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§1. Introduction.

This paper is concerned with the mixed problems for hyperbolic equations
of second order. Let S be a sufficiently smooth compact hypersurface in R",
and let £ be the interior or exterior domain of S.

Consider the hyperbolic equation of second order

2
(1.1) Llul= waa?f uta,(x,t: D) (%— uta,(x, t: D)u=f
a6, t: D)= 32k (x, 1)+ h(x, 1
i=1 X

) N n a a n a ’
ay(x, t: D)= “i’él“a};(aij(x’ DW)_FJE bi(x, l‘)—a‘g‘FC(«\, £

where the coefficients belong to B*(2x(—d,, c0))?. We assume that a,(x, 1: D)
is an elliptic operator satisfying

(1.2) 3 ai, t>sisj>d;z;s;~f >0

i,j=1
aij(xx t) = aji(x’ t)

for all (x, 1) € 2X(—dy, ) and £=(§,, &, -+, &) € R, and that hy(x, ) (=1,2,
..., n) are real-valued. For this equation we consider the following boundary
conditions

(1.3) Bou(x, )=u(x,)=0 on S,

9

(1.4 B,u(x, t)= i u(x, )—<h, u)—g?u(x, D+o(s, Hul(x, ) =0 on S

where
a n n
= al S, t i y hy = h’L ] t )
gny =, 3,00 g =BG, D
v=(y,, -+, ¥,) 1s the outer unit normal of S at s< S, and a(s, f) is a real-valued

1) $*(w), w being an open set, is the set of all functions defined in @ such that
their partial derivatives of order <k all exist and are continuous and bounded.
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sufficiently smooth function defined on SXx(—d,, o).

Our problem is to obtain u(x, 1) € &Y(H*(2)) N EWH () NEWLX))», for any
given initial data {u,, u,} and any second member f(x, t), satisfying

(1) Llul=f(x,¢) in £2x(,T),

(i)  u(x, 0) = u,, fg%(x, 0) = u,,

(iii) the boundary condition (1.3) or (1.4) for all t< [0, T].
We treat this problem as evolution equation

(1.5 (%U () = ADOUDO+FQ@)

where

0 1
A= [——a2(x, t: D) —ay(x, Lt D)]
and

vo=[y 8] FO=[,]:

In our treatment we introduce the spaces 9 (t) (S H(Q)XL¥ D)) (i1=1,2)
equipped with the norms equivalent to ||u|;, 729+ ||Vl z2e» Which are determined
according to a,(x, t: D) and the boundary condition, and in the space 4, (t) the
semi-group theory is applied to prove the existence of the solution to the
equation [(1.5) However it seems difficult to apply it to the operators with
the definition domain depending on t. Therefore for the boundary condition
(1.4), since the definition domain of .4(¢f) varies with ¢ when the coefficients of
the principal part of L are not independent of ¢ on the boundary S, another
treatment is needed. In this case we extend the operator _A(f) to the operator
from HY ()X LYQ) into L¥2)x HY(£)’, under the additiona! condition about L
that a,(x, t: D)= h(x, t) and b,(x, t) are real-valued on S.

In each case the regularity of the solution is considered. At first the
regularity with respect to t is shown by the method of successive approxi-
mation, next the regularity with respect to x by using the above result and
the ellipticity of a,(x, t: D).

Our problem has been already studied by M. Krzyzanski and ]. Schauder
[7], G.F.D. Duff [3], L. Hormander [5] and by O. A Ladyzhenskaya [8] The
materials of Chapter viii and ix of Lions [9] have a close connection with this
paper. In [3], [7] the analytic case is first treated, and in non-analytic case,
with the aid of estimates of L2-type of the solutions, the analytic approximation
is used. Their treatments are complicated. And [5] derives the uniqueness
theorem and estimates of solutions. [9] does not consider the regularity of

2) u(x,t)e &F(E) means that u(x,t) is m times continuously differentiable in ¢ as
E-valued function.
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the solution, and does it only in the case of the boundary condition (1.3),
but its proof is also complicated.

Our treatment is an extension of those of and and different
from those of and [7], and our proof on the regularity of the solution
seems to be simple and natural. The essential part of this paper is Section 3.
However to make our exposition easy and complete, in Section 2 we show our
treatment in detail in the case where the boundary condition is independent
of t. The results written in Section 2 have been obtained under the cor-
respondence with Professor S. Mizohata.

The author wishes to express his sincere gratitude to Professor S. Mizo-
hata for his many valuable suggestions. He also wishes to thank Professor
M. Yamaguti for his continuous encouragement.

§2. Cases where the boundary condition is invariant with ¢.

Throughout this section we consider only the case where the boundary
condition is independent of ¢, namely the case (1.3) and also the case (1.4) with
the additional condition that the coefficients of the principal part of L and ¢
are independent of ¢ at the boundary®.

Definitions and lemma.

In order to treat the case of the Dirichlet type boundary condition (1.3),
we consider the space .4 ,(1), which is 9L(2)x L¥Q) with the norm

z 0
QY MU=, Do =3 (st D3 52 )+ 0 0+@, 0)
where
U={u, v} € Di(2) < L¥(2) .
JA(P) is the operator from the definition domain
(2.2) D, =H*Q) N DL(2) X DLa(2)

into J¢,(1).
In the case of the Neumann type boundary condition (1.4), 4, (t) is H'(Q)
x L¥2) with the norm

(2-3) ”U”gfg(c) =, U)J(z(t)
ou ou

:f‘_v, a;;(x, t)ﬁx—i’ 79_}7>+jsg(s)uﬁ dS+Bu, w)+, v)

1,j=1
where
U={u,v} e HQ)X LYD),

and 4(t) is the operator from the definition domain

3) The condition can be relaxed partially, see Remark 2.6.
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2.4 DZ:{{u,v}lueHz(.Q), veHY{) and faa%*u—<h, yyv40(s)u=0 on S}

into J90,(1).
REMARK 2.1. From the additional condition posed on a;; and hy, D, is

invariant with 2.
REMARK 2.2. According to (1.2), for some M,; >0 we have

1
—MT(HUH%’LZ(Q)—{— ”U”2L2<g)) = ”U”?q[lct) = M1<Hu”%,L2(g)+HU”%,Z(Q))
for all U={u, v} € 9,(t). Next, from the inequality
J JuldS < elulf e+ el tacey

where ¢ is an arbitrary positive constant, by taking S sufficiently large it
follows for some M, >0

j}lz—(lluﬂ%.m(gﬁHvll%m) = HU!Iim) = Mz(”u”%,m(g)‘i”HUWL%Q))

for all U={u, v} e 4,(t). We fix such a f.
REMARK 2.3. D, is dense in 4;(!). In the case i=1, this is evident, For
1=2, since

N={ulue H(@), T4 o(su=0 on S}
is dense in H'(2) and Nx92() < D,, D, is dense in HY(Q)X L¥2). By Remark

2.2 it follows that D, is dense in 4,(2).
LEMMA 2.1. There exists a constant ¢ >0 such that for any U & D,

(2.5) (ADU, Wstyor+U, ADD i) = ¢U, Uaryry (=1, 2)

holds.
Proor. Let U={u,v} e D,.

(26) (J(t}U, U)ﬂl(t)"l‘(U: Uq(t)U)JIh(L)

= 3 (e t) )+<v, u)-+(—ay(x, t: Dyu—ay(x, t: Dy, v)

i, 5=1

+ Z ( a;;(x, t) aau a;j)+(u,v)+(v, —a(x, t: D)u—a,(x, t: DW).

i,7=1

By integration by parts, we get

@.7) z (au(x t) a“)

axj

={ v2 ds+(v, 3o (et 2% )
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(2.8) (@x(x, 1: Dy, v)= | 2 S hix, twvods
—(v, éZ—%hi(x, t)v)—i—(h(x, H, v)
— - L ov
=2 j ChvyvodS— (v, 22 hlx, t)-a;:)

+(<h(x, H—2 1:2“)1 gzl (%, z‘))v, v> .

All the surface integrals vanish since v € @iz, then the right side of (2.6)
equals

2Re(u, v)—2 Re( gl bi(, t)—g—%——l-c(x, Hu, v)

—]—ZRe((h(x, H— i —a};—z(x, t))v, v)

i=1

and this is estimated by

c'(ulls eVl z2cp+10132c0) S " ullf 2+ V1720 -

By Remark 2.2, we see [2.5) holds for i=1.
Now let U={u,v} < D,.

(2‘9) (‘A(t) U! U ).9(2(&) + (U! J(t)U ).9[2 w

— v Ou 7
_,i;;‘,l(a“(x, 1)) ox. o, )—{-J'Sa(s)vu dS+ B, u)

+(—ayx, t: Dyu—ayx, t: Dy, v)

n ou ov _
+i§::1(a,~,~(x, D x E)ju { (o(SuadS+B(u, v)

4@, —a,(x, t: D)u—a,(x, t: D))
by and

_ js(%+ o5 )0dS+[ v( 2 o(syu)dS—2 <, vyvads

+2Re[ B(u, v)~(jéb,(x, t)g—;‘j+c(x, tu,v)+((hex, t)—éla—?:(x, H)v,v)].

Since U € D,, the surface integral vanishes, and by the similar way to the

case i=1, we get [(2.5)

COROLLARY 2.1. For all real X such that |A|>c, the estimate
(2.10) |QAI—ANU sy Z (A =ONUNsy0  (G=1,2)
holds for any U e D,.
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ProOOF.
(AI=ADU, (A —=ANU s>
= 22U, Udstjoo— 2, ADU ) gt ycr+(ADU, Udstj}
according to (2.5)
= 22U, U)syo—| 21U, Uayr = {1 A=Y+ (I A= U %00
then we obtain (2.10) if |1]>c.
Resolvent.

LEMMA 2.2. There exists a constant 6 >0 such that for all 2 real and
|A] >0, Al—JA(t) is a bijective mapping from D; onto I (f). Moreover we have

1
(2.11) AT = AD)  loesr = Ta=o
PrOOF. Consider the equation in U
(2.12) QAI—AD)YU =F
namely
AU—v=f,
2.13)

azu‘]‘(arl“z)v =1,

where {f, f,} € DL(2)X L*(2) in the case of the Dirichlet type boundary
condition and € H'(2)X L*2) in the case of the Neumann type. For con-
venience, we call the former case the first case and the latter one the second
case.

The substitution of the first relation
(2.14) v=2u—f,
in the second of (2.13) gives

2.15) U= (G20, +Pu=(a,+)f,+f, € LA(D).
Thus we are led to consider an elliptic equation containing the parameter 2
(2.16) au=fe LXQ2).

Consider the first case. The solvability of means the existence of
ue H () N DL(2) for any fe L¥Q). Then if is solvable, defining v by
(2.14), we have a solution {u, v} € HX(Q) N\ DL(2)X DL:(02) of [2.12) Now the
solvability of is seen by the well-known variation method.

Consider the second case. If {u,v}e D, is a solution of then for
xeS

Chyviv=<hv)Qu—f)= %Z—Jrou :
Namely, u satisfies the boundary condition

@.17) —aa?u—,i(h, vy utou=—Ch >,
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Conversely, if u e H%{) satisfies this boundary condition, then by defining
v=2Au—f,, wesee {u,v} D, Here the solvability of means the existence
of the solution ue H*RQ) of satisfying for any given fe LX),
fie H{(D).
Let us assume the existence of such a solution u. Then
(ay+2a,+2u, 6> =<f, ), ¢=H(D)
gives, by integration by parts, '

1aj=1

3 (e 2%, 29 ke, 9 (am i+ ar )+, )

_L(*g%——ﬂh, vy>u)gdS=(f, $),

where e, is the first order and af is the formal adjoint of a,. Taking account
of the surface integral is equal to

jauqids+j Chy v5f18dS.
S S
Thus, u is a solution of the variational equation:

@18) 3 (g 5o )+ §—5- (@, §)Hw at )+ 2w 9

+jsou5ds:(f, ¢)—js<h, v>f1$dS .

Since h; (i=1,2, ..., n) are real-valued, we see that
|Re {(a,u, W)+, afw)} | = clul®.

Now we see that there exists some positive 4, such that for any |[A|> 21, (4
real) the variational equation (2.18) has a unique solution u € H*({2). Moreover,
one can prove that u e H*?). This implies that u is a solution of
satisfying the boundary condition [(2.17)

From the solvability of and the estimate of it follows that the
existence of (A/—A(t))"* and the estimate

For U ={u, v} € H(Q)X H*-Y({), we define the following norm

(2.19) WU = lull} 2@+ V13- z2c0 -
Suppose that the coefficients of L belong to ®?(2x(—4,, o)), then we have
COROLLARY. For 2,>0 (4, fixed), there exists d,>0 such that for any
U e D, H?(2)x H»(0)
(2.20) WU, < dplll R —AMNU |llp-1 -

Proor. From the ellipticity of a,(x,t: D) and Lemma 2.2, A,J—JA(f) is a
bijective continuous mapping from D; H?(2)xH?"(2) onto 4 ,(H)N\H?-Y(Q)
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x H?-%(()), then by Banach’s closed graph theorem we get

Energy inequality.

Now we show the energy inequalities for our problems. These inequalities
play an important role not only in the proof of the existence of the solution
but also in that of the regularity of solutions.

First, we state an elementary lemma without proof.

LEMMA 23. Let y(t) and p(t) be positive, and defined on [0, a] (a>0). If
7 is summable on [0, a] and p(t) is increasing, and

rO = ef 7ds+p®
holds, then we have
T =ep().
We prove the required energy inequality.
PROPOSITION 2.6. Let u(x,t) € EXH*E)NEH @) NEWLAH)) for te[—6,,
T+0,] (0,>0), and satisfying the boundary condition. If L{ul=f(x,1)
e LY L)), then

(2.21) | u(t)“2,L2(Q) ' Ol z2 4 u//(t>“L2(9)
= C(T)[” U2 22+ 11w O)ls, z2c@ + 11 SOl 22

1 Olsds]  for all 1[0, T

holds. (C(T) depends on T, but is independent of u(x, t).)
PrOOF. First, let us consider the case of the boundary condition (1.3).
Put U() = {u(®), w/(t)}, then U{t) = D, and satisfies the equation

(L5) S UO=AOUO+FE)
where F(t)= {0, f()}.

222) L), U= U0, U)o
WU, U)o+ OO, Uieo
= (AOUE+FO), U)o
HU, AOUD+F Do

+WU®, Uiy
where
Ou  Ou
ox;’ 671

W, Uity = é l(ailj(x: £) for U={u,v}c,®).
i,j=
By (2.5) and

(2.23) U@, Uieo | = const | UMD, »
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| @D Ui | = IFOlaerco 1UON 100 5
the rigth side of is estimated by

2¢, U Fe 020 F Ol sercor 1T a1 -
Thus

d
2 U Dy = 2ITD syl UDsyo+ 1F Ol aryen)
and

LNV a0 S lTOLsseo-FIF Ol

From this it follows
2:24) 100 S (IO lsscot 1P S sards) -
In addition, assume that u/(x, t) € SAH* () NEH(2)). Then we see
U = {w ), u"()y € D, .
Differentiation of with respect to { gives

G UD= DU @+ A OUO+F)
Applying for U'(t), we get

@2 U Olaw = e (10Ot [, IAOUO+HFOlawds) .

According to
WU+ U O = dy (R = ADNU B sero+2 | U/ O atyeor
= {2 UDlsrco H 1T Ol sesr+ 1 FO ey}

+e U Ol
by [2.24) and [(2.25)

= c{(IUO ot 1P lsxods)
FIF® o 1T O s

+ [ AU sscods+ [ 1P secods)

And for all t= [0, T]
SO siwds = T(1f O+ [ 17 Ollads)

moreover we have
1T O strc00 = AU sy + 1F O 100
= const ||| UO) [{lo4 1 fO) z2cg) -
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Inserting these estimates to the above inequality, we get

MU+ NUONL = C’(T)[Ill UO 41/ 22

+ 1P Ol@ds+ [ 11U ds]
Applying Lemma 2.5 by taking y(®) = ||| UDIl.+Il U]l

o®=C (I UO a1 fOllzo {17 l2ads)
it follows
HTDILA T OL = D@ UO N+ 1Ol + 17O zads) -

Thus we obtain
To remove the additional assumption that u/(x, t) € E(H(2)) N\EXHY(RD)),

we make use of the mollifier with respect to ¢. Denote by u;(x, t) the function

(py% u)(x, 1), where ¢ x is Friedrichs’ mollifier.

Applying ¢ai’2> to (1.1), we get

Llu;1=fs—Csu
where

(Cotdx, =T 5, 005, 12 DYl u-+ [ sl £ DYl

for all te[0, T] if 0<0<d,
Since u; € €P(HA(2) N D12(82)), from the obtained results it follows

(2:26) lus@lle+ lud® 4 13 @
< O s o+ 1O+ 1750

+{ s +ICaxO1+ [ | (2-Coun) o)

a’s] .
Now we know that

sl — [u@®ll,

s — llw Ol

lug DIl — llw"OI

£ — 17O,

f:llfa’(s)lldsﬁ j :n F(s)lds

when d—0. Moreover we have
(2.27) 1(Csw)(O)]| — 0.

2.28) j': (»ggfcau)(s) ds—0




590 ’ M. Ixawa

when 6 —0. In fact [2.27)is evident, so we prove [2.28). In view of the explicit
form of Cju, it suffices to show the following fact: Let
a(x, ) & B(Q X (—dy, T+55)
and
w(x, ) & LA X (—8y T+64).
Then putting

Gl =25, alx, 010G, 1),
we have

[ hgam Dl —~0  when 5--0.
Now

(2.29) ~(% {ps(t—)alx, r)—alx, D]} = —% {gs(t—o)alx, ©)—alx, O}

+os(t—o)a'(x, T)—a'(x, 1)].
Thus

$s= 387 {st—)alx, D) —a(x, HI W, ©)—v(x, D)de

+{ pst—)a(x, )—a'(x, Ou(x, e

Then, by ordinary calculus, we see easily the desired property of ¢s.
Thus, the passage to the limit of when d—0 proves Proposition in
the case 1 =1.
Now we consider the case i =2. At first we prove the inequality under
the additional assumption :
w'(x, t) € EYH (D) NEH (D) .

Since B, is assumed to be independent of ¢, u’ satisfies also the same boundary
condition as u. Thus by the same reasoning as before we get [2.2I)] Next
we remove the additional assumption by using the mollifier 9535).

Let us remark
Byl x u(x, D)= ¢, x[Byu(x, ©)] in LASX[0,TD).
In fact, this relation is true when u is assumed moreover twice continuously
differentiable in Qx[—%"-, T+§2°{I. Then, by taking a sequence {u,(x, ?)}
satisfying these conditions and tending to u(x,?) in Hz(Qx<—§2—‘3-, T+—52°—>>,

we affirm this relation. In view of the fact that wuy(x, ) is continuously
differentiable in ¢ with values in H*{), and B,[u(x, {)]1=0, we see that for
every t B,[us(x, t)]=0.
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Existence of the solution.

The straightforward application of the semi-group theory to the equation
gives the following Proposition, whose proof will be given later.

PROPOSITION 2.2. Given U, D; and F({) < D; such that F() and AQF()
are continuous in HY(Q)X LX), then there exists a solution U() e EXHYN Q)
X LY Q) of such that U0)=U, and U®) € D; for all t & (—8y T+0,)-

From this it follows:

THEOREM 1. Given {u, u,} € D; and f(x,t) e (LHQ)), then there exists
one and only one solution u(x,t) of (1.1) satisfying the boundary condition
B,u=0 and the initial condition

0
u(x, 0)=u,, a—?(x, 0)=u,
such that
u(x, t) € EYH (D) NEH N NEALND)) .

PROOF. At first, let us assume f(x, t) € €Y(DL(2)), then we see that F(¢)
={0, f(x, )} € D; and F({) and A)F() are continuous in H*(Q2)x L¥2). Thus,
by setting U,={u,, u,}, Proposition 2.2 assures the existence of the solution
U € E(H ()< L*(2)) of (1.5) such that U(0)=U, and U@) & D;.

QI —=ADUD = 2UO—U'(O+F@) € (H Q)X LX),
from which it follows, with the aid of (2.20) taking p=2,
U@t e &(HY ()X HY(D)).

Denote by u(x, t) the first component of U(?#), then we can easily see u(x, t)
is the required solution of (1.1). When f(x, ) e (L3 (2)), let us choose a
sequence f;(x, 1) € (D) (j=1,2, ---) tending to f(x, f) in EYLAR)) and
denote by u,(x, t) the solution of (1.1) for the initial data {u,, u,} and the second
member f;(x, ?), then from (2.21) we see

() — 8o+ Nl — i s ()~ 1)
= oI FO—F O+ 1AS—1ds)

This shows that {u;(x, )} converges to some u(x,?) in EY(H* ()N ENH (D))
NEALHD)).

Then the passage to the limit when j—0 of
ou;
Llul=f;, ui(x, 0)=1u,, a—;(% O=u,,
Blu" == O ’

proves that u(x, t) is the required solution. The proof is thus complete.
In order to prove Proposition 2.2, we mention the following theorem essen-
tially due to T. Kato.
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L: a Banach space, and we denote its norm by |-|z. L), a<t=0: we
give a family of norms equivalent to that of L, and denote it by |-|lz¢. L)
is the space L equipped with the norm ||-|,4. Then

THEOREM. Hypothesis:

¢) For all t<[a, b], the operator A(l) is a closed operator with the dense
definition domain D independent of t, and we have for all (2| > 06 (A: real)

1
[AI—AD) 2w < TA=o
¢) B@, s)=Q,[—A)AJ— A(s))~* is differentiable in t for some s in L(L, L)
equipped by the simple topology, moreover B'(f, s) is continuous in t for the
topology of L(L, L).
cs) There exists a constant 6 >0 and non-increasing function ¢(t) such that

lxll 2w = ol x|l 2 Sfor all tela,b],
2l o — 1%l 2 | < (@O—dN %l for all t>s and x L.

Conclusion :
For any xe D and f({)e D such that f(t) and AQ)f({) are continuous in t
for te[a, b, then there exists one and only one solution of the equation

_gf x(t) = ADx O+

such that x()e D and = ¢€(L) and x(t,)=x (t, is any fixed point of [a, b]).

REMARK 2.4. The above Theorem is stated in a slightly different form
in S. Mizohata, Le problémes de Cauchy pour les équations paraboliques, J.
Math. Soc. Japan, 8 (1956)». In fact, he assumes instead of c¢;) the following
condition ¢;)’: There exists a family of operators T() = £(L, L) such that

1) T() is isomorphism of L onto L: T(H)*e L(L, L).

2) For any xe L

%] 2oy = 1T @]z -

3y I1T@®| is bounded for t<{aq, b].
4) T(t) is bounded variation, i.e. there exists N >0 such that for all
partitions

ST =T =N

In fact, let us observe that, in view of his reasoning, T(f) need not be
linear. It suffices to assure T(HAx=AT()x. Then c¢,;) is equivalent to c,).
To show c¢;)’ follows from c;), we define the operator T(f) by

4) See also T. Kato, On linear differential equations in Banach spaces, Comm. Pure
Appl. Math,, 9 (1956). The above formulation was pointed out by S. Miyatake.
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_ #xlze
TOX= "z, *

then T(¢) satisfies the condition ¢,)’. And it is evident that ¢;) follows from c,)".

REMARK 2.5. Suppose L is a Hilbert space. Denote the inner product of
L and L) by (,), and (, )z respectively. If for all xe L, (x, x).,, is con-
tinuously differentiable and for some constant ¢ > 0 the inequality

= (%, Xy,

d
"dT (% Dre

holds, then ¢,) is satisfied.
PRrROOF. Since (x, x).,, is uniformly continuous in ¢ on |x||=1 and L(¢) is
equivalent to L, there exists a constant d >0 such that

I %l ey >0l %l

d d d
di X, D = At 1 Za = 201 x| 2w i Il o

then

d 2l

c
di ||x|’L(L)§Cz—“7“:;; xllz = o5 llxllz -

Hence

[l —1elso 1= |7 I9a0dl| < 55 ¢=9lxl

Thus we can take as ¢(t):42%t.

PROOF OF PROPOSITION 2.2. We take L(f)=4,({), then we can easily see
that 4(¢#) satisfies the condition c¢;)~c;). In fact Lemma 2.2 assures c,) and
from its corollary (taking p=2) and the differentiability of .4(¢) in £(D;, H'(2)
X L¥(£2)) we see that c,) is satisfied. Finally ¢,) is satisfied since (U, U)a;w
satisfies the condition stated in the above Remark.

Regularity.

When the coefficients of L are sufficiently smooth, if we suppose the
regularity of the initial data and the second member, then the solution of (1.1)
becomes regular. Of course, since the equation is hyperbolic, we should assume
the compatibility condition. This condition is formulated as follows: Define
successively u,(x) by

@30 uy=— 5 (P )00 0: Dty 05, 02 Dty g} 7D, 0)

(p:2; 3; Tty m+1)
then
{upr up+1}eDi (;bzl, 2: ,Wl).

THEOREM 2. Suppose that the coefficients of L belong to @maxtm2l (X (—d,,
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T+0,) and
{ugy s} € DiNH™ ()X H™ (L)  (m=1D)
@30 flx, e eXH™ ) NEH™ N N - NEFH N NEFTHLAED)

then, if the above compatibility condition is satisfied, the solution of the equation
(L.1) satisfies

(2.32) u(x, £) € EIH™ D) NEKH™ () N -+ NEFTLHED)) -
ProOF. At first we prove
(2.33) u(x, t) € EFH Q) NEPHH @) NEFHHLAL)) -

~

For this purpose we consider the solution # of the equation

(2:34) 1ra] = ="5 () ) LB+, 8.

Its existence can be shown by the method of successive approximation. In
fact, we can obtain #,(x, t) (j=1, 2, ---) successively by

.35 Liv= _mil(fz>L(m—k)[~(k>1] +Fm(x, 1),
k=0
vj(x: O) =Um, U}(x’ O) = U1
(236) J(x t>—u0+tu1+ + (n,l;m 1)] U - 1+5. ((l;ﬂ )" 1)' Uj(x S)dS

here #,=0, because if v;e(H Q) NEKH(D)), from (2.36) #i;epr(H ()
NEPHYS2)), thus the right side of (2.35) = &}(L*(2)) and {u,, Up.,} € D;, then
Theorem 1 can be applied to (2.35). Evidently B,ii;=0. Now we show that
{v;} is a Cauchy sequence in EY(H*(£2)) N\ EWH ) NEHL*(2)).

Llvj,—v]=— Z( )am"“)(x, t: D)j (t—s)m—l)—,(vj(x, ) —vj_i(x, 5))ds

( >a<m~m(x, t: D)f s>m ;;‘ Wix, s)—v;-(x, s))ds,
then, by (2.21) for some constant K(T')
10541 —v,O o+ V5O —v Ol + Vi —vi O

= K[ [ 1049 =05 llds+ [ 10 —v-lds]

(]: 2’ 3’ ...)
holds, and
[o.Oll+ iDL = K,
thus

10500 =0, D st [V5s D — IOl a7 <t>u<K(K<T>°
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This implies that v; converges to some v in EYH*(02)) NEWH () N\EWLXL2)),
and set

m-1 t _o\ym-1
ﬁ(xs t) = u0+tu1+ +"(Wl—t__’“1)—!"um—-1+\f0 L(tﬁ,lfs_)1>| v(x, S)ds )

then #i; tends to @ in EPHX D) NEPTH(D) NEP(LYRQ)). The passage to
the limit of gives which shows

am N
(LAY =f™(x, ).
Taking account of the definition of u,, we see
dr N
40D | =P 0 p=012 -, m—1.

Therefore we get

L) =f(x, 1),
il(x, 1) € EPH D) NepH (D) NeP(LXAQ))

Bii=0, (x, 0)=u,, %”t‘i(x, O=1,.

From the uniqueness of the solution, it follows [(2.33).
Set U®t) = {u(®), uw/(t)}, then U(¥) is the solution of and < &rHYQ)
X H'(2)). Now

(2.37) (I — ADU(E) = 2,U@)—U'(t)+Ft) € {HD) X H(2)) ,
then by (taking p=23) we see
Ut) € EXH* ()X H*(K)) .
Differentiation of with respect to ¢ gives
(2.38) Aol — AU () = AU () -+ F' () — U () + A DU

and by the above result A/ (HU®) € EAH ()X HY(£2)), the right side of
e CAH¥ ()X HY(2)), from which it follows

U'(t) € EXH )X HA(D)) .
Repeating this process, we get
(2.39) U@ e er(H(QXHYD)).

Using this, we see the right side of € EY(H ()} H*(2)), then by [2.20)
(taking p=4)
U®) € EXH Q)< HY(Q)) .

This assures the right side of € &H(2)x H*(2)), then
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U'(t) € E(H ()< H*(£2)) .
Step by step, finally we get
U@ e€(H™ Q)X H™ () NENH™ (D)X H™D) N - NEMHA D)X HY(D)) .

This shows holds.

REMARK 2.6. Theorem 1 can be extended to the case when a(s, t) varies
with ¢. Let a(x, t) be the sufficiently smooth function defined on 2 x(—d, o)
such that

g—a——<h >~—~+0(s H=0 and a=1lon S

for all ¢, and q, a~! are uniformly bounded. If we define L, by
Liavl=al,[v].

L, has the same principal part as L. Therefore we can obtain the solution
v(x, t) of the equation

Lvl=a"f

for the initial data
v(x, 0) = a~(x, Ouy,x),
ov . - oa
51 @ 0=0a"Cx, O m)—a'x, 0) FF(x Oug)]
satisfying the boundary condition
ov o
5;1——<h, V>—a?—-—0 on S,
since the initial data for v satisfies the boundary condition. Then u=av is

the solution of (1.1) for initial data {u,, u,} and the boundary condition (1.4).

§3. Case where B, varies with ¢.

In this section we consider the case where the boundary condition B,
varies with ¢ under the additional condition that a,(x, t: D)= h(x, t) and b,(x, )
t=1,2, .-, n) are real valued on the boundary S. We shall make use of the
operator A(?) from H!(£2) into H'(£), which is an extension of the operator
a,(x, t: D) defined on the domain

@0 D(ty={uluec H ), ——l—a(s, fiu=0 on S}.
We introduce the quadratic form for u, ¢ € HY(Q)

(32) at; )= 3 (aus 052 22
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+jsa(s, t)ugz:ds+js<b, vy uddS—+Bu, ¢),
where 8> 0 is sufficiently large such that for some M >0
1
(3.3 _M‘”u”%.LZ(!)) < ay(t; u, u) < Mjullf r2 -

Thus va,(f; u, ) defines on H}(2) an equivalent norm. Let us denote the
Hilbert space H'(£2) equipped with the scalar product [3.2) by H(#) and its dual
Hilbert space by H(t).

Using the quadratic form [(3.2) we define A(t) & LHY(R), H(2)") by

(3.4 CAuU, §y=alt;u, @)  vYpeHY(D).

Then, by Riesz’s theorem ||A,(Dulzwy = |#llze. In other words, A, (t) is an
isomorphic operator from H(f) to H(t)’. Thus, let us define the scalar product
in H(t) :
3.5 (s Ve = A0 4, Al Vaw = aot; Alt) u, A)™v)
for u, v e H(t)Y.

From the equivalence of H(¥) and H'(®), it follows that the dual norms

v, Vaw and @, V)giq, are equivalent.

For ue L¥(Q), ¢ € HY(Q), set
0

3.6) bult; wy )= (u, (= X =505 D+ DH—B)$)

=1 0x;

and we define B,(t) € L(L¥XQ), H(L)") by

cY)) CBOu, §>=0byt;u, ), YpeH(D).
REMARK 3.1. From the definition of A,(f), we have

3.8 Cu, ) =aot; Afd)"u, ¢)

for all ue H'(Q), ¢ € H(Q).
LemMmaA 3.1. A\ is differentiable in L(H(), H*(2)") and Byt) is also in

LD, H (D).
PrOOF.
A+ —A®) N2, g G ) —ag(x, ) 0u  0¢
< h wgy=3( h or ox)
% bi(x, tHm)—by(x, ) vjugEa’SJrj a(s, t-+h)—a(s, ?) uds
§ j=1 h s h

nos, ou 0¢ , ) _
— 2 (el 5 - ‘aﬁa) +{ (b vy +0'(s, thugds

=at; u, ¢) when h—0,
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Since the convergence is uniform in u, ¢, A(¢) is differentiable in _L(H'(Q),
HY(£2)") and
CAD U, §y=ayt; u, §).

The higher differentiability of A,(f) and that of B,(¢) can be shown by the
similar way.

LEMMA 3.2. A D) is continuously differentiable in £L(H(2), H'(Q)).

Proor. This is consequent of the previous Lemma. Indeed, the inverse
of the operator which is differentiable in ¢ is also differentiable in ¢ and we
have

(A= —AD) T AL AyD .

Then, from the continuity of Ay(f)’, that of (A,)*) follows.

We define the operator A(f) by

(3.9 A() = AB)+B(t) -

REMARK 3.2 According to the theory of elliptic equation, if ue H'(Q)
and A(Hu € L¥(Q), then u € D(t) and A(Du = a,(x, t : D)u. Conversely if u < D(®),
AMu=ay,x, t: Dyu s L*2). This shows that A(f) is an extension of a,(x, t: D).

We now solve the equation
(3.10) LTul = w"(x, H+hx, Du'(x, D+ Aulx, ) =f(x, 1)

in the space u(x, t) € &H () NELX(D)NEXH (2)). Let us remark that
this equation is considered in H!(Q), by taking h(x, Hu'(x, t) € NLXQ)) as its
natural injection into &Y(H(2)")".

For this, we consider the equation

G.11) TflTU(zf) — AU +F@)
where

0 1
A = [—A(t) —h(x, t)] '

in the space L*(2)x H*(£2).
(1) is LA(2)x H ()’ with the norm
312 1U%ep0 = U, Udatorr =ty W)+ @, V)aray
= (u, w+ayt; A@) v, A@) ')

for {u,v} e LA(Q)XHY(LQ).
J(f) is the operator from

5) See, for example, Mizohata chap. 3.

6) To ucsL?(2), we make correspond we H1(Q)’ by the formula <w, ¢ > = (%, ¢) 12(90),
voe=HY(2). Conversely i H1(Q)’ belongs to L?(Q) means that for some usL?(Q) we
have <il, ¢ ) = (u, $)12(g), YOS H (Q)-
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(3.13) D =H'(Q2)x LX)

into 9 ,(1).

REMARK 3.3. ||Ul«y o is equivalent to [ul/+|lv]-,, where ||v||_, denotes the
norm of H'(£).

REMARK 3.4. D is dense in 4 (f). Because H*({) is dense in L*({2), and
since H(2) and L*2) are reflexive, L%(2) is dense in H({2)'.

We prove some lemmas about A(f) which correspond to Lemmas 2.1, 2.2.

LEMMA 3.3. There exists a constant ¢ >0 such that for every U= D

(3.14) [ ADU, U)sror U, ADD )atgr| = U | %cor -
ProoOF. Let U={u,v}< D, then
3.15 AOU, U)atyr+U, ADU sy
= (v, Way(t; A (—ADu— By(Hu—h(x, t), At)™v)
+(u, v)+alt; Ay, Af)H(— Au— By(Hu—h(x, Hv))
= (u, V)+@, w)—a,(t; u, A v)—at; A v, u)
—2Reayt; A® v, A@)*(Buu+h(x, H))
by (3.8)"
= —2Rea,(t; At v, At) " {(BHu+h(x, thv)).
This is estimated by
const v -, | B(Hu+h(x, v -,
= const [[v]|-,(J1ull 2+ Vll-1) -
From Remark 3.3 it follows (3.14).
COROLLARY. For all real A such that |2]>c we have
(3.16) [QI—=A@)Ullsor > (1A= Ul seor (U € D).

LEMMA 3.4. There exists a constant 6 >0 such that for all |21 > 06 (A real),
AT —A(t) 1s a bijective mapping from D onto (). Moreover

(3.17) [GI— @) o < 1=
holds.

PROOF. As the proof of Lemma 2.2, we consider the equation
(3.18) A= (AQ)+Ah(x, H+Pu =1 e H(Q) .

By the definition of A(f), for any u e H'(Q)

Re sty 1y =Re[ 35 (a2, D) (B0, 2%, u) o )
2= T J - J

7) Let us remark
ay(t; u, Ag(B)~W) = ao(t; Ap(t) W, u) = (v, u) = (4, v) .
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—l—fsa(s, HuidS-+ A(hu, w)+ A*(u, u)]

= const [[ul} zxcgy
holds if A% is sufficiently large. And
| Im { Azu, ud| < const ||ullf L2 -
Thus is solvable for |1|>d (4 real), namely for any fe H'(£), there

exists a unique solution ue H'(Q). Then for any F=/{f, g} € H,1), set
u= A7 (A+h) f+g) and v=Au—f, then U={u,v} =D and

A — AU =F .

This proves (AI—A®)D = 4 (t). [(3.17) follows from |3.16).
COROLLARY 3.1. 4,>0 (fixed), then for all Ue D we have

(319 MU < dollAel =AUl stor  do > 0.

PROOF. A,J—A(f) is a bijective continuous mapping from H'(£2)x L* Q)
onto 9 (f). By Banach’s closed graph theorem we get (3.19).

With the aid of these Lemmas, the existence of the solution of (3.10) is
proved by the same argument as that of Section 2.

PROPOSITION 3.1.9  Let u(x, t) € (H (D) NELLH N NEXH(Q)Y) te[—0,
T4+0d,] (0,>0) and

ITu]=f(x, t)y € EXHYRQY),

then the following energy tnequality holds
(3.20) @+l @Ol Ol -
< CO[ 1O+ O+ O+ 1Sl ds]
ProOF. For U=/{u, v} e %),
U, Do = ag(t5 A7, A v)+2Re agt; (A1) ™)'v, Af)™v)
then by Lemma 3.2
(.21 |(U, Uieyo) < const (U, Usowr »

and from Lemma 3.1
A’ OU || seyr < const {[|U ||, .

Therefore by using (3.14) and (3.19) instead of (2.5) and (2.19) respectively,

8) For u(x, ) e&l(H*(Q)INEHH ()N EFLA(R)) such that u(x, t)eD(t), we see
that the following energy inequality holds

I o+ v O+ 1w (D]
0
< CTY (O o+ 1w O+ 1 FO I+ 17O s+ [ 17 s+ 177 - -
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the entirely same procedure as that of Proposition 2.1 can be carried out, then
for

u(x, H) € ELHN D) NEWLND)
is proved. We also use the mollifier to remove the additional assumption
that u(x, t) e S H () NENLHD). Let ulx, H)eeY(HYD)). We define the
regularized function pxucerH H by

(3.22) {papu(x, 1), > =% {ul®), ¢ for all ¢ = H(Q).
Then if 0<0<d, and t= [0, T7,
(Ps W = Pyx u”

at)
and when u(x, t) € €(L*(£)), the above definition coincides with the ordinary
one.
Now it suffices to show

(3.23) j: <aas C5u>(s)”_1ds—>0.
(3.24) 1(Cw)(O)]_.,—0  when 60,
where

Cate =, Al — B (D)
+[¢5(";) h(x, Du’(H)—h(x, t)¢6(>‘t<>u’(t)] .

<~af(C,;u)(t), g!)> is the sum of the terms in the form
ot
(3.25) § {4 § pstt—o)aCn —atx, 1w, nde}(2) g,

(3.26) { S{{;f [ Batt—o)atx, ©)—ax, HIv(x, dz} §dS,

where w(x, t) € EXLHD)), vix, ) EH (D), lal<1 and alx, 1) € B*(2X(—0,
T+0,)).
Using (2.29) and Schwarz inequality we see is estimated by

(5)¢

ostp={ _def [{galt—ortlt—zlIgf—)1) wtx H—wlx O

const @;(1)

b
12.0)
where

+{palt—)| et [w(x, )P} Jdx
and .
j ®,(t)dt—0  when 5—0.
0

Similarly is estimated and using |||z = const [+ |l;, 12y We get
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fT|’iCB(t)‘l dt—0  when 8—0.
o |l Ot -1

(3.24) is also shown by the same way. Thus Proposition is proved.

Existence of the solution.

PROPOSITION 3.2. Given U,=D and F{)= D such that F(t) and A@F({)
are continuous in L*Q)XHQ), then there exists a solution U(t) € ELYHQ)
XHY(2)) of (8.11) such that UQ)=U, and U®)= D for all t [ —dy, T+0,].

PROOF. As the proof of Proposition 2.2, we apply Theorem stated before
the proof of Proposition 2.2. Lemma 3.4 and Remark 3.4 assure the condition
¢), and from Lemma 3.1 and Corollary 3.1 it follows that .4(¢) satisfies c,).
The condition ¢,) is already shown in the proof of Proposition 3.1, say (3.21).
Thus we get Proposition 3.2.

Using Proposition 3.1 and 3.2 instead of Proposition 2.1 and 2.2 respectively,
by the same argument as Theorem 1 it follows:

PrOPOSITION 3.3. Given {uy, u,} D and f(x,t)sE(H(2)), then there
exists one and only one solution u(x, t) of (3.10) satisfying the initial condition

ulx, 0)=u,, %lti(x, 0O=u,

such that
u(x, ty e EH' D) NEXLX D) NEXH(Q)) .

With the aid of these Propositions, we now prove the existence theorem.

THEOREM 3. Given u,< D(0), u, € H(Q) and f(x, t) € EXL* (D)) N\ ENH (),
there exists one and only one solution u(x,t) of (1.1) (under the additional
condition a,(x,t: D)=h(x, t) and bx, t) are real on S) satisfying the boundary
condition

B(®u(x, )= é%u +o(s, Hhu =0 on S
t

such that
u(x, t) € EH () NEH (D) N EWLH)) .

PROOF. u, < D(0) assures A(Q)u, = L*(2) and since u,, f(0) € L*(2) then
Uy = — AO)u,—h(x, Du,+7(0) & LA(D).
We solve the equation
3.27) LLw'(x, )] = — A'yu)—h'(x, DU/ O+ (x, 1),
u(0)=u,, w( )y =u,, u”(0) =u,
by the method of successive approximation. Namely,

(3.28) L= — A —h'(x, DELD+1(x, 1),
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2
#i(x, )= uﬁ—j‘o v;(x, s)ds,

Vs () =u,, Vi) =1u,,
,=0.
If i,(x, t) € EH D) NEXL¥ (D)), then the right side of [(3.28) = &}(H (£2)"), and

since {u,, u,} = D, Proposition 3.3 assures the existence of the solution v, of

such that

VX, 1) € EYH D) N EWLHN) NEXH (DY) -
Therefore we can get #,(x, t) successively and using the energy inequality
the same reasoning as we used in the proof of Theorem 2 shows that
ii/(x, t) converges to

(3.29) u(x, 1) € EH D) NEL ) NEXH (),
which satisfies the equation [3.27), then also the equation [3.10). Thus we see
(3.30) AQ@u(x, t) = —u"()—h(x, Hw (B)+1(x, 1) € E(LAQD)) -

By Remark 3.2, u(x, f) € D(¢) and
Aulx, ) =a,(x, t: D)ulx, 1).

Thus u(x, t) is the solution of (1.1) satisfying the boundary and initial condition.
Then it suffices to show only

(3.31) u(x, 1) € €XH*82)) .

Applying the apriori estimate concerning the elliptic operator
(3.32) lulle,z2c@r = K(llag(x, 2 DYul|recg+< BOu >—§‘+ Il z2c) >
we see first

3.33) lu(x, Dllg,z2¢g) < const vie [0, T]

by taking u=u(x, t). Next,

(3.39) u(®—ul)ls z2c@ = K(lla(x, t: DY@ —ult") 220

+{BO@@)—ut))) %-I— lu@®—u®)l )
by taking u = u(®)—u(t’).
Here
ax(x, £ DY(u@®)—ut)),
:g(t)—g(t,)+(a2(x! t: D)""az(x’ t: D))u(t/) ’
BO@(@®)—u@) = (BE")—B®)Hu’),
where g(?) is the right side of (3.30). From this follows, because the

right side of [3.34) tends to zero when ¢’ tends to . The uniqueness has been
shown in Proposition 3.3.
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Regularity.
Let us show that even in the actual case, we also obtain the regularity of
the solution.

LEMMA 3.5. Suppose that the coefficients of a,(x,t: D) belong to B
X (=0 TH0,)) and

(3.35) u(x, ) € H#+(Q) vt, and <&FL¥Q)),
(3.36) a,(x, t: D)u(x, t) =f(x, 1) = eHH?(L)),
(3.37) Bltyu(x, )= g(x, t) = eFH"" 2(S)),

where p=0, k=0, then
(2.38) u(x, 1) e FHP ().
PROOF. Let us remark that for all w e H?+(Q)
(3.39) 0llpss = Ky(llax(x, 22 Dywll, +CBEOWS, 1 +lwllo)
holds. If we take w=u(x, t), then it follows
G Dll e = K112 Dllp4+<8 & D7, 1 Hlulx Do)
therefore |u(x, t')] 4, <M for all ¢ e (—ad, t+0).
(3.40) a,(x, t: D)(u(x, t)—u(x, 1))
= —(ay(%, "1 D)—ay(x, t: D)ulx, t)+f(x, t)—f(x, 1),
B4 B, 1) —ulx, 1) = —(BE)— B, t)+g(x, t)—g(x 1),
and the right sides of (3.40) and (3.41) tend to 0 in the space H?(£) and

1
H""%(S) respectively, then applying (3.39) by taking w =u(x, t")—u(x, t), we
have

[u(x, t)—u(x, )l pe—0  when #—t.
Thus we have u(x, t) € E(H?**(Q)).

In the case k=1, by dividing (3.40) and (3.41) by #—¢ and since from the
assumption

a)(x, t: D) u(x, t;?::t(x, ) ,
u(x, t—ulx, )
e

1 . .
converges in H?(£2) and H" 2(S) respectively when ¢/ —t, using (3.39) we see
the convergence of L(’_‘J?;;‘,(ZCJ),, in H?+3(Q).
Then we have relations
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(3.42) ay(x, t: Dyu'(x, ) = —aiy(x, t: Dyu(x, H)+f"(x, 1),
(3.43) Bu'(x, t) = —B'(Hulx, H+g'(x, 1).
Now, since the right sides are continuous, by the above result for k=0, u/(x, t)

= WHP(Q)) is proved. Next let us show that w/ e &i(H?**(Q)) in the case
kE=2. We see that a,(x,t: Du/(x, t)eH?(Q)) by (3.42), and B@u'(x,t)

e &(H p"’";'"(S)) by [3.43). Applying the just obtained result, we see that u”(x, t)
€ EYH?*(2)). We can continue this reasoning and get the desired result.

Now consider a solution of (1.1) such that u(x, t) € E(H™ () N E(H™(2))
A NEPHH) NEFTHLAD)). Then u®(x,0) (p=1,2, -, m+2) is repre-
sented by the initial data {u,, u;} and by the second member f(x, ). If u(x, 1)
satisfies the boundary condition

Btu(x, H)=0,
then
Bt (x, )+ B Hu(x, t)=0,

BOu"(x, H+2B'(Hu'(x, )+ B"(Hu(x, 1) =0,
Thus putting #=0, we see that u®(x, 0) should satisfy

BOyu,+B'(0)u, =0,

BOyu®(x, 0)+2B"(0)u,(x)-+ B"(0)uy(x) =0,

Therefore we introduce the compatibility condition as follows:
Let u, (p=2,3, ---, m+2) be those of (2.30), then

(3.44) 5( 2>B<’°>(O)ul_k(x):0 on S (=12 -, m.

THEOREM 4. Suppose that coefficients of L belong to B™(2X(—0dy, T+0,))
and
{ue, w1} e OYNH™(QNXH™ () (m=1),

J(x, 1) € EH™ED) NELH™ W) N -+ NEPLAHN) N eFHN(2))

then, if the compatibility condition (3.44) is satisfied, the solution u(x, t) of (1.1)
(under the additional condition that a,(x, t: D)= h(x, t) and by(x, t) are real-valued
on S) satisfies

(3.45) u(x, 1) € EXH™ D) NELH™ D) N -+ NEPFTLHR)) .
PrROOF. At first we prove
(3.46) u(x, ) € EFHHN ) N EFHLAD)) -
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Since u(x, t) is also the solution of [3.10), is shown by using the analogous
reasoning to that of Theorem 2. For this purpose, let us notice that

G4 == ( Py VAP Oty hOCE, Oty T4 225, 0),

where u, (p=1,2, ---, m+2) are defined by (2.30). In fact, since u, € H™*2(2),
for ¢ € H'(£2) we have

CADO)y_ sy ¢—>=i§:1(a(k)(x’ 0)-2% up el ax: )

X;

+ j AR CROUMZ S j (0D, 0), 9> up-i-pPdS

+ (s (o FFEOHTTE D))

The integration by parts gives

:_2(

i,j=1

aé’}’(x, 0)—6—%up_,c_2, ¢>+La<k>(x, )ity FdS
J
IOt Ot )

+f B a0 P gas.

8 2,j=1 ¥

Then
(=S Py AP O -a B, Oty T 525, 0),
(P AP O ks GO, Oty DI 25, 0), )
— (_ :2;:(1); 2)(agc>(x, 0: DYty—g-+h®(x, Oteyg1)+f P2(x, 0), §)

~E (7)), B Ouedas.

Now by virtue of the compatibility condition the surface integral vanishes.
Then the last member is nothing but {u,, ¢, so we get (3.47)".
Now let us show the existence of the solution to the equation

(3.48) Z[a(m-}-l)] — % <m2—1>1’:<m+1-k>[ﬁ<k>j Hfam(x, 1,
k=0

with the initial condition #9(x, 0)=u; (j=0,1, 2, ---, m+2), by the method of

9) Conversely (3.47) assures the compatibility condition.
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successive approximation. In fact, we get #;(x, t) € &P (H () NEFHLHD))
NEFT(HY (L)) successively by

(3.49) f[vjﬂ(x, H]=— ,ﬁ()( m}-j—].)E(m+1—k)[ﬁ§k)]+f(m+l)(x’ 1,
Vis(%, 0) = tpy, € H'(D), V(% 0) = ey € LA(2) .
. m t (f—gym

B50) s =t tut bt [ 0 s,
fi(x, ) =0,

because if

v; € EXH () NELL ) N EIH (Y,
then

il € EPHH N NEMHL*EN Ner+HHND)),

therefore the right side of e E(HY(R2)) and {upyy, Upre} € D, s0 Proposition
3.3 can be applied to then we get

Vi € EXH () NELLH M) NEWH(2)) .

By using the energy inequality [(3.20), the convergence of v,(x, ) in EXH'(2))
NELH DN NENH (2)), and also that of #,(x, ) in EPH(H () NEFHLHLD))
NEP(HY(L2)) are proved, and (3.47) assures that the limit #(x, #) of @i,(x, ) is
the solution of (3.10)'”. From the uniqueness of the solution of it follows
@)

Now we can prove Theorem. Since u(x, t) € E(HQ)), B(t)u(t) =0, and that
3.51) a,(x, t: DYu(x, t) = —u’(x, )—h(x, Hu'(x, )+f(x, ) € eMLHQ)),

we have u(x, t) € &p(H*(2)) by applying taking p=0, k=m.

Next, since ue&p™(HY(2), m=1, (3.51) shows ue H¥ Q) and a,x,¢:
Dyu(x, t) € €p~(H*(2)). Applying we see that u(x, f) € €p~'(H¥(Q)).
Suppose m=2. Then u(x, t)e&MH¥2)) implies that a,(x, t: D)u(x, ?)
e e HY D). We have then u(x, ) = H*(#2) and applying again
it follows that u(x, t) = €r-2(H*(2)). Step by step, we get the desired property
of u.

Osaka University
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