Note on cohomological dimension for non-compact spaces II

By Yukihiro KODAMA

(Received Feb. 13, 1967)

§ 1. Introduction.

Let (X, A) be a pair of a topological space X and a closed set A. For an abelian group G we shall denote by $H_f^*(X, A:G)$ and $H^*(X, A:G)$ the Čech cohomology groups based on all finite open coverings and all locally finite open coverings of X, respectively. As Dowker [1, Theorem 9.6] shows, even if X is a real line and G is the additive group of integers Z, the groups $H_f^1(X:Z)$ and $H^1(X:Z)$ are quite different. Define the following dimension functions:

D(X:G) = the least integer n such that, for each $m \ge n$ and each closed set A of X, the homomorphism $i^*: H^m(X:G) \to H^m(A:G)$ induced by the inclusion mapping $i: A \subset X$ is onto,

d(X:G) = the largest integer n such that $H^n(X, A:G) \neq 0$ for some closed set A of X.

Similarly, the dimension functions $D_f(X:G)$ and $d_f(X:G)$ are defined by making use of the group H_f^* in place of H^* . Skljarenko [10] proved that, if X is paracompact, then d(X:G) = D(X:G). We shall prove that, if X is a normal space with finite covering dimension and G is finitely generated, then $D(X:G) = D_f(X:G) = d(X:G) = d_f(X:G)$. As a consequence, we have the equality $D(X:Z) = D_f(X:Z) = d(X:Z) = d(X:Z) = \dim X$.

Next, let X be a normal space with finite covering dimension and let f be a closed continuous mapping of X onto a paracompact space Y. We shall show that, if G is finitely generated and $D(f^{-1}(y):G) \leq k$ for each point y of Y, then $D(X:G) \leq \text{Ind } Y+k$. Moreover, if X is paracompact, then this relation holds for any abelian group G. As a consequence, we have Morita's theorem [9]. Finally, we shall discuss peripherial properties of the cohomological dimension.

Throughout this paper we assume that all spaces are normal and mappings are continuous transformations.

§ 2. Čech cohomology groups of normal spaces.

Let (M,N) be a pair of simplicial complexes with weak topology and let G be an abelian group. Take an element e of $H^n(M,N:G)$. Let K(G,n) be an Eilenberg-MacLane space with base point k_0 which is a simplicial complex with metric topology. For a cocycle z which represents e, there is a mapping f_z of (M,N) into $(K(G,n),k_0)$ such that $f_z(M^{n-1}\cup N)=k_0$ and $f_z|\sigma$ represents the element $z(\sigma)$ of $\pi_n(K(G,n))=G$ for each n-simplex σ of M. The homotopy class relative to N of a mapping f_z is uniquely determined by the element e. Thus, if we denote the set of homotopy classes relative to N of all mappings of (M,N) into $(K(G,n),k_0)$ by $\pi^n(M,N:G)$, then we have a transformation $\chi_{(M,N)}: H^n(M,N:G) \to \pi^n(M,N:G)$. It is well known that $\chi_{(M,N)}$ is 1:1 and onto. Moreover, $\chi_{(M,N)}$ is natural in the following sense. If f is a mapping of (M,N) into (M',N'), then $\chi_{(M,N)}f^*=f^*\chi_{(M',N')}$, where $f^*:H^n(M',N':G) \to H^n(M,N:G)$ and $f^*:\pi^n(M',N':G) \to \pi^n(M,N:G)$ are induced by f. For the sake of convenience we shall state these facts in the following lemma.

LEMMA 1. Let (M, N) be a pair of simplicial complexes. Then a natural transformation $\chi_{(M,N)}: H^n(M, N:G) \to \pi^n(M, N:G)$ is 1:1 and onto.

In case (X, A) is a pair of a paracompact space X and a closed set A, Goto [2] proved that $\chi_{(X,A)}: H^n(X,A:G) \to \pi^n(X,A:G)$ is a natural isomorphism under a group structure of $\pi^n(X,A:G)$ induced by an H-structure of K(G,n). For the proof of Lemma 1, we have only to use the obstruction theory. (Cf. [4, Chap VI].)

By a *normal pair* we mean a pair of a normal space and its closed set. For a normal pair (X, A), we shall denote by $H_c^*(X, A:G)$ the Čech cohomology group based on all countable locally finite open coverings of X. Since $H_f^n(X, A:G)$ is the direct limit of the subsystem of the direct system which defines $H_c^n(X, A:G)$, there is a natural homomorphism $\mu: H_c^n(X, A:G) \to H_c^n(X, A:G)$ is defined. Similarly, a natural homomorphism $\nu: H_c^n(X, A:G) \to H^n(X, A:G)$ is defined. Then the following theorems hold.

THEOREM 1. Let (X, A) be a normal pair with finite covering dimension. If G is finitely generated, then μ is onto.

THEOREM 2. Let (X, A) be a normal pair. If G is countable, then ν is onto.

PROOF OF THEOREM 1. Let dim X < q. For an element e of $H_c^n(X, A:G)$, take a countable locally finite open covering $\mathfrak U$ of X such that order of $\mathfrak U \leq q$ and there is an element $e_{\mathfrak u}$ of $H^n(M_{\mathfrak u}, N_{\mathfrak u}:G)$ which represents e, where $M_{\mathfrak u}$ and $N_{\mathfrak u}$ are the nerves of $\mathfrak U$ and $\mathfrak U|A$. Put K= the q-section of K(G,n). There is a simplicial mapping $f_{\mathfrak u}$ of $(M_{\mathfrak u}, N_{\mathfrak u})$ into (K, k_0) such that $\chi_{(M_{\mathfrak u}, N_{\mathfrak u})}(e_{\mathfrak u}) = \{f_{\mathfrak u}\}$, where $\{f_{\mathfrak u}\}$ is the homotopy class relative to $N_{\mathfrak u}$ of $f_{\mathfrak u}$. Since G is finitely

492 Y. Kodama

generated, we may assume that K is a finite simplicial complex. Let $\mathfrak B$ be the covering of K consisting of open stars. If $(M_{\mathfrak w},N_{\mathfrak w})$ is the pair of the nerves of $f_{\mathfrak u}^{-1}\mathfrak B$ and $f_{\mathfrak u}^{-1}\mathfrak B|N_{\mathfrak u}$, then there are projections $\pi_{\mathfrak w}^{\mathfrak u}:(M_{\mathfrak u},N_{\mathfrak u})\to (M_{\mathfrak w},N_{\mathfrak w})$ and $\pi:(M_{\mathfrak w},N_{\mathfrak w})\to (K,k_0)$ such that $\pi\pi_{\mathfrak w}^{\mathfrak u}\sim (\text{homotopic to})$ $f_{\mathfrak u}$ relative to $N_{\mathfrak u}$. Denote by $e_{\mathfrak w}$ the element of $H^n(M_{\mathfrak w},N_{\mathfrak w}:G)$ such that $\chi_{(M_{\mathfrak w},N_{\mathfrak w})}(e_{\mathfrak w})=\{\pi\}$. By Lemma 1 we have $\pi_{\mathfrak w}^{\mathfrak u}*e_{\mathfrak w}=e_{\mathfrak u}$. Since $M_{\mathfrak w}$ is finite, there is an element $\bar e$ of $H^n_f(X,A:G)$ whose representative is $e_{\mathfrak w}$. It is obvious that $\mu(\bar e)=e$. This proves that μ is onto.

In case G is countable, there is an Eilenberg-MacLane space K(G, n) which is a countable simplicial complex. By the same argument as in Theorem 1 we can prove Theorem 2.

§ 3. Cohomological dimension of normal spaces.

Throughout this section X is a normal space with finite covering dimension. We defined the cohomological dimension $D_f(X:G)$ and D(X:G) in § 1. By $D_c(X:G)$ we mean the cohmological dimension defined by using the group H_c^* . Similarly we define $d_c(X:G)$.

THEOREM 3. If G is finitely generated, then $D_f(X:G) = D_c(X:G) = D(X:G)$ = $d_f(X:G) = d_c(X:G) = d(X:G)$.

To prove Theorem 3 we need the following lemmas.

Lemma 2. Let K be a countable simplicial complex with metric topology. Then,

- (i) K is an ANR (perfectly normal),
- (ii) K is an ANR (normal) if K contains no infinite full subcomplexes, where a subcomplex N of K is called full if each finite subcollection of vertexes of N spans a simplex of K,
- (iii) K is an AR (normal) if K is contractible and K contains no infinite full subcomplexes.

The proof is found in Hanner [3].

LEMMA 3. Let B be a closed subset of a normal space Y. If $\mathfrak U$ is a countable locally finite open covering of B, then there is a countable locally finite open covering $\mathfrak V$ of Y such that $\mathfrak V | B$ is a refinement of $\mathfrak U$.

PROOF. Let N be the nerve of $\mathbb 1$ with metric topology. By Dowker [1, Lemma 3.1] we may assume that each open star of N has finite dimension. Since a cone C(N) on N is an AR (normal) by Lemma 2, a canonical mapping $\phi: B \to N$ has an extension $\phi: Y \to C(N)$. Let $\mathfrak B$ be a countable locally finite open covering of C(N) which refines the open covering of open stars of C(N) It is obvious that $\mathfrak B = \phi^{-1}\mathfrak B$ satisfies the lemma.

Let dim X < q. Consider the following four conditions:

 $\boldsymbol{D}_1: D_f(X:G) \leq n.$

 $D_2: D_c(X:G) \leq n.$ $D_3: D(X:G) \leq n$

 D_4 : For each $m \ge n$ and each closed set A of X every mapping of A into K (= the q-section of K(G, m)) is extendable over X.

LEMMA 4. (i) If G is finitely generated, then the conditions D_1 , D_2 , D_3 and D_4 are equivalent.

(ii) If G is countable, then the conditions D_2 , D_3 and D_4 are equivalent.

PROOF. We shall prove only the first case. The implications $D_1 \Leftrightarrow D_4$, $D_2 \Leftrightarrow D_4$ and $D_3 \Rightarrow D_4$ are showed by the same argument in the proof of [7, Theorem 1] by making use of Lemmas 2 and 3 in place of [7, Lemma 1] and [7, Lemma 2]. To prove the implication $D_4 \Rightarrow D_3$ consider the following diagram:

$$H_{c}^{m}(X:G) \xrightarrow{i_{c}^{*}} H_{c}^{m}(A:G)$$

$$\downarrow \nu \qquad \qquad \downarrow \nu$$

$$H^{m}(X:G) \longrightarrow H^{m}(A:G)$$

Here, i_c^* and i^* are the homomorphisms induced by the inclusion $i: A \subset X$, and ν is the homomorphism in Theorem 2. We already proved that D_4 implies D_2 . Thus i_c^* is onto. Since ν is onto, i^* is onto. Thus D_4 implies D_3 . This completes the proof.

Note that, if X is perfectly normal, then Lemma 4 (ii) holds without dimensional restriction for X. As a consequence of Lemma 4, we have the following corollaries.

COROLLARY 1. If G is countable, then $D_c(X:G) = D(X:G)$.

COROLLARY 2. Let X be a normal space with finite covering dimension or a perfectly normal space, and let G be a countable abelian group.

- (i) If $\{A_i: i=1, 2, \cdots\}$ is a closed covering of X, then $D(X:G) = \max\{D(A_i:G); i=1, 2, \cdots\}$.
- (ii) If X has weak topology with respect to $\{A_{\lambda} | \lambda \in \Gamma\}$, then $D(X:G) = \text{Max}\{D(A_{\lambda}:G); \lambda \in \Gamma\}$.
- (iii) If A is a closed subset of X such that the complement X-A and X are both normal or perfectly normal, then $D(X:G) \leq \max \{D(X-A:G), D(A:G)\}$. Moreover, if A is G_{δ} , then the equality holds.

PROOF OF THEOREM 3. Note that, by Lemma 3, the sequence of the cohomology groups H_f^* and H_c^* for a normal pair are well defined and exact. This shows that $D_f(X:G) \leq d_f(X:G)$ and $D_c(X:G) \leq d_c(X:G)$. Let us prove the relation $D(X:G) \leq d(X:G)$. Let A be a closed set of X. By \mathcal{Q} denote the set of all locally finite open coverings of A such that, for each \mathfrak{V} of \mathcal{Q} , there is a locally finite open covering \mathfrak{V} of X whose restriction to A refines \mathfrak{V} . Let

494 Y. Kodama

 $H_{\Omega}^*(A:G)$ be the Čech cohomology groups based on Ω . Consider the following commutative diagram:

e diagram:
$$H^m(A:G)$$

$$i^* \qquad \qquad \uparrow \nu_1 \qquad \delta$$

$$\cdots \longrightarrow H^m(X:G) \xrightarrow{i^*_{\mathcal{Q}}} H^m_{\mathcal{Q}}(A:G) \longrightarrow H^{m+1}(X,A:G) \longrightarrow \cdots$$

$$i^*_{\mathcal{Q}} \qquad \uparrow \nu_2$$

$$H^m_c(A:G)$$

Here, i^* and i^*_{Ω} are homomorphisms induced by the inclusion $i: A \subset X$, and ν_1 and ν_2 are homomorphisms defined by a similar way to the homomorphism ν_2 of Theorem 2. Suppose that $d(X:G) \leq n$. Since the sequence is exact and $H^{m+1}(X, A:G)=0$ for $m \ge n$, i_{Ω}^* is onto. Since $\nu = \nu_1 \nu_2$ is onto by Theorem 2, ν_1 is also onto. Thus $i^* = \nu_1 i_Q^*$ is onto for $m \ge n$. This shows that D(X:G) $\leq d(X:G)$. Next, we have the relation $d(X:G) \leq d_c(X:G) \leq d_f(X:G)$ by Theorem 1. From these facts and Lemma 4 it follows that $D_f(X:G) = D_c(X:G)$ $=D(X:G) \le d(X:G) \le d_c(X:G) \le d_f(X:G)$. Thus, to prove Theorem 3, it is sufficient to show that $D_f(X:G) \ge d_f(X:G)$. Let βX be the Čech compactification of X. Let us prove that $D_f(X:G) = D(\beta X:G)$ and $d_f(X:G) = d(\beta X:G)$. Since we know that $D(\beta X:G) = d(\beta X:G)$ by compactness of βX , the above equalities mean Theorem 3. By Morita [8], we have a natural isomorphism $H^n(X, A: G) \cong H^n(\beta X, \beta A: G)$ for a closed set A of X. This shows that $D_f(X:G) \leq D(\beta X:G)$ and $d_f(X:G) \leq d(\beta X:G)$. Suppose that $D_f(X:G) = n$ and let B be a closed set of βX . For an element e of $H^m(B:G)$, where $m \ge n$, there is an open set V of βX containing B such that $i^*H^m(\bar{V}:G) \ni e$, where \overline{V} is the closure of V in βX . Put $A = \overline{V} \cap X$. Then $i_f^* : H_f^m(X:G) \to H_f^m(A:G)$ is onto. Thus, if $j: B \subset X$, then $j^*: H^m(\beta X: G) \to H^m(B: G)$ is onto for $m \ge n$. This shows that $D(\beta X:G) \leq n$. The relation $d(\beta X:G) \leq d_f(X:G)$ is proved similarly. This completes the proof.

Let Γ be any subset of the set of all locally finite open coverings of X which forms a directed set and contains the set of finite open coverings. From the proof of Theorem 3 we know that all the dimension functions $D_{\Gamma}(X:G)$ and $d_{\Gamma}(X:G)$ defined by groups based on Γ are equal to D(X:G) if G is finitely generated. If we put G=Z, then we know that all the dimension functions $D_{\Gamma}(X:Z)$ and $d_{\Gamma}(X:Z)$ are equal to dim X.

§ 4. Inductive properties of cohomological dimension.

Throughout this section we shall consider spaces with finite covering dimension.

LEMMA 5. Let X be a normal space such that dim X < q, and let G be a

finitely generated abelian group. Suppose that there are closed sets A and C, mappings $f: X \to K$ (= the q-section of K(G, m)) and $g: C \cup A \to K$ such that $f \mid A = g \mid A$. If $H_f^m(C, C \cap A: G) = 0$, then the mapping g is extendable over X.

PROOF. Let \mathfrak{W}_0 be the covering of K consisting of open stars. Take a finite open covering \mathfrak{V} of X such that order of $\mathfrak{V} \leq q$, \mathfrak{V} is a refinement of $f^{-1}\mathfrak{W}_0$ and $\mathfrak{V}|C \cup A$ is a refinement of $g^{-1}\mathfrak{W}_0$. Let ϕ be a canonical mapping of X into the nerve M of \mathfrak{V} such that $\phi(C) \subset N_1$ and $\phi(A) \subset N_2$, where N_1 and N_2 are the nerves of $\mathfrak{V}|C$ and $\mathfrak{V}|A$. There are simplicial mappings $g_1:N_1 \to K$ and $f_1:M \to K$ such that (i) g and $g_1\phi|C$ are contiguous, (ii) f and $f_1\phi$ are contiguous and (iii) $g_1|N_1 \cap N_2 = f_1|N_1 \cap N_2$. The obstruction of the homotopy relative to $N_1 \cap N_2$ in connection with the pair $(f_1|N_1,g_1)$ belongs to $H^m(N_1,N_1 \cap N_2:G)$. (See Hu [4, Chap. VI]). Since $H^m_f(C,C \cap A:G)=0$, we can find a finite refinement \mathfrak{V}' of \mathfrak{V} satisfying the following condition: (iv) if M', N'_1 and N'_2 are the nerves of \mathfrak{V}' , $\mathfrak{V}'|C$ and $\mathfrak{V}'|A$ and $\pi:M' \to M$ is a projection, then $g_1\pi|N'_1 \sim f_1\pi|N'_1$ relative to $N'_1 \cap N'_2$. By homotopy extension theorem, $g_1\pi|N'_1$ has an extension $g_2:M' \to K$ such that $g_2|N'_2=f_1\pi|N'_2$. Let ϕ' be a canonical mapping of X into M'. Since $g_2\phi'|C \cup A$ and g are contiguous by (i), g is extendable over X by [7, Lemma 1]. This completes the proof.

THEOREM 4. Let X be a normal space and let G be a finitely generated abelian group. If f is a closed mapping of X onto a paracompact space Y such that $D(f^{-1}(y):G) \leq k$ for each point y of Y, then the relation $D(X:G) \leq \text{Ind } Y+k$. Here Ind Y is the large inductive dimension of Y.

PROOF. We shall give the proof by an analogous argument as in Hurewicz-Wallman [5, Theorem VI 7]. Suppose that the theorem is true in case Ind Y $\leq n-1$. Let Ind Y=n. Take a closed set A of X and a mapping g of A into K (= the q-section of K(G, m)), where dim X < q and $n+k \le m$. We shall show that g is extendable over X. Since $D(f^{-1}(y):G) \le k \le m$ for each point y of Y, by Lemma 4 and Lemma 2, we can find an open set W_y of X containing $f^{-1}(y)$ such that g is extendable over $A \cup W_y$. We denote its extension by g_y . Since f is closed and Y is a paracompact space with large inductive dimension n, there is a locally finite open covering $\mathfrak{V} = \{U_{\alpha} : \alpha < \Omega\}$ of Y such that (i) $\{f^{-1}(\bar{U}_{\alpha}): \alpha < \Omega\}$ is a refinement of $\{W_y: y \in Y\}$ the (ii) $\operatorname{Ind}(\bar{U}_{\alpha} - U) \leq n-1$ for $\alpha < \Omega$, where Ω is some ordinal. For each $\beta < \Omega$, set $F_{\beta} = \bigcup_{\beta' < \beta} f^{-1}(\bar{U}_{\beta'})$ and $H_{\beta} = F_{\beta} \cup f^{-1}(\bar{U}_{\beta})$. Suppose that there is an ordinal $\gamma < \Omega$ such that g has an extension g_{β} over $H_{\beta} \cup A$ for each $\beta < \gamma$ and $g_{\beta'} = g_{\beta} | H_{\beta'} \cup A$ for $\beta' \leq \beta$. Define $h_r: F_r \cup A \to K$ by setting $h_r|H_\beta = g_\beta$ for $\beta < \gamma$. Then h_r is continuous. Set $B = f^{-1}(\overline{U}_r) - \bigcup_{\beta \le \gamma} f^{-1}(U_\beta)$, $C = B \cap \bigcup_{\beta \le \gamma} f^{-1}(\overline{U}_\beta - U_\beta)$ and $D = C \cap A$. To prove the theorem it is sufficient to prove that h_r is extendable over $H_r \cup A$. Take an open set W_y containing \bar{U}_r , and set $h = h_r | C \cup (B \cap A)$ and $k_1 = g_y | B$. By induction hypothesis and (ii) we have $D(C:G) \leq m-1$. From Theorem 3 it

496 Y. Kodama

follows that $d_f(C:G) \leq m-1$. Thus we have $H_f^m(C,D:G) = 0$. Put X = B, C = C, $A = B \cap A$, g = h and $f = k_1$ in Lemma 5 and apply Lemma 5. Then we know that h has an extension $h': B \to K$. Define $g_\tau: H_\tau \cup A \to K$ by setting $g_\tau|F_\tau \cup A = h_\tau$ and $g_\tau|B = h'$. Obviously g_τ is continuous. This completes the proof.

If we put G = Z in Theorem 4, then we have the following corollary.

COROLLARY 3 (Morita [8]). If f is a closed mapping of a normal space X onto a paracompact space Y such that $\dim f^{-1}(y) \leq k$ for each point y of Y, then $\dim Y \leq \operatorname{Ind} Y + k$.

COROLLARY 4. If X is paracompact, then Theorem 4 is true for any abelian group G.

PROOF. Let us the notations in the proof of Theorem 4. Consider the closed subsets B, C and D of X in the proof of Theorem 4. Since $D(C:G) \leq m-1$ by induction hypothesis, we know $D(C \times I:G) \leq m$ by [7, Corollary 5]. Define a mapping $F:(C \times 0) \cup (C \times 1) \cup (D \times I) \to K$ by setting F(x,0) = h(x), F(x,1) = k(x) for $x \in C$ and F(x,t) = h(x) for $(x,t) \in D \times I$. Since $D(C \times I:G) \leq m$, F is extendable over $C \times I$. Denote its extension by F again. Next, define $F': \{(C \cup (A \cap B)) \times I\} \cup (B \times 1) \to K$ by setting $F'|C \times I = F$, $F'|B \times 1 = k_1$ and $F'(x,t) = k_1(x)$ for $(x,t) \in (A \cap B) \times I$. Since X is paracompact, F' has an extension F'' over $B \times I$ by homotopy extension theorem. Define $g_T: H_T \cup A \to K$ by setting $g_T|F_T = h_T$ and $g_T|B = F''|B \times 0$. It is obvious that g_T is a continuous extension of h_T over $H_T \cup A$. This completes the proof.

THEOREM 5. Let X be a normal space and let G be finitely generated. Suppose that, for each closed set A and each open set U containing A there is an open set V such that $A \subset V \subset \overline{V} \subset U$ and $D(\overline{V} - V : G) \leq n-1$. Then $D(X : G) \leq n$. If X is paracompact, then the theorem is true for any abelian group G.

PROOF. Let dim X < q. Take a closed set A and a mapping f of A into K (= the q-section of K(G, n)). Let g be an extension of f over some open set U. There is an open set V such that $A \subset V \subset \bar{V} \subset U$ and $D(\bar{V} - V : G) \leq n-1$. By Theorem we know $d_f(\bar{V} - V : G) \leq n-1$. Thus, $H_f^n(\bar{V} - V : G) = 0$. An analogous argument as in the proof of Lemma 5 shows that $g \mid \bar{V}$ is extendable over X. Thus we know $D(X : G) \leq n$.

Define the dimension function $D_B(X\colon G)$ as the least integer n such that, for each closed set A and each open set U containing A, there is an open set V which satisfies $A \subset V \subset \overline{V} \subset U$ and $D(\overline{V} - V \colon G) \leq n - 1$. Theorem 5 shows that $D(X\colon G) \leq D_B(X\colon G) \leq D(X\colon G) + 1$ for a normal space X and a finitely generated abelian group G. As a consequence of this relation, we have Vedenissoff's relation dim $X \leq \operatorname{Ind} X$. However, the equality $D(X\colon G) = D_B(X\colon G)$ does not generally hold. For, let M_0 be a Cantor manifold constructed in $[G, P, M_0] = 1$. Then $D_B(M_0\colon G) = 2$ for any abelian group G. On the other hand $D(M_0\colon G) = 1$

for a finite group G. To determine a compact space X such that the equality $D(X:G) = D_B(X:G)$ for any abelian group G is an interesting problem.

Department of Mathematics Tokyo University of Education

References

- [1] C.H. Dowker, Mapping theorems for non-compact space, Amer. J. Math., 69 (1947), 202-242.
- [2] T. Goto, Homotopical cohomology groups of paracompact spaces, to appear.
- [3] O. Hanner, Retraction and extension of mapping of metric and non-metric spaces, Ark. Mat., 2 (1952), 315-360.
- [4] S. T. Hu, Homotopy theory, Academic Press, New York, 1959.
- [5] W. Hurewicz and H. Wallman, Dimension theory, Princeton, 1941.
- [6] Y. Kodama, Test spaces for homological dimension, Duke Math. J., 29 (1962), 41-50.
- [7] Y. Kodama, Note on cohomological dimension for non-compact spaces, J. Math. Soc. Japan, 18 (1966), 343-359.
- [8] K. Morita, H. Hopf's extension theorem in normal spaces, Proc. Physico-Math. Soc. Japan, 3rd Ser., 23 (1941), 161-167.
- [9] K. Morita, Closed mappings and dimension, Proc. Japan Acad., 32 (1956), 161-165.
- [10] E. G. Skljarenko, On the definition of cohomological dimension, Soviet Math. Dokl., 6 (1965), 478-479.