UR).

Since U is arbitrary, it follows that 2 is constant.

The following is an important special case of theorem 2.

THEOREM 3. Let A be a Riemannian double form of type (p, p) with p<n
=dim M, and assume that for some q< p—1 and 2 F(M) we have

(CLAYNXy, -+ ) Xp- (X, -, Xy =287 UXy, - Xpo Xy s Xpoo)
for all Xy, -+, Xy, X¥(M). Then 2 is constant on M.
PROOF. In theorem 2 we take B=g?-% We have the general formula
Sl L'(i—i—l—ﬁ)\', t-
Ce' ="y Ta—pre
for all integers s and ¢ with 0<s<¢. Thus condition (b) of theorem 2 is
satisfied. Furthermore g’ is parallel for all ¢ (see [1]) and so condition (a) of

theorem (2) holds. We conclude that 4 must be constant.
We obtain theorems A and B from theorem 3 by taking A=R and ¢=0
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and 1, respectively. Theorem C is also obtained from theorem 3, using A = R?,
q= 0.
Furthermore we have the following generalization of theorems A, B and C.
THEOREM 4. Suppose p<n, q<2p—1, and
Cqu(Xv STty sz-q)(Xp Ty sz-q)zfngp_q(Xp tt sz—q)(Xp M) sz—q)

for all X, -, Xpp_q € X(M). Then 2 is constant.
However, to prove theorem D we must use theorem 2 with A=R, ¢=0,
and B defined by

BW, X)(Y, Z)=g(W, Y)g(X, Z)—g(W, Z)g(X, Y)
+e(JW, Y)g(JX, Z)—g(JW, Z2)g(JX, Y)
+2g(JW, X)g(JY, Z)

for W, X, Y, Z= ¥(M), where J denotes the almost complex structure of the
Kahler manifold M. It seems plausible that an analog of theorem D holds for
2pth holomorphic sectional curvature; however, the author has been unable to
prove this.
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