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\S 1. Preliminary.

Let $K$ be a simply connected CW-complex whose cohomology groups are
as follows

$H^{0}(K)=H^{4}(K)=H^{8}(K)=H^{12}(K)\cong Z$ and $H^{i}(K)=0$ for other $i$ .
In this paper we shall consider conditions under which $K$ has a homotopy type
of a compact $C^{\infty}$-manifold without boundary. By using Novikov-Browder
theory1) we can partially solve the above problem. By an orientation of $K$ we
mean a pair of generators of $H^{8}(K)$ and $H^{12}(K)^{2)}$ . Since $K$ is homotopy equi-
valent to a $C$ W-complex $S^{4}Ue^{8}Ue^{12}$ we can associate with $K$ elements $\alpha\in\pi_{7}(S^{4})$

and $\beta\in\pi_{11}(S^{4}Ue^{8})$ which are $\partial$ -images of the generators of $\pi_{8}(K, S^{4})$ and
$\pi_{12}(K, S^{4}Ue^{8})$ carried by the orientation of $K$ respectively. Here $\partial$ denotes the
boundary homomorphism: $\pi_{8}(K, S^{4})\rightarrow\pi_{7}(S^{4})$ and $\pi_{12}(K, S^{4}Ue^{8})\rightarrow\pi_{11}(S^{4}Ue^{8})$

respectively. Let $h:S^{7}\rightarrow S^{4}$ be the Hopf map and let $\tau$ be the element of
$\pi_{7}(S^{4})$ such that $2[h]+\tau=[\zeta_{4}\zeta_{4}]^{3)}$ . It is known that $\pi_{7}(S^{4})$ is isomorphic to
the direct sum of $Z$ and $Z_{12}$ which are generated by $[h]$ and $\tau$ respectively.
Hence we can replace $\alpha$ by two integers $a,$ $b(0\leqq b\leqq 11)$ such that $\alpha=a[h]+b\tau$ .
In this paper the case $b=0$ shall be treated in which casa. we can replace $\beta$

by numerical invariants. Let $K_{a}$ be the CW-complex which is obtained by
attaching $e^{8}$ to $S^{4}$ by a representative of $a[h]$ , and let $\varphi_{a}$ : $K_{a}\rightarrow K_{1}$ be a map
which is the identity on $S^{4}$ and of degree $a$ on $e^{8}$ . Obviously, $K_{1}=P_{2}(Q)$ , the
quaternion projective plane. Denote by $\xi_{1}(S^{11}\rightarrow P_{2}(Q)=K_{1})$ the canonical $S^{3}-$

bundle. Then let $\xi_{a}$ be the bundle induced by $\varphi_{a}$ , and by the same symbol
$\xi_{a}$ we denote also the total space of this bundle. We consider the group $\pi_{11}(K_{a})$

and the diagram

1) Concerning Browder’s theorem and another application, see [3] and [5].
2) We suppose that an orientation of $e^{4}$ is fixed.
3) $[f]$ denotes the homotopy class of $f$, and $[, ]$ Whitehead product.
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$\pi_{11}(\xi_{a})$

$\downarrow P_{a*}$

$\backslash _{E}^{i_{a}}$
$\downarrow\partial_{a}$

$j_{a}$

$\pi_{11}(S^{4})\rightarrow\pi_{11}(K_{a})\rightarrow\pi_{11}(K_{a}, S^{4})\rightarrow\pi_{10}(S^{4})\partial_{a}$

$\pi_{10}(S^{3})$

where the horizontal line is the homotopy exact sequence of the pair $(K_{a}, S^{4})$ ,
the vertical line is that of the bundle $\xi_{a}$ and $E$ is the suspension homomor-
phism which is an isomorphism and satisfies $\partial_{a}\circ i_{a}\circ E=identity$ . We know
that $\pi_{10}(S^{3})\cong Z_{15},$ $\pi_{10}(S^{4})\cong Z_{24}+Z_{3}$ generated by $[h]\circ E^{3}[h]$ and $\tau\circ E^{3}\tau$ , and
$\pi_{11}(K_{a}, S^{4})\cong Z+Z_{24}$ generated by $[\chi_{a}, \prime_{4}]_{r}$ and $\chi_{a}\circ\tilde{h}$, where $\chi_{a}\in\pi_{8}(K_{a}, S^{4})$ is
the class of the characteristic map of the cell $e^{8},$ $\partial\tilde{h}=E^{3}[h]$ for $\partial$ : $\pi_{11}(D^{8}, S^{7})$

$\cong\pi_{10}(S^{7})$ and $[, ]$ . is the relative Whitehead product. Since the above $E$ is an
isomorphism $\pi_{11}(K_{a})$ is isomorphic to the direct sum of $\pi_{10}(S^{3})$ and ${\rm Im} j_{a}=Ker\partial_{a}$ .
We have also $\partial_{a}[\chi_{a}, C_{4}]_{r}=-[\partial_{a}\chi_{a}, c_{4}]=-a[[h], c_{4}]=-2a([h]\circ E^{3}[h])$ by use
of Lemma (4.6) of [2], and $\partial_{a}(\chi_{a}\circ\tilde{h})=a([h]\circ E^{3}[h])$ . Therefore the following
lemma is obtained.

LEMMA 1.1. The group $\pi_{11}(K_{a})$ is isomorphic to $Z_{15}+Z+Z\rho_{a}$ . The summands
are generated by elements $\mu_{a},$

$\text{{\it \‘{A}}}_{a}$ and $\nu_{a}$ respectively which are characterized as
follows:

i) $\mu_{a}$ is the $i_{a}$ -image of a (fixed) generator of $\pi_{11}(S_{4})\cong Z_{15}$

ii) $\partial_{a}(\lambda_{a})=\partial_{a}(\nu_{a})=0$

iii) $j_{a}(\lambda_{a})=[\chi_{a}, t_{4}]_{r}+2(\chi_{a}\circ\tilde{h})$ and $j_{a}(\nu_{a})=(24/\rho_{a})(\chi_{a}\circ\tilde{h})$ , where $\rho_{a}=(24, a)$ .
By virtue of this lemma we can associate numerical invariants $(a, m, 1, n)$ ,

$(0\leqq m<15,0\leqq n<\rho_{a})$ , of integers with $K$ where $\alpha=a[h]$ and $\beta=m\cdot\mu_{a}+$

$l\cdot\lambda_{\alpha}+n\cdot\nu_{a}$ . We shall call $K$ a complex of type $(a, m, 1, n)$ . In [4] James has
proved

LEMMA 1.2. If $K$ is of type $(a, m, l, n)$ then

$e^{4}Ue^{4}=ae^{8}$ , $e^{4}Ue^{8}=le^{12}$ in $H^{*}(K)$

where $e^{4t}$ denotes the oriented generator carried by each cell.
For example, let $9_{3}(Q)$ be the quaternion projective 3-space $P_{3}(Q)$ with the

orientation $((e^{4})^{2}, (e^{4})^{3})$ . Then $\mathscr{L}_{3}(Q)$ is a complex of type $(1, 0,1,0)$ , because
$a=1=l$ by lemma 1.2 and $m=0$ . Here $m=0$ follows from $\partial_{a}\circ\partial=0:\pi_{12}(P_{3}(Q)_{r}$

$P_{2}(Q))\rightarrow\pi_{11}(P_{2}(Q))\rightarrow\pi_{10}(S^{3})$ and $\nu_{1}=0$ .
It is important for our purpose that the Poincar\’e duality holds in $H^{*}(K)$ ,

that is, $e^{4}Ue^{8}=\pm e^{12}$ . Thus the above lemma implies
PROPOSITION 1. If $K$ is of type $(a, m, 1, n)$ , then Poincar\’e duality holds in

$H^{*}(K)$ if and only if $l=\pm 1$ .
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\S 2. Stable vector bundles over the complex $K$ of type $(a, m, l, n)$ .
It is easily seen that a stable vector bundle over $K$ is uniquely determined

by it’s Pontrjagin classes. In our case Pontrjagin classes may be considered
as a triple $(p_{1}, p_{2}, p_{3})$ of integers. Then by an elementary argument of vector
bundles (see [5]) we can show

LEMMA 2.1. There exist a basis of $KO(K)\xi_{1}(K),$ $\xi_{2}(K),$ $\xi_{3}(K)$ such that

$\xi_{1}(K)=(2, a, \alpha(K))$ , $\xi_{2}(K)=(0,6, \beta(K))$ , $\xi_{3}(K)=(0,0,240)$ ,

where $\alpha(K)$ and $\beta(K)$ are integers which are determined $mod 240$ , up to homo-
topy type of $K$.

By using the product formula for Pontrjagin classes and Lemma 2.1 we
obtain

PROPOSITION 2. A triple of integers $(p_{1}, p_{2}, p_{3})$ is Pontrjagin classes of a
stable vector bundle over $K$ if and only if

$p_{1}=2r$ , $p_{2}=ar(2r-1)+6s$
and

$p_{3}=240t+s\beta(K)+r\alpha(K)+12rls+2alr(r-1)+alr(r-1)(r-2)4/3$

for some integers $r,$ $s,$
$t$ .

Now we shall determine $\alpha(K)$ and $\beta(K)$ . Since, for $k=1,2,3,$ $\pi_{N+4k-1}(S^{N})^{4)}$

is isomorphic to the cyclic group $Z\rho_{k}$ where $\rho_{k}=24,240,504$ for $k=1,2,3$

respectively we can put $[f]=c[h_{k}]^{5)}$ for a map $f:S^{N+4k-1}\rightarrow S^{N}$ . Let $Y_{c}$ be
the $C$ W-complex $S^{N}Ue^{N+4k}$ which is obtained from attaching $e^{N+4k}$ to $S^{N}$ by $f$.
Concerning $KO(Y_{c})^{6)}$ we have

LEMMA 2.2. There exist elements $\eta_{1}^{c},$ $\eta_{2}^{c}$ of $KO(Y_{c})$ whose Pontrjagin classes
are

$P_{N/4}(\eta_{1}^{c})=(N/2-1)$ ! $e^{N}$ , $P_{N/4+k}(\eta_{1}^{c})=\text{{\it \‘{A}}}_{c}e^{N+4k}$

$P_{N/4}(\eta_{2}^{c})=0$ , $P_{N/4+k}(\eta_{2}^{c})=(N/2+2k-1)$ ! $a_{k}e^{N+4k}$

where $a_{k}=1$ for even $k,$ $a_{k}=2$ for odd $k$ and $\text{{\it \‘{A}}}_{c}=(-1)^{k}cB_{k}(N/2+2k-1)a_{k}^{7)}$ .
And any $\eta$ of $KO(Y_{c})$ is represented by a linear combination of $\eta_{1}^{c}$ and $\eta_{2}^{c}$

PROOF. Since the J-homomorphism $J:KO(S^{4k})\rightarrow\pi_{N+4k-1}(S^{N})$ is onto $(k=1$ ,
2, 3) we may consider $Y_{c}$ as the Thom complex of a N-vector bundle $\xi$ over
$S^{4k}$ whose k-th Pontrjagin class is $a_{k}\cdot c\cdot(2k-1)$ !. Then the proof is established
by using the formula [1, Corollary 5.4].

By using Lemma 2.2 we can easily obtain
LEMMA 2.3. Let $\alpha\in\pi_{N+4k-1}(S^{N})(k=1,2,3)$ . Then a is zero if and only if

4) $N$ is sufficiently large and we suppose $N\equiv 0mod 8$ .
5) $h_{k}$ denotes a generator of $\pi_{N+4k-1}(S^{N})$ and $c$ is an integer.
6) $KO(Y_{c})$ is the group consisted of stable vector bundles over $Y_{c}$ .
7) $B_{k}$ is the k-th Bernouille number.
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$P_{N/4\tau k}(\eta)\equiv 0mod (2k-1+N/2)$ ! $a_{k}$ for any $\eta$ of $KO(Y.)$ , where $Y_{\alpha}$ means the
$\neg 0$ mplex $ S^{N}\cup e^{N+4k}\alpha$

Now let $Y$ be the $C$ W-complex $S^{8}\cup^{r}e^{12}([f]=(2l+(n24/(a, 24)h_{1})$ . Since $K$

is of type $(a, m, l, n)$ there exists a map $P:K\rightarrow Y$ such that the restriction
$P|S^{4}$ is constant and $P$ is of degree one on each cells $e^{8},$ $e^{12}$ . Therefore it is
clear that $P_{1}(\xi_{2}(K)),$ $P_{2}(\xi_{2}(K))$ coincide with those of the bundle induced by $P$

from $\eta_{1}^{c}$ in the case of Lemma 2.2, $c=(2l+(n24/(a, 24))),$ $k=1$ and $N=8$ . Hence
we have

LEMMA 2.4. $\beta(K)=-10(2l+n24/(a, 24))mod 240$ .
Next we shall determine $\alpha(K)$ . Let $9_{n}^{)}(Q)$ be the quaternion projective

n-space with the orientation $e^{4},$ $(e^{4})^{2},$ $\cdots$ , $(e^{4})^{n}$ . Since the tangent bundle of
$9_{8}(Q)$ has the cohomology class $ 1+14e^{4}+97e^{8}+428e^{12}+\cdots$ as it’s total Pontrjagin
class the restriction of it on $9_{3}^{)}(Q)$ is represented by our notation such as

$\tau(9_{8}(Q))|9_{3}(Q)=7\xi_{1}(\mathscr{L}_{3}(Q))+\xi_{2}(9_{3}(Q))$ $mod \xi_{3}(9_{3}(Q))$ .
Then we have

LEMMA 2.5. If $K$ is of type $(a, 0,1, n)\alpha(K)\equiv 0mod 240$ .
PROOF. If $K$ is of type $(1, 0,1,0)$ we may consider $K$ as $P_{3}(Q)$ . Therefore

$\alpha(K)=0$ by the above. Now if $K$ is of type $(a, 0,1, n)$ there exists a map;
$F:K\rightarrow P_{3}(Q)$ such that $F$ is of degree 1 on $e^{4},$ $a$ on $e^{8}$ and $al$ on $e^{12}$ respec-
tively, because by easy computations it is seen that the composition map $i\cdot\varphi_{a}$

\langle defined in \S 1) is extendable over $K$ as above. Hence by comparing the Pon-
trjagin classes of $F^{-1}(\xi_{1}(P_{3}(Q)))$ with that of $\xi_{1}(K)$ we have $\alpha(K)=0$ .

Let $\varphi$ be a correspondence: $\pi_{11}(K_{a})\rightarrow Z_{240}$ defined by $\varphi(g)=\alpha(K)$ , where $K$

denotes the $C$ W-complex which is obtained from attaching $e^{12}$ to $K_{a}$ by a map
$g$ of $\pi_{11}(K_{a})$ . It can be easily seen that $\varphi$ is a homomorphism. By Lemma 2.5
we have that $\varphi(\text{{\it \‘{A}}}_{a})=\varphi(\nu_{a})=0$ . Hence the problem is to determine $\varphi(\mu_{a})$ . Con-
sider the iterated suspension $E^{12}$ : $\pi_{11}(S^{4})\rightarrow\pi_{23}(S^{16})=Z_{240}[\sigma]$ . We suppose
$E^{12}\alpha=m[\sigma]$ for $\alpha\in\pi_{11}(S^{4})$ and let $Y_{\alpha}$ be the $C$ W-complex $S^{4}\cup^{\alpha}e^{12}$ . Our prob-
lem is to find the third Pontrjagin class of an element $\xi$ of $KO(Y.)$ whose
first Pontrjagin class is $2e^{4}$ . By using the formula $chE^{12}=E^{12}ch$ and Lemma
2.2 (take $Y_{m}=E^{12}Y_{\alpha}$) we obtain $P_{3}(\xi)=me^{12}mod 120e^{12}$ . On the other hand, since
$15a=0$ , we have $15p_{3}(\xi)\equiv 0,$ $i$ . $e$ . $15m\equiv 0mod 240$ . Hence we have $p_{3}(\xi)\equiv me^{12}$

$mod 240$ . By choosing the generator of $\pi_{11}(S^{4})$ whose $E^{12}$ -image is $16[\sigma]$ we
obtain

LEMMA 2.6. $\varphi[\mu_{a}]=16$ and $\alpha(K)\equiv 16mmod 240$ if $K$ is of type $(a, m, 1, n)$ .

\S 3. Reducibility of Thom complexes.

Let $K$ be a CW-complex $S^{4}Ue^{8}Ue^{12}$ and let $K_{\dot{t}}$ be the $4i$-skelton of $K$.
Let $\xi$ be a stable vector bundle over $K$ and let $T_{\xi}$ be the Thom complex of
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$\xi$ . Now we may consider that $T_{\xi},$ $T_{\xi|k_{2}},$ $T_{\xi|k_{1}}$ have a CW-decomposition as
follows

$T_{\xi}=\tau_{\xi|k_{2^{\cup e^{12+N}}}}^{\varphi},$
$T_{\xi|k_{2}}=T_{\xi|k_{1}}Ue^{N+8},$ $T_{\xi}=T_{\xi|k_{1}}Ue^{N+8}Ue^{N+12}$ .

Now we seek the conditions for reducibility of $T_{\xi},$
$i$ . $e$ . $\varphi=0$ . Let $j_{2}$ be the

inclusion homomorphism: $\pi_{N+11}(T_{\xi|k_{2}})\rightarrow\pi_{N\{- 11}(T_{\xi|k_{2}}, T_{\xi|k_{1}})=\pi_{N+11}(S^{N+8})$ . By Lemma
2.3 $j_{2}(\varphi)=0$ is equivalent to that $p_{N/4+3}(\eta)=0mod (N/2+5)$ ! 2 for any $\eta$ of
$KO(T_{\xi})$ such that $\eta|T_{\xi|k_{1}}=0$ . Under this condition there exists an element $\varphi^{r}$

of $\pi_{N+11}(T_{\xi 1k_{1}})$ such that $ i(\varphi^{\prime})=\varphi$ where $i$ is the inclusion homomorphism:
$\pi_{N+11}(T_{\xi|k_{i}})\rightarrow\pi_{N+11}(T_{\xi|k_{2}})$ . Since we have that $\pi_{N+12}(T_{\xi 1k_{2}}, T_{\xi 1k_{1}})=\pi_{N+12}(S^{N+8})=0$

$i$ is a monomorphism. Thus $\varphi=0$ is equivalent to $\varphi^{\prime}=0$ . Let $j_{1}$ be the inclu-
sion homomorphism: $\pi_{N+11}(T_{\xi|k1})\rightarrow\pi_{N+11}(T_{\xi|k_{1}}, S^{N})=\pi_{N+11}(S^{N+8})$ . Again by Lem-
ma 2.3 $j_{1}(\varphi^{\prime})=0$ is equivalent to $p_{N/4+3}(\eta)=0mod (N/2+5)!2$ for any $\eta$ of
$KO(T_{\xi})$ such that the restriction $\eta|S^{N}$ is trivial. Under these conditions ( $ j_{z}(\varphi\rangle$

$=j_{1}(\varphi^{\prime})=0)$ consider the part of the homotopy exact sequence of the pair
$(T_{\xi|k_{1}}, S^{N})$ ,

$\pi_{N+12}(T_{\xi 1k1}, S^{N})\rightarrow\pi_{N+11}(S^{N})\partial\rightarrow\pi_{N+11}(T_{\xi|k_{1}})i$

Let $\varphi^{\gamma/}$ be an element of $\pi_{N+12}(S^{N})$ such that $i(\varphi^{\prime\prime})=\varphi^{\prime}$ . Since $\partial$ is trivial, $\varphi^{\prime}=0$

is equivalent to $\varphi^{\prime\prime}=0$ . And moreover $\varphi^{\prime\prime}=0$ is true if and olny if $p_{N/4+3}(\eta)$

$=0mod (N/2+5)!2$ for any $\eta$ of $KO(T_{\xi})$ by Lemma 2.3. Thus we have
PROPOSITION 3. $T_{\xi}$ is reducible if and only if $ch_{N/2^{+6}}(\eta)$ is integral for all

$\eta$ of $KO(T_{\xi})$ .
Now by the formula $ch\Phi_{KO}(\overline{\eta})=\Phi_{\xi}(ch(\overline{\eta})\cdot\hat{A}^{-1}(\xi))$ for $\overline{\eta}\in KO(K)^{8)}$ we have

$ch_{N/2+6}(\eta)=A_{3}m+A_{2}ch_{2}(\overline{\eta})+A_{1}ch_{4}(\overline{\eta})+ch_{6}(\overline{\eta})$ for some integer $m$ and $\overline{\eta}\in KO(K\rangle$

where $A_{1}=-\hat{A}_{1}(\xi),$ $A_{2}=\hat{A}_{1}(\xi)^{2}-\hat{A}_{2}(\xi)$ and $A_{3}=2\hat{A}_{1}(\xi)\hat{A}_{2}(\xi)-\hat{A}_{1}(\xi)^{s}-\hat{A}_{3}(\xi)^{9)}$ .
Since $KO(T_{\xi})$ is one to one corresponded to $KO(K)$ by $\Phi_{KO}$ the integrality of
$ch_{N/2+6}(\eta)$ for all $\eta\in KO(T_{\xi})$ is equivalent to that of $A_{3}m+A_{2}ch_{2}(\overline{\eta})+A_{1}ch_{4}(\overline{\eta})$

$ch_{6}(\overline{\eta})$ for all $\overline{\eta}\in KO(K)$ . Any $\overline{\eta}$ of $KO(K)$ is represented by a linear combina-
tion of $\xi_{i}(K)(i=1,2,3)$ so that we can replace $\overline{\eta}$ by $\xi_{i}(K)(i=1,2,3)$ . On the
ohter hand, from easy computation we have

$ch_{2}(\xi_{1}(K))=2e^{4}$ , $ch_{2}(\xi_{2}(K))=0$ , $ch_{2}(\xi_{3}(K))=0$ ,

$ch_{4}(\xi_{1}(K))=(a/6)e^{8}$ , $ch_{4}(\xi_{2}(K))=-e^{8}$ , $ch_{4}(\xi_{3}(K))=0$ ,

$ch_{6}(\xi_{1}(K))=((4al+6\alpha(K))/6!)e^{12}$ , $ch_{6}(\xi_{2}(K))=(\beta(K)/5!)e^{12}$ , $ch_{6}(\xi_{3}(K))=2e^{12}$

Thus Proposition 3 is transformed to
PROPOSITION 3’. $T(\xi)$ is redusible if and only if the following three classes

are all integer classes which are divisible by 2.

8) R-R theorem.
9) $\hat{A}_{i}(\xi)$ denotes i-th $\hat{A}$ -genus.
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$\hat{A}_{3}(\xi)+\hat{A}_{1}(\xi)^{3}-2\hat{A}_{1}(\xi)\hat{A}_{2}(\xi)$ , $(\beta(K)/5!)e^{12}+\hat{A}_{1}(\xi)e^{8}$ ,

and
$((4al+6\alpha(K))/6!)e^{12}-(a/6)\hat{A}_{1}(\xi)e^{8}+2(\hat{A}_{1}(\xi)^{2}-\hat{A}_{2}(\xi))e^{4}$ .

Now let us put $p_{1}(\xi)=xe^{4},$ $p_{2}(\xi)=ye^{8},$ $p_{3}(\xi)=ze^{12}$ . Then we have

$\hat{A}_{1}(\xi)=(-x/24)e^{4}$ , $\hat{A}_{2}(\xi)=((7ax-4y)/2^{7}\cdot 45)e^{8}$

and
$\hat{A}_{3}(\xi)=((44xyl-16z-31alx)/2^{10}\cdot 3^{3}\cdot 5\cdot 7)e^{12}$ .

In our case, by Proposition 2, Proposition 3 is transformed to
PROPOSITION 4. Let $K$ be type of $(a, m, 1, n)$ and let $\xi$ be $r\xi_{k}^{1}+s\xi_{k}^{2}+t\xi_{k}^{3}$ .
Then $T_{\xi}$ is reducible if and only if the following relations are satisfied.

$\beta(K)=10rl$ $mod 240$

$5ar^{2}(2-r)+9alr+6\alpha(K)+4al+6sl=0$ $mod$ 1440

$35alr^{3}-21alr^{2}+(14al+126sl+6\alpha(K))_{\gamma}+6s\beta(K)+2^{5}\cdot 45t\equiv 0$ $mod 2^{8}\cdot 3^{4}\cdot 5\cdot 7$ .
At last for applications of Novikov-Browder theory we must find conditions
under which index formula holds for $\tilde{\xi}$ dual of $\xi$ of $KO(K),$ $i$ . $e$ .

$I(K)=L_{3}(\tilde{p}_{1},\tilde{p}_{2}\tilde{p}_{3})=(62\tilde{p}_{3}-13\tilde{p}_{1}\tilde{p}_{2}+2\tilde{p}_{1}^{3})/3^{6}\cdot 5\cdot 7$ .
Since $I(K)=0$ is trivial in our case, from Proposition 2 and $\tilde{\xi}=-r\xi_{1}(K)-s\xi_{2}(K)$

$-t\xi_{3}(K)$ for $\xi=r\xi_{1}(K)+s\xi_{2}(K)+t\xi_{3}(K)$ we can obtain
PROPOSITION 5. Index formula for $\overline{\xi}$ is satisfied if and only if
140 $alr^{3}-294alr^{2}+(124al+180\alpha(K)+6^{2}\cdot 7^{2}\cdot sl)_{r}+186s\beta(K)+2^{\epsilon}\cdot 3^{2}\cdot 5\cdot 31t=0$ .
Thus by combining Propositions 1, 2, 4 and 5 we can obtain an application

of Browder theory to $K$.
Tokyo Women’s Christian College
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