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In this paper we study the complex structure of ruled surfaces of genus
l–complex analytic projective line bundles over non-singular elliptic curves.
The classification of these bundles were given earlier by Atiyah [1]. In Sec-
tion 1 of the present paper we make further classification of them as complex
analytic surfaces. The underlying topological (or differentiable) manifold of
a ruled surface of genus 1 is an $S^{2}$ -bundle over $S^{1}\times S^{1}$ , where $S^{2}$ and $S^{1}$ de-
note, respectively, a 2-sphere and a circle. We prove, in Section 2, that such
bundles have two types: a trivial bundle $E_{0}=S^{1}\times S^{1}\times S^{2}$ and a non-trivial
bundle $E_{1}$ , and that if a surface $S$ is topologically (or differentiably) homeo-
morphic to $E_{0}$ or $E_{1}$ , then $S$ is a ruled surface of genus 1 (Theorem 2). Com-
bining this with the result of Section 1, we can determine all the complex
structures on $E_{0}$ and $E_{1}$ . We note that, while the set of all the complex struc-
tures on $E_{0}$ forms a continuum, $E_{1}$ admits only a countable number of complex
structures. In Section 3 we give explicit construction of the complex analytic
families of the above complex structures of which the existence is asserted
by a theorem of Kodaira-Nirenberg-Spencer [10]. In those families we see
the “ jump ” phenomenon of complex structures, which is characteristic to
ruled surfaces.

F. Enriques ([4]) first discovered that, if an algebraic surface $S$ has the
numerical characters: $p_{g}=c_{1}^{2}=0$ and $q=1$ , then $S$ is either a ruled surface
(of genus 1) or an elliptic surface, where $p_{g},$ $q$ and $c_{1}$ denote, respectively, the
geometric genus, the irregularity and the first Chern class of S. In Section
4 we examine those surfaces which are both ruled and elliptic, in other words,

we find the ruled surfaces which have another fibering of elliptic curves. A
similar method used in proving Theorem 5 is applicable to the explicit deter-
mination of the structure of so called (irregular) hyperelliptic surfaces (Enri-

ques-Severi [5]).

\S 1. Biholomorphic classification of ruled surfaces of genus 1.

By a surface we shall mean a connected compact complex manifold of
complex dimension 2. We shall follow the notation and terminology of Kodaira
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[9]. Thus we denote by $S$ a surface and by $p_{g},$ $q,$ $b_{\nu},$
$c_{\nu}$ , $\cdot$ .. the geometric

genus, the irregularity, the v-th Betti number, the $\nu$ -th Chern class, $\cdot$ .. of $S$ .
Let $P=\{z\vdash\rightarrow(az+b)/(cz+d);ad-bc\neq 0, a, b, c, d\in C\}$ and $A=\{z\vdash\rightarrow az+b$ ;

$a\neq 0,$ $a,$ $b\in C$ } be, respectively, the l-dimensional projective transformation
group and the l-dimensional affine transformation group. We may consider
that $C^{*}\subset A\subset P$, where $C^{*}$ is the multiplicative group of complex numbers.
By a ruled surface of genus $g$ we mean (the bundle space of) a complex
analytic fibre bundle over a non-singular algebraic curve $X$ of genus $g$ whose
fibre is a projective line $P$ ‘ and whose structure group is the group $P$. When
we want to make explicit the base curve $X$, we call the surface a ruled sur-
face over $X$. A surface $S$ is said to be algebraic if there exists a biholomor-
phic embedding of $S$ into a projective space $P^{N}(C)$ . Obviously every ruled
surface is algebraic. For low values of the genus, Atiyah [1] classified ruled
surfaces as P-bundles. In the case in which $g=0$ , every P-bundles over $P$ ‘

can be expressed uniquely as a $C^{*}$ -bundle of non-negative degree. Hence
ruled surfaces of genus $0$ are the Hirzebruch manifolds $\Sigma_{n},$ $n\geqq 0$ (Hirzebruch
[6], see also [8] p. 86). Except $\Sigma_{1}$ , they are relatively minimal models of
rational surfaces. As for $g=1$ , we have the following

THEOREM 1 (Atiyah [1], [2]). Every P-bundle over an elliptic curve $X$ can
be expressed uniquely as one of the following:

(i) a $C^{*}$ -bundle of non-negative degree,
(ii) $A_{0}$ ,

(iii) $A_{-1}$ ,

where $A_{0}$ and $A_{-1}$ are affine bundles.
Let $X$ be a non-singular elliptic curve. We consider the exact sequence

$0\rightarrow Z\rightarrow 0\rightarrow \mathcal{O}^{*}\rightarrow 0$ ,

where $0$ and $O^{*}$ are respectively the sheaves over $X$ of germs of holomorphic
functions and of non-vanishing holomorphic functions. We have the corre-
sponding exact cohomology sequence

(1)
$\rightarrow H^{1}(X, Z)\rightarrow^{h}H^{1}(X, 0)\rightarrow^{e}H^{1}(X, \mathcal{O}^{*})\rightarrow^{c}H^{2}(X, Z)\rightarrow 0$ .

Note that $H^{1}(X, Z)\cong Z\oplus Z,$ $H^{1}(X, 0)\cong C$ and $H^{2}(X, Z)\cong Z$. For any $C^{*}-$

bundle $\xi\in H^{1}(X, \mathcal{O}^{*}),$ $c(\xi)\in H^{2}(X, Z)=Z$ is the degree of $\xi$ . From (1), we
infer that the collection of the $C^{*}$ -bundles of a fixed degree forms a complex
analytic family parametrized by the Picard variety if(X) $=kerc\cong H^{1}(X, 0)/$

$hH^{1}(X, Z)$ of $X$. Note that $9^{)}(X)$ is a complex torus which is isomorphic to
$X$ itself.

Now we make a biholomorphic classification of ruled surfaces associated
with the bundles of Theorem 1. For any divisor $\mathfrak{d}$ on $X$, we denote by $[\mathfrak{d}]$
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the $C^{*}$ -bundle over $X$ which is determined by $\mathfrak{d}$ . We write the operation of
the group of divisors on $X$ multiplicatively. The following lemma is a direct
consequence of the Abel-Jacobi theorem:

LEMMA 1. (i) Fix a point $p_{0}$ on $X$, then the mapping $p-[p_{0}p^{-1}]$ gives an
isomorphism between complex torus $X$ and $9^{)}(X)$ .

(ii) For any $C^{*}$ -bundle $\xi$ of degree $n\geqq 1$ , there exists a point $p$ on $X$ such
that $\xi=[p^{n}]$ .

From Lemma 1 (ii), it follows that all the ruled surfaces associated with
$C^{*}$ -bundles of a degree $n\geqq 1$ are biholomorphically equivalent to one and the
same surface, which will be denoted by $S_{n}$ . Moreover, we denote by $S_{0}$ the
direct product $P^{1}\times X$. For $C^{*}$ -bundles of degree $0$ , we prove the following

LEMMA 2. Let $\xi_{1}$ and $\xi_{2}$ be two non-trivial $C^{*}$ -bundles of degree $0$ , and
let $p_{1}$ and $p_{2}$ be, respectively, the corresponding points on $X,$ $i$ . $e$ . $\xi_{1}=[p_{0}p_{1}^{-1}]$

and $\xi_{2}=[p_{0}p_{2}^{-1}]$ . Then the ruled surfaces $R_{1}$ and $R_{2}$ associated with $\xi_{1}$ and $\xi_{2}$ ,
respectively, are biholomorphically equivalent if and only if there exists an
automorphism $\varphi$ of the base curve $X$ such that $\varphi(p_{0})=p_{0}$ and $\varphi(p_{1})=p_{2}$ .

PROOF. The ” if ” part is obvious. Assume that there exists a biholo-
morphic map $\Psi$ of $R_{1}$ onto $R_{2}$ . Let $\pi_{\nu}$ : $R.\rightarrow X$ be the canonical projections
of the ruled surfaces R. $(\nu=1,2)$ onto $X$. As any fibre $F$ of $R_{1}$ and its image
$\Psi(F)$ are $P^{1}$ , we see that $\Psi$ is fibre preserving and induces an automorphism
$\psi$ of $X$ such that $\pi_{2}\circ\Psi=\psi\circ\pi_{1}$ . We represent $X$ as a quotient group: $X=C/G$ ,

where $G$ is a discontinuous subgroup of the additive group $C$ generated by ru
and 1, ${\rm Im}\omega>0$ , and, for any $u\in C$, we denote by $[u]$ the corresponding ele-
ment of $X=C/G$ . Let $u_{\nu}$ be local coordinates with respective centers $p_{\nu}$

(1) $=0,1,2)$ , and put $V.=X-\{p_{0}, p_{\nu}\}(\nu=1,2)$ , $U.=\{u_{\nu}||u_{\nu}|<\epsilon\}(\nu=0,1,2)$ .
We choose $\epsilon$ small enough so that $U_{0}\cap U_{\nu}=\phi,$ $(\nu=1,2)$ . We indicate any
point on $P^{1}$ by its inhomogeneous coordinate $\zeta$ . The surfaces R. $(v=1,2)$

can be described as follows:
$R_{\nu}=(V_{\nu}\times P^{1})U(U_{0}\times P^{1})\cup(U_{\nu}\times P^{1})$ ,

where $([u], \zeta)\in V.\times P^{1}$ and $(u_{0}, \zeta_{0})\in U_{0}\times P^{1}$ are identified if and only if

$[u]=p_{0}+u_{0},$ $\zeta=\frac{1}{u_{0}}\zeta_{0}$ , and $([u], \zeta)\in V.\times P^{1}$ and $(u_{\nu}, \zeta_{\nu})\in U_{\nu}\times P^{1}$ are identified
if and only if $[u]=p_{\nu}+u_{\nu},$ $\zeta=u_{\nu}\zeta_{\nu}$ . Ruled surfaces R. have two mutually
disjoint sections $\Gamma_{0}^{(\nu)}$ and $\Gamma_{\infty}^{(\nu)}$ defined, respectively, by the equations $\zeta=\zeta_{0}$

$=\zeta_{\nu}=0$ and $\zeta=\zeta_{0}=\zeta_{\nu}=\infty$ . Besides, $R_{\nu}$ have sections $\Gamma^{(\nu)}$ defined by $\zeta=1$ ,

$\zeta_{0}=u_{0}$ and $\zeta_{\nu}=\frac{1}{u_{\nu}}$ . It is easy to see that for any section $\Gamma$ of $R_{\nu}$ , there

exists a global meromorphic function $f$ (possibly $\equiv\infty$) on $X$, such that $\Gamma$ is

defined by $\zeta=f,$ $\zeta_{0}=u_{0}f$ and $\zeta_{\nu}=\frac{1}{u_{\nu}}f$, respectively, on V., $U_{0}$ and U..
Moreover, for any section $\Gamma$ on $R_{1},$ $\Psi(\Gamma)$ is a section of $R_{2}$ . Let $f,$ $g$ and $h$
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be, respectively, meromorphic functions on $X$ corresponding to the sections
$\Psi(\Gamma^{(1)}),$ $\Psi(\Gamma_{0}^{(1)})$ and $\Psi(\Gamma_{\infty}^{(1)})$ in the above manner. Suppose that neither $g$ nor
$h$ is identically infinite. If the function $g-h$ has a zero $q$ , then $q$ must coin-
cide with the point $p_{2}$ and $p_{2}$ is a zero of $g-h$ of order 1, since $\Psi(\Gamma_{0}^{(1)})$ and
$\Psi(\Gamma_{\infty}^{(J)})$ are mutually disjoint. As there is no elliptic function of order 1, we
see that $g-h$ reduces to a constant, but, in this case, $\Psi(\Gamma_{0}^{(1)})$ and $\Psi(\Gamma_{\infty}^{(1)})$ meet
at a point on the fibre: $u_{0}=0$ . This is a contradiction. Hence $ g\equiv\infty$ or $ h\equiv\infty$

and consequently $\Psi(\Gamma_{0}^{(1)})=\Gamma_{\infty}^{(2)}$ or $\Psi(\Gamma_{\infty}^{(1)})=\Gamma_{\infty^{2)}}$
( Moreover the mutual disjoint-

ness of $\Psi(\Gamma_{0}^{(1)})$ and $\Psi(\Gamma_{\infty}^{(1)})$ implies that if $\Psi(\Gamma_{0}^{(1)})=\Gamma_{\infty}^{(2)}$ then $\Psi(\Gamma_{\infty}^{(1)})=\Gamma_{0}^{(2)}$ and
that if $\Psi(\Gamma_{\infty}^{(1)})=\Gamma_{\infty}^{(2)}$ then $\Psi(\Gamma_{0}^{(1)})=\Gamma_{0}^{(2)}$ . Since $\Psi(\Gamma^{(1)})$ intersect transversally
each of $\Gamma_{0}^{(2)}$ and $\Gamma_{\infty}^{(2)}$ at one point, the order of the elliptic function $f$ is $0$ or
2. In what follows we denote by $(f)$ the divisor on $X$ defined by $f$. More-
over let $\eta$ be a base of holomorphic l-forms on $X$ which is invariant under
translations. We examine the following cases separately:

(i) The case in which $\Psi(\Gamma_{0}^{(1)})=\Gamma_{0}^{(2)},$ $\Psi(\Gamma_{\infty}^{(t)})=\Gamma_{\infty}^{(2)}$ and the order of $f$ is $0$ .
Since $f$ reduces to a constant distinct from $0$ or $\infty$ , we have $\psi(p_{0})=p_{0}$ and
$\psi(p_{1})=p_{2}$ . Hence it suffices to put $\varphi=\psi$ .

(ii) The case in which $\Psi(\Gamma_{0}^{(1)})=\Gamma_{0}^{(2)},$ $\Psi(\Gamma_{\infty}^{(1)})=\Gamma_{\infty}^{(2)}$ and the order of $f$ is 2.
It follows that $(f)=p_{2}p_{0}^{-1}\psi(p_{0})\psi(p_{1})^{-1}$ . By the Abel theorem we have

(2) $\int_{p^{p_{0^{2}}}}\eta+\int_{\psi p^{p_{J^{0}})}}^{\psi_{()}^{(}}\eta\in G$ .

Let $\varphi$ be the automorphism of $X$ deflned by $\varphi(p)=\psi(p)-\psi(p_{0})+p_{0}$ , where

$p\in X$, then $\varphi(p_{0})=p_{0}$ and (2) implies that $\int_{\varphi^{(p_{1})}}^{p_{2}}\eta\in G$ . Hence we have $\varphi(p_{1})=p_{2}$ .
(iii) The case in which $\Psi(\Gamma_{0}^{(1)})=\Gamma_{\infty}^{(2)},$ $\Psi(\Gamma_{\infty^{\grave{)}}}^{(1})=\Gamma_{0}^{(2)}$ and the order of $f$ is $0$ .

Since $f$ reduces to a constant distinct from $0$ or $\infty$ , we have $\psi(p_{0})=p_{2}$ and
$\psi(p_{1})=p_{0}$ . Hence it suffices to put $\varphi(p)=-\psi(p)+p_{0}+p_{2}$ .

(iv) The case in which $\Psi(\Gamma_{0}^{(1)})=\Gamma_{\infty}^{(2)},$ $\Psi(\Gamma_{\infty}^{(1)})=\Gamma_{0}^{(2)}$ and the order of $f$ is 2.
It follows that $(f)=p_{2}p_{0}^{-1}\psi(p_{1})\psi(p_{0})^{-1}$ . By the Abel theorem we have

(3) $\int_{p^{p_{0^{2}}}}\eta+\int_{\psi(p)^{)}}^{\psi(p_{0^{1}}}\eta\in G$ .

Let $\varphi$ be the automorphism of $X$ defined by $\varphi(p)=-\psi(p)+\psi(p_{0})+p_{0}$ , then
$\varphi(p_{0})=p_{0}$ and (3) implies $\varphi(p_{1})=p_{2},$ $q$ . $e$ . $d$ .

The above lemma enables us to make biholomorphic classification of ruled
surfaces associated with $C^{*}$ -bundles of degree $0$ , and to find the space of
moduli for these surfaces. Let $S\rightarrow 9$)$(X)\cong X$ be the complex analytic family
of ruled surfaces over $X$ associated with $C^{*}$ -bundles of degree $0$ , parametrized
by the Picard variety $9$)$(X)$ of $X$ , which is identified with $X$ by the isomor-
phism of Lemma 1 (i). We may assume that the point $p_{0}$ is the neutral ele-
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ment $[0]$ of the additive group $X=C/G$ . The group of automorphisms of $X$

which leave $p_{0}$ fixed is generated by $g:p\vdash\rightarrow\sigma p$ , where $\sigma=e\frac{2\pi^{\sqrt{-1}}}{n}$ , and $n=2,4$

or 6 according as $X$ is a general, a harmonic or an equianharmonic elliptic
curve. Thus we see that the space of moduli of ruled surfaces associated
with $C^{*}$ -bundles of degree $0$ over an elliptic curve $X$ is the quotient space
$X/\{g\}\cong P^{1}$ . Choosing a representative from each biholomorphic equivalence
class of ruled surfaces associated with $C^{*}$ -bundles of degree $0$ , we form a set
$S_{0}$ of surfaces. The elements of $S_{0}$ are in one-to-one correspondence with the
points on $X/\{g\}=P^{1}$ .

Now we make some remarks on the property of sections of ruled surfaces
under consideration. The ruled surfaces associated with A-bundles $A_{0}$ and $A_{-1}$

of Theorem 1 are denoted also by $A_{0}$ and $A_{-1}$ . For any curves $C$ and $\Gamma$ on
a surface, we write by $ C\Gamma$ the intersection multiplicity of $C$ and $\Gamma$ . Note
that for any two sections $\Gamma_{1}$ and $\Gamma_{2}$ of a ruled surface, we have $\Gamma_{1}^{2}+\Gamma_{2}^{2}=2\Gamma_{1}\Gamma_{2}$ ,

since the divisor $\Gamma_{1}-\Gamma_{2}$ is homologous to a multiple of a fibre. A ruled sur-
face $S$ associated with a $C^{*}$ -bundle of degree $n$ has two mutually disjoint
sections $\Gamma_{0}$ and $\Gamma_{\infty}$ defined respectively by $\zeta=0$ and $\zeta=\infty$ , where $\zeta$ denotes
a fibre coordinate. We have $\Gamma_{0}^{2}=n$ and $\Gamma_{\infty}^{2}=-n$ . Moreover for any section
$\Gamma\neq\Gamma_{\infty}$ of $S$ , the inequality $\Gamma^{2}\geqq n$ holds. If $S$ is the direct product $S_{0}$

$=X\times P^{1}$ , then of course there is an infinite number of sections with $\Gamma^{2}=0$ .
If $S\in S_{0},$ $S\neq S_{0}$ , then any section $\Gamma$ of $S$ meets either $\Gamma_{0}$ or $\Gamma_{\infty}$ . Thus if
$\Gamma\neq\Gamma_{0},$ $\neq\Gamma_{\infty}$ , then $\Gamma^{2}\geqq 2$ . The explicit construction of $A_{0}$ and $A_{-1}$ in Section
3 shows that $A_{0}$ has a section $\Gamma_{\infty}$ with $\Gamma_{\infty}^{2}=0$ , and $A_{-1}$ has an infinite num-
ber of sections $\Gamma$ with $\Gamma^{2}=1$ . It is not difficult to see that arbitrary two
sections of $A_{0}$ or of $A_{-1}$ intersect at least at one point. Thus for any section
$\Gamma$ of $A_{0}$ , we have $\Gamma^{2}\geqq 0$ and $\Gamma^{2}=0$ if and only if $\Gamma=\Gamma_{\infty}$ , while for any
section $\Gamma$ of $A_{-1}$ , we have $\Gamma^{2}\geqq 1$ .

From the facts mentioned above we see that the ruled surfaces associated
with the bundles of Theorem 1 can be classified biholomorphically as follows:

$s_{0},$ $S_{n}(n\geqq 1),$ $A_{0},$ $A_{-1}$ .

\S 2. Complex structures on $S^{2}$-bundles over $S^{1}\times S^{1}$ .
By an $S^{2}$ -bundle we mean (the bundle space of) a differentiable fibre bundle

over some differentiable manifold whose fibre is a 2-sphere $S^{2}$ and whose
structure group is the group Diff $S^{2}$ of orientation preserving diffeomorphisms
of $S^{2}$ .

The underlying differentiable manifold of any ruled surface of genus 1 is
an $S^{2}$ -bundle over a 2-torus $S^{1}\times S^{1}$ , where $S$ ‘ denotes a circle. Note that the
differentiable and topological classifications of Diff $S^{2}$ -bundles coincide. More-
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over as the group Diff $S^{2}$ has the same homotopy type as the special ortho-
gonal group $SO(3)$ (Smale, Earle-Eells [3]), we may reduce the structure group
to $SO(3)$ .

PROPOSITION. $S^{2}$-bundles over $S^{1}\times S^{1}$ are classified into two equivalence
classes.

PROOF. Let $BSO(3)=\lim_{n\rightarrow\infty}SO(n)/SO(n-3)\times SO(3)$ be the classifying space

for SO(3)-bund1es, then the equivalence classes of the bundles under considera-
tion are in one-to-one correspondence with the homotopy classes $[S^{1}\times S^{1}$ ,
$BSO(3)]$ of the maps of $S^{1}\times S^{1}$ into $BSO(3)$ . Writing the Puppe exact sequence
for $S^{1}\times S^{1}/S’\vee S^{1}=S^{2}$ , where $S^{1}\vee S^{1}$ denotes the one point join of two
meridian circles on $S^{1}\times S^{1}$ , we have

(3) . $\rightarrow[S(S^{1}\vee S‘), BSO(3)]\rightarrow[S^{2}, BSO(3)]$

$\rightarrow[S^{1}\times S^{1}, BSO(3)]\rightarrow$ [ $S$ ‘ V $S^{1},$ $BSO(3)$] ,

where $S(S^{1}\vee S^{1})$ denotes the suspension of $S^{1}\vee S^{1}$ . From isomorphisms
$\pi_{i}(BSO(3))\cong\pi_{i-1}(SO(3))$ , we have

$[S^{2}, BSO(3)]\cong\pi_{1}(SO(3))\cong Z_{2}$ ,

$[S^{1}\vee S^{1}, BSO(3)]\cong\pi_{0}(SO(3))\oplus\pi_{0}(SO(3))=0$ .
Thus the exact sequence (3) reduces to

$h$

$[S(S^{1}\vee S^{1}), BSO(3)]\rightarrow[S^{2}, BSO(3)]\rightarrow[S^{1}\times S^{1}, BSO(3)]\rightarrow 0$ .
We infer readily that $h=0$ , and consequently we obtain

$[S^{1}\times S^{1}, BSO(3)]\cong[S^{2}, BSO(3)]\cong Z_{2}$ , $q.e$ . $d$ .
THEOREM 2. If a surface $S$ is differentiably (or topologically) homeomor-

phic to the bundle space of an $S^{2}$ -bundle over $S^{1}\times S^{1}$ , then $S$ is a ruled surface
of genus 1.

PROOF. Let $M$ be the $S^{2}$-bundle over the universal covering manifold $R^{2}$

of $S^{1}\times S^{1}$ which is induced from the $S^{2}$ -bundle $S$ by the covering map
$R^{2}\rightarrow S^{1}\times S^{1}$ , then $M$ is trivial: $M=S^{2}\times R^{2}$ . Thus we see that the universal
covering manifold of the surface $S$ is topologically homeomorphic to $S^{2}\times R^{2}$ .
From the exact sequence of homotopy groups of the bundle, we have $\pi_{1}(S)$

$=Z\oplus Z$. Hence $b_{1}=2$ and $q=1$ . On the other hand, denoting by $\chi(N)$ the
Euler number of a manifold $N$, we have $c_{2}=\chi(S)=\chi(S^{1}\times S^{1})\chi(S^{2})=0$ . Hence
$b_{2}=2$ and $p_{g}=0$ . The Noether formula shows that $c_{1}^{2}=0$ . The above values
of the numerical characters of $S$ show that $S$ is a relatively minimal algebraic
surface. Considering the Albanese map of $S$ , we have a holomorphic map $\Psi$

of $S$ onto a non-singular elliptic curve $\Delta$ such that the fibres $\Psi^{-1}(u),$ $ u\in\Delta$ ,



Ruled surfaces of genus 1 297

are all connected. Let the genus of a general fibre be $\pi$ . If $\pi=0$ , then $S$ is
a ruled surface (over $\Delta$), since $S$ is relatively minimal. If $\pi=1$ , then $S$ is an
elliptic surface over $\Delta$ . Since the Euler number $c_{2}$ of $S$ vanishes, $S$ has no
other singular fibres than that of the form $ m\Theta$ , where $\Theta$ is a non-singular
elliptic curve, and hence the functional invariant of $S$ reduces to a constant.
Thus, taking suitably branched simply connected covering $c_{U}$ of $\Delta$ , we obtain
an elliptic fibre space $S$ over $c_{U}$ induced from $S$ by the covering map $ c_{U}\rightarrow\Delta$

which is free from singular fibres and forms an unramified covering manifold
of $S$ . As $c_{U}$ is complex analytically homeomorphic to either $C$ or $D$ , where
$D$ denotes a unit disk, we have $S=C\times C$ or $D\times C$ , where $C$ is an elliptic
curve. Accordingly the universal covering manifold of $S$ is $C\times C$ or $C\times D$

which are both not homeomorphic to $R^{2}\times S^{2}$ . This is a contradiction. If
$\pi\geqq 2$ , then, as is shown in the proof of Theorem 51 in [9] IV, $S$ has as an
unramified covering manifold, the direct product $C_{0}\times C$, where $C_{0}$ is a non-
singular algebraic curve of genus $\geqq 2$ . Thus, in this case, the universal
covering manifold of $S$ is $D\times C$, this is also a contradiction, $q$ . $e$ . $d$ .

REMARK. The table II of [9] IV shows that if a surface $S$ is topologically
homeomorphic to a $S^{2}$ -bundle over a compact orientable 2-manifold $R$ of genus
$\geqq 2$ , then $S$ is a ruled surface of the same genus as $R$ .

Let $E_{0}$ and $E_{1}$ denote, respectively, the trivial and the non trivial bundle
spaces of the Proposition. Examining the intersection matrices or the Stiefel-
Whitney classes of the ruled surfaces of Section 1, we see that the differ-
entiable manifold $E_{0}$ admits the complex structures $S_{0},$ $S_{2n}(n\geqq 1),$ $A_{0}$ and no
others and that $E_{1}$ admits $S_{zn+1}(n\geqq 0),$ $A_{-1}$ and no others.

\S 3. Local complex analytic families.

We denote by $\Theta$ the sheaf over $S$ of germs of holomorphic vector fields.
It is easy to show the following

LEMMA 3. If $S$ is a ruled surface over an algebraic curve $X$, then $H^{2}(S, \Theta)$

$=0$ .
Let $S$ be a ruled surface over an elliptic curve $X$. As the Chern numbers

$c_{1}^{2}$ and $c_{2}$ of $S$ both vanish, by the Riemann-Roch-Hirzebruch theorem we have

$\dim H^{1}(S, \Theta)=\dim H^{0}(S, \Theta)+\dim H^{2}(S, \Theta)$ .
Combining this with the preceding lemma we obtain

$\dim H^{1}(S, \Theta)=\dim H^{0}(S, \Theta)$ .
Now we calculate $\dim H^{0}(S, \Theta)$ . We represent $X$ as a quotient group: $X=C/G$ ,

where $G$ is a discontinuous subgroup of the additive group $C$ generated by $\omega$

and 1, ${\rm Im}$ to $>0$ , and, for any $u\in C$, we denote by $[u]$ the corresponding ele-
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ment of $X=C/G$ . We denote by $\zeta$ an inhomogeneous coordinate of $P^{1}$ .
(i) $S=S_{0}=X\times P^{1}$ . A holomorphic vector field $\theta\in H^{0}(S, \Theta)$ has the fol-

lowing form:

$\theta=a_{0}\frac{\partial}{\partial\zeta}+a_{1}\zeta\frac{\partial}{\partial\zeta}+a_{2}\zeta^{2}\frac{\partial}{\partial\zeta}+b\frac{\partial}{\partial u}$ ,

where $a_{0},$ $a_{1},$ $a_{2}$ and $b$ are arbitrary constants. Hence we have $\dim H^{0}(S, \Theta)=4$ .
(ii) $S\in S_{0},$ $S\neq S_{0}$ . By Lemma 1 (i) of \S 1, $S$ is associated with $[p_{1}^{-1}p_{2}]$ ,

where $p_{1}$ and $p_{2}$ are two distinct points on $X$. Let $u$ . $(\nu=1,2)$ be a local
coordinate with the center $p_{\nu}$ and put $U_{\nu}=\{u_{\nu}|u_{\nu}<\epsilon\}$ . Let $U=X-\{p_{1}, p_{2}\}$ .
Taking $\epsilon$ sufficiently small, we may assume that $ U_{1}\cap U_{2}=\phi$ . The surface $S$

can be described as follows: $S=U\times P^{1}UU_{1}\times P^{1}UU_{2}\times P^{1}$ , where $(u, \zeta)\in U\times P^{1}$

and $(u_{1}, \zeta_{1})\in U_{1}\times P^{1}$ are identified if and only if $\zeta=u_{1}\zeta_{1},$ $[u]=p_{1}+u_{1}$ , and

$(u, \zeta)\in U\times P^{1}$ and $(u_{2}, \zeta_{2})\in U_{2}\times P^{1}$ are identified if and only if $\zeta=\frac{1}{u_{2}}\zeta_{2},$ $[u]$

$=p_{2}+u_{2}$ . A holomorphic vector field $\theta\in H^{0}(S, \Theta)$ can be expressed as follows:

\langle 4) $\theta=a_{0}(u)_{\partial}^{-}\frac{\partial}{\zeta}+a_{1}(u)\zeta-\partial\frac{\partial}{\zeta}+a_{2}(u)\zeta^{2}-\partial\frac{\partial}{\zeta}+b(u)-\frac{\partial}{u}\partial$ , on $U\times P^{1}$

where $a_{\nu}(u)(\nu=0,1,2)$ and $b(u)$ are holomorphic functions of $[u]\in U$ . If we
write (4) in terms of $(u_{1}, \zeta_{1})$ , we have

$|(5)$ $\theta=a_{0}(\mathcal{U})\frac{1}{u_{1}}\frac{\partial}{\partial\zeta_{1}}+\{a_{1}(u)-\frac{b(u)}{u_{1}}\}\zeta_{\partial^{\frac{\partial}{\zeta_{1}}+a_{2}(u)u_{1}\zeta_{1}^{2}-}\partial^{\frac{\partial}{\zeta_{1}}+b(u)}\partial^{\frac{\partial}{u_{1}}}}1^{-}$ .

Similarly we have

(6) $\theta=a_{0}(u)_{\partial}u_{2}-\frac{\partial}{\zeta_{2}}+\{a_{1}(u)+\frac{b(u)}{u_{2}}\}\zeta_{2}\frac{\partial}{\partial\zeta_{2}}+\frac{a_{2}(u)}{u_{2}}\zeta_{2}^{2}\frac{\partial}{\partial\zeta_{2}}+b(u)\frac{\partial}{\partial u_{2}}$ .

Equations (5) and (6) show that $b(u)$ is holomorphic everywhere on $X$ and there-
fore reduces to a constant: $b(u)=b$ and that $a_{2}(u)$ has $p_{1}$ as its pole of order
at most 1 and $p_{2}$ as its zero of order at least 1. As there exists no elliptic

function of order 1, $a_{2}(u)$ vanishes identically. In a neighbourhood of $p_{1}$ and
$p_{2}$ , the function $a_{1}(u)$ has the forms

$ a_{1}(u)=\frac{b}{u_{1}}+\alpha_{0}+\alpha_{1}u_{1}+\cdots$

and

$ a_{1}(u)=-\frac{b}{u_{2}}+\beta_{0}+\beta_{1}u_{1}+\cdots$

respectively, where $\alpha_{i}$ and $\beta_{j}$ are constants. Hence we have $a_{1}(u)=c+b\zeta(u-p_{1})$

$-b\zeta(u-p_{2})$ , where $\zeta(u)$ denotes the Weierstrass $\zeta$ -function with the periods
$((1, \omega)$ and $c$ is an arbitrary constant. $a_{0}(u)$ is identically equal to zero by the
same reason as for $a_{2}(u)$ . Consequently we have $\dim H^{0}(S, \Theta)=2$ .
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We take a point $p$ on $X$, let $u_{1}$ be a local coordinate of the center $p$ and
put $U_{1}=\{u_{1}||u_{1}|<\epsilon\},$ $U=X-p$ . We construct the rest of ruled surfaces by
patching $U\times P^{1}$ and $U_{1}\times P$

‘ in the manner described below. A holomorphic
vector field $\theta\in H^{0}(S, \Theta)$ can be expressed in the form

(7) $\theta=a_{0}(u)\frac{\partial}{\partial\zeta}+a_{1}(u)\zeta_{\partial^{\frac{\partial}{\zeta}+a_{2}(u)\zeta^{2}-}\partial^{\partial}\overline{\zeta}^{-+b(\mathcal{U})\frac{\partial}{\partial u}}}^{-}$ , on $U\times P^{1}$

where $a_{0}(u),$ $a_{1}(u),$ $a_{2}(u)$ and $b(u)$ are holomorphic functions of $[u]\in U$ .
(iii) $S=S_{n}(n\geqq 1)$ . By Lemma 1 (ii) of \S 1, $S$ is associated with $[p^{-n}]$ .

And $(u, \zeta)\in U\times P^{1}$ is identified with $(u_{1}, \zeta_{1})\in U_{1}\times P^{1}$ if and only if $\zeta=u_{1}^{n}\zeta_{1}$

and $[u]=p+u_{1}$ . If we write (7) in terms of $(u_{1}, \zeta_{1})$ , we have

$\theta=a_{0}(u)\frac{1}{u_{1}^{n}}\frac{\partial}{\partial\zeta_{1}}+\{a_{1}(u)-\frac{nb(u)}{u_{1}}\}\zeta_{1}\frac{\partial}{\partial\zeta_{1}}+a_{2}(u)u_{1}^{n}\zeta_{1}^{2}\frac{\partial}{\partial\zeta_{1}}+b(u)\frac{\partial}{\partial u}$ .

Hence we infer that $b(u)$ reduces to a constant and that $a_{0}(u)$ is identically
equal to zero. In a neighbourhood of $p,$ $a_{1}(u)$ has the following form:

$ a_{1}(u)=\frac{nb}{u_{1}}+\alpha_{0}+\alpha_{1}u_{1}+\cdots$ $\alpha_{i}\in C$ .

As there exists no elliptic function of order 1, we have $b=0$ and $a_{1}(u)$ reduces
to a constant: $a_{1}(u)=a_{1}$ . Finally, $p$ is a pole of $a_{2}(u)$ of order at most $n$ .
Hence we get

$a_{2}(u)=c_{0}+c_{1}k(u-p)+c_{2}k^{\prime}(u-p)+\cdots+c_{n-1}\oint^{(n- 2)}(u-p)$ ,

where $c_{i}$ $(i=0, \cdots , n-1)$ are arbitrary constants and $\oint(u)$ is the Weierstrass
$\oint$ -function with the periods $(1, \omega)$ . Moreover $\oint^{(k)}(u)$ denotes the k-th deriva-
tive of $\oint(u)$ . Thus we obtain $\dim H^{0}(S, \Theta)=n+1$ .

(iv) $S=A_{0}$ . We identify $(u, \zeta)\in U\times P^{1}$ and $(u_{1}, \zeta_{1})\in U_{1}\times P^{1}$ if and only

if $\zeta=\zeta_{1}+\frac{1}{u_{1}}$ and $[u]=p+u_{1}$ . We write $\theta$ in terms of $(u_{1}, \zeta_{1})$ :

$\theta=\{a_{0}(u)+\frac{a_{1}(u)}{u_{1}}+\frac{a_{2}(u)}{u_{1}^{2}}+\frac{b(u)}{u_{1}^{2}}\}\frac{\partial}{\partial\zeta_{1}}$

$+\{a_{1}(u)+\frac{2a_{2}(u)}{u_{1}}\}\zeta_{1}\frac{\partial}{\partial\zeta_{1}}+a_{2}(u)\zeta_{1}^{2}\frac{\partial}{\partial\zeta_{1}}+b(u)\frac{\partial}{\partial u_{1}}$ .

Hence we infer that $b(u)$ and $a_{2}(u)$ reduce to constants: $b(u)=b,$ $a_{2}(u)=a_{2}$ . In
a neighbourhood of $p,$ $a_{1}(u)$ has the following form:

$ a_{1}(u)=-\frac{2a_{2}}{u_{1}}+\alpha_{0}+\alpha_{1}u_{1}+\alpha_{2}u_{1}^{2}+\cdots$ $\alpha_{i}\in C$ .

As there exists no elliptic function of order 1, we have $a_{2}=0$ and $a_{1}(u)$ reduces
to a constant: $a_{1}(u)=a_{1}$ . In a neighbourhood of $p,$ $a_{0}(u)$ has the following
form:
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$ a_{0}(u)=\frac{ba_{1}}{u_{1}^{2}u_{1}}+\beta_{0}+\beta_{1}u_{1}+\beta_{2}u_{1}^{2}+\cdots$ $\beta_{i}\in C$ .

Since an elliptic function has no residue, we have $a_{1}=0$ and $a_{0}(u)=c-b\phi(u-p)$ .
Thus we obtain $\dim H^{0}(S, \Theta)=2$ .

(v) $A=A_{-1}$ . We identify $(u, \zeta)\in U\times P^{1}$ and $(u_{1}, \zeta_{1})\in U_{1}\times P^{1}$ if and only

if $\zeta=u_{1}\zeta_{1}+\frac{1}{u_{1}}$ and $[u]=p+u_{1}$ . Writing in terms of $(u_{1}, \zeta_{1})$ , we have

$\theta=\{\frac{a_{0}(u)}{u_{1}}+\frac{a_{1}(u)}{u_{1}^{2}}+\frac{a_{2}(u)}{u_{1}^{3}}+\frac{b(u)}{u_{1}^{3}}\}\frac{\partial}{\partial\zeta_{1}}$

$+\{a_{1}(u)+2\frac{a_{2}(u)b(u)}{u_{1}u_{1}}\}\zeta_{1}\frac{\partial}{\partial\zeta_{1}}+a_{2}(u)u_{1}\zeta_{1}^{2}\frac{\partial}{\partial\zeta_{1}}+b(u)\frac{\partial}{\partial u_{1}}$ .

Hence we infer that $b(u)$ and $a_{2}(u)$ reduce to constants: $b(u)=b,$ $a_{2}(u)=a_{2}$ . In
a neighbourhood of $p,$ $a_{1}(u)$ has the following form

$ a_{1}(u)=\frac{b-2a_{2}}{u_{1}}+\alpha_{0}+\alpha_{1}u_{1}+\alpha_{2}u_{1}^{2}+\cdots$ $\alpha_{i}\in C$ .
Hence we have $b=2a_{2}$ and $a_{1}(u)$ reduces to a constant: $a_{1}(u)=a_{1}$ . Finally, in
a neighbourhood of $p,$ $a_{0}(u)$ has the following form:

$ a_{0}(u)=-\frac{a_{2}+ba_{1}}{u_{1}^{2}u_{1}}+\beta_{0}u_{1}+\beta_{1}u_{1}^{2}+\cdots$ $\beta_{i}\in C$ .

Hence we have $a_{1}=0$ and $a_{0}(u)=c-(a_{2}+b)\theta(u-p)$ . Consequently we obtain
$\dim H^{0}(S, \Theta)=1$ .

We summarize the above results as follows:
THEOREM 3. Let $S$ be a ruled surface over an elliptic curve $X$ and let $\Theta$

be the sheaf over $S$ of germs of holomorphic vector fields. Then we have

$\dim H^{0}(S, \Theta)=\dim H^{1}(S, \Theta)=\{4n+1221$

,

, $forforforforforss_{=A^{0_{0_{-1}}}}^{=S_{n}=_{(n\geqq 1)}}s_{=S}S\in s,,s^{x_{\neq^{\times}S_{0}^{P^{1}}}}s^{=A^{0}}$

,
$\dim H^{2}(S, \Theta)=0$ .

Let $S$ be a ruled surface of genus 1. Since $\dim H^{2}(S, \Theta)=0$, theorems of
Kodaira-Nirenberg-Spencer [10] and Kodaira-Spencer [11] assert the existence

$\varpi^{l}$

of a complex analytic family $S\rightarrow M$ such that $\varpi^{-1}(0)=S$ for a certain point
$0\in M$ and $\dim M=\dim H^{1}(S, \Theta)$ which is effectively parametrized and com-
plete at $0$ . This family can be constructed explicity as follows:

Take a point $p$ on an elliptic curve $X$ and let $u_{1}$ be a local coordinate at
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$p$ . Let $U_{1}=\{u_{1}||u_{1}|<\epsilon\},$ $U_{0}=X-p$ and $U=\{U_{0}, U_{1}\}$ . We consider the exact
sequence (1) of \S 1. A $C^{*}$ -bundle is of degree zero if and only if it is in the
image of $e$ . For the Stein covering $\mathfrak{U}$ , we have $H^{1}(11, \mathcal{O})\cong H^{1}(X, 0)(\cong C)$ .
We define a l-cocycle $\eta=\{\eta_{ij}\}_{i,j=0,1}$ on $\mathfrak{U}$ by $\eta_{01}=1/2\pi iu_{1}$ . Then as there
exists no elliptic function of order 1, $\eta$ is not cohomologous to $0$ and defines
a basis of the complex vector space $H^{1}(U, \mathcal{O})$ . Any $C^{*}$ -bundle of degree zero
can be represented by a l-cocycle $\eta(t)=\{\eta_{ij}(t)\}_{i,j=0,1},$

$\eta_{01}(t)=e^{\frac{t}{u_{1}}}$ for some $t\in C$.
$\eta(t)$ represents the trivial bundle if and only if $\eta(t)$ is in the image of $h$ . If
this is the case, we say that $t$ belongs to the lattice. Let $\ovalbox{\tt\small REJECT}=\{z\in C|{\rm Im} z>0\}$

be the upper half plane.
(i) $S=S_{0}=X\times P^{1}$ . We construct surfaces $S_{\omega,t_{1},t_{2},t_{3}}$ parametrized by

(ru, $t_{1},$ $t_{2},$ $t_{3}$) $\in\ovalbox{\tt\small REJECT}\times C^{3}$ as follows:
$S_{\omega,t_{1},t_{2},t_{3}}=U_{0}\times P^{1}\cup U_{1}\times P^{1}$ , where $(u, \zeta)\in U_{0}XP^{1}$ and $(u_{1}, \zeta_{1})\in U_{1}\times P^{1}$ are

identified if and only if
$e^{\frac{t_{1}}{u_{1}}}\zeta_{1}+\underline{t_{2}}$

(8) $[u]=p+u_{1}$ ,
$\zeta=\frac{u_{1}}{\frac{t_{3}}{u_{1}}\zeta_{1}+1}$

.

Then $S_{\omega,0,0,0}=S_{0}$ , and $\{S_{\omega,t_{1,0,0}}\}_{t_{1}\in C}$ is a complex analytic family of ruled sur-
faces associated with $C^{*}$ -bundles of degree $0$ . It is easy to show that if $t_{2}\neq 0$ ,

then $S_{\omega,0,\iota_{2},0}=A_{0}$ . If $t_{3}\neq 0$ , then $S_{\omega,0,0,t_{3}}=A_{0}$ .
(ii) $S\in s_{0},$ $S\neq S_{0}$ . We construct surfaces $S_{\omega,t}$ parametrized by $(\omega, t)$

$\in\ovalbox{\tt\small REJECT}\times C$ as follows:
$S_{\omega,t}=U_{0}\times P^{1}UU_{1}\times P^{1}$ , where $(u, \zeta)\in U_{0}\times P^{1}$ and $(u_{1}, \zeta_{1})\in U_{1}\times P^{1}$ are

identified if and only if

(9) $[u]=p+u_{1}$ , $\zeta=e^{\frac{\iota_{0+t}}{u_{1}}}\zeta_{1}$ ,

where $t_{0}$ is a complex number not belonging to the lattice such that the ruled
surface $S$ is represented by the l-cocycle $\{\eta_{ij}(t_{0})\}$ . The complex analytic
family $\{S_{\omega,t}\}_{t\in C}$ is associated with the family of $C^{*}$ -bundles of degree $0$ .

(iii) $S=S_{n}(n\geqq 1)$ . We construct surfaces $S_{\omega,t_{1},t_{2},\cdots,t_{n}}$ parametrized by
$(\omega, t_{1}, t_{2}, \cdots , t_{n})\in\ovalbox{\tt\small REJECT}\times C^{n}$ as follows:

$S_{\omega,t_{1},t_{2},\cdots,t_{n}}=U_{0}\times P^{1}UU_{1}\times P^{1}$ , where $(u, \zeta)\in U_{0}\times P^{1}$ and $(u_{1}, \zeta_{1})\in U_{1}\times P^{\iota}$

are identified if and only if

(10) $[u]=p+u_{1}$ , $\zeta=u_{1}^{n}\zeta_{1}+\frac{t_{1}}{u_{1}}+t_{2}u_{1}+t_{3}u_{1}^{2}+$ $+t_{n}u_{1}^{n-}$ .

Then $S_{\omega,0,0,\cdots,0}=S_{n}$ . It is not difficult to show that for $t_{k}\neq 0$ $(k=1,2, \cdots , n-1)$ ,

we have $S_{\omega,t_{1},0,\cdots,0}=S_{\omega,0,t2,0,\cdots,0}=A_{0}$ or $A_{-1}$ according as $n$ is even or odd and
$S_{\omega,0,\cdot\cdot,0,t_{\lambda^{\wedge}},0,\ldots,0}=S_{n-2(k-1)},$ $3\leqq k\leqq n$ , where we let $S_{-m}=S_{m}$ .

(iv) $S=A_{0}$ . We construct surfaces $S_{\omega,t}$ parametrized by $(\omega, t)\in\ovalbox{\tt\small REJECT}\times C$ as



302 T. SUWA

follows:
$S_{\omega,t}=U_{0}\times P^{1}UU_{1}\times P^{1}$ , where $(u, \zeta)\in U_{0}\times P^{1}$ and $(u_{1}, \zeta_{1})\in U_{1}XP^{1}$ are

identified if and only if

(11) $[u]=p+u_{1}$ , $\zeta=\frac{\zeta_{1}+\frac{1}{u_{1}}}{\frac{t}{u_{1}}\zeta_{1}+1}$ .

(v) $S=A_{-1}$ . Since $\dim H^{1}(S, \Theta)=1$ , ru is the only parameter, i. e., $A.1$ is
rigid if the base curve $X$ is fixed.

THEOREM 4. The complex analytic families constructed above are effectively
parametrized and complete, respectivefy, at the points (i) $(\omega, 0,0,0)$ , (ii) $(\omega, 0)$ ,

(iii) $(\omega, 0,0, \cdots , 0),$ $(iv)(\omega, 0)$ and (v) $\omega$ , where $\omega\in\ovalbox{\tt\small REJECT}$ .
PROOF. Let $\partial S/\partial\omega$ and $\partial S/\partial t_{\nu}$ denote the infinitesimal deformations of $S$

along the tangent vectors $\partial/\partial\omega$ and $\partial/\partial t_{\nu}$ respectively. Since it is obvious
that $\partial S/\partial\omega$ can not be written as a linear combination of $\partial S/\partial t_{1},$ $\partial S/\partial t_{2},$ $\cdots$ , it
suffices to prove that $\partial S/\partial t_{1},$ $\partial S/\partial t_{2},$ $\cdots$ are linearly independent. Let $V_{i}=U_{i}\times P^{1}$ ,
$i=0,1$ , then $\mathfrak{B}=\{V_{0}, V_{1}\}$ is an open covering of $S$.

(i) $S=S_{0}$ . If we represent the infinitesimal deformations $\partial S/\partial t_{\nu}$ respec-
tively by l-cocycles $\theta^{(\nu)}=\{\theta_{01}^{(\nu)}\}$ , we have from (8)

$\theta_{01}^{(1)}=\frac{\zeta_{1}}{u_{1}}\frac{\partial}{\partial\zeta}$ , $\theta_{01}^{(2)}=\frac{1}{u_{1}}\frac{\partial}{\partial\zeta}$ , $\theta_{01}^{(3)}=-\frac{\zeta_{1}^{2}}{u_{1}}\frac{\partial}{\partial\zeta}$ .

Assume a cohomological relation $\sum_{\nu=1}^{3}c_{\nu}\theta^{(\nu)}\sim 0$ . Then there exist holomorphic

vector fields $\theta_{j}$ on $V_{j}(j=0,1)$ such that

(12) $\sum_{\nu=1}^{3}c_{\nu}\theta_{01}^{(\nu)}=\theta_{1}-\theta_{0}$ .
Writing

(13) $\theta_{1}=a_{10}(u_{1})\frac{\partial}{\partial\zeta_{1}}+a_{11}(u_{1})\zeta_{1}\frac{\partial}{\partial\zeta_{1}}+a_{12}(u_{1})\zeta_{1}^{2}\frac{\partial}{\partial\zeta_{1}}+b_{1}(u_{1})\frac{\partial}{\partial u_{1}}$ ,

$\theta_{0}=a_{0}(u)\frac{\partial}{\partial\zeta}+a_{1}(u)\zeta\frac{\partial}{\partial\zeta}+a_{2}(u)\zeta^{2}\frac{\partial}{\partial\zeta}+b(u)\frac{\partial}{\partial u}$ ,

where $a_{1i}(u_{1})$ and $b_{1}(u_{1})$ are holomorphic functions of $u_{1}\in U_{1}$ and where $a_{i}(u)$

and $b(u)$ are holomorphic functions of $[u]\in U_{0}$ , we obtain from (12)

$\frac{c_{1}\zeta_{1}}{u_{1}}\frac{\partial}{\partial\zeta}+\frac{c_{2}}{u_{1}}\frac{\partial}{\partial\zeta}-\frac{c_{8}\zeta^{2}}{u_{1}}\frac{\partial}{\partial\zeta}$

$=\{a_{10}(u_{1})-a_{0}(u)\}\frac{\partial}{\partial\zeta}+\{a_{11}(u_{1})-a_{1}(u)\}\zeta_{\partial}^{-}\frac{\partial}{\zeta}$

$+\{a_{12}(u_{1})-a_{2}(u)\}\zeta^{2}-\frac{\partial}{\zeta}\partial$ .
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Hence we infer that, in a neighbourhood of $u_{1}=0$ ,

$a_{0}(u)=-\frac{c_{2}}{u_{1}}+\alpha_{0}+\alpha_{1}u_{1}+\alpha_{2}u_{1}^{2}+$
$\cdot$ .. ,

$ a_{1}(u)=-\frac{c_{1}}{u_{1}}+\beta_{0}+\beta_{1}u_{1}+\beta_{2}u_{1}^{2}+\cdots$

$ a_{2}(u)=\frac{c_{3}}{u_{1}}+\gamma_{0}+\gamma_{1}u_{1}+\gamma_{2}u_{1}^{2}+\cdots$

where $\alpha_{i},$ $\beta_{i}$ and $\gamma_{i}$ are constants. It follows that $c_{1}=c_{2}=c_{3}=0$ , as there is
no elliptic function of order 1. Thus we see that $\partial S/\partial t_{1},$ $\partial S/\partial t_{2}$ , and $\partial S/\partial t_{a}$

are linearly independent.
(ii) $S\in S_{0},$ $S=S_{0}$ . If we represent the infinitesimal deformation $\partial S/\partial t$ by

a l-cocycle $\theta=\{\theta_{01}\dagger$ , we have from (9)

$\theta_{01}=\frac{1}{u_{1}}e^{\frac{t_{0}}{u_{1}}}\zeta_{1}\frac{\partial}{\partial\zeta}$ .

Assume a cohomological relation $\theta\sim 0$ . Then there exists holomorphic
vector fields $\theta_{j}$ on $V_{j}$ such that $\theta_{01}=\theta_{1}-\theta_{0}$ . Writing $\theta_{j}$ as (13), we obtain

$\frac{\zeta_{1}}{u_{1}}\frac{\partial}{\partial\zeta_{1}}=a_{10}(u_{1})\frac{\partial}{\partial\zeta_{1}}+a_{11}(u_{1})\zeta_{1}\frac{\partial}{\partial\zeta_{1}}+a_{12}(u_{1})\zeta_{1}^{2}\frac{\partial}{\partial\zeta_{1}}+b_{1}(u_{1})\frac{\partial}{\partial u_{1}}$

$-a_{0}(u)e^{-\frac{t_{0}}{u_{1}}}\frac{\partial}{\partial\zeta_{1}}-a_{1}(u)\zeta_{1}\frac{\partial}{\partial\zeta_{1}}-a_{2}(u)e^{\frac{t_{0}}{u_{1}}}\zeta_{1}^{2}\frac{\partial}{\partial\zeta_{1}}$

$-b(u)\{\frac{\partial}{\partial u_{1}}+\frac{t_{0}\zeta_{1}}{u_{1}^{2}}\frac{\partial}{\partial\zeta_{1}}\}$ .

This implies that

$\left\{\begin{array}{l}\frac{1}{u_{1}}=a_{11}(u_{1})-a_{1}(u)-\frac{t_{0}b(u)}{u_{1}^{2}}\\0=b_{1}(u_{1})-b(u)\end{array}\right.$

The second equation shows that $u_{1}=0$ is a removable singularity of $b(u)$ and
$b(u)$ reduces to a constant: $b(u)=b$ . In a neighbourhood of $u_{1}=0$ , we have

$ a_{1}(u)=\frac{-t_{0}b1}{u_{1}^{2}u_{1}}+\alpha_{0}+\alpha_{1}u_{1}+\alpha_{2}u_{1}^{2}+\cdots$

This contradicts the fact that any elliptic function has no residue.
(iii) $S=S_{n}(n\geqq 1)$ . If we represent the infinitesimal deformation $\partial S/\partial t_{\nu}$

by a l-cocycle $\theta^{(\nu)}=\{\theta_{01}^{(\nu)}\}$ on $\mathfrak{V}$ , we have from (10)

$\theta_{01}^{(1)}=\frac{1}{u_{1}}\frac{\partial}{\partial\zeta}$ , $\theta_{01}^{(\nu)}=u_{1}^{\nu-1}\frac{\partial}{\partial\zeta}$ $(\nu=2, n)$ .
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Assume a cohomological relation $\sum_{\nu=1}^{n}c_{\nu}\theta^{(\nu)}\sim 0$ .
Then there exist holomorphic vector fields $\theta_{j}$ on $V_{j}$ such that $\sum c_{\nu}\theta_{01}^{(\nu)}$

$=\theta_{1}-\theta_{0}$ .
Writing $\theta_{j}$ as (13), we obtain

( $\frac{c_{1}}{u^{n+1}}+\frac{c_{2}}{u_{1}^{n-1}}+\frac{C_{\$}}{u_{1}^{n-2}}+$ $\cdot..+\frac{c_{n}}{u_{1}}$) $\frac{\partial}{\partial\zeta_{1}}$

$=a_{10}(a_{1})\frac{\partial}{\partial\zeta_{1}}+a_{11}(u_{1})\zeta_{1}\frac{\partial}{\partial\zeta_{1}}+a_{12}(u_{1})\zeta_{1}^{2}\frac{\partial}{\partial\zeta_{1}}+b_{1}(u_{1})\frac{\partial}{\partial u_{1}}$

$-a_{0}(u)\frac{1}{u_{1}^{n}}\frac{\partial}{\partial\zeta_{1}}a_{1}(u)\zeta_{1}\frac{\partial}{\partial\zeta_{1}}a_{2}(u)u_{1}^{n}\zeta_{1}^{2}\frac{\partial}{\partial\zeta_{1}}$

$-b(u)\{\frac{\partial}{\partial u_{1}}n\frac{\zeta_{1}}{u_{1}}\frac{\partial}{\partial\zeta_{1}}\}$ .
This implies that

$\frac{a_{0}(u)}{u_{1}^{n}}=-(\frac{c}{u_{1}^{n}}1\overline{+1}+\frac{c_{2}}{u_{1}^{n-1}}+$ $\cdot..+\frac{c_{n}}{u_{1}})+a_{10}(u_{1})$

and hence in a neighbourhood of $u_{1}=0$ , we have

$a_{0}(u)=--$ $\frac{c_{1}}{u_{1}}c_{2}u_{1}-c_{3}u_{1}^{2}-$
$\cdot$ .. $-c_{n}u_{1}^{n-1}+\alpha_{0}u_{1}^{n}+\alpha_{1}u_{1}^{n+1}+$ $\cdot$ .. .

It follows that $c_{1}=0$ and consequently $a_{0}(u)$ vanishes identically. This implies
that $c_{2}=\ldots=c_{n}=0$ . Thus we infer that $\partial S/\partial t_{1},$ $\partial S/\partial t_{2},$ $\cdots$ $\partial S/\partial t_{n}$ are linearly
independent.

(iv) $S=A_{0}$ . If we represent the infinitesimal deformation $\partial S/\partial t$ by a
l-cocycle $\theta=\{\theta_{01}\}$ , we have from (11)

$\theta_{01}=-(\frac{\zeta_{1}^{2}}{u_{1}}+\frac{\zeta_{1}}{u_{1}^{2}})\frac{\partial}{\partial\zeta}$ .

Assume a cohomological relation $\theta\sim 0$ , then there exist holomorphic vector
fields $\theta_{j}$ on $V_{j}(j=0,1)$ such that $\theta_{01}=\theta_{1}-\theta_{0}$ . Writing $\theta_{j}$ as (13), we obtain

$-(\frac{\zeta_{1}^{2}}{u_{1}}+\frac{\zeta_{1}}{u_{1}^{2}})\frac{\partial}{\partial\zeta_{1}}=a_{10}(u_{1})\frac{\partial}{\partial\zeta_{1}}+a_{11}(u_{1})\zeta_{1}\frac{\partial}{\partial\zeta_{1}}+a_{12}(u_{1})\zeta_{1}^{2}\frac{\partial}{\partial\zeta_{1}}+b_{1}(u_{1})\frac{\partial}{\partial u_{1}}$

$-a_{0}(u)\frac{\partial}{\partial\zeta_{1}}-a_{1}(u)(\zeta_{1}+\frac{1}{u_{1}})\frac{\partial}{\partial\zeta_{1}}$

$-a_{2}(u)(\zeta_{1}+\frac{1}{u_{1}})^{2}\frac{\partial}{\partial\zeta_{1}}-b(u)(\frac{\partial}{\partial u_{1}}+\frac{1\partial}{u_{1}^{2}\partial\zeta_{1}})$ .

This implies that $-\frac{1}{u_{1}}=a_{12}(u_{1})-a_{2}(u)$ . Hence $a_{2}(u)$ is an elliptic function of

order 1. This is a contradiction, $q$ . $e$ . $d$ .
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\S 4. Elliptic ruled surfaces.

A surface $S$ is said to be an elliptic surface if there exists a holomorphic
map $\Psi$ of $S$ onto a non-singular curve $\Delta$ such that the inverse image $\Psi^{-1}(u)$

of any general point $ u\in\Delta$ is an elliptic curve.
For a ruled surface $S$ of genus 1, we have $p_{g}=c_{1}^{2}=0$ and $q=1(b_{1}=2)$ .

Conversely let $S$ be a surface with the above numerical characters, then by
general results of Kodaira, $S$ is a relatively minimal algebraic surface. More-
over $S$ is either a ruled surface (of genus 1) or an elliptic surface (Enriques
[4], Kodaira [9] IV). In this section we examine the surfaces which are both
ruled and elliptic. In other words, we find the ruled surfaces which have
another fibering of elliptic curves. Note that if an elliptic surface has a
structure of ruled surface, it is of genus 1. We shall freely use the results
of [7] on the theory of elliptic surfaces.

LEMMA 4. Let $S$ be an elliptic surface with the base curve $\Delta$ and the
canonical projection $\Psi:S\rightarrow\Delta$ . Then the following four conditions are necessary
and sufficient for $S$ to be ruled: 1) $\Delta=P^{1}$ , 2) $b_{1}=2$ , 3) $S$ has no singular
fibres over $\Delta$ other than that of the form $ m\Theta$ , where $0$ is a non-singular elliptic
curve, 4) the multiplicities $m_{i}$ of the singular fibres $m_{i}\Theta_{i},$ $i=1,2,$ $\cdots$ , $r$ , of $S$

satisfies the inequality: $\sum_{i=1}^{r}(1-\frac{1}{m_{i}})<2$ .
In what follows we call $\Theta_{i}$ an $m_{i}$ -ply degenerate fibre of $S$ over $\Delta$ .
REMARK 1. The condition 3) implies that the functional invariant $J(u)$

of the elliptic surface $S$ is holomorphic everywhere on $\Delta$ and is reduced to a
constant. Hence any general fibre is complex analytically homeomorphic to
one and the same elliptic curve $C$ , and $\Theta_{i}$ can be represented as a quotient
of $C$ by a cyclic group of order $m_{i}$ .

REMARK 2. Let $S$ be an elliptic surface satisfying the conditions 1), 3)
and 4) but not 2). Then the first Betti number $b_{1}$ of $S$ is equal to 1 and $S$ is
a Hopf surface, $i.e.$ , the universal covering manifold of $S$ is complex analytic-
ally homeomorphic to $W=C^{2}-(0,0)$ ($[9]$ II Theorem 28).

PROOF OF LEMMA 4. Assume $S$ to be a ruled surface over an elliptic
curve $X$ . Obviously we have $b_{1}=2$ . Considering the analytic fibre space over
the universal covering manifold $C$ of $X$ induced from $S$ by the covering map
$C\rightarrow X$, we see that the universal covering manifold of $S$ is complex analytic-
ally homeomorphic to $P‘\times C$. The vanishing of the Euler nnmber $c_{2}$ of $S$

implies 3). If the genus of the curve $\Delta$ is zero and if $S$ has at most two
multiple fibres, there is nothing to be done. So we suppose that either the
genus of $\Delta$ is greater than $0$ or $S$ has at least three multiple fibres. There
exists a simply connected covering Riemann surface $cU$ of $\Delta$ which is un-
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ramified over $\Delta-\{p_{i}\}$ and has branch points of order $m_{i}-1$ over each point
$p_{i}$ . Let $S_{1}$ be the analytic fibre space of elliptic curves over $qj$ which is
induced from $S$ by the covering map: $ c_{U}\rightarrow\Delta$ . Obviously $S_{1}$ is free from
singular fibres and forms an unramified covering manifold of $S$, thus the
universal covering manifold of $S$ coincides with that of $S_{1}$ . The Riemann
surface $c_{U}$ is conformally equivalent to one of $P^{1},$ $C$ and $D$ , where $D$ is the
unit disk in $C$. If $cU$ is $C$ or $D$ , then $S_{1}$ is complex analytically homeomorphic
to $C\times C$ or $D\times C$ and, accordingly, the universal covering manifold of $S_{1}$ is
complex analytically homeomorphic to $C\times C$ or $D\times C$ . This is a contradiction.

Thus we have $c_{U}=P^{1}$ . Consequently $\Delta=P^{1}$ and $\sum_{l=1}^{r}(1-\frac{1}{m_{i}})<2$ .
The sufficiency of the conditions can be proved in a similar manner as in the

proof of Theorem 52 of Kodaira [9] IV (Enriques’ criterion of ruled surfaces).
But we enumerate subsequently all the elliptic surfaces satisfying the condi-
tions of the lemma. The results show that they are all ruled, $q$ . $e$ . $d$ .

An elliptic surface $S$ satisfying the conditions 1) and 3) can be obtained
from $P^{1}\times C$ by means of a finite number of logarithmic transformations:

(14) $S=L_{p_{r}}(m_{r}, \beta_{r}),$ $\cdots$ , $L_{p_{2}}(m_{2}, \beta_{2})L_{p_{1}}(m_{1}, \beta_{1})(P^{1}\chi C)$ ,

where $[\beta_{i}]$ is an element of $C$ of order $m_{i}$ ([9] I p. 771 see also [9] II p. 685).
Generally, the surface of type (14) has its first Betti number equal to 1 or 2,

and $b_{1}=2$ if and only if $\sum_{i=1}^{r}\beta_{i}=0$ . The last condition is proved analytically

in [9] II p. 686. We can also show it by purely topological considerations.
Let us call the elliptic surface defined by (14) as of type $(m_{1}, m_{2}, \cdots , m_{r})$ .
Then the surfaces satisfying the condition 4) are of the following types:

(15) $\left\{\begin{array}{l}0) freefromsingu1arfi bresover\Delta,\\1) (1),(2),\cdots\prime(m)_{\prime}\cdots\\ 2) (2,2),(2,3),(m_{1},m_{2}),\cdots\\ 3) (2,2,2),(2,2,3),(2,2,m),\cdots,(2,3,3),(2,3,4),(2,3,5),\end{array}\right.$

where $m_{1},$ $m_{2}$ and $m$ are rational integers greater than 1. We shall pick up
the surfaces with $b_{1}=2$ from the surfaces (14) satisfying (15).

$0)$ . An elliptic surface $S$ over $P^{1}$ free from singular fibres is written as
follows:

(16) $S=L_{p}(1, \gamma)(P^{1}\times C)$ , $\gamma=h+k\omega,$ $h,$ $k\in Z$ .
For this surface (16), $b_{1}=2$ if and only if $\gamma=0$ , i. e., $S=P^{1}\times C$ .

REMARK 1. The fundamental group $\pi_{1}(S)$ of the surface (16) can be cal-
culated by van Kampen’s theorem. The result is that $\pi_{1}(S)=Z\oplus Z_{(}1$

’ where $d$
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denotes the greatest common divisor of $h$ and $k$ .
REMARK 2. By a result of Earle-Eells [3], any bundle space $E$ of a fibre

bundle over $S^{2}$ whose fibre is $S^{1}\times S$ ‘ and whose structure group is the group
of orientation preserving diffeomorphisms of $S^{1}\times S^{1}$ is differentiably homeo-
morphic to a surface of type (16). Hence $E$ always admits a complex struc-

ture. Moreover if a surface $S$ is differentiably homeomorphic to $E$ , then $S$ is
either a ruled surface of genus 1 or a Hopf surface according as $E$ is differ-
entiably trivial or not (see Theorem 2 in \S 2; cf also [9] III Theorem 41).

1). We write $S=L_{p}(m, \beta)(P^{1}\times C)$ , where $[\beta]$ is an element of order $m$ of
$C$ . Since $\beta$ never vanishes, any surface of this type is not ruled.

2). We write $S=L_{p_{2}}(m_{2}, \beta_{2})L_{p_{1}}(m_{1}, \beta_{1})(P‘ \times C)$ , where $[\beta_{i}]$ is an element

of order $m_{i}$ of $C$. We set $\beta_{i}=\frac{n_{i}}{m_{i}}+\frac{l_{i}}{m_{i}}\omega+h_{i}+k_{i}\omega$ , where $n_{i},$
$l_{i},$ $h_{i},$ $k_{i}$ , are

integers and $0\leqq n_{i}\leqq m_{i}-1,0\leqq l_{i}\leqq m_{i}-1(i=1,2)$ . From $\beta_{1}+\beta_{2}=0$ , we have
$m_{1}[\beta_{2}]=m_{2}[\beta_{1}]=0$ and, consequently, $m_{1}=m_{2}$ . Putting $m=m_{1}=m_{2},$ $h=h_{1}+h_{2}$

and $k=k_{1}+k_{2}$ , the equality $\beta_{1}+\beta_{2}=0$ reduces to $n_{1}+n_{2}+mh=l_{1}+l_{2}+mk=0$ .
This implies that $h=-1$ or $k=-1$ . It is not difficult to show that, by a

suitable transformation of coordinates, we may assume that $\beta_{1}=\frac{q}{m}$ and $\beta_{2}$

$=-\frac{q}{m}$ , where $0<q<m$ and $(q, m)=1$ . Thus, in this case, surfaces of type

(17) $S=L_{p_{2}}(m,$ $-\frac{q}{m})L_{p_{1}}(m,$ $\frac{q}{m})(P^{1}\times C)$

are the only surfaces with $b_{1}=2$ . The surface (17) can be represented as
follows: As any pair of points on $P^{1}$ can be transformed by a projective
transformation into any other pair of points, we see that the complex struc-
ture of the surface (17) is independent of $p_{1}$ and $p_{2}$ . Hence we may fix an
inhomogeneous coordinate $z$ on $P^{1}$ such that $p_{1}$ and $p_{2}$ are, respectively, the
points $z=0$ and $ z=\infty$ . Let $S_{1}$ be the fibre space of elliptic curves over a
projective line $P$ ‘ with an inhomogeneous coordinate $\zeta$ which is induced from
$S$ by the mapping $\zeta\vdash z=\zeta^{m}$ of the $\zeta$ -sphere $P^{1}$ onto the z-sphere $P^{1}$ , then
$S_{1}$ is free from singular fibres and is an unramified covering manifold of $S$

whose first Betti number is equal to 2. Hence $S_{1}=P‘\times C$ . The surface $S$ can
be represented as a quotient space of $S_{1}=P^{1}\times C:S=P^{1}\times C/\mathcal{G}$ , where $\mathcal{G}$ is
a cyclic group of order $m$ generated by an automorphism $g^{\gamma}$ of $P^{1}\times C$ defined
by

$g^{\prime}$ : $(\zeta, [u])\mapsto(e^{\frac{2\pi i}{m}}\zeta,$ $[u-\frac{q}{m}])$ .

In stead of $g^{f}$ , we may take an automorphism

(18) $g:(\zeta, [u])\mapsto(e\underline{2}\pi_{m^{i}}[u-\frac{1}{m}])$
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as a generator of $\mathcal{G}$, where $p$ is the smallest positive integer such that $pq\equiv 1$

$(mod m)$ . We write $\mathcal{G}=\mathcal{G}_{m}^{p}$ . It is obvious that $S$ is a ruled surface associated
with a $C^{*}$ -bundle of degree $0$ .

3). We write $S=L_{p_{3}}(m_{s}, \beta_{3})L_{p_{2}}(m_{2}, \beta_{2})L_{p_{1}}(m_{1}, \beta_{1})(P^{1}\times C)$ , where $[\beta_{i}]$ is an
element of $C$ of order $m_{i}$ . We set

$\beta_{i}=\frac{n_{i}}{m_{i}}+\frac{l_{i}}{m_{i}}\omega+h_{i}+k_{i}\omega$ , $0\leqq n_{i}\leqq m_{i}-1$ , $0\leqq l_{i}\leqq m_{i}-1$ .

From $\beta_{1}+\beta_{2}+\beta_{3}=0$ , we obtain

(19) $m_{i}m_{j}\equiv 0(mod m_{k})$ .
The surfaces which we have to examine are of types $(2, 2, m),$ $(2,3,3),$ $(2,3,4)$

and (2, 3, 5). If $m_{1}=m_{2}=2$ , then (19) implies that $m_{8}=2$ or 4, and if $m_{1}=2$ ,
$m_{2}=3$ , then $m_{3}=6$ . Moreover if $m_{1}=m_{2}=2$ , then we have $2[\beta_{3}]=0$ and
hence $m_{3}=2$ . Thus we see that $m_{1}=m_{2}=m_{3}=2$ . Put $h=h_{1}+h_{2}+h_{3}$ and
$k=k_{1}+k_{2}+k_{3}$ . The equation $\beta_{1}+\beta_{2}+\beta_{3}=0$ reduces to

(20) $n_{1}+n_{2}+n_{S}+2h=0$ , $l_{1}+l_{2}+l_{3}+2k=0$ .
It follows that $h=0$ or $-1$ and that $k=0$ or $-1$ . If $h=0$ , then we have
$n_{1}=n_{2}=n_{3}=0$ and consequently $l_{1}=l_{2}=l_{3}=1$ . But this contradicts the second
equation of (20). Hence $h=-1$ and similarly $k=-1$ . We may assume that
$n_{1}=l_{2}=n_{3}=l_{3}=1,$ $l_{1}=n_{2}=0,$ $h_{1}=k_{2}=-1,$ $k_{1}=h_{2}=h_{a}=k_{3}=0$ . Thus, in this
case, the surface of the form

(21) $S=L_{p_{3}}(2,$ $-\frac{1}{2})L_{p_{2}}(2,$ $-\omega 2-)L_{p_{1}}(2,$ $\frac{1}{2}+\frac{\omega}{2})(P^{1}\times C)$

is the only one with $b_{1}=2$ . As any three points on a projective line $P^{1}$ can
be transformed into any other three points on $P^{1}$ by a projective transforma-
tion, the complex structure of the surface $S$ defined by (21) is independent of
$p_{i}$ , and is uniquely determined. We fix an inhomogeneous coordinate $z$ of $P$ ‘

such that $p_{1},$ $p_{2}$ and $p_{s}$ are, respectively, the points $z=1,$ $ z=\infty$ and $z=0$ .
Let $S_{1}$ be an analytic fibre space of elliptic curves over a projective line $P^{1}$

with an inhomogeneous coordinate $\zeta$ induced from $S$ by the mapping $\zeta\vdash>Z$

$=(-\zeta_{2}\zeta^{2}\underline{+}-11-)^{2}$ of the $\zeta$-sphere $P^{1}$ onto the z-sphere $P^{1}$ . Similarly, as in the

case 2), we have $S_{1}=P^{1}\times C$ . Hence $S$ can be represented as a quotient space
of $S_{1}=P^{1}\times C:S=P^{1}\times C/\mathcal{G}$ , where $\mathcal{G}$ is a group isomorphic to $Z_{2}\oplus Z_{2}$ gener-
ated by two analytic automorphisms $g$ and $h$ of $P^{1}\times C$ defined by

(22) $\left\{\begin{array}{l}g.(\zeta,[u])\vdash\div(-\zeta,[u+\frac{1}{2}]),\\h\cdot.(\zeta,[u])\mapsto(\frac{1}{\zeta},[u+\frac{\omega}{2}]).\end{array}\right.$
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This representation of the surface $S$ obviously implies that $S$ is a ruied sur-
face of genus 1.

Summarizing the above results, we obtain the following
THEOREM 5. Any ellipfic surface which has also a structure of ruled sur-

face can be represented as one of the following:
(i) $P^{1}\times C$ ,

(ii) $P^{1}\times C/\mathcal{G}_{m}^{p}$ (of type $(m,$ $m)$), where $m$ and $p$ are integers such that
$m\geqq 2,0<p<m$ and $(p, m)=1$ , and where $\mathcal{G}_{m}^{p}$ is a cyclic group of order $m$

generated by the automorphism defined by (18),
(iii) $P^{1}\times C/\mathcal{G}$ (of type (2, 2, 2)), where $\mathcal{G}$ is a group generated by two aulo-

morphisms defined by (22). $\mathcal{G}$ is isomorphic to $Z_{2}\oplus Z_{2}$ .
Now we identify the above surfaces with ruled surfaces of Section 1.
(i) $P^{1}\times C=S_{0}$ .

(ii) We may consider the surface $P^{1}\times C/\mathcal{G}_{m}^{p}$ as a ruled surface over an
elliptic curve $C^{\prime}$ with the periods ( $\frac{1}{m}$ , $\omega$), which is associated with a $C^{*}-$

bundle :of degree $0$ . The images in $S=P^{1}\times C/\mathcal{G}_{m}^{p}$ of two curves on $P^{1}\times C$

defined respectively by the equations $\zeta=0$ and $\zeta=\infty$ are the m-ply degener-
ate fibres $\Theta_{1}$ and $\Theta_{2}$ of the elliptic surface $S$ over the z-sphere $P^{1}$ . If we see
$S$ as a ruled surface over $C^{\prime}$ , then the curves $\Theta_{1}$ and $\Theta_{2}$ appear as two
mutually disjoint sections. Thus we have $\Theta_{1}=\Gamma_{0}$ and $\Theta_{2}=\Gamma_{\infty}$ (see Section 1).

From now on, we consider all the surface of type $P^{1}\times C/\mathcal{G}_{m}^{p}$ as ruled
surfaces over one and the same elliptic curve $X$ with the periods $(1, \omega)$ ,
${\rm Im}\omega>0$ . Let $\gamma$ be a meridian circle on the Riemann surface $X,$ $U_{1}$ a thin
open neighbourhood of $\gamma$ in $X$ and let $ U_{0}=X-\gamma$ We consider the exact
sequence (1) of \S 1. For the Stein covering $\mathfrak{U}=\{U_{0}, U_{1}\}$ of $X$, we have $H^{1}(1\uparrow, O)$

$\cong H^{1}(X, \mathcal{O})(\cong C)$ . The intersection of $U_{0}$ and $U_{1}$ is colnposed of two mutually
disjoint subsets $A$ and $B$ of $X$ . We define a l-cocycle $\eta=\{\eta_{ij}(u)\}_{i,j\subset 0,1}$ on $1l$ by

$0$ , for $u\in A$ ,
$\eta_{01}(u)=$

1, for $u\in B$ .
This l-cocycle $\eta$ obviously defines a base $\overline{\eta}$ of the l-dimensional vector space
$H^{1}(\mathfrak{U}, \mathcal{O})$ over the field $C$ and the ruled surface $P^{1}\times C/\mathcal{G}_{m}^{p}$ is associated with

the $C^{*}$ -bundle $e(\frac{p}{m}\overline{\eta})$ . Parametrizing the ruled surfaces associated with the
$C^{*}$ -bundles of degree $0$ by the Picard variety 9(X) of $X$ which is identified

with $X$, we see that, corresponding to each rational point $[\frac{q}{r}](q,$ $r>0$ ,

$0<\frac{q}{r}<1)$ of $9(X)=X$, there is an elliptic surface of type $(\frac{\gamma}{d}$ , $\frac{r}{d})$ , where

$d=(q, r)$ . Thus only a countable number of ruled surfaces associated with
$C^{*}$ -bundles of degree $0$ are elliptic surfaces. The above complex analytic
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family presents an interesting example for the stability of elliptic curves on
a surface (see Kodaira [8]). Let $\Gamma$ be a non-singular curve on a surface $S$ ,

let $N=[\Gamma]_{\Gamma}$ be the normal bundle of $\Gamma$ in $S$ and let $\Psi=\Omega(N)$ be the sheaf
over $\Gamma$ of germs of holomorphic section of $N$. The degree of the line bundle
$N$ over $\Gamma$ is equal to the intersection multiplicity $\Gamma^{2}$ of $\Gamma$ with itself. Let
$S$ be a ruled surface associated with a non-trivial $C^{*}$ -bundle $\xi$ of degree $0$

and suppose moreover that $S$ is an elliptic surface, $i$ . $e.,$ $S=P^{1}\times C/\mathcal{G}_{m}^{p}$ for
some $m$ and $p$ . The normal bundle of a degenerate fibre $\Theta_{i}$ ($i=1$ , or 2) of
the elliptic surface $S$ is equivalent to $\xi$ if we identify the curve $\Theta_{i}$ , which is
a section, with the base curve of the ruled surface $S$ . As $\xi$ is non-trivial, we
have $H^{1}(\Theta_{i}, \Psi)=0$ . Hence $\Theta_{i}$ is stable ([8] Theorem 1). In fact the curve $\Theta_{i}$

deforms into the sections $\Gamma_{0}$ or the sections $\Gamma_{\infty}$ of ruled surfaces in the family
surrounding $S$ . On the other hand the normal bundle of a general fibre $C$ of
the elliptic surface $S$ is trivial and $H^{1}(C, \Psi)\neq 0$ . In fact $C$ is unstable, since,
otherwise the surrounding ruled surfaces would be elliptic surfaces. This is
a contradiction.

(iii) The elliptic surface $S=P^{1}\times C/\mathcal{G}$ can be regarded as a ruled surface

over an elliptic curve $C^{\prime}$ with the periods $\left(\begin{array}{ll}1 & \omega\\-2^{-}’ & -2^{-}\end{array}\right)$ . The images in
$S=P^{1}\times C/\mathcal{G}$ of three disconnected curves on $P^{1}\times C$ defined respectively by
the equations $\zeta=0$ or $\infty,$ $\zeta=\pm 1$ and $\zeta=\pm i$ are the doubly degenerate fibres
$\Theta_{i}(i=1,2,3)$ of the elliptic surface $S$ over the z-sphere $P^{1}$ . If we regard $S$

as a ruled surface over $C^{\prime}$ , then the curves $\Theta_{i}(i=1,2,3)$ appear as double
covering Riemann surfaces of $C^{\prime}$ . Note that there is a one-to-one correspon-
dence between the sections of the ruled surface $S$ and the elliptic functions
$f(u)$ with the periods $(1, \omega)$ satisfying

(23) $f(u+-2^{-)}1=-f(u),$ $f(u+-\omega 2-)=-\frac{1}{(u)}-f$

It is easy to see that if $f_{1}$ and $f_{2}$ are elliptic functions with the periods $(1, \omega)$

satisfying (23), then $f_{1}(u_{0})=f_{2}(u_{0})$ for a point $u_{0}$ . Hence the ruled surface $S$

cannot be associated with any $C^{*}$ -bundle. To see whether $S=A_{0}$ or $A_{-1}$ , we
construct a section. Let $\#(u)$ be the Weierstrass $b^{i}$ -function with the periods
$(1, \omega)$ and put $\alpha_{1}=\phi\left(\begin{array}{l}1\\-2-\end{array}\right),$

$\alpha_{2}=\oint I(\frac{\omega}{2}),$ $\alpha_{3}=\phi(2^{-+-}21\omega_{-)}$ . Define an elliptic
function $f(u)$ by

$f(u)=\overline{2\sqrt{}}\alpha_{3}\overline{\overline{-\alpha_{2}}\{\oint’(u)-\alpha_{1}\}}\oint)’(u)$ .

Then it is a simple calculation to verify that $f(u)$ satisfies (23). Hence $\int(u)$

defines a section $\Gamma$ of the ruled surface $S$ . The elliptic function $f(u)$ has

zeros of order 1 at $\left\{\begin{array}{l}\omega\\-2-\end{array}\right\}$ and at $[2^{-+\frac{\omega}{2}]}1$ and poles of order 1 at $[0]$ and
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at $[21]$ . We have therefore $\Theta_{1}\Gamma=1$ . Let $F(=P^{1})$ be a fibre of the ruled

surface $S$ . Then $F$ and $\Gamma$ form a Betti base of the 2-dimensional integral
homology group $H_{2}(S, Z)$ of $S$ , which is isomorphic to $Z\oplus Z$. Let $\Theta_{1}\infty a\Gamma+bF$ ,

where $\infty$ denotes homology and $a,$ $b\in Z$ . Taking into account the fact that
$\Theta_{1^{)}}\lrcorner=0$ and $\Theta_{1}F=2$ , we obtain $a=2,$ $b=-1$ and $\Gamma^{2}=1$ . Thus we infer that
$S=A_{-1}$ .
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