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1. Introduction. Suppose the linear space $X$ is a Banach space under the
norm 1 $\Vert,$ $X_{0}$ is a linear subspace of $X$, not necessarily $\Vert\Vert$ -closed, $K$ is a
positive cone in $X_{0}$ , and $\Vert\Vert_{0}$ is a semi-norm on $X_{0}$ . We do not suppose that
$\Vert\Vert_{0}$ is $\Vert\Vert$ -continuous. Let $S=\{x\in K:\Vert x\Vert_{0}\leqq 1\}$ , and $\rho(x, y)=\Vert x-y\Vert$ for $x,$ $y$

in $S$ . We suppose that $(S, \rho)$ is a complete metric space and consider semi-
groups of transformations from $S$ into $S$ . This covers a variety of settings.
If $K=X_{0}$ , and 1 $\Vert_{0}$ is a norm on $X_{0}$ , then $(S, \rho)$ is a Saks space, see [8]. If
$K=X_{0}=X$, and $\Vert\Vert_{0}=\Vert\Vert$ , then $S$ is just the closed unit ball in $X$ . If $K=X_{0}$

$=X$, and $\Vert\Vert_{0}\equiv 0$ , then $S=X$. Some examples are given in Section 3 to show
why we take $S$ in this generality. For instance, no simpler setting seems
sufficient to cover the case of a semi-group of transformations giving the solu-
tions of a quasi-linear partial differential equation.

The theory of semi-groups of linear transformations in a Banach space is
developed quite thoroughly in the treatise [5] of Hille and Phillips. Semi-
groups in topological vector spaces are treated by Yosida in [10] and Komatsu
in [6]. It turns out that many points of the linear theory hold true for semi-
groups of nonlinear transformations, which have been dealt with by Browder
[1], Neuberger [7], Segal [9], and the author [3]. The purpose here is to
continue the development of a non-linear analogue to the Hille and Phillips
theory. We now state enough definitions to enable us to describe the results
of Section 2.

After this paper was submitted, and shortly before publication, the papers
[6], [8], and [10] of Kato, Komura, and Oharu, respectively, came to the
author’s attention. These, together with Neuberger’s paper [9], all consider
problems similar to those considered here. This is especially true of [9] and
[10]. All of these papers, however, restrict themselves to the case $S=X$ .

Let $\Phi$ denote the collection of all transformations from $S$ into $S$ . A semi-
group of transformations in $S$ means a function $G$ from $[0, \infty$) into $\Phi$ such

1) This work was partially supported by NASA grant 19-001-024.



438 J. R. DORROH

that $G(O)=I$, the identity transformation on $S$ , and $G(s)G(t)=G(s+t)$ for
$s,$ $t\geqq 0$ . If $G$ is such a semi-group, and $x$ is in $S$ , then $G_{x}$ denotes the func-
tion $G(\cdot)x$ from $[0, \infty$) into $S$. A semi-group $G$ of transformations in $S$ is said
to be of class $(C, S)$ if

$\lim_{t\rightarrow 0}\Vert G(t)x-x\Vert=0$ (1)

for each $x$ in $S$, and
$\Vert G(t)y-G(t)x\Vert\leqq\Vert y-x\Vert$ (2)

for $t\geqq 0$ and $x,$ $y$ in $S$ . Observe that (1) and (2) imply that for each $x$ in $S$,
the function $G_{x}$ is $\Vert$ l-continuous on $[0, \infty$). This condition is called strong
continuity in the linear case. All told, the class $(C, S)$ is a nonlinear analogue
to the class of strongly continuous semi-groups of (linear) contraction operators.

A semi-group $G$ of class $(C, S)$ is said to be of class $(C, S)^{\prime}$ if for each $\chi$

in some dense subset of $S$ , the function $G_{x}$ is a continuously differentiable
function from $[0, \infty$) into (X, $\Vert\Vert$ ). In the linear analogue, $(C, S)^{\prime}=(C, S)$ , but
an example is given in Section 3 to show that does not follow here. If $G$ is a
semi-group of class $(C, S)^{\prime}$ then the infinitesimal generator of $G$ is the trans-
formation $A$ whose domain $D(A)$ is the set of all $x$ in $S$ such that $G_{x}$ is a
continuously differentiable function from $[0, \infty$) into (X, $\Vert\Vert$ ), and whose value
at such an $x$ is given by $Ax=G_{x}^{\prime}(0)$ . Thus

$A_{x}=\lim_{h\rightarrow 0}A_{h}x$

for $x$ in $D(A)$ , where
$A_{h}=(1/h)[G(h)-I]$

for $h>0$ .
We prove that two distinct semi-groups of class $(C, S)^{\prime}$ cannot have the

same infinitesimal generator. If $A$ is the infinitesimal generator of a semi-
group of class $(C, S)^{\prime}$ , and $\lambda>0$ , then

$\Vert(\lambda I-A)y-(\lambda I-A)x\Vert\geqq\lambda\Vert y-x\Vert$ (3)

for all $x,$ $y$ in $D(A)$ . The condition (3) is used to give a characterization for
the transformations which are the infinitesimal generators of semi-groups of
class $(C, S)^{\prime}$ .

We define two other class of semi-groups, $(UC, S)$ and $(UC, S)^{\prime}$ , which are
subclasses of $(C, S)$ and $(C, S)^{\prime}$ , respectively; they are analogues of the class
of uniformly continuous semi-groups of (linear) contraction operators. The
infinitesimal generators of semi-groups of class $(UC, S)^{\prime}$ are characterized. It
is then shown that if $G$ is a semi-group of class $(C, S)^{\prime}$ and $A_{h}=(1/h)[G(h)-I]$

for $h>0$, then $A_{h}$ is the infinitesimal generator of a semi-group $G^{h}$ of class
$(UC, S)^{\prime}$ , and that for each $x$ in $S$,
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$G(t)x=\lim_{h\rightarrow 0}G^{h}(t)x_{*}$

where the convergence is uniform for $t$ in bounded intervals. Also, the semi-
groups $G^{h}$ are constructable in an elementary way from their infinitesimal
generators.

Section 3 contains examples and remarks. Section 4 deals with questions
concerning the “ resolvent ” of the infinitesimal generator. One of the results
we get is an exponential formula for the semi-group as was obtained by
Oharu in [10] in the case $S=X$. Oharu replaces the condition that $G_{x}$ be
continuously differentiable for all $\chi$ in some dense subset by the condition that
$G_{x}$ have a continuous right derivative for all $x$ in some dense subset, but in
general, a continuous vector valued function having a continuous right deriva-
tive is continuously differentiable, see [13, page 239]. The papers [6] and [8],

which we saw just prior to publication of this paper, give interesting sufficient
conditions on a transformation $A$ in order that it be the infinitesimal generator
of a semi-group of class $(C, X)$ ‘. It seems likely that these conditions would
have some sort of extension to the case $S\neq X$.

2. Basic properties of semi-groups of class $(C, S)$ .
2.1. THEOREM. Suppose $G$ is a semi-group of class $(C, S)^{\prime},$ $A$ is the infin-

itesimal generator of $G$ , and $x$ is in $D(A)$ . Then $G(t)x$ is in $D(A)$ for $i\geqq 0$ ,

$G_{x}^{\prime}(t)=AG(t)x$

for $t\geqq 0$ , and
$\Vert G_{x}^{\prime}(t)\Vert\leqq\Vert Ax\Vert$

for $t\geqq 0$ .
PROOF. If $t\geqq 0$ , then

$G_{G(t)x}(s)=G_{x}(s+t)$ ,

for $s\geqq 0$ , so that $G(t)x$ is in $D(A)$ , and

$G_{C(t)x}^{\prime}(s)=G_{x}^{\prime}(s+t)$ ,

$G_{x}^{\prime}(t)=G_{G(t)x}^{\prime}(0)=AG(t)x$ .
Also, for $t\geqq 0$ and $h>0$ ,

$(1/h)[G_{x}(t+h)-G_{x}(t)]=(1/h)[G(t)G(h)x-G(t)x]$ ,

$(1/h)\Vert G_{x}(t+h)-G_{x}(t)||\leqq(1/h)\Vert G(h)x-x\Vert$ ,

$|1G_{x}^{\prime}(t)\Vert\leqq\Vert Ax\Vert$ .
2.2. LEMMA. Suppose $[a, b]$ is a number interval, and $f$ is a continuously

differentiable function from $[a, b]$ into (X, $\Vert\Vert$ ). Define $g$ on $[a, b]$ by $ g(t)=\Vert f(t)\Vert$ .
Then $g$ is nonincreasing on $[a, b]$ if and only if for each $\lambda>0$,
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$\Vert\lambda f(t)-f^{\prime}(t)\Vert\geqq\lambda\Vert f(t)\Vert$ (4)

for $a\leqq t\leqq b$ .
PROOF. Suppose $g$ is nonincreasing on $[a, b],$ $\lambda>0$, and (4) fails to hold

for some $t$ in $[a, b]$ . Then by continuity, it fails to hold on some closed interval
$[c, d]$ with $a\leqq c<d\leqq b$ . Thus,

$\Vert\lambda f(t)-f^{\prime}(t)\Vert<\lambda\Vert f(t)\Vert\leqq\lambda\Vert f(c)\Vert$

for $c\leqq t\leqq d$ ,

$\Vert\frac{d}{dt}e^{-\lambda t}f(t)\Vert<\lambda e^{-\lambda t}\Vert f(c)\Vert$

for $c\leqq t\leqq d$ , and
$\Vert e^{-\lambda d}f(d)-e^{-\lambda c}f(c)\Vert<(e^{-\lambda e}-e^{-\lambda a})\Vert f(c)\Vert$ ,

$e^{-\lambda c}g(c)-e^{-\lambda d}g(d)<e^{-\lambda c}g(c)-e^{-\lambda d}g(c)$ ,

$e^{-\lambda a}g(c)<e^{-\lambda a}g(d)$ ,
a contradiction.

Now suppose that (4) holds, that $a\leqq c<b$ , and $0<h<b-c$ . Then,

$\Vert\lambda f(c+h)-f^{\prime}(c+h)\Vert-\lambda\Vert f(c)\Vert\geqq\lambda[g(c+h)-g(c)]$ ,
and

$\Vert\lambda[f(c+h)-f(c)]-f^{\prime}(c+h)\Vert\geqq\lambda[g(c+h)-g(c)]$

for $\lambda>0$ . Substituting $\lambda=1/h$ , we obtain

$\Vert(1/h)[f(c+h)-f(c)]-f^{\prime}(c+h)\Vert\geqq(1/h)[g(c+h)-g(c)]$ .
Thus, $[D^{+}g](t)\leqq 0$ for $a\leqq t<b$ , where $D^{+}g$ indicates the upper derivative of
$g$ from the right. It follows that $g$ is nonincreasing on $[a, b]$ .

2.3. THEOREM. If $A$ is the infinitesimal generator of a semi-group of class
$(C, S)$ ‘, and $\lambda>0$ , then

$\Vert(\lambda I-A)y-(\lambda I-A)x\Vert\geqq\lambda\Vert y-x\Vert$

for $x$ and $y$ in $D(A)$ .
PROOF. Suppose $A$ is the infinitesimal generator of the semi-group $G$ of

class $(C, S)^{\prime}$ , and that $x$ and $y$ are in $D(A)$ . Let

$f(t)=G(t)y-G(t)x,$ $ g(t)=\Vert f(t)\Vert$

for $t\geqq 0$ . It follows from the inequality (2) of Section 1 and the semi-group
property of $G$ that $g$ is nonincreasing.

$\Vert\lambda f(t)-f^{\prime}(t)\Vert\geqq\lambda\Vert f(t)\Vert$ ,

$\Vert\lambda[G(t)y-G(t)x]-[AG(t)y-AG(t)x]\Vert\geqq\lambda\Vert G(t)y-G(t)x\Vert$

$\Vert(\lambda I-A)G(t)y-(\lambda I-A)G(t)x\Vert\geqq\lambda\Vert G(t)y-G(t)x\Vert$

for $t\geqq 0$ . Setting $t=0$ yields the desired result.
2.4. THEOREM. Two distinct semi-groups of class $(C, S)^{\prime}$ cannot have the
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same infinitesimal generator.
PROOF. Suppose that $G$ and $H$ are semi-groups of class $(C, S)^{\prime}$ , and $tha^{(}$

$A$ is the infinitesimal generator of $G$ and of $H$. If $x$ is in $D(A)$ ,

$f(t)=G(t)x-H(t)x$

for $t\geqq 0$ , and $\lambda>0$ , then
$\lambda f(t)-f^{\gamma}(t)=(\lambda I-A)G(t)x-(\lambda I-A)H(t)x$

for $t\geqq 0$ , so that
$\Vert\lambda f(t)-f^{\prime}(t)\Vert\geqq\lambda\Vert f(t)\Vert$

for $t\geqq 0$ , and
$\Vert G(t)x-H(t)x\Vert\leqq\Vert G(O)x-H(O)x\Vert=0$

for $t\geqq 0$ .
If $y$ is in $S,$ $x$ is in $D(A)$ , and $t\geqq 0$ , then

$\Vert G(t)y-H(t)y\Vert\leqq\Vert G(t)y-G(t)x\Vert+$

$\Vert G(t)x-H(t)x\Vert+\Vert H(t)x-H(t)y\Vert\leqq 2\Vert y-x\Vert$ ,

so that $G=H$.
2.5. THEOREM. Suppose $A$ is a transformation from a dense subset $D(A)$

of $S$ into X. If $A$ satisfies the properties (i) and (ii) given below, then $A$ has
an extension which is the infinitesimal generator of a semi-group of class $(C, S)^{\prime}$ .
$A$ is the infinitesimal generator of a semi-group of class $(C, S)^{\prime}$ if and only if
$A$ is maximal with respect to the properties (i) and (ii).

(i) If $\lambda>0$, then
$\Vert(\lambda I-A)y-(\lambda I-A)x\Vert\geqq\lambda\Vert y-x\Vert$

for $x$ and $y$ in $D(A)$ .
(ii) If $x$ is in $D(A)$ , then there is a function $\alpha$ from $[0, \infty$) into $S$ such

that $\alpha$ is a continuously differentiable function from $[0, \infty$) into (X, $\Vert\Vert$ ), $\alpha(0)=x$,

and $\alpha^{\prime}(t)=A\alpha(t)$ for $t\geqq 0$ .
PROOF. We will prove that if $A$ satisfies (i) and (ii) then $A$ has an exten-

sion which is the infinitesimal generator of a semi-group of class $(C, S)^{\prime}$ . The
rest of the conclusion will then follow readily.

First we show that if $x$ is in $D(A)$ , then there are not two distinct func-
tions $\alpha$ satisfying the conditions of (ii). Indeed, if a and $\beta$ are two such
functions,

$f(t)=\alpha(t)-\beta(t)$

for $t\geqq 0$ , and $\lambda>0$ , then

$\lambda f(t)-f^{\gamma}(t)=(\lambda I-A)\alpha(t)-(\lambda 1-A)\beta(t)$ ,
$\Vert\lambda f(t)-f^{\prime}(t)\Vert\geqq\lambda\Vert f(t)\Vert$

for $t\geqq 0$ , so that $\Vert f(t)\Vert=0$ for $t\geqq 0$ .
For each $x$ in $D(A)$ , let $\alpha_{x}$ denote the unique function having the properties
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given in (ii). For each $t\geqq 0$ , define $H(t)$ on $D(A)$ by $H(t)x=\alpha_{x}(t)$ . If $x$ is in
$D(A),$ $t\geqq 0$ ,

$\varphi(s)=H(t+s)x$

for $s\geqq 0$, and
$\theta(s)=H(s)H(t)x$

for $s\geqq 0$ , then
$\varphi(0)=\theta(0)=H(t)x$ ,

$\varphi^{\prime}(s)=\alpha_{x}^{\prime}(t+s)=A\alpha_{x}(t+s)=A\varphi(s)$

for $s\geqq 0$ , and
$\theta^{\prime}(s)=\alpha_{H(t)x}^{\prime}(s)=A\alpha_{H(t)x}(s)=A\theta(s)$

for $s\geqq 0$ , so that $\varphi(s)=\theta(s)$ for $s\geqq 0$ . Thus, $H$ does have the semi-group
property.

Also, for $x$ and $y$ in $D(A)$ , an application of Lemma 2.2 with

$f(t)=H(t)y-H(t)x$

shows that
$\Vert H(t)y-H(t)x\Vert\leqq\Vert y-x\Vert$

for $t\geqq 0$ . For each $t\geqq 0$, let $G(t)$ denote the unique continuous extension of
$H(t)$ to $S$ . Then $G$ is a semi-group of class $(C, S)^{\prime}$ whose infinitesimal generator
is an extension of $A$ .

2.6. DEFINITION. A semi-group $G$ of class $(C, S)$ is said to be of class
$(UC, S)$ if there is a real function $\eta$ on $[0, \infty$) such that $\eta(0+)=\eta(0)=0$ , and

$\Vert[G(t)y-G(t)x]-[y-x]\Vert\leqq\eta(t)\Vert y-x\Vert$

for $x,$ $y$ in $S$ and $t\geqq 0$ . A semi-group $G$ of class $(UC, S)^{\prime}$ is said to be of
class $(UC, S)^{\prime}$ if it is of class $(C, S)^{\prime}$ , the domain of its infinitesimal generator
$A$ is all of $S$, and $A$ satisfies a Lipschitz condition; $i$ . $e.$ , there is a number
$L>0$ such that

I $ Ay-Ax\Vert\leqq L\Vert y-x\Vert$

for $x$ and $y$ in $S$ .
2.7. THEOREM. Suppose $A$ is a transformation from $S$ into X. Then $A$ is

the infinitesimal generator of a semi-group of class $(UC, S)^{\prime}$ if and only if $A$

satisfies a Lipschitz condition as well as the conditions (i) and (ii) of Theorem 2.5.
PROOF. If $A$ is the infinitesimal generator of a semi-group of class $(UC, S)^{\prime}$ ,

then clearly $A$ satisfies a Lipschitz condition and conditions (i) and (ii). If $A$

satisfies conditions (i) and (ii), then $A$ is the infinitesimal generator of a semi-
group $G$ of class $(C, S)^{\prime}$ . We need only show that the Lipschitz condition on
$A$ implies that $G$ is of class $(UC, S)$ . This is true, because if $x$ and $y$ are in
$S$, and $t\geqq 0$, then

$[G(t)y-G(t)x]-[y-x]=\int_{0^{t}}[AG(s)y-AG(s)x]ds$ ,
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so that
$\Vert[G(t)y-G(t)x]-[y-x]\Vert\leqq tL\Vert y-x||$ ,

where $L$ is a Lipschitz constant for $A$ .
2.8. THEOREM. Suppose $F$ is a transformation from $S$ into $S$,

$\Vert Fy-Fx\Vert\leqq\Vert y-x\Vert$

for $x$ and $y$ in $S$ , le $>0$ , and
$A=k[F-I]$ .

Then $A$ is the infinitesimal generator of a semi-group of class $(UC, S)^{\prime}$ . In
particular, $A_{h}$ is such a generator if $A_{h}=(1/h)[G(h)-I]$ for some $h>0$ and
some semi-group $G$ of class $(C, S)$ .

PROOF. Obviously, $A$ satisfies a Lipschitz condition with Lipschitz constant
not exceeding $2k$ . Also, $A$ satisfies the condition (i) of Theorem 2.5, for if
$\lambda>0$, then

$\text{{\it \‘{A}}} I-- A=(\lambda+k)I-kF$ ,
and for $\chi$ and $y$ in $S$,

$\Vert(\lambda I-A)y-(\lambda I-A)x\Vert$

$\geqq(\lambda+k)\Vert y-x\Vert-k\Vert Fy-Fx\Vert\geqq\lambda\Vert y-x\Vert$ .
We show that $A$ satisfies the condition (ii) of Theorem 2.5. Take $\chi$ in $S$,

and consider the integral equation

$g(t)=x+k\int_{0^{t}}e^{ks}F(e^{-ks}g(s))ds$ .
We show that the method of repeated integrations will apply in this setting.
Suppose $g$ is a $\Vert\Vert$ -continuous function from $[0, \infty$) into $K$ such that $g(O)=x$,

and
$\Vert g(t)\Vert_{0}\leqq e^{kt}$

for $t\geqq 0$ . Then the function $t\rightarrow e^{-kt}g(t)$ is a $\Vert$ l-continuous function from $[0, \infty$)

into $S$ . Define $\gamma$ on $[0, \infty$) by

$\gamma(t)=x+k\int_{0^{t}}e^{ks}F(e^{-ks}g(s))ds$ .

Then $\gamma$ is a $\Vert$ l-continuous function from $[0, \infty$) into the $\Vert\Vert$ -closure of $K$. Also,
the left Riemann sums for the integral are norm convergent, they all lie in
$K$ and thus in $X_{0}$ , and if $R$ is one of these left sums, then

$\Vert x+kR\Vert_{0}\leqq 1+[e^{kt}-1]$ ,
and

$\Vert e^{-kl}[x+kR]\Vert_{0}\leqq 1$ ,

so that $e^{-kt}\gamma(t)$ is in S. That is, $\gamma$ is a $\Vert$ l-continuous function from $[0, \infty$)

into $K,$ $\gamma(0)=x$ , and $\Vert\gamma(t)\Vert_{0}\leqq e^{kt}$ for $t\geqq 0$ . Thus, the method of repeated inte-
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grations applies to yield a $\Vert$ l-continuous function $g$ from $[0, \infty$) into $K$ such
that $e^{-kl}g(t)$ is in $S$ for $t\geqq 0$ , and

$g(t)=x+k\int_{0^{t}}e^{ks}F(e^{-ks}g(s))ds$

for $t\geqq 0$ . If we let $\alpha(t)=e^{-kt}g(t)$ for $t\geqq 0$ , then $\alpha$ is a function from $[0, \infty$)

into $S$ such that $\alpha$ is a continuously differentiable function from $[0, \infty$) into
(X, $\Vert\Vert$ ), $\alpha(0)=x$ , and $\alpha^{\prime}(t)=A\alpha(t)$ for $t\geqq 0$ . By Theorem 2.7, $A$ is the infin-
itesimal generator of a semi-group of class $(UC, S)^{\prime}$ .

2.9. THEOREM. Suppose $G$ is a semi-group of class $(C, S)^{\prime}$ , and for each
$h>0$ , let $A_{h}=(1/h)[G(h)-I]$ , and let $G^{h}$ denote the class $(UC, S)$ ‘ semi-group
with infinitesimal generator $A_{h}$ . Then if $x$ is in $S$ , and $t\geqq 0$ , then

$G(t)x=\lim_{h\rightarrow 0}G^{h}(t)x$ ,

and the convergence is uniform for $t$ in bounded intervals.
PROOF. We denote the infinitesimal generator of $G$ by $A$ and begin by

establishing some inequalities.
If $h>0,$ $\delta>0$ , and $x$ is in $S$, then

$\Vert[G^{h}(\delta)-I]x-\delta A_{h}x\Vert\leqq(2\delta^{2}/h)\Vert A_{h}x\Vert$ . (5)

If $\delta>0$ , and $\chi$ is in $D(A)$ , then

$\Vert[G(\delta)-I]x-\delta Ax\Vert\leqq\delta\sup_{0\leqq t\leqq\delta}\Vert G_{x}^{\prime}(t)-Ax\Vert$ . (6)

If $h>0$ , and $x$ is in $D(A)$ , then

$\Vert A_{h}G(i)x-AG(t)x\Vert\leqq\sup_{\iota\leqq s\leqq\iota+h}\Vert G_{x}^{\prime}(s)-G_{x}^{\prime}(t)\Vert$ (7)

for all $t\geqq 0$ .
To prove (5), observe that

$[G^{h}(\delta)-I]x-\delta A_{h}x=\int_{0^{\delta}}[A_{h}G^{h}(t)x-A_{h}x]dt$ ,

$\Vert[G^{h}(\delta)-I]x-\delta A_{h}x\Vert\leqq(2\delta/h)\sup_{<0\leqq t_{r}\delta}\Vert G^{h}(t)x-x\Vert\leqq(2\delta^{2}/h)\Vert A_{h}x\Vert$ .
To prove (6), observe that

$[G(\delta)-I]x-\delta Ax=\int_{0^{\delta}}[G_{x}^{\prime}(t)-Ax]dt$ .

To prove (7), observe that

$A_{h}G(t)x-AG(t)x=(1/h)\int_{t^{t+h}}[G_{x}^{\prime}(s)-G_{x}^{\prime}(t)]ds$ .

We now prove that if $x$ is in $D(A)$ , and $b>0$ , then $G_{x}^{h}$ converges uniformly
to $G_{x}$ on $[0, b]$ . Suppose $\epsilon>0$ , and choose $r>0$ so that

$\Vert A_{h}x-Ax\Vert<\epsilon/3b$

for $0<h<r$ , and



Some classes of semi-groups 445

$\Vert G_{x}^{\prime}(u)-G_{x}^{\prime}(s)\Vert<\epsilon/3b$

for $s,$ $u$ in $[0, b]$ and $|s-u|<r$ . Suppose $t$ is in $(0, b$], and $n$ is a positive
integer such that $(t/n)<r$ . Let $\delta=t/n$ . Then for $0<h<r$,

$G^{h}(t)x-G(t)x=\sum_{j=1}^{n}[G^{h}(j\delta)G(t-j\delta)x-G^{h}(j\delta-\delta)G(t-j\delta+\delta)x]$

$=\sum_{j=1}^{n}[G^{h}(j\delta-\delta)G^{h}(\delta)G(t-j\delta)x-G^{h}(j\delta-\delta)G(t-j\delta+\delta)x]$ .
Thus,

$\Vert G^{h}(t)x-G(t)x\Vert\leqq\sum_{j=1}^{n}\Vert G^{h}(\delta)G(t-j\delta)x-G(t-j\delta+\delta)x\Vert$ .
But for $1\leqq j\leqq n$ ,

$G^{h}(\delta)G(t-j\delta)x-G(t-j\delta+\delta)x$

$=[G^{h}(\delta)-I]G(t-j\delta)x-[G(\delta)-I]G(t-j\delta)x$

$=[G^{h}(\delta)-I]G(t-j\delta)x-\delta A_{h}G(t-j\delta)x$

$+\delta A_{h}G(t-j\delta)x-\delta AG(t-j\delta)x$

$+\delta AG(t-j\delta)x-[G(\delta)-I]G(t-j\delta)x$ .
Thus, by inequalities (5), (6), and (7),

$\Vert G^{h}(\delta)G(t-j\delta)x-G(t-j\delta+\delta)x\Vert$

$\leqq(2\delta^{2}/h)\Vert A_{h}G(t-j\delta)x\Vert+(\delta\epsilon/3b)+(\delta\epsilon/3b)$

$\leqq(2\delta\epsilon/3b)+(2\delta^{2}/h)[\Vert Ax\Vert+(\epsilon/3b)]$ ,

so that
$\Vert G^{h}(t)x-G(t)x\Vert\leqq(2\epsilon/3)+(2t^{2}/nh)[\Vert Ax\Vert+(\epsilon/3b)]$ .

But this is true for all $n>t/r$, and therefore,

$\Vert G^{h}(t)x-G(t)x\Vert\leqq 2\epsilon/3<\epsilon$ .
Now for $y$ in $S,$ $b>0$, and $\epsilon>0$ , choose $x$ in $D(A)$ so that $\Vert x-y\Vert<\epsilon/4$.

Choose $r>0$ so that
$\Vert G^{h}(t)x-G(t)x\Vert<\epsilon/2$

for $0<h<r$ and $0\leqq t\leqq b$ . Then
$\Vert G^{h}(t)y-G(t)y\Vert<\epsilon$

for $0<h<r$ and $0\leqq t\leqq b$ .

3. Examples of semi-groups.
3.1. EXAMPLE. Let $X$ denote the space of all bounded continuous real

valued functions on $R$ , the set of real numbers, and let $\Vert\Vert$ denote the sup-
remum norm on $X$. Let $X_{0}$ denote the collection of all functions in $X$ which



446 J. R. DORROH

satisfy a Lipschitz condition, and for $x$ in $X_{0}$ , let $\Vert x\Vert_{0}$ denote the smallest
Lipschitz constant for $x$ . Suppose $F$ is a real valued function on $R,$ $L>0$ ,

and $|F(s)-F(u)|\leqq L|s-u|$ for all $s$ and $u$ in $R$ . For each $t>0$ , let

$B_{t}=\{x\in X_{0} : \Vert x\Vert_{0}<1/tL\}$ ,

and let $B_{0}=X$.
We will construct a function $G$ with domain $[0, \infty$) such that for each

$t\geqq 0,$ $G(t)$ is a transformation from $B_{t}$ into $B_{0}$ . Moreover, for $t,$ $u\geqq 0,$ $G(t)B_{t+u}$

$\subset B_{u}$ , and $G(t)G(u)\supset G(t+u)$ . Thus, $G$ will be a semi-group of transformations,
although not of class $(C, S)$ for any $S$ . There are two reasons for including
this example. A little specialization yields the semi-group of Example 2.2,
which is of class $(C, S)^{\prime}$ for a certain set $S$ . Also, this semi-group is an
interesting one, and it points out the need for a more general theory. The
most interesting property of this semi-group is as follows. If $u>0,$ $x$ is in
$B_{u},$ $x,$ $F$ continuously differentiable, and $z$ is defined on $R\times[0, u$) by

$z(s, t)=[G(t)x](s)$ ,

then $z(s, O)=x(s)$ for all $s$ in $R$ , and

$\partial z/\partial t=F(z)\partial z/\partial s$ (8)

for all $s$ in $R$ and $t\geqq 0$ .
For $t\geqq 0$ and $x$ in $B_{t}$ , we define $G(t)x$ to be the solution $z$ of the functional

equation
$z(s)=x(s+tF(z(s)))$ . (9)

To show that (9) has a solution, consider the mapping $P$ from $X$ into $X$ de-
fined by

$[Pw](s)=x(s+tF(w(s)))$ .
For each 2 and $w$ in $X$,

$\Vert Pz-Pw\Vert\leqq t\Vert x\Vert_{0}L\Vert z-w\Vert$ ,

and since $x$ is in $B_{t},$ $P$ is a contraction mapping in the complete metric space
(X, $\Vert\Vert$ ), and thus has a unique fixed point.

Notice we have
$\Vert G(t)x\Vert_{0}\leqq\Vert x\Vert_{0}/(1-tL\Vert x\Vert_{0})$ .

Thus $G(t)x$ is in $B_{u}$ for $x$ in $B_{t+u}$ . Also, letting $z=G(t)x,$ $w=G(u)z$ , we have

$z(s)=x(s+tF(z(s)))$ ,

$w(s)=z(s+uF(w(s)))=z(\sigma)$

$=x(\sigma+tF(z(\sigma)))=x(s+(t+u)F(w(s)))$ ,

so that $w=G(t+u)x=G(t)G(u)x$ . This establishes the semi-group property
for $G$ .
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$G$ also has several continuity properties.

$\Vert G(t)x\Vert\leqq\Vert x\Vert$ ,

$\Vert G(t)x-x\Vert\leqq\Vert x\Vert_{0}t(L\Vert x\Vert+|F(0)|)$

and
$\Vert G(t)y-G(t)x\Vert\leqq\Vert y-x\Vert/(1-tL\Vert x\Vert_{0})$ .

If $x$ is in $X$, and $x$ has a bounded uniformly continuous derivative, then
$\chi$ is in $B_{t}$ for sufficiently small $t$ , and

$\Vert(1/t)[G(t)x-x]-F(x)x^{\prime}\Vert\rightarrow 0$

as $t\rightarrow 0$ . Application of the implicit function theorem will establish the fact
that $G$ has the property, claimed with respect to the partial differential equa-
tion (8), and that if $F$ has a uniformly continuous derivative, then $G$ has an
“ infinitesimal generator”, $Ax=F(x)x^{\prime}$ , whose domain includes the functions in
$X$ with bounded uniformly continuous derivatives. If $x$ is such a function,
then $G_{x}=G(\cdot)x$ has domain $[0,1/L\Vert x\Vert_{0}$), $G_{x}$ is a continuously differentiable
function from $[0,1/L\Vert x\Vert_{0}$) into (X, $\Vert\Vert$ ), and $G_{x}^{\prime}(t)=AG(t)x$ for $0\leqq t<1/L\Vert x\Vert_{0}$ .

3.2. EXAMPLE. Take $X,$ $X_{0}$ , and $\Vert\Vert_{0}$ as in Example 3.1, let $K$ denote the
set of all nonnegative, nondecreasing functions in $X_{0}$ , and let

$S=\{x\in K:\Vert x\Vert_{0}\leqq 1\}$ .

We specialize on the preceding example by taking $F(s)=-s$ . We still define
the transformations $G(t)$ by means of the functional equation (9), but this time
we obtain a semi-group $G$ of class $(C, S)^{\prime}$ . Moreover, if $x$ is a function in $S$

which has a continuous derivative, and $z$ is defined on $ R\times[0, \infty$) by $z(s, t)$

$=[G(t)x](s)$ , then $z(s, O)=x(s)$ for all $s$ in $R$ , and

$\partial z/\partial t=-z\partial z/\partial s$ (10)

for all $s$ in $R$ , and all $t\geqq 0$ . Also, the domain $D(A)$ of the infinitesimal gen-
erator, $Ax=-xx^{\prime}$ , of $G$ includes all $x$ in $S$ which have a uniformly continuous
derivative.

We use a different technique to solve the functional equation (9), because
the mapping $P$ considered in Example 2.1 is not a contraction mapping on
(X, $\Vert\Vert$ ) if $t>1$ . Instead, take $x$ in $S,$ $t\geqq 0,$ $s$ in $R$ , and define $g$ on $[0, \infty$) by

$g(y)=x(s-ty)$ .
Then $g$ is continuous and nonincreasing, and $g(O)\geqq 0$ , so the equation $g(y)=y$

has exactly one solution. If for each $s$ in $R$ , we let $z(s)$ denote this solution,
then

$z(s)=x(s-tz(s))$
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for all $s$ in $R$ . For each $t\geqq 0$ , we define $G(t)$ on $S$ by defining $G(t)x$ to be the
solution $z$ of this functional equation.

Then each transformation $G(t)$ carries $S$ into $S$ . The fact that $G$ is a semi-
group of transformations follows as in Example 3.1. Some careful work with
the appropriate inequalities shows that $G$ is of class $(C, S)$ . The implicit
function theorem shows that $G$ is of class $(C, S)^{\prime}$ , has the infinitesimal gen-
erator $Ax=-\chi\chi^{\prime}$ with $D(A)$ including all $x$ in $S$ having a uniformly con-
tinuous derivative, and that $G$ has the property claimed with respect to the
partial differential equation (10).

3.3. EXAMPLE. We omit the details here, but indicate how Examples 3.1
and 3.2 generalize to the partial differential equation

$\partial z/\partial t=\Sigma p_{i}(s, z(s))\partial z/\partial s_{i}$ . (11)

Take $X$ to be the space of all bounded continuous real-valued functions
on real Euclidean n-space $E^{n}$ , and let $\Vert\Vert$ denote the supremum norm on $X$.
Let $X_{0}$ denote the subspace of $X$ consisting of those functions in $X$ which
satisfy a Lipschitz condition, and for each $x$ in $X_{0}$ , let $\Vert x\Vert_{0}$ denote the smallest
Lipschitz constant for $x$ . For each $i=1,2,$ $\cdots$ , $n$ , take $p_{i}$ to be a real valued
function on $E^{n}\times R$ which satisfies a Lipschitz condition. Let $P$ denote the
vector function

$P=(p_{1}, p_{2}, p_{n})$ .
For each $s$ in $E^{n}$ and $z$ in $R$ , let $J(s, z)$ denote the unique continuous func-

tion $y$ from $[0, \infty$) into $E^{n}$ such that $y(O)=s$ , and

$y^{\prime}(t)=P(y(t), z)$

for $t\geqq 0$ . For each $s$ in $E^{n},$ $z$ in $R$ , and $t\geqq 0$ , let

$F(s, t, z)=[J(s, z)](t)$ .
For suitable $t\geqq 0$ and $x$ in $X_{0}$ , let $G(t)x$ denote the solution $z$ of the functional
equation

$z(s)=x(F(s, t, z(s)))$ .
The details go through as in Example 3.1. In general, $G$ is a semi-group of
transformations giving solutions to the partial differential equation (11). By
choosing suitable functions $p_{i}$ and restricting the transformations $G(t)$ to a
suitable set $S$ , one obtains a semi-group of class $(C, S)^{\prime}$ .

3.4. EXAMPLE. In the linear analogue, $(C, S)^{\prime}=(C, S)$ , but this example
shows that is not true here. Let $X=X_{0}=K=R$ , the set of all real numbers.
For $x$ in $X$, let $\Vert x\Vert=|x|$ , and let $\Vert x\Vert_{0}=0$ . Thus, $S=X$. Let $F$ denote a
strictly increasing continuous function from $R$ onto $R$ which is concave down-
ward, but which is differentiable on no open interval. For each $t\geqq 0$ , define
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the transformation $G(t)$ on $S$ by

$G(t)x=F(t+F^{- 1}(x))$ .
Then $G$ is of class $(C, S)$ but not of class $(C, S)^{\prime}$ .

3.5. REMARKS. The way in which the semi-group $G$ of Example 3.4 fails
to be of class $(C, S)^{\prime}$ is not too bad. For each $x$ in $S,$ $G_{x}$ is differentiable
except at a countable set, $G_{x}^{\prime}$ has right and left hand limits everywhere and
$(0, \infty)$ , and $G_{x}^{\prime}$ is continuous wherever it is defined.

The semi-group of Example 3.1 (and its generalization in Example 3.2) is
much worse in a way, because the transformations $G(t)$ do not all have the
same domain. It would seem desirable to have a theory of semi-groups of
transformations which would cover Examples 3.1, 3.3, and 3.4.

An interesting question in connection with the characterization theorem,

Theorem 2.5, is whether every infinitesimal generator of a class $(C, S)^{\prime}$ semi-
group has a closed graph. It is easy to see that every such generator $A$ has
the following closure property. If $\{x_{n}\}\subset D(A),$ $x_{n}\rightarrow x,$ $Ax_{n}\rightarrow y$ , and there is
positive number $\delta$ such that $\{AG_{xn}\}$ is quasi-uniformly convergent (see [4, $p$ .
268]) on $[0, \delta]$ , then $x$ is in $D(A)$ , and $Ax=y$ . To prove this statement, one
needs merely to remember that by Theorem 2.1, $\Vert AG_{x_{n}}(t)\Vert\leqq\Vert Ax_{n}\Vert$ , and apply
the Lebesgue dominated convergence theorem to get

$G(t)x-x=\int_{0^{t}}f(s)ds$

for $ 0\leqq t\leqq\delta$ , where $f$ is the (continuous) pointwise limit of $\{AG_{x_{n}}\}$ . Perhaps
there is some additional (and unobjectionable) restrictions that could be placed
on the class $(C, S)^{\prime}$ to insure that the generators would have closed graphs.

It was mentioned in the introduction that the setting was chosen so as to
be sufficiently general to cover Example 3.2. On the other hand, the semi-
group $G$ of example 3.2 has many properties that were not used in Section 2,
as it was felt that these properties were too special to fit in with what is
supposed to a collection of basic facts about a general class of semi-groups.
We will list some of these properties here, however, because it seems that
they might offer a clue for obtaining a theory which would still be fairly
general and yet have more and stronger results than those in Section 2. The
papers [1] and [9] of Browder and Segal certainly have a great deal to offer
in that direction.

In Komatsu’s paper [6], there are two topologies which play a role. In
Section 2, the semi-norm $\Vert\Vert_{0}$ served only in determining the domain of the
transformations $G(i)$ , but the semi-group $G$ of Example 3.2 has several con-
tinuity properties with respect to $\Vert\Vert_{0}$ . For instance,

$|IG(t)x\Vert_{0}\leqq\Vert x\Vert_{0}$
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for $t\geqq 0$ and $x$ in $S$, and
$\lim_{t\rightarrow 0}\Vert G(t)x-x\Vert_{0}=0$ (12)

if $x$ is in $S$ and has a uniformly continuous derivative. Also, for each $x$ in $S$,
there is a sequence $\{x_{n}\}$ in $D(A)$ such that $\{x_{n}\}$ converges to $x$ in the norm
$\Vert\Vert$ , and $\{\Vert x_{n}\Vert_{0}\}$ converges upward to $\Vert x\Vert_{0}$ .

In [3], the author studied semi-groups of transformations where each
transformation had a Fr\’echet derivative (see [2, Chapter VIII or [5, pp. 109-
115]). The transformations $G(t)$ of Example 3.2 are not Frechet differentiable,
but there are linear transformations which are tangent in a sense. Suppose
$t\geqq 0$ , and $x$ is in $S$ and has a uniformly continuous derivative. Let $z=G(t)x$,

and define the linear transformation $T$ on $X$ by

$[T\varphi](s)=\varphi(s-tz(s))/[1+tx^{\prime}(s-tz(s))]$ .
Then $T$ is continuous from (X, $\Vert\Vert$ ) into (X, $\Vert\Vert$ ), and

$(\Vert G(t)y-G(t)x-T(y-x)\Vert/\Vert y-x\Vert)\rightarrow 0$

as $\Vert y-x\Vert,$ $\Vert y-x\Vert_{0}\rightarrow 0$ . In view of the continuity property (12) of the preced-
ing paragraph, we get

$AG(t)x=TAx$ ,
or, denoting $T$ by $G(t)^{\prime}x$ ,

$AG(t)x=[G(t)^{\prime}x]Ax$ .

4. Generators and resolvents.
4.1. DEFINITION. A semi-group $G$ of class $(C, S)^{\prime}$ is said to be of class

$(RC, S)^{\prime}$ if the range $R(I-\delta A)$ of $I-\delta A$ includes all of $S$ for each $\delta>0$ , where
$A$ is the infinitesimal generator of $G$ .

4.2. DEFINITION. If $A$ is the infinitesimal generator of a semi-group of
class $(C, S)^{\prime},$ $\delta>0$ , and $S\subset R(I-\delta A)$ , then $J(\delta, A)$ denotes the restriction to $S$

of the inverse of $I-\delta A$ . By Theorem 2.5, $I-\delta A$ is one-to-one, and

$\Vert J(\delta, A)x-J(\delta, A)y\Vert\leqq\Vert x-y\Vert$

for $x$ and $y$ in $S$ .
4.3. THEOREM. If $G$ is a class $(UC, S)^{\prime}$ semi-group of the type of Theorem

2.8, then $G$ is of class $(RC, S)^{\prime}$ . In particular, the semi-groups $G^{h}$ of Theorem
2.9 are of class $(RC, S)^{\prime}$ .

PROOF. Let the generator of $G$ be

$A=k[F-I]$ ,

where $\Vert Fy-Fx\Vert\leqq\Vert x-y||$ for $x,$ $y$ in $S$ , and $k>0$ . Suppose $\delta>0$ and $y$ is in
$S$ . Then
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$\chi\rightarrow(1+\delta k)^{-1}y+\delta k(1+\delta k)^{-1}Fx$

is a contraction mapping from $S$ into $S$ and thus has a unique fixed point $x_{0}$ .
But $(I-\delta A)x_{0}=y$ .

4.4. THEOREM. If $G$ is of class $(RC, S)^{\prime}$ with infinitesimal generator $A$ , then

$x=\lim_{\delta\rightarrow 0}J(\delta, A)x$

for all $x$ in $S$ .
PROOF. If $x\in D(A)$ , then

$\Vert J(\delta, A)x-x\Vert\leqq\Vert x-(I-\delta A)x\Vert=\delta\Vert Ax\Vert$ .
The functions $J(\delta, A)$ are equicontinuous, and $D(A)$ is dense in $S$ .

4.5. THEOREM. Suppose $G$ is a semi-group of class $(RC, S)^{\prime}$ , and let A de-
note the infinitesimal generator of G. Then for each $x$ in $S$ and $t\geqq 0$ ,

$G(t)x=\lim_{n\rightarrow\infty}J(t/n, A)^{n}x$ ,

and the convergence is uniform for $t$ in bounded intervals.
PROOF. If $x\in D(A)$ and $\delta>0$ , then

$\Vert J(\delta, A)x-G(\delta)x\Vert\leqq\Vert x-G(\delta)x+\delta AG(\delta)x\Vert$

$=\Vert\delta AG(\delta)x-\delta A_{\delta}x\Vert\leqq\delta\omega(G_{x}^{\prime}, [0, \delta])$

$=\delta\sup\{|G_{x}^{\prime}(s)-G_{x}^{\prime}(t)|\}(s, t\in[0, \delta])$ ,

where
$A_{\delta}=(1/\delta)[G(\delta)-I]$ .

Take $b>0,$ $x\in D(A),$ $t\in[0, b],$ $n$ a positive integer, and $\delta=t/n$ . Then
$J(t[n, A)^{n}x-G(t)x=J(\delta, A)^{n}x-G(n\delta)x$

$=\sum_{0}^{n-1}[J(\delta, A)^{j+1}G(n\delta-j\delta-\delta)x-J(\delta, A)^{j}G(n\delta-j\delta)x]$ .
Thus

$\Vert J(t/n, A)^{n}x-G(t)\Vert$

$\leqq\sum_{0}^{n-1}\Vert[J(\delta, A)-G(\delta)]G(n\delta-j\delta-\delta)x\Vert$

$\leqq\sum_{0}^{n-1}\delta\omega(G_{x}^{\prime}, [n\delta-j\delta-\delta, n\delta-j\delta])$

$\leqq t\omega(G_{x}^{\prime}, [0, b], t/n)$

$=t\sup\{|G_{x}^{\prime}(p)-G_{x}^{\prime}(q)|\}(p, q\in[0, b], |p-q|\leqq t/n)$ .
Since $D(A)$ is dense in $S$ and the transformations $J(t/n, A)^{n}$ are equicon-

tinuous, we have the desired result.
4.6. COROLLARY. If $G$ is of class $(C, S)^{\prime}$ , and we define $A_{h}=(1/h)[G(h)-I]$
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for $h>0$ , then for each $x$ in $S$ and $t>0$,

$G(t)x=\lim_{h\rightarrow 0}\lim_{n\rightarrow\infty}J(t/n, A_{h})^{n}x$ ,

and the convergence is uniform for $t$ in bounded intervals.
PROOF. Apply Theorems 4.3, 4.5, and 2.9. This theorem resembles Neu-

berger’s theorem in [9].

4.7. THEOREM. If $x\in D(A)$ , where $A$ is the infinitesimal generator of a
class $(RC, S)$ ‘ semi-group $G$ , then

$Ax=\lim_{\delta\rightarrow 0}(1/\delta)[J(\delta, A)x-x]=\lim_{\delta\rightarrow 0}AJ(\delta, A)x$ .

PROOF. By Theorem 4.5,

$\Vert(1/\delta)[J(\delta, A)x-x]-(1/\delta)[G(\delta)x-x]\Vert\leqq\omega(G_{x}^{\prime}, [0, \delta])$ .
Also,

$\Vert(1/\delta)[G(\delta)x-x]-Ax\Vert\leqq\omega(G_{x}^{\prime}, [0, \delta])$ .
4.8. THEOREM. Suppose $G$ is a semi-group of class $(RC, S)^{\prime}$ with infinitesimal

generator A. For each $\epsilon>0$ , let $A^{\epsilon}=AJ(\epsilon, A)$ , and let $G^{[e]}$ denote the class
$(UC, S)^{\prime}$ semi-group with infinitesimal generator $A^{\epsilon}$ (see Theorem 2.8). Then
for each $x$ in $S$ and $t>0$ ,

$G(t)x=\lim_{\epsilon\rightarrow 0}G^{[\epsilon]}(t)x$ ,

and the convergence is uniform for $t$ in bounded intervals.
PROOF. Let $\epsilon>0,$ $h>0,0<t\leqq b,$ $x\in D(A),$ $n$ be a positive integer, and

$\delta=t/n$ . Then
$\Vert G^{[\epsilon]}(t)x-G(t)x\Vert\leqq\Vert G^{[]}\underline{\epsilon}(t)x-J(f/n, A^{\epsilon})^{n}x\Vert$

$+\Vert J(t/n, A^{\epsilon})^{n}x-G(t)x\Vert$ .
The first term approaches zero as $ n\rightarrow\infty$ , and the convergence is uniform for
$0<t\leqq b$ . Also

$\Vert J(\delta, A^{\epsilon})^{n}x-G(n\delta)x\Vert$

$\leqq\sum_{0}^{n-1}\Vert J(\delta, A^{e})^{j+1}G(n\delta-j\delta-\delta)x-J(\delta, A^{\epsilon})^{j}G(n\delta-j\delta)x\Vert$

$\leqq\sum_{0}^{n-I}\Vert[J(\delta, A^{\epsilon})-G(\delta)]G(n\delta-j\delta-\delta)x\Vert$

$\leqq\sum_{0}^{n-1}\Vert[I-G(\delta)+\delta A^{\epsilon}G(\delta)]G(n\delta-j\delta-\delta)x\Vert$

$=\sum_{0}^{n-1}\delta\Vert[A^{\epsilon}G(\delta)-A_{\delta}]G(n\delta-j\delta-\delta)x\Vert$
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$\leqq\sum_{0}^{n-1}\delta\Vert[A_{\delta}-AG(\delta)]G(n\delta-j\delta-\delta)x\Vert$

$+\sum_{0}^{n-1}\delta\Vert[AG(\delta)-A^{\epsilon}G(\delta)]G(n\delta-j\delta-\delta)x\Vert$

$\leqq t\omega(G_{x}^{\prime}, [0, b], t/n)+t\omega(G_{x}^{\prime}, [0, b], \epsilon)$ .
Therefore

$\Vert G^{[\epsilon]}(t)x-G(t)x\Vert\leqq t\omega(G_{x}^{\prime}, [0, b], \epsilon)$ .
The rest follows from the denseness of $D(A)$ and the equicontinuity of the

transformations $G^{[e]}(t)$ .
4.10. EXAMPLE. Here we show that the semi-group $G$ of example 3.2 is

of class $(RC, S)^{\prime}$ . Let $y\in S$ and $\delta>0$ . If $y$ has a zero, let $\alpha$ denote the
greatest zero of $y$ . If $y$ is nonvanishing, then let $\alpha=-\infty$ . Let $\Omega$ denote the
closure of the region between the curves $y$ and $y/(1+\delta)$ . Notice that if
$x+\delta xx^{\prime}=y$ on some open interval $J$, and $t\in J$, then

$0\leqq x^{\prime}(t)\leqq 1$

if and only if
$y(t)/(1+\delta)\leqq x(t)\leqq y(t)$ .

If $ t_{0}>\alpha$ , and
$y(t_{0})/(1+\delta)<x_{0}<y(t_{0})$ ,

then the usual existence and uniqueness theorem for ordinary differential
equations asserts the existence of unique local solution $x$ of

$x+\delta xx^{\gamma}=y$ , $x(t_{0})=x_{0}$ .
Elementary considerations show that such a local solution can be continued
indefinitely to the right without leaving the region $\Omega$ . One can make no such
assertion about continuation to the left, however.

Consider a sequence $\{(t_{n}, x_{n})\}$ such that

$\alpha<t_{n},$ $y(t_{n})/(1+\delta)<x_{n}<y(t_{n})$ ,

and $ t_{n}\rightarrow\alpha$ . Let $f_{n}$ denote the unique function $x$ defined on $[t_{n}, \infty$) such that

$x+\delta xx^{\prime}=y$ , $x(t_{n})=x_{n}$ .
It follows that

$y(t)/(1+\delta)\leqq f_{n}(t)\leqq y(t)$ ,
and

$0\leqq f_{n}^{\prime}(t)\leqq 1$

for $t\geqq t_{n}$ . By uniform boundedness and equicontinuity, it follows that there
is a subsequence $\{f_{m_{n}}\}$ of $\{f_{n}\}$ and a function $f$ defined on $(\alpha, \infty)$ such that
$\{f_{m_{n}}\}$ converges uniformly to $f$ on each interval $[a, b]$ such that $\alpha<a<b$ .
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Moreover, $f$ is nonnegative and nondecreasing, and

$f+\delta ff^{\prime}=y$

on $(\alpha, \infty)$ , so that $0\leqq f^{\prime}(t)\leqq 1$ for $ t>\alpha$ .
If $\alpha=-\infty$ , then we have constructed a solution of

$x-\delta Ax=y$ ,

where $A$ is the infinitesimal generator of the semi-group $G$ of Example 3.2.
If $\alpha>-\infty$ , then let $x(t)=f(t)$ for $ t>\alpha$ , and $x(t)=0$ for $ t\leqq\alpha$ . Then we still
have $x-\delta Ax=y$ , for letting

$z(t, s)=[G(t)x](s)$ ,
we have

$z(t, s)=x(s-tz(t, s))$ ,

so that $z(t, s)=0$ for $\delta\leqq\alpha$ .
For $\delta>\alpha$

$(1/t)[z(t, s)-x(s)]=-x^{\prime}(\theta)z(t, s)$ ,

where $s-tz(t, s)\leqq\theta\leqq s$ . This may be seen to converge uniformly to $-x(s)x^{\gamma}(s)$

on $ s>\alpha$ . Thus $x\in D(A)$ , and

$[Ax](s)=\left\{\begin{array}{l}0 fors\leqq\alpha\\-x(s)x(s) fors>\alpha.\end{array}\right.$

Louisiana State University
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