On the classification of sufficiently connected manifolds

Dedicated to Professor S. Iyanaga on his 60th birthday

By Itiro TAMURA

(Received Aug. 29, 1967)

Smale theory enables us to give a handlebody presentation for a simply-connected closed oriented differentiable m-manifold ($m \ge 6$) and to establish a diffeomorphism between two such manifolds by proving that they are h-cobordant. In consequence we can achieve the determination of differentiable manifolds with a certain homotopy type, by firstly fixing up explicit handle-body presentations and secondly considering h-cobordism classes among them.

In this note we perform this for simply-connected closed oriented differentiable m-manifolds such that homology groups are trivial except in dimensions k, m-k and for which certain cohomology operations vanish, where m=2n, k=n-1, $n \ge 6$, or m=2n+1, k=n-1, $n \ge 7$.

Chief results will be stated as Theorems 1, 2 and 3. However, in order to have a proper understanding of the form of our theorems, we pick up here some results in them:

Let M^{2n} be a simply connected closed oriented differentiable 2n-manifold $(n \ge 6, n \equiv 4, 6, 7 \mod 8)$ such that homology groups are trivial except in dimensions n-1, n+1 and that $Sq^2(H^{n-1}(M^{2n}; Z_2))=0$. Then M^{2n} is diffeomorphic to a connected sum of an S^{n-1} -bundle over S^{n+1} , copies of $S^{n-1} \times S^{n+1}$ and a homotopy sphere. In case $n \equiv 7 \mod 8$, this presentation is unique up to diffeomorphism.

Let M^{2n+1} be a simply connected closed oriented differentiable (2n+1)-manifold $(n \ge 7, n \equiv 6, 7 \mod 8)$ such that homology groups are trivial except in dimensions n-1, n+2 and that $\Phi(H^{n-1}(M^{2n+1}; Z_2)) = 0$. Then M^{2n+1} is diffeomorphic to a connected sum of an S^{n-1} -bundle over S^{n+2} , copies of $S^{n-1} \times S^{n+2}$ and a homotopy sphere. In case $n \equiv 6 \mod 8$, this presentation is unique up to diffeomorphism.

1. Presentations.

Let M^m be a simply-connected closed oriented differentiable m-manifold $(m \ge 7)$ such that

This research was partially supported by the D.S.I.R.

$$H_q(M^m;z) = \left\{egin{array}{ll} Z & q=0,\ m\ , \ Z+Z+\cdots+Z & q=k,\ m-k & (k< m-k)\ , \ 0 & ext{otherwise.} \end{array}
ight.$$

where $3 \le k < m/2$.

Let us consider a presentation of M^m by "elementary" manifolds.

According to Smale [9], there exists a nice function f on M^m whose critical points are $a_0, a_1, a_2, \dots, a_r, b_1, b_2, \dots, b_r, b_0$ such that

$$f(a_0) = \operatorname{index} \text{ of } a_0 = 0$$
,
 $f(a_i) = \operatorname{index} \text{ of } a_i = k$ $i = 1, 2, \dots, r$,
 $f(b_i) = \operatorname{index} \text{ of } b_i = m - k$ $i = 1, 2, \dots, r$,
 $f(b_0) = \operatorname{index} \text{ of } b_0 = m$.

It follows that M^m has a decomposition by handles corresponding to critical points:

$$M^{m} = D^{m} \cup (D_{1}^{k} \times D_{1}^{m-k}) \cup \cdots \cup (D_{r}^{k} \times D_{r}^{m-k}) \cup (D_{1}^{m-k} \times D_{1}^{k}) \cup \cdots \cup (D_{r}^{m-k} \times D_{r}^{k}) \cup D^{m}$$

$$(a_{0}) \qquad (a_{1}) \qquad (b_{r}) \qquad (b_{0})$$

where r denotes the Betti number of dimensions k, m-k.

In this case the handle corresponding to a_i (resp. b_i) represents a homology class in $H_k(M^m; Z)$ (resp. $H_{m-k}(M^m; Z)$), which will be denoted simply by a_i (resp. b_i). Then a_1, a_2, \dots, a_r (resp. b_1, b_2, \dots, b_r) represent a basis of $H_k(M^m; Z)$ (resp. $H_{m-k}(M^m; Z)$).

Let a_1' , a_2' , \cdots , $a_r' \in H_k(M^m; Z)$ be another basis characterized by the property

(*)
$$a_i' \circ b_j = \delta_{ij},$$

where $a_i' \circ b_j$ denotes the intersection number of a_i' and b_j . Define

$$W = f^{-1} \lceil 0, m/2 \rceil = D^m \cup (D_r^k \times D_r^{m-k}) \cup \cdots \cup (D_r^k \times D_r^{m-k})$$

then a_1, a_2, \dots, a_r and a'_1, a'_2, \dots, a'_r are bases of $H_k(W; Z) = H_k(M^m; Z)$. Let

$$f_i: S^k \to \text{Int } W \qquad i=1, 2, \dots, r$$
,

be mappings such that

$$[f_i(S^k)] = a'_i$$
 $i = 1, 2, \dots, r$,

where $[f_i(S^k)]$ denotes the homology class represented by $f_i(S^k)$. By Whitney's imbedding theorem [15], we may suppose that f_i $(i=1, 2, \dots, r)$ are imbeddings and

$$f_i(S^k) \cap f_i(S^k) = \emptyset$$
 $i \neq j$.

Let $N(f_i)$ be a tubular neighbourhood of $f_i(S^k)$ in Int $W(i=1, 2, \dots, r)$ such

that

$$N(f_i) \cap N(f_j) = \emptyset$$
 $i \neq j$.

 $N(f_i)$ is a D^{m-k} -bundle over S^k : $(N(f_i), S^k, D^{m-k}, \bar{p}_i)$. Let

$$\hat{W} = N(f_1) \nmid N(f_2) \mid \cdots \mid N(f_r) \subset \text{Int } W$$

be a boundary connected sum of $N(f_1)$, $N(f_2)$, \cdots , $N(f_r)$ which is realized in Int W connecting $N(f_i)$ and $N(f_{i+1})$ by imbedded $D^1 \times D^{m-1}$ $(i=1, 2, \cdots, r-1)$. Then \hat{W} is an m-dimensional submanifold of W which is a handlebody whose handles represent homology classes a_1' , a_2' , \cdots , a_r' in W. The inclusion maps

$$\partial W \to W - \text{Int } \hat{W}, \qquad \partial \hat{W} \to W - \text{Int } \hat{W}$$

are homotopy equivalences, because the inclusion map $\hat{W} \to W$ is a homotopy equivalence [9; Lemma 4.2]. Hence $W-\text{Int }\hat{W}$ defines an h-cobordism between ∂W and $\partial \hat{W}$. Since ∂W and $\partial \hat{W}$ are simply-connected (m-1)-manifolds (m-1) ≥ 5), by Smale's theorem, we have

W-Int
$$\hat{W} = \partial \hat{W} \times I = \partial W \times I$$
,

which implies that \hat{W} is diffeomorphic to W [9; Theorem 4.1]. Therefore, replacing W by \hat{W} , we have a decomposition as follows:

$$M^m$$
-Int $D^m = (N(f_1) \natural N(f_2) \natural \cdots \natural N(f_r)) \cup (D_1^{m-k} \times D_1^k) \cup \cdots \cup (D_r^{m-k} \times D_r^k)$.

Attaching maps of handles $D_i^{m-k} \times D_i^k$ $(i = 1, 2, \dots, r)$ will be denoted by

$$\begin{split} g_i : & \partial D_i^{m-k} \times D_i^k \longrightarrow \partial (N(f_1) \natural \cdots \natural N(f_r)) \\ &= & \partial N(f_1) \sharp \cdots \sharp \partial N(f_r) \,. \end{split} \qquad i = 1, 2, \cdots, r \,,$$

(For this relation between the connected sum and the boundary connected sum, see [6].)

The homotopy type of M^m -Int D^m is obviously given by

$$M^m$$
-Int $D^m \simeq (S_1^k \vee S_2^k \vee \cdots \vee S_r^k) \cup e_1^{m-k} \cup e_2^{m-k} \cup \cdots \cup e_r^{m-k}$.

Now to simplify the situation let us put the hypothesis:

$$(H1) M^m - \operatorname{Int} D^m \simeq S_1^k \vee S_2^k \vee \cdots \vee S_r^k \vee S_1^{m-k} \vee S_2^{m-k} \vee \cdots \vee S_r^{m-k}.$$

Let \bar{g}_i denote the map $\bar{g}_i = g_i | \partial D_i^{m-k} \times 0$:

$$\bar{g}_i: \partial D_i^{m-k} \times 0 \rightarrow \partial N(f_1) \# \cdots \# \partial N(f_r)$$
 $i = 1, 2, \dots, r$.

Since k < m-k, the sphere bundle over sphere $(\partial N(f_i), S^k, S^{m-k-1}, p_i)$ admits a cross section, which implies

$$\partial N(f_i) \simeq (S^k \vee S^{m-k-1}) \cup e^{m-1}$$
.

Therefore by [4] we have

$$\begin{split} \{\bar{g}_i\} &\in \pi_{m-k-1}(\partial N(f_1) \sharp \cdots \sharp \partial N(f_r)) \\ &= \pi_{m-k-1}(S_1^k \vee S_2^k \vee \cdots \vee S_r^k \vee S_1^{m-k-1} \vee S_2^{m-k-1} \vee \cdots \vee S_r^{m-k-1}) \cdot \\ &= \sum_i \pi_{m-k-1}(S_i^k) + Z + Z + \cdots + Z \cdot \end{split}$$

Let $\varepsilon_i: S^{m-k-1} \to p_i^{-1}(x_i)$ $(x_i \in S^k)$ be a natural imbedding of S^{m-k-1} in $N(f_i)$ $(i=1, 2, \dots, r)$, then it follows from (H1) and (*) that \bar{g}_i is homotopic to ε_i . In order that these homotopies can be realized by isotopies, let us put the following hypothesis:

$$(H2) 3k \ge m+3.$$

Then, according to Haefliger's theorem [3], there exists an imbedding

$$\bar{g}_1': D^{m-k} \rightarrow N(f_1)
atural \cdots
atural N(f_r)$$
,

which bounds $\bar{g}_1(\partial D_1^{m-k} \times 0)$:

$$\bar{g}'_1(D^{m-k}) \cap (\partial N(f_1) \# \cdots \# \partial N(f_r)) = \bar{g}'_1(\partial D^{m-k}) = \bar{g}_1(\partial D_1^{m-k} \times 0)$$
.

We may take that $(D_1^{m-k} \times 0) \cup \bar{g}'_1(D^{m-k}) \cup \bar{g}'(D^{m-k})$ is the natural sphere imbedded in $M^m - D^m$. Making use of Smale's theorem, it is easily verified that the closure of the complement of a tubular neighbourhood of $\bar{g}'_1(D^{m-k})$ in $N(f_1) \not \mid \cdots \not \mid N(f_r)$ is diffeomorphic to $N(f_2) \not \mid N(f_3) \not \mid \cdots \not \mid N(f_r)$. Hence there exists an imbedding

$$\bar{g}'_2: D^{m-k} \to N(f_1) \not \bowtie \dots \not \bowtie N(f_r)$$
,

which bounds $\bar{g}_2(\partial D_2^{m-k} \times 0)$, such that

$$\bar{g}_{1}'(D^{m-k}) \cap \bar{g}_{2}'(D^{m-k}) = \emptyset$$
.

By repeating this method, we obtain imbeddings

$$\bar{g}_i': D^{m-k} \to N(f_1) \bowtie \cdots \bowtie N(f_r) \qquad i = 1, 2, \cdots, r$$

such that

$$\begin{split} \bar{g}_{i}'(D^{m-k}) & \cap (\partial N(f_1) \# \cdots \# \partial N(f_r)) = \bar{g}_{i}'(\partial D^{m-k}) = \bar{g}_{i}(\partial D_i^{m-k} \times 0) \text{ ,} \\ \bar{g}_{i}'(D^{m-k}) & \cap \bar{g}_{i}'(D^{m-k}) = \emptyset \qquad i \neq j \end{split}$$

and that $(D_i^{m-k} \times 0) \cup \bar{g}_i'(D^{m-k})$ is the natural sphere imbedded in M^m -Int D^m . By Whitney's theorem, we may assume that

$$f_i(S^k) \cap \bar{g}'_i(D^{m-k}) = \emptyset \qquad i \neq j$$

and that $f_i(S^k)$ and $\bar{g}_i'(D^{m-k})$ intersect regularly at one point.

Let $(\bar{B}, S^k, D^{m-k}, p)$, $(\bar{B}', S^{m-k}, D^k, p')$ be disk bundles over spheres. Total spaces \bar{B} , \bar{B}' are oriented differentiable m-manifolds with differentiable structure defined by the natural differentiable structures of S^k , D^{m-k} , S^{m-k} and D^k .

Let $\bar{B} \otimes \bar{B}'$ denote the oriented differentiable m-manifold obtained as a quotient space of the disjoint sum $\bar{B} \cup \bar{B}'$ by identifying $p^{-1}(D^k) = D^k \times D^{m-k}$ ($D^k \subset S^k$) and $p^{-1}(D^{m-k}) = D^{m-k} \times D^k$ ($D^{m-k} \subset S^{m-k}$) in such a way that (x, y) = (y, x) ($x \in D^k$, $y \in D^{m-k}$). $\bar{B} \otimes \bar{B}'$ is called the plumbing manifold of B and B'.

Let $N(g_i)$ be a sufficiently thin tubular neighbourhood of $(D_i^{m-k} \times 0)$ $\cup \bar{g}_i'(D^{m-k})$ in $M^m - D^m$ $(i = 1, 2, \dots, r)$. Then there exists a natural imbedding

$$(N(f_1) \otimes N(g_1))
ightharpoons (N(f_2) \otimes N(g_2))
ightharpoons (N(f_r) \otimes N(g_r)) \rightarrow M^m - \operatorname{Int} D^m$$

which is a homotopy equivalence. This implies that $(M^m-\operatorname{Int} D^m)-\operatorname{Int} (N(f_1) \otimes N(g_1)) \not \vdash \cdots \not \vdash (N(f_r) \otimes N(g_r))$ defines an h-cobordism between $\partial (M^m-\operatorname{Int} D^m)$ and $\partial (N(f_1)) \otimes (N(f_1) \otimes N(g_1)) \not \vdash \cdots \not \vdash \partial (N(f_r) \otimes N(g_r))$. Therefore, making use of Smale's theorem, the following proposition holds:

PROPOSITION 1. Under the hypotheses (H1) and (H2), we have

$$M^m$$
-Int $D^m = (N(f_1) \otimes N(g_1)) \nmid (N(f_2) \otimes N(g_2)) \nmid \cdots \mid (N(f_r) \otimes N(g_r))$.

As shown in [8], $\partial(\bar{B} \otimes \bar{B}')$ is homeomorphic to S^{m-1} :

$$\partial (ar{B} ee ar{B'}) \in heta^{m-1}$$
 ,

where θ^q ($q \ge 5$) denotes the group of differentiable structures on S^q [6]. Now let us put the hypothesis:

(H3) For any
$$\bar{B}$$
, \bar{B}' , $\partial(\bar{B} \otimes \bar{B}') = S^{m-1}$,

where \bar{B} , \bar{B}' represent $N(f_i)$, $N(g_i)$ respectively. This hypothesis is equivalent to the existence of a closed oriented differentiable m-manifold M' such that

$$M'$$
-Int $D^m = \bar{B} \otimes \bar{B}'$.

Then we obtain the following proposition.

PROPOSITION 2. Under the hypotheses (H1), (H2) and (H3), we have a presentation of M^m :

$$M^m = M_1 \sharp M_2 \sharp \cdots \sharp M_r \sharp \widetilde{S}^m \qquad \widetilde{S}^m \in \theta^m$$

where M_i is a closed oriented differentiable m-manifold obtained from the plumbing manifold of D^{m-k} -bundle over S^k and D^k -bundle over S^{m-k} by attaching D^m to the boundary $(i=1, 2, \dots, r)$.

2. Lemmas.

Dimensions which satisfy m-k > k and (H2) are as follows:

(I)
$$m \text{ odd} \ge 9$$
, $k = \lfloor m/2 \rfloor$ (i. e. $m-k = k+1$),

(II)
$$m \text{ even } \ge 12, \quad k = (m/2) - 1 \quad \text{(i. e. } m - k = k + 2),$$

(III)
$$m \text{ odd} \ge 15$$
, $k = \lfloor m/2 \rfloor - 1$ (i. e. $m - k = k + 3$),

:376 I. Tamura

etc.

The classification of differentiable manifolds of case (I) is considered in [11], [13]. In the following let us consider the cases (II), (III).

The following lemma is easily verified.

LEMMA 1. (i) If m is odd, $k = \lfloor m/2 \rfloor$, then the hypothesis (H1) is always satisfied.

(ii) If m is even ≥ 8 , k = (m/2)-1, then the hypothesis (H1) is equivalent to $Sa^2 = 0$.

where $Sq^2: H^k(M^m; Z_2) \rightarrow H^{k+2}(M^m; Z_2)$.

(iii) If m is odd ≥ 11 , $k = \lfloor m/2 \rfloor -1$, then the hypothesis (H1) is equivalent to $\Phi = 0$.

where $\Phi: H^k(M^m; Z_2) \to H^{k+3}(M^m; Z_2)$ is the cohomology operation of the second kind $\lceil 1 \rceil$.

Let $(\bar{B}, S^{m-k}, D^k, \bar{p})$ be the D^k -bundle over S^{m-k} whose characteristic map is $\mu \in \pi_{m-k-1}(SO(k))$. Let B' denote the closed oriented differentiable m-manifold obtained from two copies of \bar{B} glueing their boundaries by the identity map. Then B' is the total space of the S^k -bundle over S^{m-k} whose characteristic map is $\iota_*(\mu): (B', S^{m-k}, S^k, p')$, where $\iota_*: \pi_{m-k-1}(SO(k)) \to \pi_{m-k-1}(SO(k+1))$ is the natural homomorphism. It is obvious that

$$B'-\operatorname{Int} D^m=p'^{-1}(D^{m-k})\cup \bar{B}$$
.

Hence we have the following lemma.

LEMMA 2. $B'-\operatorname{Int} D^m = (S^k \times D^{m-k}) \otimes \bar{B}$.

Similarly for $(\bar{B}'', S^k, D^{m-k}, \bar{p}'')$ and $(B''', S^k, S^{m-k}, p''')$ with the same characteristic map in $\pi_{k-1}(SO)$, we have the following lemma.

LEMMA 3. B'''-Int $D^m = \bar{B}'' \otimes (S^{m-k} \times D^k)$.

According to Bott [2], we have

$$\pi_{k-1}(SO) = \begin{cases} Z_2 & k \equiv 1, 2 \mod 8, \\ 0 & k \equiv 3, 5, 6, 7 \mod 8. \end{cases}$$

Thus, by Lemma 2, the following lemma holds:

LEMMA 4. The hypothesis (H3) is satisfied for $k \equiv 3, 5, 6, 7 \mod 8$.

In order to consider the cases k = 1, $2 \mod 8$, we need the following lemma, due to Seiya Sasao.

LEMMA S. Let $K = (S^k \vee S^{m-k}) \cup_{g} e^m$ be the CW-complex $\bar{B} \otimes \bar{B}' / \partial(\bar{B} \otimes \bar{B}')$ formed from the plumbing manifold $\bar{B} \otimes \bar{B}'$ of total spaces of D^{m-k} -bundle over S^k and D^k -bundle over S^{m-k} (k < m-k) by shrinking its boundary $\partial(\bar{B} \otimes \bar{B}')$ to a point and let $\{g\} = g' + g'' + e \in \pi_{m-1}(S^k \vee S^{m-k}) \cong \pi_{m-1}(S^k) + \pi_{m-1}(S^{m-k}) + Z$ $(g' \in \pi_{m-1}(S^k), g'' \in \pi_{m-1}(S^{m-k}), e \in Z)$. Then we have $g'' = J(\alpha)$, where α is the

characteristic map of B and $J: \pi_{k-1}(SO(m-k)) \to \pi_{m-1}(S^{m-k})$ is the Whitehead J-homomorphism.

PROOF. Let T(B) be the Thom complex of B and let $j: \bar{B} \otimes \bar{B}' / \partial(\bar{B} \otimes \bar{B}') \to T(B)$ be the map defined by $j | \text{Int } B = \text{identity and } j(\bar{B} \otimes \bar{B} - \text{Int } B) = (\text{one point})$. Since k < m - k, $T(B) \simeq S^{m-k} \bigcup_{J(\alpha)} e^m$, which implies $j(S^k)$ is homotopic to zero in T(B). Hence it is easy to see that there exists a homotopy equivalence $K/S^k \to T(B)$. This completes the proof.

Now let us introduce a following condition on $N(f_i)$ given in section 1:

[T]
$$N(f_i)$$
 $(i=1, 2, \dots, r)$ are trivial in cases $k=1, 2 \mod 8$.

Since, as proved by J. F. Adams, $J: \pi_{k-1}(SO(m-k)) \to \pi_{m-1}(S^{m-k})$ is monomorphism in these cases, Lemma S shows that the condition [T] is homotopy type invariant.

Then we have the following lemma which is a direct consequence of Lemma 2.

LEMMA 4'. The hypothesis (H3) is satisfied for $k=1, 2 \mod 8$, if the condition [T] holds.

Let (B_i, S^{m-k}, S^k, p_i) be the S^k -bundle over S^{m-k} with characteristic map $\mu_i \in \pi_{m-k-1}(SO(k+1))$, which admits a cross section $(i=1, 2, \dots, 2q)$. Then the following lemma holds.

LEMMA 5. If there exists a $(q \times q)$ -matrix with integer coefficients (ξ_{ij}) such that

$$\det(\xi_{ij}) = \pm 1$$
,

$$egin{pmatrix} \mu_{q+1} \ \mu_{q+2} \ dots \ \mu_{2g} \end{pmatrix} = egin{pmatrix} \xi_{11} \ \xi_{12} \cdots \xi_{1q} \ \xi_{21} \ \xi_{22} \cdots \xi_{2q} \ dots \ \ dots \ dots \ dots \ \ dots \ dots \ dots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$$

then we have

$$B_1 \sharp B_2 \sharp \cdots \sharp B_q = B_{q+1} \sharp B_{q+2} \sharp \cdots \sharp B_{2q}$$
.

PROOF. Let $(\bar{B}_i, S^{m-k}, D^{k+1}, \bar{p}_i)$ denote the D^{k+1} -bundle over S^{m-k} associated with $B_i (i = 1, 2, \dots, 2q)$ and let \overline{W} be a boundary connected sum of $\bar{B}_1, \bar{B}_2, \dots, \bar{B}_q$:

$$\overline{W} = \overline{B}_1 \ \ \ \overline{B}_2 \ \ \ \cdots \ \ \ \ \ \overline{B}_a$$
.

 \overline{W} has the homotopy type of $S_1^{m-k} \vee S_2^{m-k} \vee \cdots \vee S_q^{m-k}$. Let a_i denote the homotogy class of $H_{m-k}(\overline{W}; Z)$ represented by zero section of \overline{B}_i $(i=1, 2, \cdots, q)$ and let

$$h_i: S^{m-k} \to \text{Int } \overline{W}$$
 $i=1, 2, \dots, q$

be mappings such that

$$[h_i(S^{m-k})] = \sum_{j=1}^{q} \xi_{ij} a_j \qquad i = 1, 2, \dots, q.$$

Since B_i admits a cross section $(i=1, 2, \dots, q)$, we may suppose that h_i $(i=1, 2, \dots, q)$ are imbeddings such that

$$h_i(S^{m-k}) \cap h_i(S^{m-k}) = \emptyset$$
 $i \neq j$.

Let $N(h_i)$ be a tubular neighbourhood of $h_i(S^{m-k})$ in Int \overline{W} $(i=1, 2, \dots, q)$ such that

$$N(h_i) \cap N(h_i) = \emptyset$$
 $i \neq j$.

Then it is easy to see that

$$N(h_i) = \bar{B}_{a+i}$$
 $i = 1, 2, \dots, q$.

Denote by \widehat{W} the boundary connected sum of $N(h_1)$, $N(h_2)$, ..., $N(h_a)$ in Int \overline{W} :

$$\hat{W} = N(h_1)
\mid N(h_2)
\mid \cdots
\mid N(h_a) \subset \overline{W}$$
.

Since the natural inclusion map $\hat{W} \to \overline{W}$ is a homotopy equivalence, \overline{W} —Int \hat{W} defines an h-cobordism between $\partial \overline{W}$ and $\partial \hat{W}$. The lemma then follows by Smale's theorem.

In case $m-k \equiv 0 \mod 4$, m even, k = (m/2)-1 or $m-k \equiv 0 \mod 4$, m odd, $\lceil m/2 \rceil - 1$, according to Kervaire $\lceil 5 \rceil$, we have

$$\pi_{m-k-1}(SO(k+1)) \cong Z$$
.

Let us denote $\mu_i = n_i \rho$ $(i=1, 2, \dots, 2q)$, where ρ is a generator of π_{m-k-1} (SO(k+1)). Then the following lemma holds:

LEMMA 6. In case $m-k \equiv 0 \mod 4$, m even, k = (m/2)-1 or $m-k \equiv 0 \mod 4$, m odd, $\lfloor m/2 \rfloor -1$, we have

$$B_1 \sharp B_2 \sharp \cdots \sharp B_q = B_{q+1} \sharp B_{q+2} \sharp \cdots \sharp B_{2q}$$
,

if and only if

$$G.C.D.(n_1, n_2, \dots, n_q) = G.C.D.(n_{q+1}, n_{q+2}, \dots, n_{2q}).$$

PROOF. Let $\bar{\alpha}_i$ be a generator of $H^{m-k}(\bar{B}_i; Z)$ dual to a_i $(i=1, 2, \dots, 2q)$. Then the Pontrjagin class of \bar{B}_i is given by

$$p_{(m-k)/4}(\bar{B}_i) = c n_i \bar{\alpha}_i$$
,

where

$$c = \begin{cases} 12 & m-k=8, \\ 2((2j-1)!) & m-k=4j, \ j \text{ odd } \ge 3, \\ (2j-1)! & m-k=4j, \ j \text{ even } \ge 4, \end{cases}$$

(cf. [7], [10]). Thus it follows that

$$p_{(m-k)/4}(B_i) = cn_i\alpha_i$$

where α_i is a generator of $H^{m-k}(B_i; Z)$ represented by a cross section. Now suppose that there exists a diffeomorphism

$$h: B_{q+1} \sharp B_{q+2} \sharp \cdots \sharp B_{2q} \to B_1 \sharp B_2 \sharp \cdots \sharp B_q$$
,

then we have

$$h^*(\alpha_j) = \sum_{i=1}^{q} \xi_{ij} \alpha_{q+i}$$
 $j = 1, 2, \dots, q$.

where α_i (resp. α_{q+i}) is an element of $H^{m-k}(B_1 \sharp B_2 \sharp \cdots \sharp B_q; Z)$ (resp. $H^{m-k}(B_{q+1} \sharp B_{q+2} \sharp \cdots \sharp B_{2q}; Z)$) represented by a cross section of B_i (resp. B_{q+i}). Obviously we have

(**)
$$\det (\xi_{ij}) = \pm 1.$$

Since

$$h^*(p_{(m-k)/4}(B_1 \sharp \cdots \sharp B_q)) = p_{(m-k)/4}(B_{q+1} \sharp \cdots \sharp B_{2q})$$
,

it follows that

$$\begin{pmatrix} n_{q+1} \\ n_{q+2} \\ \vdots \\ n_{2q} \end{pmatrix} = \begin{pmatrix} \xi_{11} \ \xi_{12} \cdots \xi_{1q} \\ \xi_{21} \ \xi_{22} \cdots \xi_{2q} \\ \vdots \ \vdots \ \vdots \\ \xi_{q1} \ \xi_{q2} \cdots \xi_{qq} \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \\ \vdots \\ n_q \end{pmatrix}.$$

Conversely if there exists a matrix (ξ_{ij}) which satisfies (**), (***), then $B_1 \sharp \cdots \sharp B_q$ and $B_{q+1} \sharp \cdots \sharp B_{2q}$ are diffeomorphic by Lemma 5. On the other hand, the existence of such matrix is equivalent to

$$G.C.D.(n_1, n_2, \cdots, n_q) = G.C.D.(n_{q+1}, n_{q+2}, \cdots, n_{2q})$$
 .

3. Classification of 2n-dimensional case.

Let M^{2n} be a simply-connected closed oriented differentiable 2n-manifolds $(n \ge 6, n \ne 1, 5 \mod 8)$ such that

$$H_q(M^{2n}\,;\,Z) = \left\{ egin{array}{ll} Z & q=0,\; 2n \ Z+Z+\,\cdots\,+Z & q=n-1,\; n+1 \;, \ 0 & ext{otherwise} \;, \end{array}
ight.$$

$$Sa^{2}(H^{n-1}(M^{2n}: Z_{n})) = 0$$
.

and that the condition [T] holds in cases $n \equiv 2$, 3 mod 8. Then, by Proposition 2, Lemmas 1, 4 and 4', M^{2n} has a presentation by a connected sum of elementary manifolds.

According to Kervaire [5], we have isomorphisms and exact sequences as follows:

$$\pi_6(SO(5)) = \pi_6(SO(6)) = 0$$
.

In case $n \equiv 0 \mod 8$, $n \geq 8$,

$$\pi_n(SO(n-1)) = Z_2 + Z_2, \quad \pi_n(SO(n)) = Z_2 + Z_2 + Z_2$$

$$0 \to \pi_n(SO(n-1)) \xrightarrow{\ell_*} \pi_n(SO(n)) \to Z_2 \to 0$$
.

In cases $n \equiv 2$, 6 mod 8, $n \ge 10$,

$$\pi_n(SO(n-1))\cong Z_8$$
, $\pi_n(SO(n))\cong Z_4$,

$$\pi_n(SO(n-1)) \xrightarrow{\ell_*} \pi_n(SO(n)) \to 0$$
.

In cases $n \equiv 3$, 7, mod 8, $n \ge 7$,

$$\pi_n(SO(n-1)) \cong Z$$
, $\pi_n(SO(n)) \cong Z$,

$$0 \to \pi_n(SO(n-1)) \xrightarrow{\ell_*} \pi_n(SO(n)) \to 0.$$

In case $n \equiv 4 \mod 8$, $n \ge 12$,

$$\pi_n(SO(n-1)) \cong Z_2$$
, $\pi_n(SO(n)) \cong Z_2 + Z_2$,

$$0 \to \pi_n(SO(n-1)) \xrightarrow{\ell_*} \pi_n(SO(n)) \to Z_2 \to 0.$$

Denote by B_m (resp. $B_{m,m'}$) the total space of the S^{n-1} -bundle over S^{n+1} with characteristic map $m\rho$ (resp. $m\rho+m'\rho'$) $\in \iota_*\pi_n(SO(n-1))$, where ρ (resp. ρ , ρ') is a system of generators of $\iota_*\pi_n(SO(n-1))$. Then we have closed oriented differentiable 2n-manifolds as follows:

In case n=6,

$$S^7 \times S^5$$
.

In case $n \equiv 0 \mod 8$, $n \geq 8$,

$$B_{m,m'}$$
 $m, m' = 0$ or 1.

In cases $n \equiv 2$, 6 mod 8, $n \ge 10$,

$$B_m \qquad -1 \leq m \leq 2$$
.

In cases $n \equiv 3$, 7 mod 8, $n \ge 7$

$$B_m \qquad m \in Z$$
.

In case $n \equiv 4 \mod 8$, $n \ge 12$

$$B_m = 0, 1.$$

These manifolds are our elementary manifolds. By Lemmas 5, 6, the following relations hold:

In case $n \equiv 0 \mod 8$, $n \ge 8$,

$$B_{m,m'} \sharp B_{m'',m'''} = B_{m,m'} \sharp B_{m+m'',m'+m'''}.$$

In cases $n \equiv 2$, 6 mod 8, $n \ge 10$; $n \equiv 3$, 7 mod 8, $n \ge 7$; $n \equiv 4$ mod 8, $n \ge 12$,

$$B_{m_1} \sharp B_{m_2} \sharp \cdots \sharp B_{m_q} = B_m \sharp B_0 \sharp \cdots \sharp B_0 \qquad m = G.C.D.(m_1, m_2, \cdots, m_q).$$

The groups θ^q have been determined by Kervaire-Milnor [6]:

$$\theta^{12} \cong 0$$
, $\theta^{14} = Z_2$, $\theta^{15} \cong Z_{8128} + Z_2$, $\theta^{16} \cong Z_2$, $\theta^{17} = Z_{16}$, $\theta^{18} = Z_{16}$

etc.

Therefore we obtain the following theorem.

THEOREM 1. Let M^{2n} be a simply-connected closed oriented differentiable 2n-manifold ($n \ge 6$, $n \ne 1$, $5 \mod 8$) such that

$$H_q(M^{2n}\,;\,Z) = \left\{egin{array}{ll} Z & q=0,\;2n\,,\ Z+Z+\,\cdots\,+Z & q=n-1,\;n+1\,,\ 0 & ext{otherwise}, \end{array}
ight.$$

$$Sq^{2}(H^{n-1}(M^{2n}; Z_{2})) = 0$$

and that the condition [T] holds in cases $n \equiv 2$, 3 mod 8. Then M^{2n} has a presentation as follows:

In case n=6,

$$M^{12} = (S^7 \times S^5) \# (S^7 \times S^5) \# \cdots \# (S^7 \times S^5).$$

This presentation is unique.

In case $n \equiv 0 \mod 8$, $n \geq 8$,

$$M^{2n} = B_{m,m'} \sharp (S^{n+1} \times S^{n-1}) \sharp \cdots \sharp (S^{n+1} \times S^{n-1}) \sharp \widetilde{S}^{2n} \qquad m, m' = 0 \text{ or } 1,$$

$$or B_{0,1} \sharp B_{1,0} \sharp (S^{n+1} \times S^{n-1}) \sharp \cdots \sharp (S^{n+1} \times S^{n-1}) \sharp \widetilde{S}^{2n}.$$

In cases $n \equiv 2$, 6 mod 8, $n \ge 10$,

$$M^{2n} = B_m \sharp (S^{n+1} \times S^{n-1}) \sharp \cdots \sharp (S^{n+1} \times S^{n-1}) \sharp \widetilde{S}^{2n} \qquad 0 \leq m \leq 2.$$

In cases $n \equiv 3$, 7 mod 8, $n \ge 7$,

$$M^{2n} = B_m \sharp (S^{n+1} \times S^{n-1}) \sharp \cdots \sharp (S^{n+1} \times S^{n-1}) \sharp \widetilde{S}^{2n} \qquad m \ge 0.$$

This presentation is unique modulo θ^{2n} .

In case $n \equiv 4 \mod 8$, $n \ge 12$,

$$M^{2n} = B_m \# (S^{n+1} \times S^{n-1}) \# \cdots \# (S^{n+1} \times S^{n-1}) \# \widetilde{S}^{2n} \qquad m = 0, 1.$$

In above all cases, $\widetilde{S}^{2n} \in \theta^{2n}$.

COROLLARY 1. The topological manifold $S^7 \times S^5$ admits a unique differentiable structure.

COROLLARY 2. In case n=6, homotopy, homeomorphy and diffeomorphy classification are the same.

Since rational Pontrjagin classes are invariants of combinatorial structures compatible with differentiable structures [12], we have

COROLLARY 3. In cases $n \equiv 3$, 7 mod 8, $n \ge 7$, the compatible combinatorial structures are characterized by Betti numbers and Pontrjagin classes.

4. Classification of (2n+1)-dimensional case.

Let M^{2n+1} be a simply-connected closed oriented differentiable (2n+1)-manifold $(n \ge 7, n \ne 1, 5 \mod 8)$ such that

$$H_q(M^{2n+1};Z) = \left\{ egin{array}{ll} Z & q=0,\ 2n+1,\ Z+Z+\cdots+Z & q=n-1,\ n+2,\ 0 & ext{otherwise,} \end{array}
ight.$$

and that the condition [T] holds in cases $n \equiv 2$, 3 mod 8. Then, by Proposition 2, Lemmas 1, 4 and 4', M^{2n+1} has a presentation by a connected sum of elementary manifolds.

According to Kervaire [5], we have isomorphisms and exact sequences as follows:

$$\pi_8(SO(6))\cong Z_{24}$$
 , $\pi_8(SO(7))\cong Z_2+Z_2$,
$$\pi_8(SO(6))\stackrel{\iota_*}{-\!\!\!-\!\!\!-\!\!\!-}\pi_8(SO(7))\to Z_2\to 0\;.$$

In case $n \equiv 0 \mod 8$, $n \ge 8$,

$$\pi_{n+1}(SO(n-1))\cong Z_2+Z_2\;,\qquad \pi_{n+1}(SO(n))\cong Z_2+Z_2+Z_2\;,$$

$$0\to \pi_{n+1}(SO(n-1))\stackrel{\ell_*}{\longrightarrow} \pi_{n+1}(SO(n))\to Z_2\to 0\;.$$

In cases $n \equiv 2$, 6, mod 8, $n \ge 10$,

$$\pi_{n+1}(SO(n-1))\cong Z+Z_2$$
 ,
$$\pi_{n+1}(SO(n))\cong Z$$
 ,
$$\pi_{n+1}(SO(n-1))\stackrel{\ell_*}{\longrightarrow} \pi_{n+1}(SO(n))\to 0 \ .$$

In case $n \equiv 3 \mod 8$, $n \ge 11$,

$$\pi_{n+1}(SO(n-1))\cong Z_{12}$$
 , $\pi_{n+1}(SO(n))\cong Z_2$,
$$\pi_{n+1}(SO(n-1))\stackrel{\iota_*}{\longrightarrow} \pi_{n+1}(SO(n))\to Z_2\to 0 \ .$$

In case $n \equiv 4 \mod 8$, $n \ge 12$,

$$\begin{split} \pi_{n+1}(SO(n-1)) &\cong Z_2 + Z_2 \text{ , } \qquad \pi_{n+1}(SO(n)) \cong Z_2 + Z_2 \text{ ,} \\ 0 &\to \pi_{n+1}(SO(n-1)) \xrightarrow{\ell_*} \pi_{n+1}(SO(n)) \to 0 \text{ .} \end{split}$$

In case $n \equiv 7 \mod 8$, $n \ge 15$,

$$\pi_{n+1}(SO(n-1)) \cong Z_{12} + Z_2 \; , \qquad \pi_{n+1}(SO(n)) \cong Z_2 + Z_2 \; \text{,} \label{eq:pinn}$$

$$\pi_{n+1}(SO(n-1)) \xrightarrow{\ell_*} \pi_{n+1}(SO(n)) \to Z_2 \to 0$$
.

Denote by B_m (resp. $B_{m,m'}$) the total space of the S^{n-1} -bundle over S^{n+2} with characteristic map $m\rho$ (resp. $m\rho+m'\rho'$) $\in \iota_*\pi_{n+1}(SO(n-1))$, where ρ (resp. ρ , ρ') is a system of generators of $\iota_*\pi_{n+1}(SO(n-1))$. Then we have closed oriented differentiable (2n+1)-manifolds follows:

In cases $n \equiv 0$, 4 mod 8, $n \ge 8$,

$$B_{m,m'}$$
 m, $m' = 0$ or 1.

In cases $n\equiv 2$, 6 mod 8, $n\geqq 10$, $B_m \qquad m\in Z\,.$

$$B_m \qquad m \in Z$$

$$S^{n+2} \times S^{n-1}$$

In case $n \equiv 3 \mod 8$, $n \ge 11$, $S^{n+2} \times S^{n-1}$. In case $n\equiv 7 \mod 8, \ n \geq 7,$ $B_m \qquad m=0, \ 1.$

$$B_m \qquad m=0, 1.$$

These manifolds are our elementary manifolds. By Lemmas 5, 6, the following relations hold:

In cases $n \equiv 0$, 4 mod 8, $n \ge 8$,

$$B_{m,m'} \# B_{m'',m'''} = B_{m,m'} \# B_{m+m'',m'+m'''}$$
.

In cases $n \equiv 2$, 6 mod 8, $n \ge 10$; $n \equiv 7 \mod 8$, $n \ge 7$,

$$B_{m_1} \sharp B_{m_2} \sharp \cdots \sharp B_{m_d} = B_m \sharp B_0 \sharp \cdots \sharp B_0 \qquad m = G.C.D. \ (m_1, m_2, \cdots, m_d).$$

Therefore we obtain the following theorem.

Theorem 2. Let M^{2n+1} be a simply-connected closed oriented differentiable (2n+1)-manifold $(n \ge 7, n \ne 1, 5 \mod 8)$ such that

$$H_q(M^{2n+1};Z) = \left\{ egin{array}{ll} Z & q=0,\ 2n+1\ Z+Z+\cdots+Z & q=n-1,\ n+2\ 0 & ext{otherwise,} \end{array}
ight.$$
 $m{\Phi}(H^{n-1}(M^{2n+1};Z_0)) = 0$

and that the condition [T] holds in cases $n \equiv 2$, 3 mod 8. Then M^{2n+1} has a presentation as follows:

In cases $n \equiv 0$, 4 mod 8, $n \ge 8$,

$$M^{2n+1} = B_{m,m'} \sharp (S^{n+2} \times S^{n-1}) \sharp \cdots \sharp (S^{n+2} \times S^{n-1}) \sharp \widetilde{S}^{2n+1} \qquad m, m' = 0 \text{ or } 1,$$

$$or \quad B_{0,1} \sharp B_{1,0} \sharp (S^{n+2} \times S^{n-1}) \sharp \cdots \sharp (S^{n+2} \times S^{n-1}) \sharp \widetilde{S}^{2n+1}.$$

In cases $n \equiv 2$, 6 mod 8, $n \ge 10$,

$$M^{2n+1} = B_m \sharp (S^{n+2} \times S^{n-1}) \sharp \cdots \sharp (S^{n+2} \times S^{n-1}) \sharp \widetilde{S}^{2n+1} \qquad m \ge 0.$$

This presentation is unique modulo θ^{2n+1} . In case $n \equiv 3 \mod 8$, $n \ge 11$,

$$M^{2n+1} = (S^{n+2} \times S^{n-1}) \# (S^{n+2} \times S^{n-1}) \# \cdots \# (S^{n+2} \times S^{n-1}) \# \widetilde{S}^{2n+1}.$$

This presentation is unique modulo θ^{2n+1} .

In case $n \equiv 7 \mod 8$, $n \geq 7$,

$$M^{2n+1} = B_m \# (S^{n+2} \times S^{n-1}) \# \cdots \# (S^{n+2} \times S^{n-1}) \# \widetilde{S}^{2n+1} \qquad m = 0, 1.$$

In above all cases $\tilde{S}^{2n+1} \in \theta^{2n+1}$.

COROLLARY 4. In cases $n \equiv 2$, 6 mod 8, $n \ge 10$, the compatible combinatorial structures are characterized by Betti numbers and Pontrjagin classes.

COROLLARY 5. In case $n \equiv 3 \mod 8$, $n \ge 11$, homotopy and homeomorphy classifications are the same, which are characterized by Betti numbers.

5. Uniqueness.

Let B be the total space of a S^{n-1} -bundle over S^{n+1} and \overline{B} the total space of the D^n -bundle over S^{n+1} associated with B ($n \equiv 3, 5, 6, 7 \mod 8$). Suppose that

$$B \sharp (S^{n+1} \times S^{n-1}) \sharp \cdots \sharp (S^{n+1} \times S^{n-1}) \sharp \widetilde{S}^{2n}$$

= $B \sharp (S^{n+1} \times S^{n-1}) \sharp \cdots \sharp (S^{n+1} \times S^{n-1})$,

where $\widetilde{S}^{2n} \in \theta^{2n}$. Then there exists a diffeomorphism

$$\phi: B \# (S^{n+1} \times S^{n-1}) \# \cdots \# (S^{n+1} \times S^{n-1}) - \text{Int } D^{2n}$$

$$\to B \# (S^{n+1} \times S^{n-1}) \# \cdots \# (S^{n+1} \times S^{n-1}) - \text{Int } D^{2n}$$

such that

$$\widetilde{S}^{2n}\!=\!D^{2n}igcup_{\phi'}D^{2n}$$
 ,

where

$$\phi' = \phi \mid \partial (B \# (S^{n+1} \times S^{n-1}) \# \cdots \# (S^{n+1} \times S^{n-1}) - \text{Int } D^{2n}).$$

Let W be the closed oriented differentiable (2n+1)-manifold with boundary obtained from two copies of $\bar{B} \not \mid (S^{n+1} \times D^n) \not \mid \cdots \not \mid (S^{n+1} \times D^n)$ glueing their boundaries by ϕ . Then obviously we have

$$\partial W = \tilde{S}^{2n}$$
.

It is easy to see that

$$H_q(W;Z) = \left\{egin{array}{ll} Z & q=0 \ Z+Z+\cdots+Z & q=n,\;n+1 \ 0 & ext{otherwise.} \end{array}
ight.$$

Each element of $H_n(W; Z)$ is represented by an imbedded *n*-sphere whose normal bundle is trivial, since $\pi_{n-1}(SO(n+1)) = 0$. Therefore, by surgery [6], \tilde{S}^{2n}

bounds a contractible manifold. Hence we obtain the following lemma.

LEMMA 7. In cases $n \equiv 3, 5, 6, 7 \mod 8$,

$$B \sharp (S^{n+1} \times S^{n-1}) \sharp \cdots \sharp (S^{n+1} \times S^{n-1}) \sharp \widetilde{S}^{2n}$$

$$= B \sharp (S^{n+1} \times S^{n-1}) \sharp \cdots \sharp (S^{n+1} \times S^{n-1}), \qquad \widetilde{S}^{2n} \in \theta^{2n}$$

implies

$$\tilde{S}^{2n} = S^{2n}.$$

Now let B' be the total space of a S^{n-1} -bundle over S^{n+2} , then we obtain the following lemma similarly.

LEMMA 8. In cases $n \equiv 3, 5, 6, 7 \mod 8$,

$$B' \sharp (S^{n+2} \times S^{n-1}) \sharp \cdots \sharp (S^{n+2} \times S^{n-1}) \sharp \widetilde{S}^{2n+1}$$

$$= B' \sharp (S^{n+2} \times S^{n-1}) \sharp \cdots \sharp (S^{n+2} \times S^{n-1}), \qquad \widetilde{S}^{2n+1} \in \theta^{2n+1},$$

implies

$$\tilde{S}^{2n+1} = S^{2n+1}$$
.

By Lemmas 7 and 8, we have the following theorem.

THEOREM 3. (i) The presentation in cases $n \equiv 3, 7 \mod 8, n \ge 7$ of Theorem 1 is unique.

- (ii) The presentation in case $n \equiv 6 \mod 8$, $n \ge 10$ of Theorem 2 is unique.
- (iii) The presentation in case $n \equiv 3 \mod 8$, $n \ge 11$ of Theorem 2 is unique.

COROLLARY 6. In case $n \equiv 3 \mod 8$, $n \ge 11$, the topological manifold $S^{n+2} \times S^{n-1}$ admits exactly the same number of differentiable structure as S^{2n+1} .

COROLLARY 7. (i) In cases $n \equiv 3$, 7 mod 8, $n \ge 7$ the topological manifold $S^{n+1} \times S^{n-1}$ admits at least differentiable structures of order of θ^{2n} .

(ii) In case $n \equiv 6 \mod 8$, $n \ge 10$, the topological manifold $S^{n+2} \times S^{n-1}$ admits at least differentiable structures of order of θ^{2n+1} .

Let us consider a diagram

where

$$P\alpha = [\alpha, \ \iota_{n-1}],$$

$$P = -J\Delta, \quad EJ = -J\iota_*.$$

Let B_{λ} be the total space of the S^{n-1} -bundle over S^{q+1} with characteristic map $\iota_*(\lambda) \in \pi_q(SO(n))$. Then, according to Whitehead-James [14], B_{λ} and $B_{\lambda'}$, have the same homotopy type, if and only if

$$lJ\lambda = \pm lJ\lambda'$$
,

where $l: J\pi_q(SO(n-1)) \to J\pi_q(SO(n-1))/P\pi_{q+1}(S^{n-1})$. Since $J: \pi_8(SO(7)) \to \pi_{15}(S^7)$ $\cong Z_2 + Z_2 + Z_2$ is injective, B_1 in case n=7 of Theorem 2 has a different homotopy type as $S^9 \times S^6$. Hence by Theorem 2 and Lemma 8 we have

COROLLARY 8. The topological manifold $S^9 \times S^6$ admits exactly 16256 differentiable structures.

Similarly, $B_{0,1}$, $B_{1,0}$ and $B_{1,1}$ in case n=8 of Theorem 1 have different homotopy types as $S^9 \times S^7$. On the other hand, by the method in the proof of Lemma 7, it is proved that $(S^9 \times S^7) \sharp \tilde{S}^{16} = S^9 \times S^7$, $\tilde{S}^{16} \in \theta^{16}$ implies $\tilde{S}^{16} = S^{16}$. Hence by Theorem 1, we have

COROLLARY 9. The topological manifold $S^9 \times S^7$ admits exactly 2 differentiable structures.

6. Some more complicated cases.

Let M^{2n} be a torsion free, (n-2)-connected closed oriented differentiable 2n-manifold $(n \ge 6, n \ne 1, 5 \mod 8)$ such that

$$Sq^{2}(H^{n-1}(M^{2n}; Z_{2})) = 0$$

and that the tubular neighbourhood of any imbedding of S^{n+1} in M^{2n} is trivial in cases $n \equiv 2$, 3 mod 8. (It is easy to see that this triviality condition is homotopy type invariant by the following argument and Lemma S of section 2.) Then, by Smale's theorem, M^{2n} has a decomposition by handles:

$$M^{2n} = D^{2n} \cup (D_1^{n-1} \times D_1^{n+1}) \cup \cdots \cup (D_r^{n-1} \times D_r^{n+1}) \cup (D_1^n \times D_1^n) \cup \cdots$$

$$\cup (D_{r'}^n \times D_{r'}^n) \cup (D_1^{n+1} \times D_1^{n-1}) \cup \cdots \cup (D_r^{n+1} \times D_r^{n-1}) \cup D^{2n},$$

where r (resp. r') is the Betti number of dimensions n-1, n+1 (resp. n). Let $a_1, a_2, \dots, a_r \in H_{n-1}(M^{2n}; Z)$, $b_1, b_2, \dots, b_r \in H_{n+1}(M^{2n}; Z)$ be bases whose intersection numbers are

$$a_i \circ b_i = \delta_{ii}$$
.

Let W denote the handlebody as follows:

$$W=D^{2n}\cup(D_1^{n-1} imes D_1^{n+1})\cup\cdots\cup(D_r^{n-1} imes D_r^{n+1})$$

$$\cup(D_1^n imes D_1^n)\cup\cdots\cup(D_{r'}^n imes D_{r'}^n)\subset M$$

then we have

$$W \cong S_1^{n-1} \vee S_2^{n-1} \vee \cdots \vee S_r^{n-1} \vee S_1^n \vee S_2^n \vee \cdots \vee S_r^n$$

Let

$$f_i: S^{n-1} \rightarrow \operatorname{Int} W \qquad i = 1, 2, \dots, r$$
, $h_i: S^n \rightarrow \operatorname{Int} W \qquad i = 1, 2, \dots, r'$

be mappings such that

$$[f_i(S^{n-1})] = a_i$$
 $i = 1, 2, \dots, r$

and that $[h_i(S^n)]$ $(i=1,2,\cdots,r')$ is a basis of $H_n(W;Z)$. By Whitney's imbedding theorem, we may assume that f_i $(i=1,2,\cdots,r)$ and h_i $(i=1,2,\cdots,r')$ are imbeddings and that

$$f_i(S^{n-1}) \cap f_j(S^{n-1}) = \emptyset \qquad i \neq j$$
, $f_i(S^{n-1}) \cap h_j(S^n) = \emptyset$ $h_i(S^n) \cap h_0(D^{2n}) = h_i(D^n_-) \qquad i = 1, 2, \dots, r'$, $h_i(D^n_+) \cap h_j(D^n_+) = \emptyset \qquad i \neq j$,

where $h_0: D^{2n} \to \text{Int } W - \sum_{i=1}^r f_i(S^{n-1})$ is an imbedding and D^n_+ (resp. D^n_-) denotes the upper (resp. lower) hemi-sphere of S^n . Let $N(f_i)$ $(i=1,2,\cdots,r)$ and $N(h_i)$ $(i=1,2,\cdots,r')$ be tubular neighbourhood of f_i and h_i respectively such that

$$N(f_i) \cap N(f_j) = \emptyset$$
 $i \neq j$, $N(f_i) \cap (N(h_j) \cup h_0(D^{2n})) = \emptyset$, $N(h_j) \cap N(h_j) \subset h_0(D^{2n})$ $i \neq j$.

Then $W' = h_0(D^{2n}) \cup N(h_1) \cup \cdots \cup N(h_{r'})$ is a handlebody. Since the natural imbedding

$$N(f_1)

| N(f_2) | \dots | N(f_r) | W' \rightarrow \text{Int } W$$

is a homotopy equivalence, W—Int $(N(f_1) \not \mid \cdots \not \mid N(f_r) \not \mid W')$ defines the h-cobordism between ∂W and $\partial N(f_1) \not \mid \cdots \not \mid \partial N(f_r) \not \mid \partial W'$, which implies by Smale's theorem that

$$W = N(f_1)
\mid N(f_2)
\mid \cdots \mid N(f_r)
\mid W'$$
.

Hence the following decomposition holds:

$$M^{2n}-\operatorname{Int} D^{2n}=(N(f_1) \natural \cdots \natural N(f_r) \natural W') \cup (D_1^{n+1} \times D_1^{n-1}) \cup \cdots \cup (D_r^{n+1} \times D_r^{n-1}).$$

We may suppose that the handle $D_i^{n+1} \times D_i^{n-1}$ represents b_i ($i=1,2,\cdots,r$). Let

$$g_i: \partial D_i^{n+1} \times D_i^{n-1} \rightarrow \partial N(f_1) \# \cdots \# \partial N(f_r) \# \partial W'$$
 $i = 1, 2, \dots, r$

be attaching maps of handles $(D_i^{n+1} \times D_i^{n-1})$, then, since $\partial W' \simeq S^{2n-1}$, $g_i | \partial D_i^{n+1} \times 0$ is homotopic to a natural imbedding of the fibre in the total space. Making use of the method as in section 1, it follows that

$$M^{2n}$$
-Int $D^{2n} = (N(f_1) \otimes B_1)
ot \cdots
ot (N(f_r) \otimes B_r)
ot W'$,

where B_i is the total space of a D^{n-1} -bundle over S^{n+1} $(i=1, 2, \dots, r)$. By Lemmas 4 and 4', we have $\partial(N(f_i) \otimes B_i) = S^{2n-1}$ $(i=1, 2, \dots, r)$, which implies

 $\partial W' = S^{2n-1}$.

Therefore we obtain the following theorem.

Theorem 4. Let M^{2n} be a differentiable manifold as above, then we have a connected sum decomposition

$$M^{2n} = M' \sharp M''$$
 ,

where M' is a differentiable manifold as in Theorem 1 and M'' is an (n-1)connected closed oriented differentiable 2n-manifold.

Let M^{2n+1} be a torsion free, (n-2)-connected closed oriented differentiable (2n+1)-manifold $(n \ge 7, n \ne 1, 5 \mod 8)$ such that

$$Sq^2(H^{n-1}(M^{2n+1}\,;\,Z_2))=0$$
 , $Sq^2(H^n(M^{2n+1}\,;\,Z_2))=0$, $extstyle \Phi(H^{n-1}(M^{2n+1}\,;\,Z_2))=0$

and that the tubular neighbourhood of any imbedding of S^{n-1} (resp. S^n) in M^{2n} is trivial in cases $n \equiv 2$, 3 mod 8 (resp. in case $n \equiv 1 \mod 8$). Then the following theorem holds.

Theorem 5.
$$M^{2n+1} = M' \# M''$$
,

where M' is a differentiable manifold as in Theorem 2 and M' is a torsion free, (n-1)-connected closed oriented differentiable (2n+1)-manifold.

The proof is similar as that of Theorem 4. So we omit it.

Particularly, by Theorem 5 and [11; Theorem 7], we have the following theorem.

Theorem 6. Let M^{15} be a torsion free, 5-connected closed oriented differentiable 15-manifold whose Steenrod operations and the secondary operation Φ vanish. Then we have

$$M^{15} = B_m \# B'_{m'} \# (S^9 \times S^6) \# \cdots \# (S^9 \times S^6) \# (S^8 \times S^7) \# \cdots \# (S^8 \times S^7) \# \widetilde{S}^{15},$$

$$\{ \widetilde{S}^{15} \} \in \theta^{15} / m' (\theta^{15} (\partial \pi)) \qquad m' \text{ odd },$$

$$\in \theta^{15} / (m'/2) (\theta^{15} (\partial \pi)) \qquad m' \text{ even }.$$

where B_m is a differentiable manifold in case n=7 of Theorem 2, B'_m is the total space of a S^7 -bundle over S^8 whose characteristic map is $m'\iota_*(\rho')$ (ρ' : a generator of $\pi_7(SO(7))$ and $\theta^{15}(\partial \pi)$ is the subgroup of θ^{15} consisting of elements which bound π -manifolds. This presentation is unique.

Uniqueness follows from [11; Theorem 7], making use of the surgery as in section 5.

University of Tokyo

References

- [1] J. Adem, The iteration of the Steenrod square in algebraic topology, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 720-726.
- [2] R. Bott, The stable homotopy of the classical groups, Ann. of Math., 70 (1959), 313-337.
- [3] A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv., 36 (1961), 47-82.
- [4] P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc., 30 (1955), 154-172.
- [5] M. Kervaire, Some non-stable homotopy groups of Lie groups, Illinois J. Math., 4 (1960), 161-169.
- [6] M. Kervaire and J. Milnor, Groups of homotopy spheres, I, Ann. of Math., 77 (1963), 504-537.
- [7] J. Milnor, Some consequences of a theorem of Bott, Ann. of Math., 68 (1958), 444-449.
- [8] J. Milnor, Differentiable structures on spheres, Amer. J. Math., 81 (1959), 962-972.
- [9] S. Smale, On the structure of manifolds, Amer. J. Math., 84 (1962), 387-399.
- [10] I. Tamura, On Pontrjagin classes and homotopy types of manifolds, J. Math. Soc. Japan, 9 (1957), 250-262.
- [11] I. Tamura, Classification des variétés différentiables, (n-1)-connexes, sans torsion, de dimension 2n+1, Séminaire Cartan 1962/63.
- [12] R. Thom, Les classes caractéristiques de Pontrjagin des variétés triangulées, Symposium international de topologia algebraica, Mexico, 1958, 54-67.
- [13] C. T. C. Wall, Classification problems in differential topology, I, II, Q, III, IV, VI, Topology, 2 (1963), 253-262, 263-272, 281-298, 3 (1965) 291-304, 5 (1966), 73-94, 6 (1967) 273-296.
- [14] J. H. C. Whitehead and I. M. James, The homotopy theory of sphere bundles over spheres, Proc. London Math. Soc., 4 (1954), 196-218.
- [15] H. Whitney, The self-intersections of a smooth *n*-manifold in 2*n*-space, Ann. of Math., 45 (1944), 220-246.