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§1. Introduction.

Let (X, A) be a pair of a topological space X and a closed set A. For an
abelian group G we shall denote by H3(X, A: G) and H*(X, A: G) the Cech
cohomology groups based on all finite open coverings and all locally finite
open coverings of X, respectively. As Dowker [1, Theorem 9.6] shows, even
if X is a real line and G is the additive group of integers Z, the groups

“(X:Z) and HYX:Z) are quite different. Define the following dimension
functions :

D(X: G)=the least integer n such that, for each m>n and each closed
set A of X, the homomorphism *: H™(X: G)— H™(A: G) induced by the inclu-
sion mapping 7: AC X is onto,

d(X: G)=the largest integer n such that H*(X, A: G)+0 for some closed

set A of X.
Similarly, the dimension functions D,(X: G) and d,(X: G) are defined by making
use of the group H# in place of H*. Skljarenko proved that, if X is
paracompact, then d(X: G)=D(X:G). We shall prove that, if X is a normal
space with finite covering dimension and G is finitely generated, then D(X: G)
=D/(X:G)=d(X:G)=d,(X:G). As a consequence, we have the equality
DX:Z)=D/(X:2)=d(X: Z)=d(X: Z)y=dim X.

Next, let X be a normal space with finite covering dimension and let f be
a closed continuous mapping of X onto a paracompact space Y. We shall
show that, if G is finitely generated and D(f~!(y): G) < k for each point y of
Y, then D(X: G)<Ind Y-+k. Moreover, if X is paracompact, then this relation
holds for any abelian group G. As a consequence, we have Morita’s theorem
[9]. Finally, we shall discuss peripherial properties of the cohomological
dimension.

Throughout this paper we assume that all spaces are normal and mappings
are continuous lransformations.
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§ 2. Cech cohomology groups of normal spaces.

Let (M, N) be a pair of simplicial complexes with weak topology and let
G be an abelian group. Take an element ¢ of H*(M, N: G). Let K(G, n) be
an Eilenberg-MacLane space with base point %k, which is a simplicial complex
with metric topology. For a cocycle z which represents ¢, there is a mapping
f. of (M, N) into (K(G, n), k,) such that f,(M"*UN)=kFk, and f,|o represents
the element z(o) of n,(K(G, n))=G for each n-simplex ¢ of M. The homotopy
class relative to N of a mapping f, is uniquely determined by the element e.
Thus, if we denote the set of homotopy classes relative to N of all mappings
of (M, N) into (K(G, n), ky) by z™M, N: G), then we have a transformation
Xarw i H'(M, N: G)—z"(M, N: G). It is well known that yg,xm is 1:1 and
onto. Moreover, yu,», is natural in the following sense. If f is a mapping of
(M, N) into (M’, N’), then yarm/*=s*ya.xy Where f*: H"(M’', N':G)—
H*M, N: G) and f*:2"M', N : G)—="(M, N:. G) are induced by f. For the
sake of convenience we shall state these facts in the following lemma.

LEMMA 1. Let (M, N) be a pair of simplicial complexes. Then a natural
transformation yany: H"(M, N: G)—a"(M, N: G) is 1:1 and onto.

In case (X, A) is a pair of a paracompact space X and a closed set A,
Goto proved that x4 : H*(X, A: G)—zn"(X, A: () is a natural isomorphism
under a group structure of z™(X, A: G) induced by an H-structure of K(G, n).
For the proof of Lemma 1|, we have only to use the obstruction theory. (Cf.
(4, Chap VI])

By a normal pair we mean a pair of a normal space and its closed set.
For a normal pair (X, A), we shall denote by HX(X, A:G) the Cech cohomo-
logy group based on all countable locally finite open coverings of X. Since
H7(X, A: G) is the direct limit of the subsystem of the direct system which
defines H; (X, A: G), there is a natural homomorphism p: H¥(X, A: G)—
H(X, A: G) is defined. Similarly, a natural homomorphism v: H}(X, A: G)—
H"(X, A: G) is defined. Then the following theorems hold.

THEOREM 1. Let (X, A) be a normal pair with finite covering dimension.
If G is finitely generated, then p is onto.

THEOREM 2. Let (X, A) be a normal pair. If G is countable, then y is
onto.

ProOF oF THEOREM 1. Let dim X <¢q. For an element ¢ of HJ(X, A: G),
take a countable locally finite open covering 11 of X such that order of U=y
and there is an element ¢, of H"(M,, N, : G) which represents ¢, where M,
and N, are the nerves of 11 and I1| 4. Put K= the g-section of K(G, n). There
is a simplicial mapping f, of (M., N,) into (K, k) such that x4, vs@)=1{/.},
where {f.} is the homotopy class relative to N, of f,. Since G is finitely
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generated, we may assume that K is a finite simplicial complex. Let 28 be
the covering of K consisting of open stars. If (M,, N,) is the pair of the
nerves of f;138 and f;'¥W|N,, then there are projections =% : (M,, N.)—(M,, N,)
and x:(M,, N,)— (K, k,) such that ==z} ~(homotopic to) f, relative to N,.
Denote by e, the element of H"(M,, N,: G) such that yu,,~,(e.)={7}. By
we have rmi*e,=e,. Since M, is finite, there is an element & of
H%¥X, A: G) whose representative is e, It is obvious that p(@) =e. This
proves that g is onto.

In case G is countable, there is an Eilenberg-MacLane space K(G, n) which
is a countable simplicial complex. By the same argument as in we
can prove

§ 3. Cohomological dimension of normal spaces.

Throughout this section X is a normal space with finite covering dimen-
sion. We defined the cohomological dimension D (X:G) and D(X:G) in §1.
By D.(X:G) we mean the cohmological dimension defined by using the group
H#. Similarly we define d (X : G).

THEOREM 3. If G 1s finitely generated, then Dy (X: G)=D(X: G)=D(X: G)
=d(X:G)=d(X:G)=d(X:G).

To prove we need the following lemmas.

LEMMA 2. Let K be a countable simplicial complex with wmetric topology.
Then,

(i) K is an ANR (perfectly normal),

(i) K is an ANR (normal) if K contains no infinite full subcomplexes,
where a subcomplex N of K is called full if each finite subcollection of vertexes
of N spans a simplex of K,

(iii) K 1s an AR (normal) if K is contractible and K contains no infinite
full subcomplexes.

The proof is found in Hanner [3]

LEMMA 3. Let B be a closed subset of a normal space Y. If W is a count-
able locally finite open covering of B, then there is a countable locally finite
open covering B of Y such that B|B is a refinement of .

Proor. Let N be the nerve of I with metric topology. By Dowker [1,
Lemma 3.17 we may assume that each open star of N has finite dimension.
Since a cone C(N) on N is an AR (normal) by Lemma 2, a canonical mapping
¢: B— N has an extension ¢: Y —C(N). Let 28 be a countable locally finite
open covering of C(N) which refines the open covering of open stars of C(NV)
It is obvious that V= ¢ '3 satisfies the lemma.

Let dim X < ¢q. Consider the following four conditions:
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D,: D(X:G)=n.

D,: D(X:G)=Zn.

D,: DX:G)£n

D,: For each m=n and each closed set A of X every mapping of A into

K (=the q-section of K(G, m)) is extendable over X.

LEMMA 4. (i) If G is finitely generated, then the conditions D,, D,, D, and
D, are equivalent.

(i) If G is countable, then the conditions D,, D, and D, are equivalent.

ProorF. We shall prove only the first case. The implications D, D,,
D,= D, and D;= D, are showed by the same argument in the proof of [7,
Theorem 17 by making use of Lemmas 2 and 3 in place of [7, Lemma 1] and
[7, Lemma 27]. To prove the implication D,=> D, consider the following dia-
gram :

i*

H™X:G) —s H™A: G)

bW |

H™X:G)— H™A: G)

Here, ¥ and * are the homomorphisms induced by the inclusion ¢: A C X, and
y is the homomorphism in We already proved that D, implies
D,. Thus i¥ is onto. Since vy is onto, i* is onto. Thus D, implies D,. This
completes the proof.

Note that, if X is perfectly normal, then (ii) holds without
dimensijonal restriction for X. As a consequence of we have the
following corollaries.

COROLLARY 1. If G is countable, then D(X:G)=D(X: G).

COROLLARY 2. Let X be a normal space with finite covering dimension or
a perfectly normal space, and let G be a countable abelian group.

@ If {A4;:1=12,---} is a closed covering of X, then D(X:G)=
Max {D(A;: G); i=1,2, ---}.

(i) If X has weak topology with respect to {A)A< 1"}, then D(X: G)=
Max {D(A;: G); A< 1}.

(i) If A 1is a closed subset of X such that the complement X—A and X
are both normal or perfectly normal, then D(X: G)EMax {D(X—A: G), D(A: G)}.
Moreover, if A is Gs, then the equality holds.

Proor or THEOREM 3. Note that, by Lemma 3, the sequence of the coho-
mology groups H¥ and H¥ for a normal pair are well defined and exact. This
shows that D (X:G)<d(X:G) and D(X:G)=d,(X:G). Let us prove the
relation D(X: G)<d(X:G). Let A be a closed set of X. By { denote the
set of all locally finite open coverings of A such that, for each B of £, there
is a locally finite open covering Il of X whose restriction to A refines B. Let
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5(A: G) be the Cech cohomology groups based on £. Consider the following
commutative diagram :
H™A:G)
7 ] Y1 0
e — H"X:G) — HGgA: G) — H™ (X, A: G) — -
ih I v,

HMA:G)

1*

Here, 1* and 1} are homomorphisms induced by the inclusioni: AC X, and v,
and y, are homomorphisms defined by a similar way to the homomorphism v
of Suppose that d(X: G)<n. Since the sequence is exact and
H™YX, A: G)=0 for m=mn, i} is onto. Since y=y, is onto by
v, is also onto. Thus *=yp;} is onto for m =n. This shows that D(X: G)
<d(X:G). Next, we have the relation d(X: G) = d(X: G)Zd(X: G) by Theo-
rem 1. From these facts and it follows that D (X:G) =D (X:G)
=DX:G)=dX:G)£d(X: G)<d(X:G). Thus, to prove it is
sufficient to show that D, (X: G)=d(X:G). Let X be the Cech compactifica-
tion of X. Let us prove that Dy (X:G)=D(BX:G) and d(X: G)=d(BX: G).
Since we know that D(BX: G)=d(BX: G) by compactness of BX, the above
equalities mean [Theorem 3. By Morita [8], we have a natural isomorphism
HYX,A: G)=H"(BX, BA:G) for a closed set A of X. This shows that
D(X:G)=D(BX:G) and d(X: G)=d(BX:G). Suppose that D(X: G)=n and
let B be a closed set of SX. For an element ¢ of H™(B: G), where m = n,
there is an open set V of 55X containing B such that *H ™(V:G) e, where
V is the closure of V in BX. Put A=V~ X. Then i¥: H{(X: G —HMA:G)
is onto. Thus, if j: BC X, then j*: H"(fX: G)—H™(B: G) is onto for m =n.
This shows that D(8X:G)=n. The relation d(fX:(G)<d(X:G) is proved
similarly. This completes the proof.

Let I' be any subset of the set of all locally finite open coverings of X
which forms a directed set and contains the set of finite open coverings.
From the proof of we know that all the dimension functions
Dp(X:G) and d(X:G) defined by groups based on [” are equal to D(X: G) if
G is finitely generated. If we put G=Z, then we know that all the dimension
functions D (X: Z) and dp(X: Z) are equal to dim X.

§4. Inductive properties of cohomological dimension.

Throughout this section we shall consider spaces with finite covering
dimension.
LEMMA 5. Let X be a normal space such that dim X <gq, and let G be a



Cohomological dimension for non-compact spaces Il 495

finitely generated abelian group. Suppose that there are closed sets A and C,
mappings f: X— K (=the g-section of K(G,m)) and g:C\JA—K such that
flA=g|A. If H¥(C,CnA:G) =0, then the mapping g is extendable over X.
Proor. Let 28, be the covering of K consisting of open stars. Take a
finite open covering % of X such that order of B<q, V is a refinement of
S8, and B|C\U A is a refinement of g%, Let ¢ be a canonical mapping
of X into the nerve M of ®B such that ¢(C)C N, and ¢(A)C N,, where N, and
N, are the nerves of B|C and B|A. There are simplicial mappings g,: N,—K
and f,: M— K such that (i) g and g,¢|C are contiguous, (ii) f and f,¢ are
contiguous and (iil) g;|N,\N,=/f;|N;\N,. The obstruction of the homotopy
relative to N, "\ N, in connection with the pair (f,|N,, g,) belongs to H™(N,, N,
NN;:G). (See Hu [4, Chap. VI]). Since H}C,Cn\A: G)=0, we can find a
finite refinement B’ of B satisfying the following condition: (iv) if M/, N{ and
N} are the nerves of B/, 8/|C and V'|A and n: M’— M is a projection, then
g |N{~ f|N{ relative to N{~\ Nj By homotopy extension theorem, g,z |N{
has an extension g,: M’— K such that g,| N{=f,x|Nj Let ¢’ be a canonical

mapping of X into M’. Since g,¢'|C\UA and g are contiguous by (i), g is
extendable over X by [7, Lemma 1]. This completes the proof.

THEOREM 4. Let X be a normal space and let G be a finitely generated
abelian group. If f is a closed mapping of X onto a paracompact space Y

such that D(f~Y(3): GY<Z k for each point y of Y, then the relation D(X:G)
<Ind Y-+k Here IndY is the large inductive dimension of Y.

ProoOr. We shall give the proof by an analogous argument as in Hurewicz-
Wallman [5, Theorem VI 7]. Suppose that the theorem is true in case Ind YV
<n—1. Let Ind Y=n. Take a closed set A of X and a mapping g of A into
K (=the g-section of K(G, m)), where dim X < ¢ and nt+k<m. We shall show
that g is extendable over X. Since D(f%y): G)<k<m for each point y of
Y, by Lemma 4 and Lemma 2, we can find an open set W, of X containing
S7'(y) such that g is extendable over AU W,. We denote its extension by g,.
Since f is closed and Y is a paracompact space with large inductive dimension
n, there is a locally finite open covering B={U,: a < 2} of Y such that (i)
{f(U: a <R} is a refinement of {W,:ye Y} the (i) Ind(J,—U)<n—1 for
a< {2, where 2 is some ordinal. For each B< £, set Fﬁ:ﬂ/\gﬂf-l(ﬁﬂ,) and

Hg=Fg Uf—l(ljp). Suppose that there is an ordinal y < §2 such that g has an
extension g over Hg\UA for each <y and gz =gs|Hs\JA for B <B.
Define hy: F;\U A— K by setting hy|Hz=gs for 8<y. Then h; is continuous.
Set B= f—l(ﬁ,)—ﬁ%f—lwﬁ), C=B8B “,}3, f(Us—Ug) and D=Cn~A. To prove
the theorem it is sufficient to prove that h, is extendable over H,\U A. Take
an open set I¥, containing U,, and set h=h,|C\U(B~ A) and k,=g,|B. By
induction hypothesis and (ii) we have D(C:(G)<m—1. From Theorem 3 it
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follows that d.(C:G)<m—1. Thus we have H7(C,D: G)=0. Put X=B5,
C=C, A=BNA, g=h and f=kFk, in Lemma 5 and apply Then we
know that A has an extension h’: B— K. Define g;: H/\J A— K by setting
&gr|Fy\VA=h; and g|B=n. Obviously g, is continuous. This completes the
proof.

If we put G=Z7 in then we have the following corollary.

COROLLARY 3 (Morita [8]). If fis a closed mapping of a normal space X
onto a paracompact space Y such that dim f~Y(y)<k for each point y of Y,
then dim Y <Ind Y+-%.

COROLLARY 4. If X is paracompact, then Theorem 4 is true for any abelian
group G.

PrROOF. Let us the notations in the proof of Theorem 4. Consider the
closed subsets B, C and D of X in the proof of Theorem 4. Since D(C: G)
< m—1 by induction hypothesis, we know D(C x [: G)<m by [7, Corollary 5].
Define a mapping F:(CxOUCX DHID X I)—K by setting F(x, 0)= h(x),
F(x, )=Fk(x) for x €C and F(x, t)=h(x) for (x,t)e D xI. Since D(CXI:G)
<m, F is extendable over C x I. Denote its extension by F again. Next,
define F/: {(C\VANB) X I} U(BX1)—Kbysetting F/|CXI=F, F'|BX1=k,
and F'(x, t)= ky(x) for (x, ) e (A B)x I. Since X is paracompact, F’ has an
extension F” over B % I by homotopy extension theorem. Define g,: H;\UA—K
by setting g, |Fy=h, and g,|B=F"”|B x 0. It is obvious that g, is a continuous
extension of h, over H,\U A. This completes the proof.

THEOREM 5. Let X be a normal space and let G be finitely genervated.
Suppose that, for each closed set A and each open set U containing A there is
an open set V suchthat ACVC VcU and D(V—V:G)<n—1. Then D(X:G)
<n. If X is paracompact, then the theorem is true for any abelian group G.

PrOOF. Let dim X <¢q. Take a closed set 4 and a mapping f of A into
K (=the g¢-section of K(G, n)). Let g be an extension of f over some open
set [/. There is an open set V such that AC VC VU and D(V—V: G)
<n—1. By Theorem we know d(V—V:G)=<n—1. Thus, H(V—-V:G)=0.
An analogous argument as in the proof of Lemma 5 shows that g V is ex-
tendable over X. Thus we know D(X: G)=n.

Define the dimension function Dz(X: G) as the least integer n such that,
for each closed set A and each open set U containing A, there is an open set
V which satisfies ACVC VcU and D(V—V:G)<n—1. Theorem 5 shows
that D(X:G) < Dy(X:G)=D(X:G)+1 for a normal space X and a finitely
generated abelian group G. As a consequence of this relation, we have Veden-
issoff’s relation dim X <Ind X. However, the equality D(X: &)= Dg(X: G) does
not generally hold. For, let M, be a Cantor manifold constructed in [6, p. 44].
Then Dz(M,: G)=2 for any abelian group G. On the other hand D(M,: G)=1
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for a finite group G. To determine a compact space X such that the equality
D(X:G)=DyX:G) for any abelian group G is an interesting problem.
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