On a certain invariant of the groups of type \boldsymbol{E}_{6} and \boldsymbol{E}_{7}

Dedicated to Professor S. Iyanaga on his 60th birthday

By Ichiro SATAKE*

(Received Aug. 10, 1967)

In my recent paper [9], I have introduced an invariant $\gamma(G)$ for a connected semi-simple algebraic group G, which generalizes the classical invariants of Hasse and of Minkowski-Hasse, and have shown that, for a classical simple group $G, \gamma(G)$ can actually be determined explicitly in terms of these classical invariants ${ }^{11}$. For exceptional groups, however, I gave only a very brief indication for the case where the ground field is a local field or an algebraic number field ([9], 250-251). The purpose of this note ${ }^{2}$ is to give a more comprehensive account for a more general case, establishing a principle which enables us to reduce the determination of $\gamma(G)$ for an exceptional group G to that for a suitably chosen classical subgroup G^{\prime} of G defined over the same ground field. The existence of such a subgroup G^{\prime} will be ascertained for the groups of type E_{6} and E_{7} constructed recently by Tits [12].

1. Throughout this paper, k is a field of characteristic zero, (though it seems likely that most of our results remain true over any perfect field of characteristic different from 2 and 3). \bar{k} is a fixed algebraic closure of k and $q=\operatorname{Gal}(\bar{k} / k)$ is the Galois group of \bar{k} / k operating on \bar{k} from the right. For an algebraic group G defined over k, we write the Galois cohomology set or group $H^{i}\left(G, G_{\bar{k}}\right)(i=1,2)$ as $H^{i}(k, G) . \quad \mathbf{E}_{n}=\left\{\zeta_{n}\right\}$ is the group of all n-th roots of unity contained in \vec{k}. In principle, we follow the notation in [9].

Let G_{1} be an algebraic group defined over k. By an inner k-form of G_{1},

[^0]we understand a pair (G, f) formed of an algebraic group G defined over k and a \bar{k}-isomorphism f of G onto G_{1} such that $f^{\sigma} \circ f^{-1}$ is an inner automorphism of G_{1} for every $\sigma \in G$. To such a pair (G, f), we associate an element $\gamma(G, f)$ in $H^{2}\left(k, Z_{1}\right)$, where Z_{1} is the center of G_{1}, as follows. Put
$$
f^{\sigma} \circ f^{-1}=I_{g_{\sigma}} \quad \text { and } \quad \delta\left(g_{\sigma}\right)=g_{\sigma}^{\tau} g_{\tau} g_{\sigma \tau}^{-1}=c_{\sigma, \tau},
$$
where $g_{\sigma} \in\left(G_{1}\right)_{\bar{k}}$ and $I_{g \sigma}$ denotes the inner automorphism of G_{1} defined by $I_{g \sigma}(g)$ $=g_{\sigma} g g_{\sigma}^{-1}$ for $g \in G_{1}$. Then it is clear that $\left(c_{\sigma, \tau}\right)$ is a 2 -cocycle of g in $\left(Z_{1}\right)_{\bar{k}}$, whose cohomology class is uniquely determined, independently of the choice of the 1 -cochain $\left(g_{\sigma}\right)$. (We always take it implicitly that all cochains we consider are \vec{k}-rational and continuous in the sense of Krull topology on G.) We denote the cohomology class of $\left(c_{\sigma, \tau}\right)$ by $\gamma_{k}(G, f)$ or simply by $\gamma(G, f)$ whenever k is tacitly fixed.

Two inner k-forms (G, f) and (G^{\prime}, f^{\prime}) of G_{1} are said to be i-equivalent if there exists a k-isomorphism φ of G onto G^{\prime} such that $f^{\prime} \circ \varphi \circ f^{-1}$ is an inner automorphism of G_{1}. It is immediate that the cohomology class $\gamma(G, f)$ depends only on the i-equivalenc class of (G, f).

In the case where G_{1} is a connected reductive algebraic group, the number of i-equivalence classes of inner k-forms of G_{1} contained in a k-isomorphism class of k-forms of G_{1} (in the ordinary sense) is finite. Moreover, it is known ([9], p. 242) that, for any connected semi-simple algebraic group G defined over k, there exists an inner k-form (G_{1}, f^{-1}) of G such that G_{1} is of Steinberg type, and the i-equivalence class of such $\left(G_{1}, f^{-1}\right)$ is uniquely determined by G. Hence, in this case, we define the inveriant $\gamma(G)$ by setting $\gamma(G)=\gamma\left(G_{1}, f^{-1}\right)$ $\in H^{2}(k, Z), Z$ denoting the center of G. If one denotes by f^{*} the isomorphism of $H^{2}(k, Z)$ onto $H^{2}\left(k, Z_{1}\right)$ induced in a natural way by f, then one has

$$
\begin{equation*}
\gamma(G)=f^{*-1}(\gamma(G, f)) . \tag{1}
\end{equation*}
$$

(Note that f induces on $Z_{\bar{k}}$ a G-isomorphism $Z_{\bar{k}} \rightarrow\left(Z_{1}\right) \overline{\bar{c}}$.)
Example. $G=S L\left(m, \Omega_{r}\right)$, where Ω_{r} is a normal division algebra of degree r over k. Let f be a \vec{k}-isomorphism of G onto $G_{1}=S L(m r)$ determined by the (unique) irreducible representation of Ω_{r} (as an associative algebra). Then (G_{1}, f^{-1}) is an inner k-form of G as described above, and through the natural identification $Z \cong Z_{1}=\mathbf{E}_{m r}$ (induced by f), one has $\gamma(G)=c\left(\mathscr{\Omega}_{r}\right) \in H^{2}\left(k, \mathbf{E}_{m r}\right)$ (where $c\left(\Omega_{r}\right)$ denotes the "Hasse invariant" of Ω_{r}).
2. The following lemma is fundamental.

Lemma 1. Let G_{1} and G_{1}^{\prime} be algebraic groups defined over k, and let φ_{1} be a k-morphism of G_{1}^{\prime} into G_{1}. Suppose there is a k-closed subgroup $G_{1}^{\prime \prime}$ of G_{1} such that, denoting by $Z_{1}, Z_{1}^{\prime}, Z_{1}^{\prime \prime}$ the center of $G_{1}, G_{1}^{\prime}, G_{1}^{\prime \prime}$, respectively, one has

$$
\begin{equation*}
Z_{G_{1}}\left(\varphi_{1}\left(G_{1}^{\prime}\right)\right)=\varphi_{1}\left(Z_{1}^{\prime}\right) \cdot G_{1}^{\prime \prime}, \tag{i}
\end{equation*}
$$

$Z_{G_{1}}(\cdots)$ denoting the centralizer of \cdots in G_{1};
(ii)

$$
\varphi_{1}\left(Z_{1}^{\prime}\right)=Z_{1} \times Z_{1}^{\prime \prime} \quad(\text { direct product })
$$

(iii) the natural map $H^{1}\left(k, G_{1}^{\prime \prime} / Z_{1}^{\prime \prime}\right) \xrightarrow{\Delta} H^{2}\left(k, Z_{1}^{\prime \prime}\right)$ is bejective. Let further $\left(G^{\prime}, f^{\prime}\right)$ be an inner k-form of G_{1}^{\prime}. Then:

1) There exist an inner k-form (G, f) of G_{1} and a k-morphism φ of G^{\prime} into G such that one has $f \circ \varphi=\varphi_{1} \circ f^{\prime}$.
2) If $(\bar{G}, \bar{f}, \bar{\varphi})$ is another triple satisfying the same condition as (G, f, φ), then there is a \bar{k}-isomorphism ψ of G onto \bar{G} such that $\bar{\varphi}=\psi \circ \varphi, \bar{f} \circ \psi \circ f^{-1}$ is an inner automorphism of G_{1}, and $\psi^{\sigma} \circ \psi^{-1}=I_{d_{\sigma}^{\prime \prime}}$ where ($d_{\sigma}^{\prime \prime}$) is a 1-cocycle of \mathcal{G}^{\prime} in $\bar{f}^{-1}\left(Z_{1}^{\prime \prime}\right)_{\bar{k}}$.
3) For any inner k-form (G, f) of G_{1} satisfying the condition in 1), $\gamma(G, f)$. coincides with the Z_{1}-part of $\varphi_{1}^{*}\left(\gamma\left(G^{\prime}, f^{\prime}\right)\right)$ in the direct decomposition (ii), where φ_{1}^{*} denotes the natural homomorphism of $H^{2}\left(k, Z_{1}^{\prime}\right)$ into $H^{2}\left(k, \varphi_{1}\left(Z_{1}^{\prime}\right)\right)$ induced' by φ_{1}.

Proof. 1) Put $f^{\prime \sigma} \circ f^{\prime-1}=I_{g_{\sigma}^{\prime}}, g_{\sigma}^{\prime} \in\left(G_{1}^{\prime}\right) \overline{\bar{k}}$, and $\delta\left(g_{\sigma}^{\prime}\right)=c_{\sigma, \tau}^{\prime} \in Z_{1}^{\prime} . \quad$ By (ii) one has

$$
\begin{equation*}
\varphi_{1}\left(c_{\sigma, \tau}^{\prime}\right)=c_{\sigma, \tau} \cdot c_{\sigma, \tau}^{\prime \prime-1}, \tag{2}
\end{equation*}
$$

where $\left(c_{\sigma, \tau}\right)$ and ($c_{\sigma, \tau}^{\prime \prime}$) are (uniquely determined) 2-cocycles of G in Z_{1} and $Z_{1}^{\prime \prime}$, respectively. By (iii) (the surjectivity), there exists $g_{\sigma}^{\prime \prime} \in\left(G_{1}^{\prime \prime}\right)_{\bar{k}}$ such that $\delta\left(g_{\sigma}^{\prime \prime}\right)$ $=c_{\sigma, \tau}^{\prime \prime}$. Put

$$
g_{\sigma}=\varphi_{1}\left(g_{\sigma}^{\prime}\right) \cdot g_{\sigma}^{\prime \prime} ;
$$

then by (i) one has $\delta\left(g_{\sigma}\right)=c_{\sigma, \tau}$. Hence there is an inner k-form (G, f) of G_{r} such that $f^{\sigma} \circ f^{-1}=I_{g}$. Put $\varphi=f^{-1} \circ \varphi_{1} \circ f^{\prime}$. Then, for every $\sigma \in \mathcal{G}$, one has

$$
\varphi^{\sigma}=f^{-\sigma} \circ \varphi_{1} \circ f^{\prime \sigma}=f^{-1} \circ I_{g_{\sigma}}^{-1} \circ \varphi_{1} \circ I_{g_{\sigma}^{\prime}} \circ f^{\prime}=f^{-1} \circ I_{g_{\sigma}^{-1}} \cdot \varphi_{1}\left(g_{\sigma}^{\prime}\right) \circ \varphi_{1} \circ f^{\prime}
$$

Since by (i) one has $g_{\sigma}^{-1} \cdot \varphi_{1}\left(g_{\sigma}^{\prime}\right) \in G_{1}^{\prime \prime} \subset Z_{G_{1}}\left(\varphi_{1}\left(G_{1}^{\prime}\right)\right)$, one has $\varphi^{\sigma}=\varphi$, i.e. φ is defined over k. (Note that the converse of this is also true).
2) Let $(\bar{G}, \bar{f}, \bar{\varphi})$ be another triple satisfying the conditions stated in 1), and put $\bar{f}^{\sigma} \circ \bar{f}^{-1}=I_{\bar{g} \sigma}, \delta\left(\bar{g}_{\sigma}\right)=\bar{c}_{\sigma, \tau}$ with $\bar{g}_{\sigma} \in\left(G_{1}\right)_{\bar{k}}, \bar{c}_{\sigma, \tau} \in Z_{1}$. As we have just noted above, $\bar{\varphi}^{\sigma}=\bar{\varphi}(\sigma \in G)$ implies that $\bar{g}_{\sigma}^{-1} \cdot \varphi_{1}\left(g_{\sigma}^{\prime}\right) \in Z_{G_{1}}\left(\varphi_{1}\left(G_{1}^{\prime}\right)\right)$. Hence, by (i), one may put

$$
\bar{g} \bar{\sigma}^{-1} \cdot \varphi_{1}\left(g_{\sigma}^{\prime}\right)=\varphi_{1}\left(c_{\sigma}^{\prime}\right) \cdot \bar{g}_{\sigma}^{\prime \prime-1} \quad \text { or } \quad \bar{g}_{\sigma}=\varphi_{1}\left(c_{\sigma}^{\prime-1} g_{\sigma}^{\prime}\right) \cdot \bar{g}_{\sigma}^{\prime \prime}
$$

with $c_{\sigma}^{\prime} \in\left(Z_{1}^{\prime}\right)_{\bar{k}}$ and $\bar{g}_{\sigma}^{\prime \prime} \in\left(G_{1}^{\prime \prime}\right)_{\bar{k}}$. Then one has

$$
\bar{c}_{\sigma, \tau}=\delta\left(\varphi_{1}\left(c_{\sigma}^{\prime}\right)\right)^{-1} \cdot \varphi_{1}\left(c_{\sigma, \tau}^{\prime}\right) \cdot \delta\left(\bar{g}_{\sigma}^{\prime \prime}\right),
$$

which, by (i), (ii), implies that $\delta\left(\bar{g}_{\sigma}^{\prime \prime}\right) \in G_{1}^{\prime \prime} \cap \varphi_{1}\left(Z_{1}^{\prime}\right)=Z_{1}^{\prime \prime}$. Writing $\varphi_{1}\left(c_{\sigma}^{\prime}\right)=c_{\sigma} \cdot c_{\sigma}^{\prime \prime-1}$ with $c_{\sigma} \in Z_{1}$ and $c_{\sigma}^{\prime \prime} \in Z_{1}^{\prime \prime}$ and comparing the Z-parts and $Z^{\prime \prime}$-parts in the above
equality, one obtains in view of (2)

$$
\begin{align*}
\bar{c}_{\sigma, \tau} & =\delta\left(c_{\sigma}\right)^{-1} c_{\sigma, \tau}, \tag{2a}\\
\delta\left(\bar{g}_{\sigma}^{\prime \prime}\right) & =\delta\left(c_{\sigma}^{\prime \prime}\right)^{-1} \cdot c_{\sigma, \tau}^{\prime \prime}=\delta\left(c_{\sigma}^{\prime \prime-1} g_{\sigma}^{\prime \prime}\right) .
\end{align*}
$$

By (iii) (the injectivity), the second equality of (2a) implies that there is $h \in\left(G_{1}^{\prime \prime}\right)_{\bar{k}}$ and a 1-cocycle ($a_{\sigma}^{\prime \prime}$) of G in $\left(Z_{1}^{\prime \prime}\right)_{\bar{k}}$ such that one has

$$
\bar{g}_{\sigma}^{\prime \prime}=a_{\sigma}^{\prime \prime} c_{\sigma}^{\prime \prime-1} h^{\sigma} g_{\sigma}^{\prime \prime} h^{-1}
$$

then one has also $\bar{g}_{\sigma}=c_{\sigma}^{-1} h^{\sigma} g_{\sigma} h^{-1} \cdot a_{\sigma}^{\prime \prime}$. Now put $\psi=\bar{f}^{-1} \circ I_{h} \circ f$. Then, since $h \in Z_{G_{1}}\left(\varphi_{1}\left(G_{1}^{\prime}\right)\right)$, one has

$$
\phi \circ \varphi=\bar{f}^{-1} \circ I_{h} \circ f \circ \varphi=\bar{f}^{-1} \circ I_{h} \circ \varphi_{1} \circ f^{\prime}=\bar{f}^{-1} \circ \varphi_{1} \circ f^{\prime}=\bar{\varphi}
$$

and, for every $\sigma \in \mathcal{G}$,

$$
\begin{aligned}
\psi^{\sigma} & =\bar{f}^{-\sigma} \circ I_{h \sigma} \circ f^{\sigma}=\bar{f}^{-1} \circ I_{\bar{\delta}}^{\sigma} \\
& \circ I_{h \sigma} \circ I_{g_{\sigma}} \circ f=\bar{f}^{-1} \circ I_{a_{\sigma}^{\prime \prime}}-1.1 \circ f \\
& \left.=I_{\bar{f}^{-1}\left(a_{\sigma}^{\prime \prime}\right.}{ }^{\prime-1}\right) \circ \psi
\end{aligned}
$$

i. e., one has $\psi^{\sigma} \circ \psi^{-1}=I_{d_{\sigma}^{\prime \prime}}$ with $d_{\sigma}^{\prime \prime}=\bar{f}^{-1}\left(a_{\sigma}^{\prime \prime-1}\right) \in \bar{f}^{-1}\left(Z_{1}^{\prime \prime}\right)$.
3) is clear from the definitions and (2), (2a), q. e. d.

Remark 1. The conditions (i), (ii) imply (i) $Z_{G_{1}}\left(\varphi_{1}\left(G_{1}^{\prime}\right)\right)=Z \times G_{1}^{\prime \prime}$ (direct product); and (i)' in turn implies (ii)' $\varphi_{1}\left(Z_{1}^{\prime}\right) \subset Z_{1} \times Z_{1}^{\prime \prime}$. As is seen from the above proof, the conditions (i), (ii) in Lemma 1 can be replaced by a weaker condition (i)'.

Remark 2. The condition (iii) is satisfied if $G_{1}^{\prime \prime}$ is k-isomorphic to $S L(n)$ and if the ground field k has the following property: $\left(P_{n}\right)$ For any normal division algebra \Re over k such that $\Re^{n} \sim 1$ one has $\operatorname{deg} \Re \mid n$.

In fact, it is well-known that the canonical map $\Delta: H^{1}\left(k, S L(n) / \mathbf{E}_{n}\right)$ $\rightarrow H^{2}\left(k, \mathbf{E}_{n}\right)$ is injective, and also there is a canonical monomorphism of $H^{2}\left(k, \mathbf{E}_{n}\right)$ into the Brauer group $\mathscr{B}(k)$ of k (see Example in 1). If the algebra class of a normal division algebra Ω over k belongs to the image of this monomorphism, then one has clearly $\Omega^{n} \sim 1$. On the other hand, the algebra class of Ω comes from an element of $H^{1}\left(k, S L(n) / \mathbf{E}_{n}\right)$ if and only if it contains a k-form of \mathscr{M}_{n} (the total matric algebra of degree n), or, in other words, the degree of Ω divides n. Hence, under the condition $\left(P_{n}\right), \Delta$ is bijective. It should also be noted that for the proofs of 2) and 3) we needed only the injectivity of Δ, which holds whenever $G_{1}^{\prime \prime}$ is k-isomorphic to $S L(n)$, without the assumption $\left(P_{n}\right)$ for k.
3. We shall now apply Lemma 1 to the following situation. Let G_{1} and G_{1}^{\prime} be (connected) simply connected (absolutely simple) Steinberg groups over
k of one of the types listed below:

G_{1}	${ }^{1} E_{6}$	${ }^{2} E_{6}$	E_{7}	${ }^{3} D_{4}$	${ }^{6} D_{4}$
G_{1}^{\prime}	${ }^{1} A_{5}$	${ }^{2} A_{5}$	${ }^{1} D_{6}$	${ }^{3}\left(3 A_{1}\right)$	${ }^{6}\left(3 A_{1}\right)$

(For the meaning of the notation, see [11].) Then the centers of G_{1} and G_{1}^{\prime} are as follows:

$Z_{1} \cong$	\mathbf{E}_{3}	\mathbf{E}_{2}	$\mathbf{E}_{2} \times \mathbf{E}_{2}$
$Z_{1}^{\prime} \cong$	\mathbf{E}_{6}	$\mathbf{E}_{2} \times \mathbf{E}_{2}$	$\mathbf{E}_{2} \times \mathbf{E}_{2} \times \mathbf{E}_{2}$

The isomorphism in this list is a G-isomorphism, if and only if the group G_{r} or G_{1}^{\prime} is of Chevalley type. In general, the corresponding G_{1} and G_{1}^{\prime} will have a common splitting field k^{\prime}, and the action of g on Z_{1} and Z_{1}^{\prime} will be determined uniquely by k^{\prime}. In each case, we shall construct a k-morphism φ_{1} of G_{1}^{\prime} into G_{1} (which will turn out to be a monomorphism) in such a way that $\varphi_{1}\left(G_{1}^{\prime}\right)$ is a "regular" k-closed subgroup of $G_{1}{ }^{3}$. (By a regular closed subgroup of G_{1}, we mean a closed subgroup corresponding to a "regular" subalgebra of the Lie algebra of G_{1} in the sense of Dynkin [4].) For all cases, $G_{1}^{\prime \prime}$ will be a k closed subgroup of G_{1} which is a simply connected Chevalley group of type A_{1} and so $Z_{1}^{\prime \prime}$ is $\cong \mathbf{E}_{2}$. Thus, by the Remark 2 in 2 , the condition (iii) of Lemma 1 is satisfied, provided k satisfies the condition (P_{2}).
4. The case ${ }^{1} E_{6}$. Let G_{1} and G_{1}^{\prime} be simply connected Chevalley groups over k of type E_{6} and A_{5}, respectively. Then, one has G-isomorphisms

$$
\begin{equation*}
Z_{1} \cong \mathbf{E}_{3}, \quad Z_{1}^{\prime} \cong \mathbf{E}_{6} \tag{3}
\end{equation*}
$$

Let T_{1} and T_{1}^{\prime} be k-trivial maximal tori in G_{1} and G_{1}^{\prime}, respectively. Let further \mathfrak{r} be the root system of G_{1} relative to $T_{1}, \Delta=\left\{\alpha_{1}, \cdots, \alpha_{6}\right\}$ a fundamental system

[^1]of \mathfrak{r}, and μ the lowest root (i.e., $-\mu=\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}+\alpha_{5}+2 \alpha_{6}$) (see the figure). Then it is clear that there is a k-isogeny φ_{1} of G_{1}^{\prime} onto a regular k closed subgroup $G_{1}\left(\left\{\alpha_{1}, \cdots, \alpha_{5}\right\}\right.$) such that $\varphi_{1}\left(T_{1}^{\prime}\right) \subset T_{1}$. (In general, for any subset Γ of \mathfrak{r}, one denotes by $G_{1}(\Gamma)$ the regular closed subgroup of G_{1} corresponding to the (closed) subsystem $\mathfrak{r} \cap\{\Gamma\}_{\boldsymbol{Z}}$ of \mathfrak{r}.) One puts also $G_{1}^{\prime \prime}=G_{1}(\{\mu\})$.

In order to see that the conditions (i), (ii) of Lemma 1 are satisfied, we need the following

LEMMA 2. Let ρ_{1} be an irreducible representation of G_{1} of dimension 27 with the highest weight $\lambda_{1}=\frac{1}{3}\left(4 \alpha_{1}+5 \alpha_{2}+6 \alpha_{3}+4 \alpha_{4}+2 \alpha_{5}+3 \alpha_{6}\right)$. Then one has

$$
\rho_{1} \circ \varphi_{1} \sim \rho_{1}^{\prime}+\rho_{1}^{\prime}+\rho_{4}^{\prime}
$$

where ρ_{i}^{\prime} stands for the i-th skew-symmetric tensor representation of G_{1}^{\prime} in the standard numbering.
(Cf. [2], pp. 142-143; [3], pp. 20-23. In Cartan's notation, one has α_{i} $=\omega_{i, i+1}=\bar{\omega}_{i}-\bar{\omega}_{i+1}(1 \leqq i \leqq 5), \alpha_{6}=\omega_{567}=\bar{\omega}_{5}+\bar{\omega}_{6}+\bar{\omega}_{7}, \mu=\omega_{000}=3 \bar{\omega}_{0}$. The weights of ρ_{1} are given by $\bar{\omega}_{i}-\bar{\omega}_{0}, \bar{\omega}_{i}+2 \bar{\omega}_{0},-\bar{\omega}_{i}-\bar{\omega}_{j}-\bar{\omega}_{0}(1 \leqq i, j \leqq 6, i \neq j)$. It is then easy to see that $\left(-\bar{\omega}_{i}-\bar{\omega}_{j}-\bar{\omega}_{0}\right) \circ\left(\varphi_{1} \mid T_{1}^{\prime}\right)$ (resp. $\left(\bar{\omega}_{i}-\bar{\omega}_{0}\right) \circ\left(\varphi_{1} \mid T_{1}^{\prime}\right)$, resp. $\left(\bar{\omega}_{i}+2 \bar{\omega}_{0}\right)$ $\left.\circ\left(\varphi_{1} \mid T_{1}^{\prime}\right)\right)$ constitute the set of weights of ρ_{4}^{\prime} (resp. ρ_{1}^{\prime}, resp. ρ_{1}^{\prime}) relative to T_{1}^{\prime}.)

It follows that one can find a generator z of Z_{1}^{\prime} such that

$$
\rho_{1}\left(\varphi_{1}(z)\right)=\operatorname{diag} \cdot\left(\zeta_{6} 1_{12}, \zeta_{6}^{4} 1_{15}\right),
$$

where ζ_{r} is the primitive r-th root of unity (in \bar{k}) and 1_{r} is the unit matrix of degree r. This shows that both ρ_{1} and φ_{1} are faithful and $\varphi_{1}\left(z^{2}\right)$ is a generator of Z_{1}. On the other hand, it is clear that $G_{1}^{\prime \prime}$ is contained in the centralizer $Z_{G_{1}}\left(\varphi_{1}\left(G_{1}^{\prime}\right)\right)$. By Schur's lemma, the matrices of degree 27 which commute elementwise with $\rho_{1}\left(\varphi_{1}\left(G_{1}^{\prime}\right)\right)$ are of the form diag. $\left(x \otimes 1_{6}, \eta 1_{15}\right)$, where $x \in G L$ (2) and η is a scalar. Hence, in order to complete the proof of (i), it is enough to show that, if a matrix of the form diag. $\left(\xi 1_{12}, \eta 1_{15}\right)$ is in $\rho_{1}\left(G_{1}\right)$, then it is in $\rho_{1}\left(\varphi_{1}\left(Z_{1}\right)\right)$. From the fact that $\rho_{1}\left(G_{1}\right)$ leaves a certain cubic form $\left(\sum_{i \neq k} x_{i} y_{k} z_{i k}\right.$ $-\Sigma z_{\lambda_{\mu}} z_{\nu \rho} z_{\sigma \tau}$ in the notation of [2] loc. cit.) invariant, it follows that $\xi^{2} \eta=\eta^{3}=1$, whence $\xi^{6}=1, \eta=\xi^{4}$, which proves our assertion. At the same time, one sees that $G_{1}^{\prime \prime}$ is k-isomorphic to $S L$ (2) and $\varphi_{1}\left(z^{3}\right)$ is the generator of $Z_{1}^{\prime \prime}$. Thus we have also (ii).

When k satisfies the condition $\left(P_{2}\right)$, the condition (iii) of Lemma 1 is also satisfied. Therefore, applying Lemma 1, one concludes that to every i-equivalence class of inner k-form (G^{\prime}, f^{\prime}) of G_{1}^{\prime} there corresponds a certain number of i-equivalence classes of inner k-forms (G, f) of G_{1}, for whith one has

$$
\begin{align*}
\gamma(G) & =Z \text {-part of } \varphi^{*}\left(\gamma\left(G^{\prime}\right)\right) \tag{4}\\
& =\varphi^{*}\left(\gamma\left(G^{\prime}\right)\right)^{4}
\end{align*}
$$

where Z (resp. Z^{\prime}) is the center of G (resp. G^{\prime}), which is also G-isomorphic to \mathbf{E}_{3} (resp. \mathbf{E}_{6}). More specifically, when G^{\prime} is k-isomorphic to $S L\left(6 / r, \Omega_{r}\right)$, one may identify Z^{\prime} with \mathbf{E}_{6} through the irreducible representation of $S L\left(6 / r, \Omega_{r}\right)$ (defined over \bar{k}) which comes from the (unique) irreducible representation of \mathscr{R}_{r} (as an associative algebra). Then, by what we have proved above, this identification gives rise to the corresponding identification of Z with \mathbf{E}_{3}, and in this sense one has

$$
\gamma(G)=c\left(\Omega_{r}\right)^{4},
$$

where $c\left(\mathscr{\Re}_{r}\right) \in H^{2}\left(k, E_{6}\right)$ is the Hasse invariant of $\mathscr{\Re}_{r}$.
We may reformulate our result in the following form, which also gives a characterization of the k-forms G obtained by our method.

Theorem 1. Let G be a simply connected absolutely simple algebraic group of type E_{6} defined over k. Suppose there exists a regular k-closed subgroup G^{\prime} of type ${ }^{1} A_{5}$. Then G is of type ${ }^{1} E_{6}$. If G^{\prime} is k-isomorphic to $S L\left(6 / r, \mathbb{R}_{r}\right)$, then through the natural identification mentioned above one has

$$
\gamma(G)=c\left(\Omega_{r}\right)^{4} .
$$

Proof. Since there is only one class of regular closed subgroups of type A_{5} in G with respect to the inner automorphisms ([4], p. 149, Table 11), one may suppose that G^{\prime} is of the form $G\left(\left\{\alpha_{1}, \cdots, \alpha_{5}\right\}\right)$ with respect to a maximal torus T defined over \bar{k} and a fundamental system $\left\{\alpha_{1}, \cdots, \alpha_{6}\right\}$. Let G_{1} be a simply connected Chevalley group of type E_{6} over k and let T_{1} be a k-trivial maximal torus in G_{1}. Then one can find a \vec{k}-isomorphism $f: G \rightarrow G_{1}$ such that $f(T)=T_{1}$. Let $\varphi: G^{\prime} \rightarrow G$ be the inclusion monomorphism (defined over k), and put $f^{\prime}=f \mid G^{\prime}, G_{1}^{\prime}=f^{\prime}\left(G^{\prime}\right)$, and $\varphi_{1}=f \circ \varphi \circ f^{\prime-1}$. Then $G_{1}^{\prime}=G_{1}\left(\left\{\alpha_{1}, \cdots, \alpha_{5}\right\}\right)$ (with respect to T_{1}), so that G_{1}^{\prime} is a k-closed subgroup of G_{1}, which is a simply connected Chevalley group of type A_{5} over k, and φ_{1} is also defined over k. Since G^{\prime} is of type ${ }^{1} A_{5}$, the isomorphism $Z^{\prime} \cong \mathbf{E}_{6}$ is a G-isomorphism. Therefore the same is also true for $Z \cong \mathbf{E}_{3}$, which means that G is of type ${ }^{1} E_{6}$. It follows that $f^{\sigma} \circ f^{-1}$ (resp. $f^{\prime \sigma} \circ f^{\prime-1}$) is an inner automorphism of G_{1} (resp. G_{1}^{\prime}). Thus one restores the situation considered above (except for the condition $\left(P_{2}\right)$ on k, which we do not need), and the last statement of the Theorem follows.
5. The case ${ }^{2} E_{6}$. Let G_{1} and G_{1}^{\prime} be simply connected Steinberg groups over k of type ${ }^{2} E_{6}$ and ${ }^{2} A_{5}$, respectively. Then there exists a quadratic extension k^{\prime} of k over which G_{1} splits (i. e., becomes of Chevalley type). For any fixed isomorphism $Z_{1} \cong \mathbf{E}_{3}$, the 'splitting field' k ' can be characterized by the action of the Galois group as follows:

$$
\begin{aligned}
& Z_{1} \ni z \leftrightarrow \zeta \in \mathbf{E}_{3} \\
& \Longrightarrow\left\{\begin{array}{lll}
z^{\sigma} \leftrightarrow \zeta^{\sigma} & \text { if } & \sigma \in \operatorname{Gal}\left(\bar{k} / k^{\prime}\right), \\
z^{\sigma} \leftrightarrow \zeta^{-\sigma} & \text { if } & \sigma \in \operatorname{Gal}\left(\bar{k} / k^{\prime}\right) .
\end{array}\right.
\end{aligned}
$$

The situation is quite similar for G_{1}^{\prime}. Hence, if there is a k-morphism φ_{1} : $G_{1}^{\prime} \rightarrow G_{1}$ as described in Lemma 1, then the injection: $Z_{1} \rightarrow \varphi_{1}\left(Z_{1}^{\prime}\right)$ will induce a \mathcal{G}-monomorphism of Z_{1} into Z_{1}^{\prime}, and so the splitting fields for G_{1} and G_{1}^{\prime} should coincide. Conversely, if G_{1} and G_{1}^{\prime} have a common splitting field k^{\prime}, then one can find a k-morphism φ_{1} as follows. Let T_{1} and T_{1}^{\prime} be maximal tori defined over k in G_{1} and G_{1}^{\prime}, respectively, containing a maximal k-trivial torus in the respective groups, and take a \mathcal{G}-fundamental system $\Delta=\left\{\alpha_{1}, \cdots, \alpha_{6}\right\}$ in the sense of [8]. (These imply that T_{1} and T_{1}^{\prime} are k^{\prime}-trivial and, if σ_{0} denotes the generator of $\operatorname{Gal}\left(k^{\prime} / k\right)$, one has $\alpha_{1}^{\sigma}=\alpha_{5}, \alpha_{2}^{\sigma_{0}}=\alpha_{4}, \alpha_{3}^{\sigma_{0}}=\alpha_{3}, \alpha_{6}^{\sigma_{0}}=\alpha_{6}$.) It is then clear that $G_{1}\left(\left\{\alpha_{1}, \cdots, \alpha_{5}\right\}\right)$ is a k-closed subgroup of G_{1}, which is also a Steinberg group with the same splitting field k^{\prime}, and $T_{1} \cap G_{1}\left(\left\{\alpha_{1}, \cdots, \alpha_{5}\right\}\right)$ contains a maximal k-trivial torus in $G_{1}\left(\left\{\alpha_{1}, \cdots, \alpha_{5}\right\}\right)$. Therefore, there exists a k-isogeny φ_{1} of G_{1}^{\prime} onto $G_{1}\left(\left\{\alpha_{1}, \cdots, \alpha_{5}\right\}\right)$ such that $\varphi_{1}\left(T_{1}^{\prime}\right) \subset T_{1}$ ([8], p. 233).

Since the conditions (i), (ii) of Lemma 1 have nothing to do with the ground field k, the proofs given in 4 remain valid in the present case. Also one has $G_{1}^{\prime \prime}=G_{1}(\{\mu\}) \cong S L(2)$ (over k). Hence one can apply Lemma 1 to obtain a quite similar result as in 4. In particular, if (G, f) is an inner k-form of G_{1} corresponding to an inner k-form $\left(G^{\prime}, f^{\prime}\right)$ of G_{1}^{\prime} in the sense of Lemma 1, then $\gamma(G)$ is given by the Z-part of $\varphi^{*}\left(\gamma\left(G^{\prime}\right)\right)$. Also, by a similar argument, one obtains the following

THEOREM 1'. Let G be a simply connected absolutely simple algebraic group of type E_{6} defined over k. Suppose there exists a regular k-closed subgroup G^{\prime} of type ${ }^{2} A_{5}$. Then, G is of type ${ }^{2} E_{6}$ (belonging to the same quadratic extension $\left.k^{\prime} / k\right)$ and $\gamma(G)$ is given by the Z-part of $\gamma\left(G^{\prime}\right)$.
6. The case E_{7}. Let G_{1} and G_{1}^{\prime} be simply connected Chevalley groups over k of type E_{7} and D_{6}, respectively. Then one has

$$
\begin{equation*}
Z_{1} \cong \mathbf{E}_{2}, \quad Z_{1}^{\prime} \cong \mathbf{E}_{2} \times \mathbf{E}_{2} \tag{5}
\end{equation*}
$$

(This time the operations of the Galois group are all trivial.) Let T_{1} and T_{1}^{\prime} be k-trivial maximal tori in G_{1} and G_{1}^{\prime}, respectively, and let $\left\{\alpha_{1}, \cdots, \alpha_{7}\right\}$ be a

fundamental system of G_{1} relative to T_{1}, and μ the lowest root (i.e., $-\mu$ $=\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6}+2 \alpha_{7}$) (see the figure). Then one has a k-isogeny φ_{1} of G_{1}^{\prime} onto $G_{1}\left(\left\{\alpha_{1}, \cdots, \alpha_{5}, \alpha_{7}\right\}\right)$ such that $\varphi_{1}\left(T_{1}^{\prime}\right) \subset T_{1}$. One puts also $G_{1}^{\prime \prime}$ $=G_{1}(\{\mu\})$. Then one has the following

Lemma 3. Let ρ_{1} be an irreducible representation of G_{1} of dimension 56 with the highest weight $\lambda_{1}=\frac{3}{2} \alpha_{1}+2 \alpha_{2}+\frac{5}{2} \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}+\frac{3}{2} \alpha_{7}$. Then, one has

$$
\rho_{1} \circ \varphi_{1} \sim \rho_{1}^{\prime}+\rho_{1}^{\prime}+\rho_{6}^{\prime}
$$

where ρ_{1}^{\prime} and ρ_{6}^{\prime} are the irreducible representations of G_{1}^{\prime} corresponding to the fundamental weights λ_{1}^{\prime} and λ_{6}^{\prime}, respectively. (The λ_{i}^{\prime} 's are numerated in such a way that $\frac{2\left\langle\alpha_{i}^{\prime}, \lambda_{j}^{\prime}\right\rangle}{\left\langle\alpha_{i}^{\prime}, \alpha_{i}^{\prime}\right\rangle}=\delta_{i j}$, where $\alpha_{i}^{\prime}=\alpha_{i} \circ\left(\varphi_{1} \mid T_{1}^{\prime}\right)$ for $1 \leqq i \leqq 5$ and $\alpha_{6}^{\prime}=\alpha_{7} \circ\left(\varphi_{1} \mid T_{1}^{\prime}\right)$. In particular, ρ_{6}^{\prime} is the "second spin representation" in this numbering.)
(Cf. [2], pp. 143-144; [3], pp. 24-27. Note that in this case $\rho_{1}\left(G_{1}\right)$ leaves an alternating form invariant.)

In virtue of this Lemma, it can be proved exactly as in 4 that the conditions (i), (ii) of Lemma 1 are satisfied. Moreover, one can find generators z_{11} and z_{2} of Z_{1}^{\prime} such that

$$
\begin{aligned}
& \rho_{1}\left(\varphi_{1}\left(z_{1}\right)\right)=\operatorname{diag} .\left(-1_{24}, 1_{32}\right) \\
& \rho_{1}\left(\varphi_{1}\left(z_{2}\right)\right)=-1_{56}
\end{aligned}
$$

Thus $\varphi_{1}\left(z_{1}\right)$ and $\varphi_{1}\left(z_{2}\right)$ are the generators of $Z_{1}^{\prime \prime}$ and Z_{1}, respectively. In the following, we shall fix once and for all the isomorphisms (5) given by this choice of the generators.

One concludes from Lemma 1 that, if (G, f) is an inner k-form of G_{1} corresponding to an inner k-form $\left(G^{\prime}, f^{\prime}\right)$ of G_{1}^{\prime}, then $\gamma(G)$ is given by the Z-part of $\varphi^{*}\left(\gamma\left(G^{\prime}\right)\right.$). Through the identification of $Z^{\prime} \cong Z_{1}^{\prime}$ (resp. $Z \cong Z_{1}$) with $\mathbf{E}_{2} \times \mathbf{E}_{2}$ (resp. \mathbf{E}_{2}) mentioned above, one has

$$
\begin{equation*}
r\left(G^{\prime}\right)=\left(c\left(\mathfrak{(}_{1}\right), c\left(\mathfrak{C}_{2}\right)\right), \quad \gamma(G)=c\left(\mathfrak{F}_{2}\right), \tag{6}
\end{equation*}
$$

where \mathfrak{C}_{1} and \mathscr{C}_{2} denote the first and the second Clifford algebras (over k) associated with G^{\prime} supplying the spin representations ρ_{5}^{\prime} and ρ_{6}^{\prime} respectively ([9], p. 249). From this, one obtains the following

Theorem 2. Let G be a simply connected absolutely simple algebraic group of type E_{7} over k. Suppose there exists a regular k-closed subgroup G^{\prime} of type D_{6}. Then, G^{\prime} is of type ${ }^{1} D_{6}$ and, if $\mathfrak{®}_{2}$ is the second Clifford algebra associated' with G^{\prime} (in the sense explained above), one has

$$
\gamma(G)=c\left(\S_{2}\right)
$$

In fact, since there is only one class of regular closed subgroups of type
D_{6} in $G\left([4]\right.$, loc. cit.), one may suppose that G^{\prime} is of the form $G\left(\left\{\alpha_{1}, \cdots, \alpha_{5}, \alpha_{7}\right\}\right)$. On the other hand, since the Galois group operates trivially on $Z^{\prime}=Z \times Z^{\prime \prime}, G^{\prime}$ is of type ${ }^{1} D_{6}$. The rest of the proof runs exactly in the same way as for Theorem 1.
7. Tits [12] gave recently a new method of constructing k-forms of (absolutely) simple Lie algebras of type E_{6} and E_{7} which contain in an obvious way simple Lie algebras of type A_{5} and D_{6}, respectively. The invariant $\gamma(G)$ of the corresponding simply connected simple algebraic group G defined over k can therefore be determined by Theorems $1,1^{\prime}$ and 2 . Moreover, when k is a local field, all k-forms of E_{6} and E_{7} are obtained in this manner.

First, let us recall briefly the construction of Tits for the case $E_{6}{ }^{4}$. Let \mathfrak{D} (resp. \mathcal{C}) be a quaternion (resp. octanion) algebra over k, and let \mathcal{G} be a normal simple Jordan algebra of degree 3 and of dimension 9 over k (with the product 0$)^{5}$. Then one obtains simple Lie algebras of type E_{6} and A_{5} over k in the following form:

$$
\left\{\begin{array}{l}
\mathfrak{g}=D(\mathcal{C})+\mathcal{C}_{0} \otimes \mathcal{J}_{0}+D(\mathcal{J}), \tag{7}\\
\mathfrak{g}^{\prime}=D(\mathfrak{D})+\mathfrak{D}_{0} \otimes \mathcal{J}_{0}+D(\mathcal{J}),
\end{array}\right.
$$

where $D(\cdots)$ denotes the derivation algebra of \cdots and $(\cdots)_{0}$ is the subspace of \ldots formed of all elements of (reduced) trace zero. The product [] in g is defined by the following rule: (i) $D(\mathcal{C})$ and $D(\mathcal{G})$ are Lie subalgebras of \mathfrak{g} satisfying $[D(\mathcal{C}), D(\mathcal{I})]=0$; (ii) for $D \in D(\mathcal{C}), D^{\prime} \in D(\mathcal{I})$, and $a \otimes u \in \mathcal{C}_{0} \otimes \mathcal{J}_{0}$, one has

$$
\left[D+D^{\prime}, a \otimes u\right]=(D a) \otimes u+a \otimes\left(D^{\prime} u\right)
$$

(iii) for $a \otimes u, b \otimes v \in \mathcal{C}_{0} \otimes \mathcal{J}_{0}$, one has

$$
[a \otimes u, b \otimes v]=(u, v)\langle a, b\rangle+(a * b) \otimes(u * v)+(a, b)\langle u, v\rangle
$$

where $(a, b)=\frac{1}{2} \operatorname{tr}(a b), a * b=a b-(a, b) 1 \in \mathcal{C}_{0}$, and $\langle a, b\rangle$ is a derivation of \mathcal{C} defined by

$$
\langle a, b\rangle(x)=\frac{1}{4}[[a, b], x]-\frac{3}{4}[a, b, x] \quad \text { for } x \in \mathcal{C},
$$

and similarly $(u, v)=\frac{1}{3} \operatorname{tr}(u \circ v), u * v=u \circ v-(u, v) 1$, and

$$
\langle u, v\rangle(x)=u \circ(v \circ x)-v \circ(u \circ x) \quad \text { for } x \in \mathcal{I} .
$$

The product in \mathfrak{g}^{\prime} is defined similarly.
Now suppose $\mathfrak{D} \subset \mathcal{C}$. Then one may write $\mathcal{C}=\mathfrak{D}+\mathfrak{D} \varepsilon_{4}$ with $\varepsilon_{4} \in \mathcal{C}_{0}, \varepsilon_{4}^{2}=\lambda$

[^2]$\in k, \lambda \neq 0$, and one has
$$
\left(a+b \varepsilon_{4}\right)\left(c+d \varepsilon_{4}\right)=(a c+\lambda \bar{d} b)+(d a+b \bar{c}) \varepsilon_{4}
$$
for $a, b, c, d \in \mathfrak{D}$, where the bar denotes the canonical involution in \mathfrak{D}. We imbed $D(\mathfrak{D})$ into $D(\mathcal{C})$ as follows. One has $D(\mathfrak{D})=\left\{D_{a}\left(a \in \mathfrak{D}_{0}\right)\right\}$, where $D_{a}(x)$ $=[a, x]$ for $x \in \mathfrak{D}$, and D_{a} can be extended to a derivation of \mathcal{C} by setting
$$
D_{a}\left(x+y \varepsilon_{4}\right)=[a, x]-(y a) \varepsilon_{4} .
$$
(Note that this extension of D_{a} is independent of the choice of ε_{4}.) The injection $D(\mathfrak{D}) \rightarrow D(\mathcal{C})$ thus defined is clearly a monomorphism of Lie algebra, and gives rise in a natural way to a monomorphism of g^{\prime} into g . In this sense, we have the following

Lemma 4. When $\mathfrak{D C C}, \mathfrak{g}^{\prime}$ is a regular subalgebra of \mathfrak{g}.
In fact, take any non-zero element a_{1} in \mathfrak{D}_{0}. Then one can define another sort of derivation of \mathcal{C} by setting

$$
D_{a_{1}}^{\prime}\left(x+y \varepsilon_{4}\right)=\left(a_{1} y\right) \varepsilon_{4} .
$$

It is easy to check that one has $\left[D_{a_{1}}^{\prime}, X\right]=0$ for all $X \in \mathfrak{g}^{\prime}$. Hence, if a_{1} is semi-simple and if \mathfrak{g}^{\prime} is any Cartan subalgebra of \mathfrak{g}^{\prime}, then $\mathfrak{h}=\left\{D_{a_{1}}^{\prime}\right\}_{k}+\mathfrak{h}^{\prime}$ is a Cartan subalgebra of \mathfrak{g} such that $\left[\mathfrak{G}, \mathfrak{g}^{\prime}\right] \subset \mathfrak{g}^{\prime}$. Therefore, \mathfrak{g}^{\prime} is a regular subalgebra of g with respect to \mathfrak{h}.

Now we have the following two cases:
$1^{\circ} . \mathcal{I}=\mathcal{G}\left(\mathfrak{H}_{3}\right)$, where \mathfrak{H}_{3} is a normal simple (associative) algebra of degree 3 over k and $\mathscr{g}\left(\mathscr{H}_{3}\right)$ denotes the Jordan algebra obtained from \mathfrak{H}_{3} by endowing it with the Jordan product $x \circ y=\frac{1}{2}(x y+y x)$ for $x, y \in \mathfrak{H}_{3}$.
2°. $\mathcal{I}=\mathscr{H}\left(\mathfrak{H}_{3}^{\prime}, \ell\right)$, where $\mathfrak{H}_{3}^{\prime}$ is a normal simple (associative) algebra of degree 3 over a quadratic extension k^{\prime} of k with an involution of the second kind ι, and $\mathscr{H}\left(\mathscr{H}_{3}^{\prime}, \iota\right)$ denotes the Jordan algebra formed of all ' ι-hermitian, element in $\mathfrak{H}_{3}^{\prime}$ (i. e., all $x \in \mathfrak{Z}_{3}^{\prime}$ such that $x^{\prime}=x$) with the Jordan product as above. In particular, when $\mathfrak{X}_{3}^{\prime} \sim 1$ (over k^{\prime}), one may write

$$
\mathscr{g}=\mathscr{H}_{3}\left(k^{\prime} / k ; \gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\left\{X \in \mathscr{M}_{3}\left(k^{\prime}\right) \mid H^{-1 t} \bar{X} H=X\right\},
$$

where $\gamma_{i} \in k, \gamma_{i} \neq 0(1 \leqq i \leqq 3)$, and $H=\operatorname{diag} .\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$.
It is then easy to show that, in the case $1^{\circ}, g^{\prime}$ is canonically identified with the Lie algebra $\left(\mathscr{D} \otimes \mathfrak{H}_{3}\right)_{0}$ with the Lie product $[x, y]=x y-y x$; while, in the case $2^{\circ}, g^{\prime}$ is canonically identified with the Lie algebra formed of all $x \in \mathfrak{D} \otimes_{k} \mathfrak{H}_{3}^{\prime}$ such that $\operatorname{tr}_{\mathfrak{D} \otimes 2^{\prime} '^{\prime} k^{\prime}}(x)=0$ and $x^{c^{\prime}}+x=0$, with the Lie product as above, where ι^{\prime} denotes the involution of the second kind in $\mathscr{D} \otimes_{k} \mathscr{H}_{3}^{\prime}$ defined by $(x \otimes y)^{\prime \prime}=\bar{x} \otimes y^{\prime}$ for $x \in \mathfrak{D}, y \in \mathfrak{H}_{3}^{\prime}$. Let G and G^{\prime} be the simply connected simple algebraic groups defined over k correspnding to \mathfrak{g} and \mathfrak{g}^{\prime}, respectively.

Then, in the case $1^{\circ}, G^{\prime}$ is of type ${ }^{1} A_{5}$ and by Theorem 1 one has

$$
\begin{equation*}
r(G)=c\left(\mathfrak{H}_{3}\right) . \tag{8}
\end{equation*}
$$

In the case $2^{\circ}, G^{\prime}$ is of type ${ }^{2} A_{5}$ and $\gamma(G)$ can be determined by Theorem 1^{*} and by [9], p. 245, (14); in particular, if $\mathfrak{H}_{3}^{\prime} \sim 1$ (over k^{\prime}), one has

$$
\gamma(G)=\left(c_{\sigma, \tau}^{\prime}\right),
$$

where

$$
c_{\sigma, \tau}^{\prime}=\left\{\begin{array}{cll}
1 & \text { if } & \sigma \in \operatorname{Gal}\left(\bar{k} / k^{\prime}\right), \\
\sqrt[3]{\gamma_{1} \gamma_{2} \gamma_{3}} \tau-1 & \text { if } & \sigma \notin \operatorname{Gal}\left(\bar{k} / k^{\prime}\right), \tau \in \operatorname{Gal}\left(\bar{k} / k^{\prime}\right) \\
\sqrt[3]{\gamma_{1} \gamma_{2} \gamma_{3}} & \text { if } & \sigma, \tau \in \operatorname{Gal}\left(\bar{k} / k^{\prime}\right)
\end{array}\right.
$$

whence it is easy to see that $\left(c_{\sigma, \tau}^{\prime}\right) \sim 1$ and so $\gamma(G)=1$.
8. The simple Lie algebras of type E_{7} and D_{6} constructed by Tits are of the following form : ${ }^{4)}$

$$
\left\{\begin{array}{l}
\mathfrak{g}=D(\mathcal{C})+\mathcal{C}_{0} \otimes \mathfrak{G}_{0}^{\prime}+D\left(\mathfrak{g}^{\prime}\right), \tag{9}\\
\mathfrak{g}^{\prime}=D(\mathfrak{D})+\mathfrak{D}_{0} \otimes \mathfrak{I}_{0}^{\prime}+D\left(\mathfrak{g}^{\prime}\right),
\end{array}\right.
$$

where \mathscr{D} and \mathcal{C} are as before, but \mathcal{G}^{\prime} is a normal simple Jordan algebra of degree 3 and of dimension 15 over k. When k satisfies $\left(P_{2}\right)$, one may assume

$$
\begin{equation*}
\mathcal{I}^{\prime}=\mathscr{I}_{3}\left(\mathfrak{D}^{\prime} ; \gamma_{1}, \gamma_{2}, \gamma_{3}\right) \tag{10}
\end{equation*}
$$

where \mathfrak{D}^{\prime} is another quaternion algebra over $k, \gamma_{i} \in k, \gamma_{i} \neq 0$, and $\mathscr{H}_{3}\left(\mathfrak{D}^{\prime} ; \gamma_{1}\right.$, $\left.\gamma_{2}, \gamma_{3}\right)$ denotes the Jordan algebra formed of all $X \in \mathscr{M}_{3}\left(\mathfrak{D}^{\prime}\right)$ such that $H^{-11} \bar{X} H$ $=X$ with $H=$ diag. $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$. The products are defined quite similarly as in 7.

Now, analogously to Lemma 4, one sees that, when $\mathfrak{D} \subset \mathcal{C}, g^{\prime}$ is a regular subalgebra of \mathfrak{g}. Also, it is easy to see that \mathfrak{g}^{\prime} can be identified canonically with the Lie algebra formed of all $X \in \mathscr{M}_{3}\left(\mathscr{D} \otimes \mathfrak{D}^{\prime}\right)$ such that $\operatorname{tr}(X)=0$ and ${ }^{t} \bar{X} H+H X=0$, where \bar{X} is defined by means of the involution of the first kind in $\mathfrak{D} \otimes \mathfrak{D}^{\prime}$ defined by $\overline{x \otimes y}=\bar{x} \otimes \bar{y}$ for $x \in \mathfrak{D}, y \in \mathscr{D}^{\prime}$. It follows that G^{\prime} is of type ${ }^{1} D_{6}$ and so by Theorem 2, denoting by \mathfrak{c}_{2} the second Clifford algebra associated with G^{\prime}, one has

$$
\gamma(G)=c\left(\mathfrak{๒}_{2}\right) .
$$

In the special cases, where $\mathfrak{D}^{\prime} \subset \mathcal{C}$ or $\mathcal{C} \sim 1$, one can show that $\mathfrak{G}_{2} \sim \mathfrak{D}^{\prime}$ and so

$$
\begin{equation*}
\gamma(G)=c\left(\mathfrak{D}^{\prime}\right) \tag{11}
\end{equation*}
$$

(This is always the case when k is a local field.)
In fact, if $\mathfrak{D}^{\prime} \subset \mathcal{C}$, one may take $\mathfrak{D}=\mathfrak{D}^{\prime}=(\beta, \gamma)$. Then $\mathfrak{D} \otimes \mathfrak{D}^{\prime} \sim 1$ and the 3-dimensional hermitian vector space over $\mathfrak{D} \otimes \mathfrak{D}^{\prime}$ with the hermitian form H
reduces in an obvious manner to a 12 -dimensional quadratic vector space over k with a symmetric bilinear form $S=\operatorname{diag} .(1,-\beta,-\gamma, \beta \gamma) \otimes H$. By an easy calculation, one then sees that the full Clifford algebra $C(S)$ is $\sim(\beta, \gamma)$ and so $\mathfrak{C}_{1} \sim \mathfrak{C}_{2} \sim(\beta, \gamma)$. Next, when $\mathcal{C}^{\prime} \sim 1$, one may take $\mathfrak{D} \sim 1$; put $\mathfrak{D}^{\prime}=\left(\beta^{\prime}, \gamma^{\prime}\right)$. Then the 3 -dimensional hermitian vector space over $\mathscr{D} \otimes \mathfrak{D}^{\prime}$ reduces to a 6 dimensional (right) vector space \boldsymbol{V}^{\prime} over \mathfrak{D}^{\prime} with a skew-hermitian form of index 3. Let $\left(\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{6}\right)$ be any basis of \boldsymbol{V}^{\prime} over \mathfrak{D}^{\prime} for which the skewhermitian form takes the form $\left(\begin{array}{cc}0 & -1_{3} \\ 1_{3} & 0\end{array}\right)$ and put $e_{i}=\boldsymbol{e}_{i} \varepsilon_{11}^{\prime}(1 \leqq i \leqq 6)$, where $\varepsilon_{1}^{\prime} \in \mathscr{D}_{0}^{\prime}, \varepsilon_{1}^{\prime 2}=\beta^{\prime}, \varepsilon_{11}^{\prime}=\frac{1}{2}\left(1+\sqrt{\beta^{\prime}-1} \varepsilon_{1}^{\prime}\right)$. Put further $K=k\left(\sqrt{\beta^{\prime}}\right)$. Then $W=\left\{e_{1}\right.$, $\left.\cdots, e_{6}\right\}_{K}$ is a maximal totally isotropic subspace of $\boldsymbol{V}_{K}^{\prime} \varepsilon_{11}^{\prime}$, which is now viewed as a 12 -dimensional quadratic vector space over K. Let $W^{\prime}=\left\{e_{7}, \cdots, e_{12}\right\}_{K}$ be a complementary totally isotropic subspace such that $S\left(e_{i}, e_{j+6}\right)=\delta_{i j}(1 \leqq i, j \leqq 6)$, S denoting the symmetric bilinear form on $\boldsymbol{V}_{K}^{\prime} \varepsilon_{11}^{\prime}$. In terms of this basis, one can show that the second Clifford algebra \mathfrak{C}_{2} (in the sense explained in 6) corresponds to the simple component of the even Clifford algebra $C^{+}(S)$ whose unit element is given by $\frac{1}{2}\left\{1+\prod_{i=1}^{6}\left(e_{i} e_{i+6}-e_{i+6} e_{i}\right)\right\}$. From this, one can conclude by a straightforward calculation that $\mathbb{C}_{2} \sim\left(\beta^{\prime}, \gamma^{\prime}\right)$.
9. The cases ${ }^{3} D_{4}$ and ${ }^{6} D_{4}$. Let G_{1} and $G_{1}^{\prime}\left(=\prod_{i=1}^{3} G_{1 i}^{\prime}\right)$ be simply connected Steinberg groups over k of type ${ }^{3} D_{4}$ (or ${ }^{6} D_{4}$) and ${ }^{3}\left(3 A_{1}\right)$ (or ${ }^{6}\left(3 A_{1}\right)$), respectively. Then, there is a cubic extension k_{1}^{\prime} of k such that $G_{1}^{\prime}=R_{k^{\prime} 1 / k}\left(G_{11}^{\prime}\right)$, and the splitting field k^{\prime} for G_{1}^{\prime} is the smallest Galois extension (of degree 3 or 6) of k containing k_{1}^{\prime}. One has

$$
\left\{\begin{array}{l}
Z_{1} \cong \mathbf{E}_{2} \times \mathbf{E}_{2}, \tag{12}\\
Z_{1}^{\prime} \cong \mathbf{E}_{2} \times \mathbf{E}_{2} \times \mathbf{E}_{2}\left(=R_{k^{\prime} 1 / k}\left(\mathbf{E}_{2}\right)\right) .
\end{array}\right.
$$

In view of the operations of the Galois group on Z_{1} and Z_{1}^{\prime}, it is easy to see (as in 5) that one has a k-isogeny φ_{1} of G_{1}^{\prime} onto $G_{1}\left(\left\{\alpha_{1}, \alpha_{3}, \alpha_{4}\right\}\right)$ if and only if G_{1} has the same splitting field k^{\prime}. One puts also $G_{1}^{\prime \prime}=G_{1}(\{\mu\})$, where μ is the lowest root. Then (as in 4) one can show that all the assumptions of Lemma 1 are satisfied, provided k satisfies $\left(P_{2}\right)$. Moreover, if one calls z_{i} the generator of the center of $G_{1 i}^{\prime}(i=1,2,3)$, one sees that $\varphi_{1}\left(z_{1} z_{2}\right)$ and $\varphi_{1}\left(z_{1} z_{3}\right)$ are generators
of Z_{1} and $\varphi_{1}\left(z_{1} z_{2} z_{3}\right)$ is the generator of $Z_{1}^{\prime \prime}$. One fixes once and for all the isomorphisms (12) defined by this choice of the generators. Then, by the same argument as before one obtains the following

THEOREM 3. Let G be a simply connected absolutely simple algebraic group of type D_{4} defined over k. Suppose there exists a regular k-closed subgroup G^{\prime} of type ${ }^{3}\left(3 A_{1}\right)$ or ${ }^{6}\left(3 A_{1}\right)$. Then, G is of type ${ }^{3} D_{4}$ or ${ }^{6} D_{4}$ (with the same 'nuclear', field $\left.k^{\prime 6)}\right)$. If G^{\prime} is k-isomorphic to $R_{k^{\prime} 1 / k}\left(S L\left(1, \mathfrak{D}^{\prime}\right)\right)$, where k_{1}^{\prime} is a cubic extension of k and \mathfrak{D}^{\prime} is a quaternion algebra over k_{1}^{\prime}, then $\gamma(G)$ is given by the Z part of $R_{k^{\prime} / k}^{*}\left(c\left(\mathfrak{D}^{\prime}\right)\right) \in H^{2}\left(k, Z^{\prime}\right)$.

In particular, if there is a quaternion algebra \mathfrak{D} over k such that \mathfrak{D}^{\prime} $=\mathfrak{D} \otimes_{k} k^{\prime}$ (as is always the case when k is a local field), then it can easily be seen that $\gamma(G)=1$.

University of Chicago

References

[1] H. P. Allen, Jordan algebras and Lie algebras of type D_{4}, Bull. Amer. Math. Soc., 72 (1966), 65-67.
[2] E. Cartan, Sur la structure des groupes de transformations finis et continus (Thèse), Paris, 1894; Oeuvres complètes, Vol. 1, Paris, Gauthier-Villars, 1952, 137-287.
[3] E. Cartan, Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bull. Soc. Math. France, 4 (1913), 53-96; Oeuvres complètes, ibid., 355-398.
[4] E.B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sb. N.S., 30 (72) (1952), 349-462; Amer. Math. Soc. Transl., Ser. 2, 6 (1957), 111-244.
[5] J. C. Ferrar, On Lie algebras of type E_{6}, Bull. Amer. Math. Soc., 73 (1967), 151-155.
[6] M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über p-adischen Körpern, II, Math. Zeit., 89 (1965), 250-272.
[7] M. Koecher and H. Braun, Jordan-Algebren, Springer-Verlag, Berlin-HeidelbergNew York, 1966.
[8] I. Satake, On the theory of reductive algebraic groups over a perfect field, J. Math. Soc. Japan, 15 (1963), 210-235.
[9] I. Satake, Symplectic representations of algebraic groups satisfying a certain analyticity condition, Acta Math., 117 (1967), 215-279.
[10] T. Springer, Oktaven, Jordan-Algebren und Ausnahmegruppen, Lecture Note, Göttingen, 1963.
[11] J. Tits, Classification of algebraic semisimple groups, Proc. of Symposia in pure Math., Vol. 9 (1966), 33-62.
[12] J. Tits, Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionelles, I. Construction, Indag. Math., 28 (=Proc. Kon. Ned. Akad. Wet. Ser. A, 69) (1966), 223-237.
[13] R.D. Schafer, An introduction to nonassociative algebras, Academic Press, New York and London, 1966.

[^3]
[^0]: *) Partially supported by NSF grant GP-6654.

 1) Taking this opportunity, I would like to correct some of the misprints in the relevant part of [9]. On page 246 , line 10 , for " $\Omega \Sigma m_{i}$ " read " $\Omega \Sigma i m_{i}$ "; similar corrections are also necessary for the formulas (28), (28') in page 250 . On page 249 , line 9 , for " $k\left(\sqrt{(-1)^{1 / 2 n r}} \operatorname{det}(S)\right)$ " read " $k\left(\sqrt{(-1)^{1 / 2 n r}} \operatorname{det}(S)\right)$ "
 2) By a communication from Professor Tits, the author learnt after completion of the paper that similar topics had also been treated by him in a series of lectures delivered at Yale University in the winter of 1967.

 Added in proof: By a communication with Tits, it appeared that in 8 the relation $\mathfrak{E}_{2} \sim \mathfrak{D}^{\prime}$ and so (11) is always true without any assumption.

[^1]: 3) It can be proven directly that, if G_{1} is a simply connected semi-simple algebraic group and if H_{1} is a regular closed subgroup corresponding to a subset of a fundamental system of G_{1}, then H_{1} is also simply connected.
[^2]: 4) Actually there are two different constructions of the Lie algebras of type E_{6} and E_{7}, but for the sake of simplicity we consider here only one of them.
 5) For the theory of Jordan algebras the reader is referred to $[7],[10],[12],[13]$.
[^3]: 6) This terminology was borrowed from T. Ono, On algebraic groups and discrete groups, Nagoya Math. J., 27 (1966), 279-322.
