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§1. Introduction.

Doubly transitive permutation groups of degree n and order 2(n—1)n were
determined by N. Ito ([(4£).

The object of this paper is to prove the following result.

THEOREM. Let 2 be the set of symbols 1,2,---,n. Let & be a doubly
transitive group on 2 of order 4(n—1)n not containing a regular normal sub-
group and let & be the stabilizer of the set of symbols 1 and 2. Assume that
RNGRG=1 or & for every element G of @ Then we have the following
results ;

(D) If & is a cyclic group, then & is isomorphic to either PGL (2,5) or
PSL (2, 9.

(D) If K is an elementary abelian group, then & is isomorphic to PSL (2, 7).

We use the standard notation. C;Z denotes the centralizer of a subset
¥ in a group X and N; X stands for the normalizer of ¥ in ¥. We denote
the number of elements in ¥ by |Z].

§2, Proof of Theorem, (I).

1. Let $ be the stabilizer of the symbol 1. & is of order 4 and it is
generated by a permutation K whose cyclic structure has the form (1) (2) ---.
Since & is doubly transitive on £, it contains an involution I with the cyclic

structure (1 2)--.. We may assume that | is conjugate to K2 Then we have
the following decomposition of & ;
G=9+9I9.

‘Since [ is contained in Ng®, it induces an automorphism of & and (i) <I>® is
an abelian 2-group of type (2, 2% or (ii) <I>Q is dihedral of order 8. If an
element H'JH of a coset $IH of $ is an involution, then JHH'I=(HH)™? is
contained in & Hence, in case (i) the coset HIH contains just two involutions,
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namely H-'JH and H-*K*IH, and, in case (ii), it contains just four involutions,
namely H-'/H, H*KIH, H'K*IH and H'K*IH. Let g(2) and h(2) denote the
numbers of involutions in & and 9, respectively. Then the following equality
is obtained;

2.1) £@2)=h@)+a(n—-1),

where o =2 and 4 for cases (i) and (ii), respectively.

2. Let ® keep ¢ (i=2) symbols of £, say 1,2,-.-,7, unchanged. It is
trivial by the assumption of ® that K has no transposition in its cyclic decom-
position and that Ny ®=Cs K% Put I=1{1,2,..-,1}. Then, by a theorem of
Witt 6], Th. 9.4), Ny &/& can be considered as a doubly transitive permuta-
tion group on J. Since every permutation of Ny &/& distinct from & leaves
by the definition of & at most one symbol of I fixed, Ng®/& is a complete
Frobenius group on J. Therefore i equals to a power of a prime number,
say p™, and the orders of Ng&® and "\ Ng® are equal to 4ii—1) and 4¢G—1),
respectively. Hence there exist (n—1)n/(t—1)i involutions in & each of which
is conjugate to K2

At first, let us assume that n is odd. Let A*(2) be the number of involu-
tions in § leaving only the symbol 1 fixed. Then from and the above
argument the following equality is obtained;

2.2) Hn+m—Dn/G—1)i=n—-1)/G—1)+hI*2)+a(n—1).
Since i is less than n, it follows from that A*(2Q)<a. If A¥(@2)=1, then
there exists no group satisfying the conditions of the theorem. In fact, let J
be the involution in § leaving only the symbol 1 fixed. By [2, Cor. 1, p. 414],
J is contained in Z*(@), where Z*(@®) is the subgroup of & containing the core
of @, K(®), for which Z*@)/K(®)=Z(&/K(®)). If K(@@)+1, then by the
theorem of Feit-Thompson K(®) is solvable ((I]). Hence & contains a regular
normal subgroup ({6, Th. 11.5]). We have K(®)=1 and J is an element of
Z(®). Hence Z(®)+1. But & must also contain a regular normal subgroup.
Hence we may assume /4%(2) 1. Thus there are three cases; (A) a—h*(2)=1,
B) a—h*@2)=2 and (C) a—h*(2)=4.

The following equalities are obtained from [(2.2) for cases (A), (B) and (C),
respectively.

A)  n=E=p™  (p: odd),

B) n=12i—1) = p™(2p™—1) (p: odd)
and

©C n=i4i-3)=p™4p™—-3) (p: odd).

Next let us assume that n is even. Let g*(2) be the number of involutions



236 H. Kimura

in @ leaving no symbol of £ fixed. Then corresponding to[2.2) the following
equality is obtained from (1);

23) g*@+n—Dn/—Di=@n—-1)/(—D+arn—1).

Let / be an involution in @ leaving no symbol of £ fixed. Let CyJ be the
centralizer of J in 8. Assume that the order of CsJ is divisible by a prime
factor ¢ of n—1. Then CyJ contains a permutation @ of order ¢. Since ¢ is
odd, Q must leave just one symbol of £ fixed. This shows that Q cannot be
commutative with J. Hence g*(2) is a multiple of n—1. It follows from
that g*(2) <a(n—1). Thus there are four cases; (D) a—g*(2)/(n—1)=1, (E)
a—g*2)/(n—1) =2, (F) a—g*2)/(n—1)=3 and (G) a—g*2)/(n—1)=4.

The following equalities are obtained from [2.3) for cases (D), (E), (F) and
(G), respectively ;

O) n=i=22",

E n=i@2i—-1)=2"2m"1-1),

®  n=13i—2)=2m(3.2"1-1)
and

(@) n=1i(4—-3)=2m2"+*-3).

3. Let us assume that n is odd. Let P be a Sylow p-subgroup of Ng&.
Then, since Ny&/& is a complete Frobenius group of degree p™ and { is
cyclic, P is elementary abelian and normal in Ngf.

4. Case (A). Let M be a subgroup of & such that its Sylow 2-subgroup
R’ is conjugate to subgroup of & Then, since & is cyclic, & has a normal
2-complement in M. By this fact it can be proved in the same way of Case
(A) in that there exists no group satisfying the conditions of the theorem
in Case (A) (see [4], p. 411).

5. Case (B) and (C) (p=+3 for Case (C)). P is also a Sylow p-subgroup
of G in these cases. Let the orders of NgP and CsB be 4(p™—1)p™x and
4p™y, respectively. If x=1, then from Sylow’s theorem it should hold that
Cp™—1)(2p™+1)=1 (mod p) and (Ap™—3)(4p™+1)=1 (mod p) for Cases (B) and
(OC), respectively, which, since p is odd, is a contradiction. Thus x is greater
than one. If y=1, then & would be normal in Ny, and this would imply
that x=1. Thus y is greater than one. If y is even, then let & be a Sylow
2-subgroup of Cy®B. Since the order of & must be greater than four, & leaves
just one symbol of 2 fixed. Hence & cannot be contained in Cg$. Thus y
is odd and y is a factor of 2p™—1 and 4p™—3 for Cases (B) and (C), respec-
tively. P has a normal complement %N in Cy®P and, since & is cyclic, & has
also a normal complement B in CyB. Let 9 be the intersection of 9 and B.
9 is a normal Hall subgroup of C¢ of order y. Then ¥ is normal even in
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N B.

Let ¥ be a Sylow p-complement of Ny&® of order 4(p™—1). Then B is
contained in Ng¥. Since y is a factor of n, any permutation (+ 1) of %) does
not leave any symbol of 2 fixed. On the other hand every element (#1) of
B leaves a symbol of 2 fixed. Therefore every permutation (1) of B is not
commutative with any permutation (1) of 9. This implies that y is not
less than 4p™—3. Thus there exists no group satisfying the conditions of the
theorem in Case (B). In Case (C) v is equal to 4p™—3. All permutations (1)
of 9 are conjugate under B. Therefore 4p™—3 must be equal to a power of
a prime, say ¢', and %) must be an elementary abelian g-group. It is easily
seen that Cy) =Y. Hence Ny¥ is contained in NgPB and therefore we obtain
that Ng¥) = NgRB. It can be easily seen that the set of involutions in Ng$P
each of which is conjugate to K? in NsP is equal to the set of involutions in
CsB each of which is conjugate to K*® in Cs®. It is trivial that the inter-
section of Ng® and Ce¢P is equal to ®B. Therefore we obtain that the index
of B in C¢P is equal to the index of Ng® in NgRCsB. Thus NgB is equal
to NgRCePB and therefore the index of NP in & is equal to 4p™+41. Then
we must have that 4p™41=4 (mod ¢), which contradicts the theorem of Sylow.
Thus there exists no group satisfying the conditions of the theorem in Case
©.

6. Case (C) for p=3. At first we shall prove that the order of CgP is
equal to 4.3y, where y is a factor of 4.3™1—1. & is contained in C¢P. If
the order of Ce3 is equal to 4.3™, then NgB is contained in NgR®. On the
other hand the order of NgPB is divisible by 3™*'. Thus the order of Cg¢¥ is
greater than 4.3™. Assume that the order of C¢3 is equal to 4.3™.y’, where
3y’ is not divisible by 3 and it is a factor of 4.3™'—-1. Likewise in 5 there
exists a normal subgroup 9)’ of C¢B of order 3y’ and it is normal even in Ng%.
Let B be a Sylow 3-complement of N9 of order 4(3"—1). Since every per-
mutation (1) of )’ leaves no symbol of 2 fixed and it is not commutative
with any permutation (s 1) leaving a symbol of £ fixed, every permutation
(#1) of )’ is not commutative with any permutation (#1) of 8. Hence y’ is
no less than 4-3"—3. This is a contradiction. Thus the order of Cex is equal
to 4-3mty,  Let B’ be a Sylow 3-subgroup of CsP of order 3™*!. Since P is
contained in Cyz(R’), R’ is abelian.

Let us assume y>1. Let %A be a normal 2-complement in CgP. It is
trivial that Cg’ is contained in . An element of (A NgB')/CsP’ induces
trivial automorphism of P and P’/P. Therefore AN NePB')/CeB’ must be 3-
group. Thus we have U\ NP’ = CeB’. By the splitting theorem of Burnside
B’ has a normal complement %) in %. Since 9 is a Hall subgroup of CgB, it
is normal in NgPB. Since every permutation (#1) of 9} is not commutative
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with any permutation (1) of %, ¥ is no less than 4.3™—3. This is a con-
tradiction. Therefore y must be equal to 1 and then C¢PB is equal to P'R.

The order of the group of automorphisms of R//P is equal to 2. There-
fore K* must induce the trivial automorphism of P//P. Since K is contained
in C¢B, K? is commutative with every element of §3’. By the assumption of
theorem P’ must be contained in Ng®. Since P is a Sylow 3-subgroup of
Ng&, this is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in
Case (C) for p=3.

7. Case (D). It can be proved in the same way as in Case (C) in
that there exists no group satisfying the conditions of the theorem in Case
D).

8. Case (E), (F) and (G). Let & be a Sylow 2-subgroup of Ng®. Since
Ng®/R is a complete Frobenius group on J, © is normal in Ng®. Therefore
Cef® contains & or is contained in &.

In the case a =4, I is not contained in C4®. Thus & contains CgxR. Since
the index of & in Ng® is equal to 2®—1, we have m=1. Therefore it can
be easily seen that & is isomorphic to PGL (2,5) in Case (E) for a=4 and
that @& is isomorphic to PSL (2,9) in Case (G). In Case (F), since n—i=26 and
n—1i must be divisible by 4, there exists no group satisfying the conditions of
the theorem.

Next we shall consider Case (E) for a=2. Let ¥ be a Sylow 2-comple-
ment of Ng® of order 2™—1. Since all the elements (+ 1) of &/& are conjugate
under BR/R, every permutation (¢ &) of & can be represented uniquely in
the form V-'IV, V- IVK, V*IVK? or V-'IVK?®, where V is any permutation
of B. Thus S2=K? for any permutation S of order 4 in &. Since I is con-
tained in Cg®, K is contained Cgl. Let & be a Sylow 2-subgroup of Cgl.
Then, since Cgl is conjugate to Cg4K?= Ny, & contains K. Thus we must
have K?2=1. This is a contradiction.

§3. Proof of Theorem, (II).

1. Let ® & and I be as in § 2. Then in this case & is elementary abelian
and it is generated by two involutions, say K, K,, leaving the symbols 1, 2
fixed. We may assume that I is conjugate to a permutation of & Then we
have the following decomposition of &;

&=9+919.

Since [ is contained in Ng®, (i) <) & is an abelian 2-group of type (2, 2, 2) or
(ii) <I> R is dihedral of order 8 If an element H'IH of a coset $IH of $ is
an involution, then JHH'[=(HH’)' is contained in ®. Hence, in case (i), the
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coset HIH contains just four involutions namely H-*/H, H*K,IH, H'K,IH and
H'K,K,IH and, in case (ii), it contains just two involutions, namely H'IH
and H'K,K,IH, H*K,IH or H'K,IH. Let g(2), g*(2), h(2) and h*(2) be as in
§2. Then the following equality is obtained;

3.1 2= h@+a(n—1),

where a=4 and 2 for cases (i) and (ii), respectively.

2. Let  be as in §2. Then Ngz®/f can be considered as a complete Fro-
benius group on I and 7 equals a power of a prime number, say p™, and the
orders of Ny® and NgR N9 are equal to 4i(i—1) and 4(:—1), respectively.
Hence, since ® has just three involutions, there exist 3(n—1)n/(t—1): involu-
tions in & each of which is conjugate to an involution in &.

At first, let us assume that #z is odd. Then from (3.1) the following equality
is obtained ;

(3.2) W) n+3(n—Dn/(i—1)i = 3(n—1)/Gi—1)+h*@)+a(n—1).

It follows from that A*(2) < a. Likewise in §2.2 we may assume h*(2)
#1. Thus there are three cases; (A) a—h*@2)=1, (B) a—h*2)=2 and (C)
a—h*(2)=4. The following equalities are obtained from for cases (A),
(B) and (C), respectively ;

(A n= it =4 p"(pm+2  (p: odd),

B) = % i(2i+1) = %,; PP 1) (p: odd)
and
© n= %’_ i(di—1) = 71? pmAp™—1)  (p: odd).

Next let us assume that n is even. Corresponding to the following
equality is obtained from (3.1);

(3.3) g*@2)+3(n—Dn/G—i=3n—1)/G—1)+a(n—1).

Likewise in §2 g*(2) is multiple of n—1. It follows from (3.3) that g*(2)
< a(n—1). Thus there are four cases; (D) a—g*(2)/(n—1)=3, (E) a—g*?2)/
n—1=1, (F) a—g*@2)/(n—1)=2 and (G) a—g*2)/(n—1)=4.

The following equalities are obtained from (3.3) for cases (D), (E), (F) and
{G), respectively;

(D) n=i>=2m,

(E) n= —%—i(i—}—Z) = .%Azmﬂ(zm—l 1),
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and
G)  n=-kidi—l)=-r-2m@m—1).
3 3

3. Let us assume that n is odd. Let §§ be a Sylow p-subgroup of Ng®
and let B be the subgroup of Ng® consisting of permutations leaving the
symbol 1 fixed. Then the order of ¥ is equal to 4(p™—1). Since NgR/f is a
complete Frobenius group of degree p™, P is elementary abelian of order p™
and PR is normal in Ng®. Since Cx® is normal in Ng®, Cy® contains PR or
PR is greater than CyR. It is trivial that the index of Cxz® in Ng® is a factor
of 6. If PR is greater than CgR, we must have p=3 and m=1.

4. Cases (A), (B) and (C). At first let us assume p=3. Since the order of
Ng® is equal to 4.3™(3™—1), the order of & is divisible by 3™ But in Cases
(A) and (C) it is not divisible by 3™ In Case (B) m must be equal to 1 and
it can be easily checked that & is isomorphic to PSL (2,7) as a permutation
group of degree 7. Hence it will be assumed hereafter that p is greater than
3 and therefore P& is contained in Cgxf.

It is trivial that P is normal in PR. Therefore P is normal even in NgR.
Let the orders of NgP and C¢B be 4(p™—1)p™x and 4p™y, respectively. If

x=1, from Sylow’s theorem it should hold that —é~(pm+2) Pp™+3)=1 (mod p),

%-(21)”—[—1)(%’”—{—3)51 (mod p) and -g(4pm—1)(4pm+3)51 (mod ) for Cases
(A), (B) and (C), respectively, which, since p is greater than 3, is a contradic-
tion. Thus x is greater than 1. If y=1, then & would be normal in NgB, and
this would imply that x=1. Thus y is greater than 1. Since y is a factor
of n, we have Ny® N\ CeB = Ce® N\ CeP = V. Therefore CxPR contains a normal
subgroup ) of order y. ¥ is normal even in NgB.

Let us consider the subgroup YB. Since 9 is subgroup of C¢B, any per-
mutation (1) of 9) does not leave any symbol of Q fixed. Therefore every
permutation (1) of B is not commutative with any permutation (1) of 9.

This imply that y is not less than 4. p™—3. But y is a factor of »zlgﬁ(p’"—}—Z),

—é—(2pm+1) and -%—(4#"—1) for Cases (A), (B) and (C), respectively, which is a
contradiction,

5. Let us assume that n is even. Since »n is integer, we may assume
that m is even for Cases (E), (F) and (G). Let & be a Sylow 2-group of Ng®
of order 2™* and let B be a Sylow 2-complement of Ng® N\ $H of order 2"—1.
Then &/ is elementary abelian. Likewise in § 2, 8 every permutation (& &)
of & can be represented uniquely in the form V-IV, V' IVK,, V'IVK, or
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V-'IVK,K,, where V is any permutation of 8. Then if [ is contained in
Cg®, every permutation (s 1) of & is an involution and therefore © is ele-
mentary abelian and it is contained in Cg®. Let 8 be the number of involu-
tions of © leaving just ¢ symbols of £ fixed. It is clear that every permuta-
tion (e &) is conjugate under B to I, IK), IK, or IK,K,. Thus § is equal to
@r—1)+3, 22" —1)+3, 3(2™—1)+3 or 4(2"—1)+3.

Now let us assume that & is greater than Cg®. Then we have m =2 and
the orders of NgR, Ce® and & are 16-3, 8 and 16, respectively. It is easily
seen that the number of involutions of & is equal to 9. But there exists no
non-abelian group of order 16 satisfying the above condition. Hence it will
be assumed that & is contained in Cg®. Let us consider the order of Nyg©. If
G '&G contains & for some G <@, then G & Ng(©). In fact, since & is ele-
mentary abelian and normal in Ny, G~'&G is contained in Ng& and G € Ng(€).
Let y be the number of subgroups of © each of which is conjugate to & in
@®. Then we have

[S: No(®)1=7[8: Ne(©)].

On the other hand, since R NG 'RG=1 for every G & Ng®, 3y is equal to §.
Hence we have the following equality;

(34) |81/ Ns®|=3|G|/B| NeR|.

6. Case (D). Since 3|@|/B|NsR|=3-2™(2™+1)/8 is integer, we have =6
for m=2, 3-2™ or 15 for m=2. If m=2 and =06, then "\ NgS=8YB. If
m=2and =15, then |$|=4-3-5 and |[Ng&|=16-3-5. Since H "\ Ny& con-
tains &, |9\ Ng©&|=4-3.5. Hence § is contained in Nyg& and the index of
$ in Ng& is equal to 4. Let 28 be a Sylow 5-group of . Then, since N B
is contained in $, by Sylow’s theorem the index of N 20 in $ is equal to 1
or 6. Therefore the index of NgI® in Ng© must be equal to 4 or 24. This
is a contradiction. Next if 3=3.2™, then | Ny&| is equal to 2*™+*(2™—1) from
(3.4). Hence H "\ Ns&=R%B. In any case we may assume that H\ Ny& = K.

Since Ng®/& is a complete Frobenius group of degree 2™, all the Sylow
subgroups of B are cyclic. Let [ be the least prime factor of the order of %.
Let & be a Sylow [-subgroup of B. Then ¥ is cyclic and clearly leaves only
the symbol 1 fixed. Hence NgQ is contained in §. We shall show that Ng@
= Cgl. We shall assume that [=3. Let x be the index of Ng& "\ Ng© in {DB.
If x is divisible by 4, then the order of Ng¥ is odd. Since the index of C4&
in NgQ is equal to 1 or 2, we have Ng&=Cg¥. If x is even and not divisible
by 4 or if x is odd, then the order of Ng¢ "\ ®8 is even. Let z be an involu-
tion in Ng@ N\ ®B. Then 7 is a permutation in § Since 78z =g and KV is
a szmi-direct product, & is contained in Cgr. Since Ngf contains Cgz, the
index of Cg® in Cgr is equal to 1 or 2. On the other hand, since & is a
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Sylow 2-subgroup of Ng® and CgR contains &, the index of Cgx® in Ng& is
equal to 1 or 3. Hence Cgz = Cg®. Thus ¥ is contained in Cg® and, therefore,
Ngf® =CgR. If [#£3, then NgR=Ce®. If Ng®=Cg®, then Cgl contains K.
Using Sylow’s theorem, we obtain that Ng¥ = Cxl(Ng® M Ngl) = Cg({B N Ngl).
Then it is easily seen that Ng& = Cg¥.

In any case we have that Ng@=Cg®l. By the splitting theorem of Burn-
side ¢ has the normal /-complement. Continuing in the similar way, it can
be shown that ( has the normal subgroup %, which is a complement of %.
Since the order of U is equal to 4(2™+1), & has a normal complement B
of order 2"+1 in HN\UA. OHN\UA=RB. Let r be an involution of K. Since
Cyt = Cg® and the order of B is relatively prime to the order of Ng®, it is clear
that every permutation (1) of B and, hence, r induces a fixed-point-free
automorphism of B. Thus B has three fixed-point-free-automorphisms of order
two. But, since the order of B is odd, this is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in
Case (D).

7. Case (E). From (3.4) we have the following equality;

||/ Ne®| = 22" +1)(2"+3)/38 .

Since the order of a Sylow 2-subgroup of & is equal to 2™*%, 8 must be even,
but not divisible by 4. Hence we have that §=2(2""'41). Therefore the
index of Ng& in & is equal to (2™+3)/3. But this is not integer. This is a
contradiction.

Thus there exists no group satisfying the conditions of the theorem in
Case (E).

8. Case (F). In this case © is also a Sylow 2-group of §. Every involu-
tion of & leaving ¢ symbols of £ fixed is conjugate to an involution of {.
Since © is elementary abelian, it is conjugate already in Ng&. If the index
of Cs® in NgR is equal to 3, then the index of Cg® in Ng@ is equal to 3. If
Ng® =Cgf, then the index of Cg® in Ng& is equal to 8/3. On the other
hand, since © is a Sylow 2-group of & and g*(2)+0, 8 must be equal to
2m+t11, Therefore the order of Ng& is equal to 2™"*(2™—1)(2™*+'+1)/3. Hence
the index of Ng& in @ is equal to (2™+'4-3)/3, which is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in
Case (F).

9. Case (G). Since g*(2)=0, we have f=2m*"*—1. Therefore likewise in
Case (G) it is easily seen that the order of Ng® is equal to 2m+*(2m—1)(2™+2—1)/3.
Hence the index of Ng® in & is equal to (2™**+43)/3, which is a contradiction.

Thus there exists no group satisfying the conditions or the theorem in

Case (G).
Nagoya University
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