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\S 1. Introduction.

Let $G$ be a bounded domain in an Euclidean n-space and $\overline{G}$ its closure.
Let $C^{k}(G),$ $ 0\leqq k<\infty$ , be the class of real-valued functions defined and k-times
continuously differentiable in $G$ and $C_{0^{k}}(G)$ the subset of $C^{k}(G)$ consisting of
those functions with compact support in $G$ . As usual [1-4], we denote by
$\hat{H}^{k}(G)$ the pre-Hilbert space consisting of functions in $C^{k}(G)$ with finite k-fold
Dirichlet norm, $\Vert\Vert_{k}$ , and denote by $H^{k}(G)$ the Hilbert space being the com-
pletion of $\hat{H}^{k}(G)$ under the norm $\Vert\Vert_{k}$ . In a completely similar way one defines
the pre-Hilbert space $\hat{H}_{0^{k}}(G)$ and the Hilbert space $H_{0^{k}}(G)$ . In the following
discussions the domain $G$ will be fixed. We shall for simplicity write $H_{0^{k}}$ for
$H_{0^{k}}(G)$ etc.. It may be noted that $H_{0}^{0}$ is the space $L_{2}(G)$ .

Consider the two self-adjoint elliptic partial differential operators,

(1.1) $L\equiv\sum_{i,j=1}^{\eta}\frac{\partial}{\partial x_{i}}(l_{ij}(x)\frac{\partial}{\partial x_{j}})-l(x)$ ,

$M\equiv\sum_{i,j=1}^{n}-\frac{\partial}{X_{i}}\partial(m_{ij}(x)\frac{\partial}{\partial x_{j}})-m(x)$ .

It will be assumed that the given real-valued functions $l_{ij}(x),$ $l(x),$ $m_{ij}(x)$ and
$m(x)$ are bounded measurable in $G$ and that $l(x)\geqq 0,$ $m(x)\geqq 0$ almost everywhere
in $G$ . Further we shall restrict $L$ and $M$ to be elliptic in the sense that there
are constants $k_{L},$ $K_{L},$ $k_{M}$ and $K_{M}$ such that almost everywhere in $G$

(1.2) $k_{L}\sum_{i=1}^{n}(\xi_{i})^{2}\leqq\sum_{i,j=1}^{n}l_{ij}(x)\xi_{i}\xi_{j}\leqq K_{L}\sum_{\dot{\iota}=1}^{n}(\xi_{i})^{2}$ ,

$k_{M}\sum_{i=1}^{n}(\xi_{i})^{2}\leqq\sum_{t,j=1}^{n}m_{ij}(x)\xi_{i}\xi_{j}\leqq K_{M}\sum_{i,j=1}^{n}(\xi_{i})^{2}$ ,

for all real vectors $\xi$ .

*This research was partially supported by the National Science Foundation under
Grant No. GP-7374.



Parabolic and pseudo-parabolic partial differential equations 441

We shall be concerned with the solutions of the following initial value
problems. Let $u_{0}(x)$ be a given function in $H_{0}^{1}\cap H^{2}$ . Find the function $u_{\lambda}(t, x)$ ,
$\lambda>0$ , such that $u_{\lambda}(t, x)$ together with its time derivative $u_{\lambda^{\prime}}(t, x)$ , defined as the
limit (in $H_{0}^{1}$) of $[u_{\lambda}(t+\tau, x)-u_{\lambda}(t, x)]/\tau$ as $\tau\rightarrow 0$ , belongs to $H_{0\cap}^{1}H^{2}$ for all
$-\infty<t<\infty$ and that it satisfies the equations

(1.3) $u_{\lambda^{\prime}}-\frac{1}{\lambda}Mu_{\lambda^{\prime}}=Lu_{\lambda}$ , $-\infty<t<\infty$ ,

$u_{\lambda}(0, x)=u_{0}(x)$ ,

in the $\Vert\Vert_{1}$-norm. We shall call the differential equation in (1.3) to be pseudo-
parabolic. It differs from the parabolic one by the additional higher order
terms,

$\div\sum_{i,j=1}^{n}\frac{\partial}{\partial x_{i}}[m_{ij}(x)\frac{\partial}{\partial x_{j}}\frac{\partial}{\partial t}u_{\lambda}]$ ,

where the parameter $\lambda$ is restricted to be positive. Although no such type of
equations has been proposed in the theory of heat conductions at the present
time, it appears in theory of non-Newtonian fluids as well as soil mechanics,
[6-9].

It is known [10] that a unique solution of the problem (1.3) exists and
that the solution is just as regular as the coefficients and the initial conditions
permit it to be. Indeed, for all positive numbers $\lambda$ the operator $\lambda-M$ has a
bounded inverse $(\lambda-M)^{-1},$ $[4]$ , the operator $\lambda(\lambda-M)^{-1}L$ as a mapping of $H_{0}^{1}$

onto $H_{0}^{1}$ is bounded with respect to the norm $\Vert\Vert_{1}$ and the unique solution
$u_{\lambda}(t, x)$ is given by the formula [10],

(1.4) $u_{\lambda}(t, x)\equiv E_{\lambda}(t)u_{0}(x)$ , $-\infty<t<\infty$ ,

where $\lambda$ is a positive number and where the group of operators $E_{\lambda}(t)$ which
map $H_{0}^{1}$ onto $H_{0}^{1}$ is defined by

(1.5) $E_{\lambda}(t)\equiv\exp[t\lambda(\lambda-M)^{-1}L]$ , $\lambda>0$ , $-\infty<t<\infty$ .
The objective of this note is to study the limiting behavior of the solutions

$u_{\lambda}(t, x)$ as $\lambda\rightarrow\infty$ . To this end, we consider the following parabolic initial-value
problem [4]. Let $u_{0}(x)$ be a given function in $H_{0}^{0}$ . Find the function $u(t,$ $ x\rangle$

such that $u(t, x)$ together with its time derivative $u_{t}(t, x)$ , defined as the limit
(in $H_{0}^{0}$) of $[u(t+\tau, x)-u(t, x)]/\tau$ as $\tau\rightarrow 0$ if $t>0$ or as $\tau\downarrow 0$ if $t=0$ , belongs
to $H_{0}^{0}$ for all $t\geqq 0$ and that it satisfies the equations,

(1.6) $u_{t}=Lu$ , $t\geqq 0$ ,

$u(0, x)=u_{0}(x)$ ,

in the $\Vert\Vert_{0}$-norm. It is known [4] that a unique solution to problem ( $ 1.6\rangle$

exists. Indeed, we can define the semi-group of operators on $H_{0}^{0}$ ,
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\langle 1.7) $E_{\lambda}(t)\equiv\exp[t\lambda(\lambda-L)^{-1}L]$ , $t\geqq 0$ ,

and the solution $u(t, x)$ of (1.6) is given by

(1.8) $u(t, x)\equiv E(t)u_{0}(x)$ , $t\geqq 0$ ,

where $E(t)$ is the strong $\Vert\Vert_{0}$-limit of $E_{\lambda}(t)$ as $\lambda\rightarrow\infty,$ $[1,4]$ .
To establish the limiting behavior of the solutions, $u_{\lambda}(t, x)$ as $\lambda\rightarrow\infty$ , we

add the following additional restrictions on the coefficients of the operators $L$

and $M$ and on the boundary, $\partial G$ , of $G$ . Some of these restrictions may not be
really needed for our results to be true, but to overcome certain technical
difficulties we have made use of the a priori $L_{2}$ estimates for th $e$ solutions of
the elliptic partial differential equations, [2, 16-18]. Our assumptions on $L,$ $M$

and the domain $G$ are as follows:
(1.9) The functions $l_{ij}(x)$ and $m_{ij}(x)$ are in $C^{3}(\overline{G}),$ $l(x)$ and $m(x)$ are in $C^{2}(\overline{G})$

and $m_{ij}(x)$ has a modulus of continuity for $i,$ $j=1,2,$ $\cdots$ , $n$ ;
(1.10) $\partial G$ can be covered by a finite number of n-dimensional neighborhoods
$N_{j}$ such that each $N_{j}\cap\overline{G}$ can be mapped in a 1-1 way onto the closure of an
n-dimensional hemisphere $\Sigma$ , with $\overline{N}_{j}\cap\partial G$ mapped onto the flat face of $\Sigma$ , by
a mapping $T_{j}$ which together with its inverse has continuous and bounded
first two derivatives, [16, pp. 704-706].

Having described the above two types of problems and the additional
restrictions on $L,$ $M$ and $G$ , we now state our results as a

THEOREM. If the problems (1.3) and (1.6) are posed for the same domain
$G$ and with the same initial condition $u_{0}(x)$ in $H_{0}^{1}\cap H^{2}$ and if the assumptions
in (1.9) and (1.10) are satisfied by $L,$ $M$ and $G$ , then for all $t\geqq 0$ the solution
$u(t, x)$ of the problem (1.6) is the $\Vert\Vert_{0}$-limit of the solutions $u_{\lambda}(t, x)$ of the problems
(1.3), $i$ . $e.$ ,

$\lim_{\lambda\rightarrow\infty}\Vert u_{\lambda}(t, x)-u(t, x)\Vert_{0}=0$ , $t\geqq 0$ .

\S 2. Proof of the Theorem.

We shall follow Yosida’s idea in his proof of Hille-Yosida Theorem, $[5, 12]$ .
An additional case should be taken for the fact that the problems (1.3) and
(1.6) involve two different norms. Also, instead of the semi-group of operators

in (1.7) we now have the group of operators in (1.5) which differ from (1.7)

in replacing $(\lambda-L)^{-1}$ by $(\lambda-M)^{-1}$ with $M$ being an arbitrary elliptic differential
operator. To overcome this difficulty we introduce on $H_{0}^{1}$ one-parameter family
of norms induced by the elliptic differential operator $M$, namely,

(2.1) $p\{u ; \lambda-M\}\equiv((\lambda-M)u, u)^{1/2}$ , $u\in H_{0}^{1}$ ,

where
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$((\lambda-M)u, u)\equiv\int_{G}\{\sum_{i,j=1}^{n}m_{ij}(x)_{\partial^{\partial}}\frac{\partial u}{\partial x_{i}}-\frac{u}{X_{j}}+(m(x)+\lambda)u^{2}(x)\}dx$ .

It is clear that for all positive finite $\lambda,$ $--p\{\sqrt{}^{1}\lambda ; \lambda-M\}$ and $\Vert\Vert_{1}$ are equivalent

norms on the space $H_{0}^{1}$ . On the other hand for fixed $u$ in $H_{0}^{1}$ we have

1
$\lim_{\lambda\rightarrow\infty}p\{u;\lambda-M\}=\Vert u\Vert_{0}\overline{\sqrt{}}\overline{\lambda}$

To prove the theorem we first show that for all $t\geqq 0$ and for all $u$ in
$H_{0\cap}^{3}H^{4}$

\langle 2.2) $\Vert E_{\lambda}(t)u-E_{t}(t)u\Vert_{0}\rightarrow 0$ as $\lambda,$

$\mu\rightarrow\infty$ ,

so that we can define an operator $E(t)$ on the subspace $H_{0\cap}^{3}H^{4}$ of $H_{0}^{0}$ as the
strong $\Vert\Vert_{0}$-limit of $E_{\text{{\it \‘{A}}}}(t)$ as $\lambda\rightarrow\infty$ . We then proceed to verify that the operator
$E(t)$ so defined is bounded with respect to the norm $\Vert\Vert_{0}$ . Since $H_{0}^{3}\cap H^{4}$ is
$\Vert\Vert_{0}$ -dense in $H_{0}^{0}$ , we can extend $E(t)$ to the whole space $H_{0}^{0}$ by continuity.
Our proof is then completed by verifying that for all $u_{0}$ in $H_{0\cap}^{1}H^{2}$ the func-
tion defined by $u(t, x)\equiv E(t)u_{0}(x),$ $t\geqq 0$ , solves the parabolic initial-value problem
(1.6).

To establish the limit relations in (2.2) we shall always, without loss of
generality, assume $\mu>\lambda$ and proceed to show that for every $u$ in $H_{0}^{3}\cap H^{4}$ and
for all $t\geqq 0$ ,

$1(2.3)$ $\frac{1}{\sqrt{}\lambda}p\{E_{\lambda}(t)u-E_{\mu}(t)u;\lambda-M\}\rightarrow 0$ as $\lambda\rightarrow\infty$ .

Indeed, for every positive $\lambda$ and $\mu$ and non-negative $t$

\langle 2.4) $\sqrt[-]{\lambda^{-}}^{1}p\{E_{\lambda}(t)u-E_{\mu}(t)u;\lambda-M\}\geqq\Vert E_{\lambda}(t)u-E_{J}(t)u\Vert_{0}$ .

Hence (2.2) is a direct consequence of (2.3).
To establish the limit relations in (2.3) we note that for every positive

number $\lambda$ the generator,

\langle 2.5) $A_{\lambda}\equiv\lambda(\lambda-M)^{-1}L$ ,

is bounded as a one-one mapping of $H_{0}^{1}$ onto $H_{0}^{1}$ . Hence its exponential,

(2.6) $E_{\lambda}(t)\equiv\exp[tA_{\lambda}]$ , $t\geqq 0$ , $\lambda>0$ ,

is also a bounded operator with respect to the norm $\Vert\Vert_{1}$ and that $E_{\lambda}(O)=I$,
[10].

Basing on Poincar\’e’s inequality and the restrictions in (1.2) for $L$ and $M$,
we can choose, with $L$ and $M$ being fixed, a constant $c$ so large that for all $u$

in $H_{0}^{1}$
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(2.7) $(-\div Lu,$ $u)\leqq(-Mu, u)$ .

Upon writing $L/c\equiv N$, we have the following decomposition for $A_{\lambda}$ on the
space $H_{0}^{1}$ :

(2.8) $A_{\lambda}=-c\lambda+c\lambda(\lambda-M)^{-1}(\lambda-M+N)$ , $\lambda>0$ .
It is easy to verify that the operator $(\lambda-M)^{-1}(\lambda-M+N)$ is also bounded with
respect to the norm $\Vert\Vert_{1}$ as a mapping of $H_{0}^{1}$ onto $H_{0}^{1}$ . Consequently, we can
extract a scalar factor from the operator $E_{\lambda}(t)$ as follows:

(2.9) $E_{\lambda}(t)=\exp[-ct\lambda]\cdot\exp[ct\lambda(\lambda-M)^{-1}(\lambda-M+N)]$ , $\lambda>0$ , $t\geqq 0$ .
For simplicity we shall write

(2.10) $B_{\lambda}\equiv(\lambda-M)^{-1}(\lambda-M+N)$ ,

and proceed to show that for every $u$ in $H_{0}^{1}$

(2.11) $p\{B_{\lambda}u;\lambda-M\}\leqq(1-\frac{k}{\lambda})p\{u;\lambda-M\}$ ,

where $k$ is a positive con\S tant depending only on $L$ and $M$ and the domain $G$ .
That is, the operator $B_{\lambda}$ in (2.10) maps $H_{0}^{1}$ into $H_{0}^{1}$ and it is bounded by $ 1-k/\lambda$

with respect to the norm $p\{ ; \lambda-M\}$ . To establish the essential inequality
(2.11) we first appeal to direct computation to obtain the identity,

(2.12) $[p\{B_{\lambda}u;\lambda-M\}]^{2}=((\lambda-M+N)u, u+(\lambda-M)^{-1}Nu)$

$=[p\{u;\lambda-M\}]^{2}+2(Nu, u)+(Nu, (\lambda-M)^{-1}Nu)$ .
Next we give an estimate for the last term on the right-hand side of (2.12)
so as to transform it into an inequality. Indeed,

$(Nu, (\lambda-M)^{-1}Nu)=(-Nu, (\lambda-M)^{-1}(-Nu))$

$\leqq(-Nu, u)^{1/2}(-N(\lambda-M)^{-1}(-Nu), (\lambda-M)^{-1}(-Nu))^{1/2}$

$\leqq(-Nu, u)^{1/2}((\lambda-M)(\lambda-M)^{-1}(-Nu), (\lambda-M)^{-1}(-Nu))^{1/2}$

$\leqq(-Nu, u)^{1/2}(-Nu, (\lambda-M)^{-1}(-Nu))^{1/2}$ ,

where the first inequality is that of Schwarz and the second inequality follows
from the choice of the constant $c$ in (2.7). After cancelling the common factor
from the both sides of the above inequality, we obtain the desired estimate,

(2.13) $(Nu, (\lambda-M)^{-1}Nu)\leqq(-Nu, u)$ .
Upon applying the inequality (2.13) to the last term on the right-hand side of
the identity (2.12), it yields
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(2.14) $[p\{B_{\lambda}u;\lambda-M\}]^{2}\leqq[p\{u;\lambda-M\}]^{2}-[p\{u;-N\}]^{2}$

$=\{1-[p\{u,\cdot\lambda-M\}p\{u,-N\}]^{2}\}[p\{u ; \lambda-M\}]^{2}$ ,

where $p\{u;-N\}\equiv(-Nu, u)^{1/2}$ . According to Poincar\’e there is a constant $k_{J}$

independent of $u$ such that

(2.15) $k_{1}(-Nu, u)\geqq(u, u)$ for all $u$ in $H_{0}^{1}$ .
Since $N\equiv L/c$ with $c$ being chosen in (2.7), it is clear that we can also choose
a constant $c_{1}$ so large that

(2.16) $c_{1}(-Nu, u)\geqq(-Mu, u)$ for all $u$ in $H_{0}^{1}$ .
Accordingly, we have, for all $u$ in $H_{0}^{1}$ ,

(2.17) $\frac{(-Nu,u)}{\lambda(u,u)+(-Mu,u)}\geqq\frac{1}{\lambda k_{1}}[\frac{\lambda(u,u)}{\lambda(u,u)+(-Mu,u)}]$

$=\overline{\lambda}k_{1}^{-}1[1-\frac{(-Mu,u)}{\lambda(u,u)+(-Mu,u)}]$

$\geqq\overline{\text{\‘{A}}}^{1_{k_{1}}}-[1\frac{c_{1}(-Nu,u)}{\lambda(u,u)+(-Mu,u)}]$ ,

where the first and the second inequalities follow from the choices of the
constants $k_{1}$ and $c_{1}$ in (2.15) and (2.16) respectively. Upon solving (2.17) and
restricting $\lambda\geqq 1$ , we find

(2.18) $[-\frac{u}{u}-p\{, \lambda-M\}^{-]^{2}}p\{,-N\}\geqq\frac{1}{1+c_{1}/\lambda k_{1}}\overline{\lambda}k_{1}-1\geqq-\lambda-\frac{1}{c_{1}+k_{1}}1$

$\geqq k_{2}/\lambda$ , $k_{2}\equiv 1/(c_{1}+k_{1})$ .
Thus, (2.11) follows from (2.14) and (2.18) by setting $k\equiv k_{2}/2$ . The above proof
shows that $k$ depends only on $L,$ $M$ and $G$ . For the following application, we
emphasize that $k$ is independent of the function $u$ as well as the parameter
$\lambda\geqq 1$ .

We proceed to combine the identity (2.9) and the inequality (2.11) to derive
an estimate for $p\{E_{\lambda}(t)u;\lambda-M\}$ for all $u$ in $H_{0}^{1}$ . Indeed, for all $u$ in $H_{0}^{1}$ one
has

(2.19) $p\{E_{\lambda}(t)u;\lambda-M\}=\exp[-ct\lambda]\cdot p\{\exp[ct\lambda B_{\lambda}]\cdot u;\lambda-M\}$

$\leqq\exp[-ct\lambda]\cdot\exp[ct\lambda p\{B_{\lambda} ; \lambda-M\}]\cdot p\{u;\lambda-M\}$

$\leqq\exp[-ct\lambda]\cdot\exp[ct\lambda(1-\frac{k}{\lambda})]\cdot p\{u;\lambda-M\}$

$\leqq\exp[-ctk]\cdot p\{u;\lambda-M\}$ ,

with $c,$ $k>0$ and $t\geqq 0$ . This proves that for all $t\geqq 0$ the one-parameter family



446 T. W. TING

of operators $E_{\lambda}(t),$ $\lambda>0$ , are uniformly bounded with respect to the correspond-
ing one-parameter family of norms $p\{ ; \lambda-M\}$ . More precisely, as a mapping
of $H_{0}^{1}$ onto $H_{0}^{1}$

(2.20) $p\{E_{\lambda}(t);\lambda-M\}\leqq\exp[-ckt]$ , $c,$ $k>0$ , $t\geqq 0$ ,

where the constants $c$ and $k$ depend only on $L$ and $M$ and the domain $G$.
This accomplishes the first step of the proof.

Our next step is to derive certain estimates for $p\{(A_{\lambda}-A_{\mu})u;1-M/\lambda\}$ .
First, we shall derive the following identity which holds for all numbers $\lambda$ and
$\mu$ with $\mu>\lambda>0$ and for all $u$ in $H_{0}^{1}\cap H^{2}$ ,

(2.21) $[p\{(A_{\lambda}-A,,)u;1-\frac{M}{\lambda}\}]^{2}=(\frac{1}{\lambda}-\frac{1}{\mu})^{2}((1-\frac{M}{\lambda})^{-1}MA_{\mu}u,$ $MA_{\mu}u)$ .

Indeed, direct computation gives that for all $u$ in $H_{0}^{1}\cap H^{2}$ and for allS
numbers $\lambda$ and $\mu$ with $\mu>\lambda>0$

(2.22) $(1\frac{M}{\lambda})(A_{\lambda}-A_{\mu})u=(\frac{1}{\lambda}-\frac{1}{\mu})MA_{\mu}u$ .

By applying the operator $(1-M/\lambda)^{-1}$ on the left to the both sides of the above
identity, we find that

(2.23) $(A_{\lambda}-A_{\mu})u=(-\lambda 1--\frac{1}{\mu})(1-\frac{M}{\lambda})^{-1}MA_{\mu}u$ .

Upon taking the inner product of the corresponding sides of (2.22) and $(2.23)\downarrow$

we obtain the desired identity (2.21). The usefulness of such an identity lies
in the fact that it expresses the norm of $(A_{\lambda}-A_{\mu})u$ in terms of a functional
on $A_{\mu}u$ alone which is easier to be estimated.

We proceed now to transform the identity in (2.21) into an inequality. To
this end, we consider two functions $v,$ $w$ in $H_{0}^{1}\cap H^{2}$ such that

(2.24) $Mw=Lv$ , $i$ . $e.$ , $w=M^{-1}Lv$ .

For all $v,$ $w$ in $H_{0}^{1}\cap H^{2}$ and related by (2.24) we have

(2.25) $(-Mw, w)^{1/2}(-M\nu, v)^{1/2}\geqq(-Mw, v)$

$=(-Lv, v)$

$\geqq-k’(-Mv, v)1$

where the positive constant $k^{\prime}$ depends only on $L,$ $M$ and $G$ and is independent
of $v$ and $w$ . On the other hand, by the same argument as for deriving the
estimate in (2.13) we also have that for all $v$ in $H_{0}^{1}\cap H^{2}$ and for all $\lambda>0$ ,

(2.26) $((1-\frac{M}{\lambda})^{-1}Mv,$ $Mv)\leqq\lambda(-Mv, v)$ .
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Thus, we have from (2.25) and (2.26) that for all $v,$ $w$ in $H_{0\cap}^{1}H^{2}$ and for all
$\lambda>0$ ,

(2.27) $((1-\frac{M}{\lambda})^{-1}Mv,$ $Mv)\leqq\lambda(k^{\prime})^{2}(-Mw, w)$ ,

where $w\equiv M^{-1}Lv$ .
We wish to compare the value of the expression on the left of (2.27) with

$((1-M/\mu)^{-1}Lv, Lv),$ $\mu>\lambda$ . To this end, we note that the fractional power,
$(-M)^{1/2}$ , of the self-adjoint elliptic partial differential operator $M$ can be defined
[1, 13-15]. Furthermore, it is known [14, II] that $(-M)^{1/2}$ is also self-adjoint
and it commutes with $(1-M/\mu)^{-1}$ on the domain of $(-M)^{1/2}$ and that for all
$u,$ $v$ in $H_{0}^{1}$

(2.28) $(-Mu, v)=((-M)^{1/2^{1}}u, (-M)^{1/2}v)=(u, -Mv)$ .
Consequently, for all $v$ in $H_{0}^{1}\cap H^{2}$ and for all $\mu>\lambda>0$ ,

(2.29) $((1-M/\mu)^{-1}Lv, Lv)$

$=((1-M/\mu)^{-1}MM^{-1}Lv, MM^{-1}Lv)$

$=((1-M/\mu)^{-1}Mw, Mw)$

$=\mu\{(-Mw, w)-\mu((\mu-M)^{-1}w, -Mw)\}$

$=\mu\{(-Mw, w)-\mu((\mu-M)^{-1}(-M)^{1/2}w, (-M)^{1/2}w)\}$ ,

wh$ere$ the second equality sign follows from the defining relation in (2.24) and
the last one follows from the non-trivial identities in (2.28) and from the com-
mutativity of $(-M)^{1/2}$ and $(1-M/\mu)^{-1}$ on $H_{0}^{1}$ . Now

(2.30) $\mu((\mu-M)^{-1}(-M)^{1/2}w, (-M)^{1/2}w)$

$\leqq\mu\Vert(\mu-M)^{-1}(-M)^{1/2}w\Vert_{0}\Vert(-M)^{1/2}w\Vert_{0}$

$\leqq\mu\Vert(\mu-M)^{-1}\Vert_{0}\Vert(-M)^{1/2}w\Vert_{0}^{2}$

$\leqq\frac{\mu}{k^{\prime\prime}}((-M)^{1/2}w\overline{\mu}+’(-M)^{1/2}w)$

$=\frac{\mu}{\mu+k^{\prime\prime}}(-Mw, w)$ ,

where the positive constant $k^{\prime\prime}$ depends only on $M$ and $G$ and is independent
of $\lambda,$

$\mu$ and $w$ , and the last equality sign again follows from the identities in
(2.28). By combining (2.29) and (2.30) it follows that for all $v$ in $H_{0}^{1}\cap H^{2}$ and
for all numbers $\lambda$ and $\mu$ with $\mu>\lambda>0$ ,

(2.31) $((1-\frac{M}{\mu})^{-1}Lv,$ $Lv)\geqq\mu\{(1-\overline{\mu}+\frac{\mu}{k’})(-Mw, w)\}$

$=\frac{k^{\prime\prime}}{\mu+}\mu,’$
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where $w\equiv M^{-1}Lv$ .
Thus, we conclude from the inequalities in (2.27) and (2.31) that for all $v$

in $H_{0}^{1}\cap H^{2}$ and for all $\mu>\lambda>0$ ,

(2.32) $((1-\frac{M}{\lambda})^{-1}Mv,$ $Mv)\leqq\frac{\lambda(k^{\prime})^{2}(\mu+k^{\prime\prime})}{k’\mu}((1-\frac{M}{\mu})^{-1}Lv,$ $Lv)$ ,

$whereIk^{\prime}$ depends only on $L,$ $M$ and $G$ and $k^{\prime\prime}$ depends only on $M$ and $G$ .
For every given $\lambda>0,$ $A_{\lambda}$ is bounded as a one-one mapping of $H_{0}^{1}$ onto

$H_{0}^{1}$ . So is $A_{\lambda}E_{\lambda}(t-s)$ for all $ 0<t-s<\infty$ . Consequently, for all $\mu>\lambda>0$ ,

(2.33) $((1_{\lambda}^{M}---)(A_{\lambda}-A_{\mu})E_{\mu}(t-s)u,$ $(A_{\lambda}-A_{\mu})E_{\mu}(t-s)u)$

$=(\frac{1}{\lambda}-\frac{1}{\mu})^{2}((1_{\lambda}^{M}---)^{-1}MA_{\mu}E_{fI}(t-s)u,$ $MA_{\mu}E_{\mu}(t-s)u)$

$\leqq(1-\frac{\lambda}{\mu})^{2}\frac{\mu+}{\mu}k^{k^{\prime\prime}\underline{(k}_{\lambda^{\prime}})^{2}}--((1-\frac{M}{\mu})^{-1}LA_{\mu}E_{\ell}(t-s)u,$ $LA_{\rho\ell}E_{\mu}(t-s)u)$

$=(1-\frac{\lambda}{\mu})^{2}\frac{\mu+k^{\prime\prime}}{\mu k’}\frac{(k^{\prime}}{\lambda})^{2}-(A_{\mu}^{2}E_{\mu}(t-s)u,$ $(1-\frac{M}{\mu})A_{\mu}^{2}E_{\mu}(t-s)u)$

$=(1-\frac{\lambda}{\mu})^{2}-\frac{\mu+k^{\prime\prime}}{\mu k}\frac{(k^{\prime}}{\lambda}\underline{)^{2}}((1-\frac{M}{\mu})E_{\mu}(t-s)A_{\mu}^{2}u,$ $E_{\mu}(t-s)A_{\mu}^{2}u)$ ,

where the first equality sign follows from the identity in (2.21), the inequality
sign follows from (2.32), the second equality sign follows from the definition
of $A_{\mu}$ in (2.5) and the last equality sign follows from the commutativity of
$A_{\mu}$ and $E_{\mu}$ . Indeed, it is to make use of the commutativity of $A_{\mu}$ and $E_{\mu}$ that
we derived the estimate in (2.32) to replace the operator $M$ by $L$ and to replace
$(1-M/\lambda)^{-1}$ by $(1-M/\mu)^{-1}$ .

We have established the uniform boundedness of the operators $E_{\lambda}(t)$ in
(2.20) and the essential inequality (2.33). To establish (2.3) we still need the
following fact, namely, for all $\lambda>0$ and for all $t$

$\lim_{\tau\rightarrow 0}p\{\frac{1}{\tau}[E_{\lambda}(t+\tau)-E_{\lambda}(t)]u-A_{\text{{\it \‘{A}}}}E_{\lambda}(t)u;1-M/\lambda\}=0$

for all $u$ in $H_{0}^{1}\cap H^{2}$ . That is,

(2.34) $\frac{d}{dt}E_{\lambda}(t)=A_{\lambda}E_{\lambda}(t)$ , $\lambda>0$ , $-\infty<t<\infty$ ,

in the strong sense with respect to the norm, $p\{ ; 1-M/\lambda\}$ . To establish the
formulas in (2.34) we note the group property of the operators $E_{\lambda}(t)$ ,

$E_{\lambda}(t_{1}+t_{2})=E_{\lambda}(t_{1})E_{\lambda}(t_{2})$ , $-\infty<t_{1},$ $ t_{2}<\infty$ ,

with respect to the operator topology induced by the norm, $p\{ ; 1-M/\lambda\}$ .
Thus,
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\langle 2.35) $\lim_{\tau\rightarrow 0}p\{\frac{1}{\tau}[E_{\lambda}(t+\tau)-E_{\lambda}(t)]u-A_{\lambda}E_{\lambda}(t)u;1-M/\lambda\}$

$=\lim_{\tau\rightarrow 0}p\{\frac{1}{\tau}[E_{\lambda}(\tau)-1-\tau A_{\lambda}]E_{\lambda}(t)u;1-M/\lambda\}$

$\leqq p\{E_{\lambda}(t)$ ; $1-\frac{M}{\lambda}\}\cdot\lim_{\tau\rightarrow 0}p\{\div[E_{\lambda}(\tau)-1-\tau A_{\lambda}]u$ ; $1-M/\lambda\}$

$\leqq e^{-ckt}p\{u;1-M/\lambda\}\cdot\lim_{\tau\rightarrow 0}p\{\div[E_{\lambda}(\tau)-1-\tau A_{\lambda}];1-M/\lambda\}$

$\leqq e^{-ckt}\cdot p\{u;1-M/\lambda\}\lim_{\tau\rightarrow 0}\sum_{n=2}^{\infty}\tau^{n-1}[p\{A_{\lambda}$ ; $1-\frac{M}{\lambda}\}]^{n}/n$ ! ,

where we have used the estimates in (2.11) and (2.20). Since for all $u$ in
$H_{0\cap}^{1}H^{2}$ ,

$[p\{A_{\lambda}u;1-\frac{M}{\lambda}\}]^{2}=\lambda((\lambda-M)^{-1}Lu, Lu)$ , $\lambda>0$ ,

and that analogous to (2.13)

$\lambda((\lambda-M)^{-1}Lu, Lu)\leqq c\lambda(-Lu, u)\leqq k_{3}^{2}((1-M/\lambda)u, u)$

with $k_{3}$ being a positive constant depending only on $\lambda,$ $L,$ $M$ and the domain
$C$ . Thus,

\langle 2.36) $p\{A_{\lambda} ; 1-M/\lambda\}\leqq k_{8}$ .
Hence our formulas in (2.34) follow from (2.35) and (2.36). In an analogous
way, we can also establish the formula,

\langle 2.37) $\frac{d}{dt}E_{\lambda}(t)E_{\mu}(t)=E_{\lambda}(t)(A_{\lambda}+A_{\mu})E_{\mu}(t)$ ,

which holds in the strong sense with respect to the norm, $l$ $\{ ; (1-M/\lambda)\}$ .
We are now ready to prove the limit relation in (2.3). For all $u$ in $H_{0\cap}^{3}H^{4}$

and for all $\mu>\lambda\geqq 1$ , we have

\langle 2.38) $p\{E_{\lambda}(t)u-E_{\mu}(t)u ; 1-M/\lambda\}$

$=p\{\int_{0^{t}}\frac{d}{ds}[E_{\lambda}(s)E_{\mu}(t-s)]\cdot uds;1-M/\lambda\}$

$\leqq\left(\begin{array}{l}l\\-\lambda^{-}\end{array}\right)\int_{0^{t}}p\{E_{\lambda}(s)(A_{\lambda}-A_{\mu})E_{\mu}(t-s)u;\lambda-M\}ds$

$\leqq(\div)^{1/2}\int_{0^{t}}e^{-cks}p\{(A_{\lambda}-A_{\mu})E_{\mu}(t-s)u;\lambda-M\}ds$

$=\int_{0^{t}}e^{-cks}p\{(A_{\lambda}-A_{\mu})E_{\mu}(t-s)u;1-M/\lambda\}ds$

$\leqq(1-\frac{\lambda}{\mu})[-\frac{\mu+}{\mu}k^{\underline{k^{rr},}}\frac{1}{\lambda}]^{1/2}k^{\prime}\int_{0^{t}}e^{-cks}p\{E_{\mu}(t-s)A_{\mu}^{2}u;1-\frac{M}{\mu}\}ds$
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$\leqq(1-\frac{\lambda}{\mu})[-\frac{\mu+}{\mu}k_{/}^{\prime\prime}--1-]^{1/2}k^{\prime}\int_{0^{t}}e^{-ckt}p\{A^{2_{I}}u;1-\frac{M}{\mu}\}ds$

$=(1-\frac{\lambda}{\mu})[\frac{\mu+k^{\prime\prime}}{\mu k’}\frac{1}{\lambda}]^{1\prime 2}k^{\prime}te^{-ckt}p\{A_{\mu}^{2}u;1\frac{M}{\mu}\}$ ,

where the first equality sign follows from (2.37), the second and the last in-
equality follow from (2.20) and the third inequality follows from (2.33). Thus,
to complete our proof for (2.3) it suffices to show that for all $u$ in $H_{0}^{3}\cap H^{4}$

(2.39) $p\{A_{\mu}^{2}u;1-\frac{M}{\mu}\}<const\cdot K$

uniformly in $\mu$ .
To establish (2.39) we first note the inequality

(2.40) $[p\{A_{\mu}^{2}u;1\frac{M}{\mu}\}]^{2}\leqq\overline{\mu}+\overline{k}\mu\Vert L(1\frac{M}{\mu})^{-1}Lu\Vert_{0}^{2}$ .

This relation indicates that the boundedness relation (2.39) seems to be a trivial
one. But to prove it we shall apply the results from the a priori $L_{2}$ estimates
for the solutions of elliptic partial differential equations. First, we note that
$M$ and $(1-M/\mu)^{-1}$ commute on $H^{2}\cap H_{0}^{1}$ . Hence, if $u$ belongs to $H_{0\cap}^{3}H^{4}$ , then

(2.41) $\Vert M(1\frac{M}{\mu})^{-1}Lu\Vert_{0}=\Vert(1\frac{M}{\mu})^{-1}MLu\Vert_{0}$

$\leqq\overline{\mu}+\overline{k^{\prime\prime}}\mu\Vert MLu\Vert_{0}$ .

The right-hand side of this inequality is clearly bounded uniformly in $\mu$ if $u$

is in $H_{0}^{3}\cap H^{4}$ and if the conditions in (1.9) are satisfied by the operators $L$ and
$M$. We wish to show that for all $u$ in $H_{0}^{3}\cap H^{4}$ and for all $\lambda$ and $\mu$ with
$\mu>\lambda\geqq 1$ ,

(2.42) $\Vert L(1-\frac{M}{\mu})^{-I}Lu\Vert_{0}\leqq k_{4}\{\Vert M(1-\frac{M}{\mu})^{-1}Lu\Vert_{0}+\Vert Lu\Vert_{0}\}$

with $k_{4}$ being a constant depending only on $L,$ $M$ and $G$ and independent of
$\lambda$ and $\mu$ .

To establish (2.42) we note from (1.9) that for all $w$ in $H^{2}$

(2.43) $\Vert Lw\Vert_{0}\leqq const$ . $\Vert w\Vert_{2}$ ,

where the constant depends only on $L$ and $G$ . On the other hand for a given
$w$ in $H^{2}$ , it may be regarded as the solution of the following Dirichlet problem,
namely,

$Mw=Mw$ in $G$ , $w=w$ on $\partial G$ ,

where $Mw$ and $w$ on the right-hand sides of the above equations are regarded
to be given function while $w$ on the left is regarded as the solution function.
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Since the operator $M$ and the boundary $\partial G$ satisfy the restrictions in (1.9) and
(1.10) respectively, it is a well-known a priori $L_{2}$ estimate, [14, pp. 704-706],

that

(2.44) $\Vert w\Vert_{2}\leqq const.\{\Vert Mw|\{0+\Vert w\Vert_{2-1/2}+\Vert w\Vert_{0}\}$

$\leqq const.\{\Vert Mw\Vert_{0}+\Vert w\Vert_{2-1/2}\}$ ,

where the constant depends only on $M$ and $G$ and where

(2.45) $\Vert w\Vert_{2-1/2}\equiv g$ . $1$ . $b$ . $\Vert v\Vert_{2}$ , $v\in H^{2}$ , $v=w$ on $\partial G$ .
By combining (2.43) and (2.44) we conclude that

(2.45) $\Vert Lw\Vert_{0}\leqq k$ {I $Mw\Vert_{0}+\Vert w\Vert_{2-1/2}$ }, $w\in H^{2}$ ,

with $k$ being a constant depending only on $L,$ $M$ and $G$ . To see (2.42) is,
indeed, valid we recall that the operator $(1-M/\mu)^{-1}$ wts so uniquely defined
that $(1-M/\mu)^{-1}Lu$ is the unique solution of the Dirichlet problem:

$(1-\frac{M}{\mu})v=Lu$ , $v\in H_{0}^{1}\cap H^{2}$ .
It follows that

$(2.45^{\prime\prime})$ $(1-\frac{M}{\mu})^{-1}Lu\in H_{0\cap}^{1}H^{2}$ , $ 0<\mu<\infty$ .

Furthermore, it is easy to see that
$(2.45^{\prime\prime/})$

$\lim_{t^{\ell\rightarrow\infty}}\Vert(1-M/\mu)^{-1}Lu-Lu\Vert_{0}=0$ .

Thus, our estimate (2.42) follows from $(2.45^{\prime}-2.45^{\prime\prime/})$ .
Now, we have from (2.40), (2.41) and (2.42) that for all $u$ in $H_{0(}^{8}\eta H^{4}$ and

for all $\mu>\lambda\geqq 1$ ,

(2.46) $p\{A_{\mu}^{2}u;1-\frac{M}{\mu}\}\leqq k_{4}\{\Vert M(1\frac{M}{\mu})^{-1}Lu\Vert_{0}+\Vert Lu\Vert_{2}\}[\mu--]^{1/2}$

$\leqq k_{4}\{\overline{\mu}+^{-}\mu k-\Vert MLu\Vert_{0}+\Vert Lu\Vert_{2}\}[\overline{\mu}+\mu k’-]^{1/2}$ .
By combining the inequalities (2.38) and (2.46), it follows that for all $u$ in
$H_{0}^{3}\cap H^{4}$ and for all $\mu>\lambda\geqq 1$ ,

(2.47) $p\{E_{\lambda}(t)u-E_{\mu}(t)u;1-M/\lambda\}$

$\leqq(1-\frac{\lambda}{\mu})(\frac{1}{k\lambda})^{I}2k^{\prime}k_{4}e^{-ckt}[\overline{\mu}+^{-}k’\Vert MLu\Vert_{0}+\Vert Lu\Vert_{2}]$ .

Since the restrictions in (1.9) ensure that $\Vert MLu\Vert_{0}$ and $\Vert Lu\Vert_{2}$ are finite for all
$u$ in $H_{0\cap}^{3}H^{4}$ , our assertion (2.3) follows immediately from (2.47).

To complete the proof of the theorem we can now define the operator $E(t)$

on the subspace $H_{0}^{3}\cap H^{4}$ of $H_{0}^{0}$ by the formula,
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(2.48) $E(t)u=\lim_{\lambda\neg\infty}E_{\lambda}(t)u$

in the $\Vert\Vert_{0}$ -norm. It follows that for all $u$ in $H_{0}^{3}\cap H^{4}$

$\Vert E(t)u\Vert_{0}=\lim_{\lambda\rightarrow\infty}\Vert E_{\lambda}(t)u\Vert_{0}$

$\leqq\lim_{\lambda\rightarrow\infty}p\{E_{\lambda}(t)u;1-M/\lambda\}$

$\leqq e^{-ckt}\lim_{\lambda\rightarrow\infty}p\{u;1-M/\lambda\}$

$\leqq e^{-ckt}\{\Vert u\Vert_{0}^{2}+\lim_{\lambda\rightarrow\infty}-1\lambda^{-}(-Mu, u)\}^{1/2}$

$\leqq e^{-ckt}\Vert u\Vert_{0}$ .
This proves that $E(t)$ is bounded on the subspace $H_{0}^{8}\cap H^{4}$ . Since the later set
is $\Vert\Vert_{0}$-dense in $H_{0}^{0}$, we may extend $E(t)$ to the whole space $H_{0}^{0}$ by continuity.

As has been shown that for all $\lambda>0,$ $-\infty<i_{1},$ $ t_{2}<\infty$ ,

$p\{(E_{\lambda}(t_{1}+t_{2})-E_{\lambda}(t_{1})E_{\lambda}(t_{2}))u;1-M/\lambda\}=0$ , $u\in H_{0}^{3}\cap H^{4}$ .
This implies that for all $\lambda>0,$ $-\infty<t_{1},$ $ t_{2}<\infty$

$\Vert E_{\lambda}(t_{1}+t_{2})u-E_{\lambda}(t_{1})E_{\lambda}(t_{2})u\Vert_{0}=0$ , $u\in H_{0}^{3}\cap H^{4}$ .

Hence by the usual argument we conclude that for all $t_{1},$ $t_{2}\geqq 0$

$\Vert E(t_{1}+t_{2})u-E(t_{1})E(t_{2})u\Vert_{0}=0$

for all $u$ in $H_{0}^{0}$ . Similarly, we conclude from the formula in (2.34) and the fact
that $\Vert A_{\lambda}u-Lu\Vert_{0}\rightarrow 0$ as $\lambda\rightarrow\infty$ that

$-d^{d}\overline{t}E(t)=LE(t)$ , $t\geqq 0$ ,

in the strong $\Vert\Vert_{0}$ -sense. Clearly, from the analogous property of $E_{\lambda}(t)$ we have
that $E(O)=I$.

All what has been shown says that for all $u_{0}(x)$ in $H_{0}^{0}$ , the function $u(t, x)$

$\equiv E(t)u_{0}(x)$ , with $E(t)$ defined in (2.48) is a solution of the parabolic initial-value
problem (1.6). By the uniqueness theorem the solution so constructed is
identical with one defined in (1.8). The proof of the theorem is now complete.

Finally, we add that if the coefficients, $l_{ij}(x),$ $l(x),$ $m_{ij}(x)$ and $m(x)$ as well
as the initial data $u_{0}(x)$ are all sufficiently smooth, then the solution $u_{\lambda}(t, x)$ of
the problem (1.3) is a smooth function in $t$ and $x$ , [10]. In this case, the
solution of the problem (1.6) is also smooth in $t$ and $x,$ $[11]$ . Thus, under
these circumstances the convergence $u_{\lambda}(t, x)\rightarrow u(t, x)$ is point-wise.

University of Illinois
Urbana, Illinois, U. S. A.
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