On a certain invariant of the groups of type E_6 and E_7

Dedicated to Professor S. Iyanaga on his 60th birthday

By Ichiro SATAKE*

(Received Aug. 10, 1967)

In my recent paper [9], I have introduced an invariant $\gamma(G)$ for a connected semi-simple algebraic group G, which generalizes the classical invariants of Hasse and of Minkowski-Hasse, and have shown that, for a classical simple group G, $\gamma(G)$ can actually be determined explicitly in terms of these classical invariants¹⁾. For exceptional groups, however, I gave only a very brief indication for the case where the ground field is a local field or an algebraic number field ([9], 250-251). The purpose of this note²⁾ is to give a more comprehensive account for a more general case, establishing a principle which enables us to reduce the determination of $\gamma(G)$ for an exceptional group G to that for a suitably chosen *classical* subgroup G' of G defined over the same ground field. The existence of such a subgroup G' will be ascertained for the groups of type E_6 and E_7 constructed recently by Tits [12].

1. Throughout this paper, k is a field of characteristic zero, (though it seems likely that most of our results remain true over any perfect field of characteristic different from 2 and 3). \bar{k} is a fixed algebraic closure of k and $\mathcal{Q} = \operatorname{Gal}(\bar{k}/k)$ is the Galois group of \bar{k}/k operating on \bar{k} from the right. For an algebraic group G defined over k, we write the Galois cohomology set or group $H^i(\mathcal{Q}, G_{\bar{k}})$ (i=1, 2) as $H^i(k, G)$. $\mathbf{E}_n = \{\zeta_n\}$ is the group of all n-th roots of unity contained in \bar{k} . In principle, we follow the notation in [9].

Let G_1 be an algebraic group defined over k. By an inner k-form of G_1 ,

Added in proof: By a communication with Tits, it appeared that in 8 the relation $\mathfrak{C}_2 \sim \mathfrak{D}'$ and so (11) is always true without any assumption.

^{*)} Partially supported by NSF grant GP-6654.

¹⁾ Taking this opportunity, I would like to correct some of the misprints in the relevant part of [9]. On page 246, line 10, for " $\Re \Sigma m_i$ " read " $\Re \Sigma m_i$ "; similar corrections are also necessary for the formulas (28), (28') in page 250. On page 249, line 9, for " $k(\sqrt{(-1)^{1/2}n^r} \det(S))$ " read " $k(\sqrt{(-1)^{1/2}n^r} \det(S))$ "

²⁾ By a communication from Professor Tits, the author learnt after completion of the paper that similar topics had also been treated by him in a series of lectures delivered at Yale University in the winter of 1967.

we understand a pair (G, f) formed of an algebraic group G defined over k and a \bar{k} -isomorphism f of G onto G_1 such that $f^{\sigma} \circ f^{-1}$ is an inner automorphism of G_1 for every $\sigma \in \mathcal{G}$. To such a pair (G, f), we associate an element $\gamma(G, f)$ in $H^2(k, Z_1)$, where Z_1 is the center of G_1 , as follows. Put

$$f^{\sigma} \circ f^{-1} = I_{g_{\sigma}}$$
 and $\delta(g_{\sigma}) = g^{\tau}_{\sigma} g_{\tau} g^{-1}_{\sigma\tau} = c_{\sigma,\tau}$

where $g_{\sigma} \in (G_1)_{\overline{k}}$ and $I_{g\sigma}$ denotes the inner automorphism of G_1 defined by $I_{g\sigma}(g) = g_{\sigma}gg_{\sigma}^{-1}$ for $g \in G_1$. Then it is clear that $(c_{\sigma,\tau})$ is a 2-cocycle of \mathcal{G} in $(Z_1)_{\overline{k}}$, whose cohomology class is uniquely determined, independently of the choice of the 1-cochain (g_{σ}) . (We always take it implicitly that all cochains we consider are \overline{k} -rational and continuous in the sense of Krull topology on \mathcal{G} .) We denote the cohomology class of $(c_{\sigma,\tau})$ by $\gamma_k(G, f)$ or simply by $\gamma(G, f)$ whenever k is tacitly fixed.

Two inner k-forms (G, f) and (G', f') of G_1 are said to be *i*-equivalent if there exists a k-isomorphism φ of G onto G' such that $f' \circ \varphi \circ f^{-1}$ is an inner automorphism of G_1 . It is immediate that the cohomology class $\gamma(G, f)$ depends only on the *i*-equivalenc class of (G, f).

In the case where G_1 is a connected reductive algebraic group, the number of *i*-equivalence classes of inner *k*-forms of G_1 contained in a *k*-isomorphism class of *k*-forms of G_1 (in the ordinary sense) is finite. Moreover, it is known ([9], p. 242) that, for any connected semi-simple algebraic group *G* defined over *k*, there exists an inner *k*-form (G_1, f^{-1}) of *G* such that G_1 is of Steinberg type, and the *i*-equivalence class of such (G_1, f^{-1}) is uniquely determined by *G*. Hence, in this case, we define the inveriant $\gamma(G)$ by setting $\gamma(G) = \gamma(G_1, f^{-1})$ $\in H^2(k, Z)$, *Z* denoting the center of *G*. If one denotes by f^* the isomorphism of $H^2(k, Z)$ onto $H^2(k, Z_1)$ induced in a natural way by *f*, then one has

(1)
$$\gamma(G) = f^{*-1}(\gamma(G, f)).$$

(Note that f induces on $Z_{\overline{k}}$ a \mathcal{G} -isomorphism $Z_{\overline{k}} \to (Z_1)_{\overline{k}}$.)

EXAMPLE. $G = SL(m, \Re_r)$, where \Re_r is a normal division algebra of degree r over k. Let f be a \bar{k} -isomorphism of G onto $G_1 = SL(mr)$ determined by the (unique) irreducible representation of \Re_r (as an associative algebra). Then (G_1, f^{-1}) is an inner k-form of G as described above, and through the natural identification $Z \cong Z_1 = \mathbf{E}_{mr}$ (induced by f), one has $\gamma(G) = c(\Re_r) \in H^2(k, \mathbf{E}_{mr})$ (where $c(\Re_r)$ denotes the "Hasse invariant" of \Re_r).

2. The following lemma is fundamental.

LEMMA 1. Let G_1 and G'_1 be algebraic groups defined over k, and let φ_1 be a k-morphism of G'_1 into G_1 . Suppose there is a k-closed subgroup G''_1 of G_1 such that, denoting by Z_1 , Z'_1 , Z''_1 the center of G_1 , G'_1 , G''_1 , respectively, one has

(i)
$$Z_{G_1}(\varphi_1(G_1)) = \varphi_1(Z_1) \cdot G_1''$$
,

 $Z_{G_1}(\cdots)$ denoting the centralizer of \cdots in G_1 ;

(ii) $\varphi_1(Z'_1) = Z_1 \times Z''_1$ (direct product);

(iii) the natural map $H^1(k, G''_1/Z''_1) \xrightarrow{d} H^2(k, Z''_1)$ is bejective. Let further (G', f') be an inner k-form of G'_1 . Then:

1) There exist an inner k-form (G, f) of G_1 and a k-morphism φ of G' into G such that one has $f \circ \varphi = \varphi_1 \circ f'$.

2) If $(\overline{G}, \overline{f}, \overline{\varphi})$ is another triple satisfying the same condition as (G, f, φ) , then there is a \overline{k} -isomorphism ψ of G onto \overline{G} such that $\overline{\varphi} = \psi \circ \varphi, \overline{f} \circ \psi \circ f^{-1}$ is an inner automorphism of G_1 , and $\psi^{\sigma} \circ \psi^{-1} = I_{d'_{\sigma}}$ where (d'_{σ}) is a 1-cocycle of \mathcal{G} in $\overline{f}^{-1}(Z'_1)_{\overline{k}}$.

3) For any inner k-form (G, f) of G_1 satisfying the condition in 1), $\gamma(G, f)$ coincides with the Z_1 -part of $\varphi_1^*(\gamma(G', f'))$ in the direct decomposition (ii), where φ_1^* denotes the natural homomorphism of $H^2(k, Z'_1)$ into $H^2(k, \varphi_1(Z'_1))$ induced by φ_1 .

PROOF. 1) Put $f'^{\sigma} \circ f'^{-1} = I_{g'_{\sigma}}$, $g'_{\sigma} \in (G'_{1})_{\overline{k}}$, and $\delta(g'_{\sigma}) = c'_{\sigma,\tau} \in Z'_{1}$. By (ii) one has

(2)
$$\varphi_1(c'_{\sigma,\tau}) = c_{\sigma,\tau} \cdot c''_{\sigma,\tau},$$

where $(c_{\sigma,\tau})$ and $(c''_{\sigma,\tau})$ are (uniquely determined) 2-cocycles of \mathcal{G} in Z_1 and Z''_1 , respectively. By (iii) (the surjectivity), there exists $g''_{\sigma} \in (G'_1)_{\overline{k}}$ such that $\delta(g''_{\sigma}) = c''_{\sigma,\tau}$. Put

$$g_{\sigma} = \varphi_1(g'_{\sigma}) \cdot g''_{\sigma};$$

then by (i) one has $\delta(g_{\sigma}) = c_{\sigma,\tau}$. Hence there is an inner k-form (G, f) of G_{r} . such that $f^{\sigma} \circ f^{-1} = I_{g\sigma}$. Put $\varphi = f^{-1} \circ \varphi_1 \circ f'$. Then, for every $\sigma \in \mathcal{G}$, one has

$$\varphi^{\sigma} = f^{-\sigma} \circ \varphi_1 \circ f'^{\sigma} = f^{-1} \circ I_{g_{\sigma}}^{-1} \circ \varphi_1 \circ I_{g_{\sigma}}^{\prime} \circ f' = f^{-1} \circ I_{g_{\sigma}}^{-1} \cdot \varphi_1(g_{\sigma}') \circ \varphi_1 \circ f' .$$

Since by (i) one has $g_{\sigma}^{-1} \cdot \varphi_1(g_{\sigma}') \in G_1'' \subset Z_{G_1}(\varphi_1(G_1'))$, one has $\varphi^{\sigma} = \varphi$, i.e. φ is defined over k. (Note that the converse of this is also true).

2) Let $(\bar{G}, \bar{f}, \bar{\varphi})$ be another triple satisfying the conditions stated in 1), and put $\bar{f}^{\sigma} \circ \bar{f}^{-1} = I_{\bar{g}\sigma}$, $\delta(\bar{g}_{\sigma}) = \bar{c}_{\sigma,\tau}$ with $\bar{g}_{\sigma} \in (G_1)_{\bar{k}}$, $\bar{c}_{\sigma,\tau} \in Z_1$. As we have just noted above, $\bar{\varphi}^{\sigma} = \bar{\varphi}$ ($\sigma \in \mathcal{G}$) implies that $\bar{g}_{\sigma}^{-1} \cdot \varphi_1(g'_{\sigma}) \in Z_{G_1}(\varphi_1(G'_1))$. Hence, by (i), one may put

$$\bar{g}_{\sigma}^{-1} \cdot \varphi_1(g'_{\sigma}) = \varphi_1(c'_{\sigma}) \cdot \bar{g}_{\sigma}^{\prime\prime-1}$$
 or $\bar{g}_{\sigma} = \varphi_1(c'_{\sigma} - g'_{\sigma}) \cdot \bar{g}_{\sigma}^{\prime\prime}$

with $c'_{\sigma} \in (Z'_1)_{\overline{k}}$ and $\overline{g}''_{\sigma} \in (G'_1)_{\overline{k}}$. Then one has

$$\bar{c}_{\sigma,\tau} = \delta(\varphi_1(c'_{\sigma}))^{-1} \cdot \varphi_1(c'_{\sigma,\tau}) \cdot \delta(\bar{g}''_{\sigma}),$$

which, by (i), (ii), implies that $\delta(\bar{g}'_{\sigma}) \in G''_1 \cap \varphi_1(Z'_1) = Z''_1$. Writing $\varphi_1(c'_{\sigma}) = c_{\sigma} \cdot c''_{\sigma}$ with $c_{\sigma} \in Z_1$ and $c''_{\sigma} \in Z''_1$ and comparing the Z-parts and Z''-parts in the above

equality, one obtains in view of (2)

(2a)
$$\begin{cases} \bar{c}_{\sigma,\tau} = \delta(c_{\sigma})^{-1}c_{\sigma,\tau}, \\ \delta(\bar{g}_{\sigma}^{\,\prime\prime}) = \delta(c_{\sigma}^{\prime\prime})^{-1} \cdot c_{\sigma,\tau}^{\prime\prime} = \delta(c_{\sigma}^{\prime\prime-1}g_{\sigma}^{\,\prime\prime}) \end{cases}$$

By (iii) (the injectivity), the second equality of (2a) implies that there is $h \in (G'_1)_{\overline{k}}$ and a 1-cocycle (a''_{σ}) of \mathcal{Q} in $(Z''_1)_{\overline{k}}$ such that one has

$$\bar{g}_{\sigma}^{\prime\prime} = a_{\sigma}^{\prime\prime} c_{\sigma}^{\prime\prime-1} h^{\sigma} g_{\sigma}^{\prime\prime} h^{-1};$$

then one has also $\bar{g}_{\sigma} = c_{\sigma}^{-1}h^{\sigma}g_{\sigma}h^{-1} \cdot a_{\sigma}^{\prime\prime}$. Now put $\psi = \bar{f}^{-1} \circ I_{h} \circ f$. Then, since $h \in Z_{G_{1}}(\varphi_{1}(G_{1}))$, one has

$$\psi \circ \varphi = \bar{f}^{-1} \circ I_h \circ f \circ \varphi = \bar{f}^{-1} \circ I_h \circ \varphi_1 \circ f' = \bar{f}^{-1} \circ \varphi_1 \circ f' = \bar{\varphi}$$

and, for every $\sigma \in \mathcal{G}$,

$$\begin{split} \psi^{\sigma} &= \bar{f}^{-\sigma} \circ I_{h^{\sigma}} \circ f^{\sigma} = \bar{f}^{-1} \circ I_{\overline{g}}^{-1} \circ I_{h^{\sigma}} \circ I_{g_{\sigma}} \circ f = \bar{f}^{-1} \circ I_{a_{\sigma}^{\prime\prime}}^{-1} \circ f \\ &= I_{\overline{f}}^{-1} \circ I_{a_{\sigma}^{\prime\prime}}^{-1} \circ \psi , \end{split}$$

i.e., one has $\psi^{\sigma} \circ \psi^{-1} = I_{a_{\sigma}^{\prime\prime}}$ with $d_{\sigma}^{\prime\prime} = \overline{f}^{-1}(a_{\sigma}^{\prime\prime-1}) \in \overline{f}^{-1}(Z_1^{\prime\prime})$.

3) is clear from the definitions and (2), (2a), q. e. d.

REMARK 1. The conditions (i), (ii) imply (i)' $Z_{G_1}(\varphi_1(G_1)) = Z \times G_1''$ (direct product); and (i)' in turn implies (ii)' $\varphi_1(Z_1') \subset Z_1 \times Z_1''$. As is seen from the above proof, the conditions (i), (ii) in Lemma 1 can be replaced by a weaker condition (i)'.

REMARK 2. The condition (iii) is satisfied if G'_1 is k-isomorphic to SL(n)and if the ground field k has the following property: (P_n) For any normal division algebra \Re over k such that $\Re^n \sim 1$ one has deg $\Re|n$.

In fact, it is well-known that the canonical map $\Delta: H^1(k, SL(n)/\mathbf{E}_n) \to H^2(k, \mathbf{E}_n)$ is injective, and also there is a canonical monomorphism of $H^2(k, \mathbf{E}_n)$ into the Brauer group $\mathcal{B}(k)$ of k (see Example in 1). If the algebra class of a normal division algebra \mathfrak{R} over k belongs to the image of this monomorphism, then one has clearly $\mathfrak{R}^n \sim 1$. On the other hand, the algebra class of \mathfrak{R} comes from an element of $H^1(k, SL(n)/\mathbf{E}_n)$ if and only if it contains a k-form of \mathcal{M}_n (the total matric algebra of degree n), or, in other words, the degree of \mathfrak{R} divides n. Hence, under the condition $(P_n), \Delta$ is bijective. It should also be noted that for the proofs of 2) and 3) we needed only the injectivity of Δ , which holds whenever G_1'' is k-isomorphic to SL(n), without the assumption (P_n) for k.

3. We shall now apply Lemma 1 to the following situation. Let G_1 and G'_1 be (connected) simply connected (absolutely simple) Steinberg groups over

I. SATAKE

k of one of the types listed below:

G_1	1 <i>E</i> 6	${}^{2}E_{6}$	E_7	$^{3}D_{4}$	⁶ D ₄
G'_1	¹ A ₅	${}^{2}A_{5}$	${}^{1}D_{6}$	³ (3A ₁)	⁶ (3A ₁)

(For the meaning of the notation, see [11].) Then the centers of G_1 and G'_1 are as follows:

$Z_1 \cong$	\mathbf{E}_{3}	\mathbf{E}_2	$\mathbf{E}_{2} imes \mathbf{E}_{2}$
$Z'_1 \cong$	\mathbf{E}_{6}	$\mathbf{E}_2 imes \mathbf{E}_2$	$\mathbf{E}_2 imes \mathbf{E}_2 imes \mathbf{E}_2$

The isomorphism in this list is a \mathcal{Q} -isomorphism, if and only if the group G_1 or G'_1 is of Chevalley type. In general, the corresponding G_1 and G'_1 will have a common splitting field k', and the action of \mathcal{Q} on Z_1 and Z'_1 will be determined uniquely by k'. In each case, we shall construct a k-morphism φ_1 of G'_1 into G_1 (which will turn out to be a monomorphism) in such a way that $\varphi_1(G'_1)$ is a "regular" k-closed subgroup of $G_1^{s_0}$. (By a regular closed subgroup of G_1 , we mean a closed subgroup corresponding to a "regular" subalgebra of the Lie algebra of G_1 in the sense of Dynkin [4].) For all cases, G''_1 will be a kclosed subgroup of G_1 which is a simply connected Chevalley group of type A_1 and so Z''_1 is $\cong \mathbf{E}_2$. Thus, by the Remark 2 in 2, the condition (iii) of Lemma 1 is satisfied, provided k satisfies the condition (P_2) .

4. The case ${}^{1}E_{6}$. Let G_{1} and G'_{1} be simply connected Chevalley groups over k of type E_{6} and A_{5} , respectively. Then, one has \mathcal{Q} -isomorphisms

$$Z_1 \cong \mathbf{E}_3 , \qquad Z_1' \cong \mathbf{E}_6 .$$

Let T_1 and T'_1 be k-trivial maximal tori in G_1 and G'_1 , respectively. Let further r be the root system of G_1 relative to T_1 , $\Delta = \{\alpha_1, \dots, \alpha_6\}$ a fundamental system

³⁾ It can be proven directly that, if G_1 is a simply connected semi-simple algebraic group and if H_1 is a regular closed subgroup corresponding to a subset of a fundamental system of G_1 , then H_1 is also simply connected.

326

of r, and μ the lowest root (i.e., $-\mu = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4 + \alpha_5 + 2\alpha_6$) (see the figure). Then it is clear that there is a k-isogeny φ_1 of G'_1 onto a regular k-closed subgroup $G_1(\{\alpha_1, \dots, \alpha_5\})$ such that $\varphi_1(T'_1) \subset T_1$. (In general, for any subset Γ of r, one denotes by $G_1(\Gamma)$ the regular closed subgroup of G_1 corresponding to the (closed) subsystem $r \cap \{\Gamma\}_Z$ of r.) One puts also $G''_1 = G_1(\{\mu\})$.

In order to see that the conditions (i), (ii) of Lemma 1 are satisfied, we need the following

LEMMA 2. Let ρ_1 be an irreducible representation of G_1 of dimension 27 with the highest weight $\lambda_1 = \frac{1}{3}(4\alpha_1 + 5\alpha_2 + 6\alpha_3 + 4\alpha_4 + 2\alpha_5 + 3\alpha_6)$. Then one has

$$ho_{1}\circ arphi_{1}\!\sim\!
ho_{1}'\!+\!
ho_{1}'\!+\!
ho_{4}'$$
 ,

where ρ'_i stands for the *i*-th skew-symmetric tensor representation of G'_1 in the standard numbering.

(Cf. [2], pp. 142-143; [3], pp. 20-23. In Cartan's notation, one has $\alpha_i = \omega_{i,i+1} = \overline{\omega}_i - \overline{\omega}_{i+1} (1 \le i \le 5), \ \alpha_e = \omega_{567} = \overline{\omega}_5 + \overline{\omega}_6 + \overline{\omega}_7, \ \mu = \omega_{000} = 3\overline{\omega}_0$. The weights of ρ_1 are given by $\overline{\omega}_i - \overline{\omega}_0, \ \overline{\omega}_i + 2\overline{\omega}_0, \ -\overline{\omega}_i - \overline{\omega}_j - \overline{\omega}_0 \ (1 \le i, \ j \le 6, \ i \ne j)$. It is then easy to see that $(-\overline{\omega}_i - \overline{\omega}_j - \overline{\omega}_0) \circ (\varphi_1 | T_1)$ (resp. $(\overline{\omega}_i - \overline{\omega}_0) \circ (\varphi_1 | T_1)$, resp. $(\overline{\omega}_i + 2\overline{\omega}_0) \circ (\varphi_1 | T_1)$) constitute the set of weights of ρ_1' (resp. ρ_1' , resp. ρ_1') relative to T_1' .

It follows that one can find a generator z of Z'_i such that

$$ho_1(\varphi_1(z)) = ext{diag.}(\zeta_6 \mathbb{1}_{12}, \ \zeta_6^4 \mathbb{1}_{15})$$
 ,

where ζ_r is the primitive r-th root of unity (in \bar{k}) and 1_r is the unit matrix of degree r. This shows that both ρ_1 and φ_1 are faithful and $\varphi_1(z^2)$ is a generator of Z_1 . On the other hand, it is clear that G_1'' is contained in the centralizer $Z_{G_1}(\varphi_1(G_1))$. By Schur's lemma, the matrices of degree 27 which commute elementwise with $\rho_1(\varphi_1(G_1))$ are of the form diag. $(x \otimes 1_6, \eta 1_{15})$, where $x \in GL(2)$ and η is a scalar. Hence, in order to complete the proof of (i), it is enough to show that, if a matrix of the form diag. $(\xi 1_{12}, \eta 1_{15})$ is in $\rho_1(G_1)$, then it is in $\rho_1(\varphi_1(Z_1))$. From the fact that $\rho_1(G_1)$ leaves a certain cubic form $(\sum_{i \neq k} x_i y_k z_{ik}$ $-\sum z_{\lambda\mu} z_{\nu\rho} z_{\sigma\tau}$ in the notation of [2] loc. cit.) invariant, it follows that $\xi^2 \eta = \eta^3 = 1$, whence $\xi^6 = 1$, $\eta = \xi^4$, which proves our assertion. At the same time, one sees that G_1'' is k-isomorphic to SL(2) and $\varphi_1(z^3)$ is the generator of Z_1'' . Thus we have also (ii).

When k satisfies the condition (P_2) , the condition (iii) of Lemma 1 is also satisfied. Therefore, applying Lemma 1, one concludes that to every *i*-equivalence class of inner k-form (G', f') of G'_1 there corresponds a certain number of *i*-equivalence classes of inner k-forms (G, f) of G_1 , for whith one has

(4) $\gamma(G) = Z$ -part of $\varphi^*(\gamma(G'))$

I. SATAKE

where Z (resp. Z') is the center of G (resp. G'), which is also \mathcal{Q} -isomorphic to \mathbf{E}_3 (resp. \mathbf{E}_6). More specifically, when G' is k-isomorphic to $SL(6/r, \mathfrak{R}_r)$, one may identify Z' with \mathbf{E}_6 through the irreducible representation of $SL(6/r, \mathfrak{R}_r)$ (defined over \bar{k}) which comes from the (unique) irreducible representation of \mathfrak{R}_r (as an associative algebra). Then, by what we have proved above, this identification gives rise to the corresponding identification of Z with \mathbf{E}_3 , and in this sense one has

(4')
$$\gamma(G) = c(\Re_r)^4,$$

where $c(\Re_r) \in H^2(k, E_6)$ is the Hasse invariant of \Re_r .

We may reformulate our result in the following form, which also gives a characterization of the k-forms G obtained by our method.

THEOREM 1. Let G be a simply connected absolutely simple algebraic group of type E_6 defined over k. Suppose there exists a regular k-closed subgroup G' of type ${}^{1}A_5$. Then G is of type ${}^{1}E_6$. If G' is k-isomorphic to SL(6/r, \Re_r), then through the natural identification mentioned above one has

$$\gamma(G) = c(\Re_r)^4.$$

PROOF. Since there is only one class of regular closed subgroups of type A_5 in G with respect to the inner automorphisms ([4], p. 149, Table 11), one may suppose that G' is of the form $G(\{\alpha_1, \dots, \alpha_5\})$ with respect to a maximal torus T defined over \bar{k} and a fundamental system $\{\alpha_1, \dots, \alpha_6\}$. Let G_1 be a simply connected Chevalley group of type E_6 over k and let T_1 be a k-trivial maximal torus in G_1 . Then one can find a \bar{k} -isomorphism $f: G \to G_1$ such that $f(T) = T_1$. Let $\varphi: G' \to G$ be the inclusion monomorphism (defined over k), and put $f' = f | G', G'_1 = f'(G')$, and $\varphi_1 = f \circ \varphi \circ f'^{-1}$. Then $G'_1 = G_1(\{\alpha_1, \dots, \alpha_6\})$ (with respect to T_1), so that G'_1 is a k-closed subgroup of G_1 , which is a simply connected Chevalley group of type A_5 over k, and φ_1 is also defined over k. Since G' is of type ${}^{1}A_5$, the isomorphism $Z' \cong \mathbf{E}_6$ is a \mathcal{G} -isomorphism. Therefore the same is also true for $Z \cong \mathbf{E}_3$, which means that G is of type ${}^{1}E_6$. It follows that $f^{\sigma} \circ f^{-1}$ (resp. $f'^{\sigma} \circ f'^{-1}$) is an inner automorphism of G_1 (resp. G'_1). Thus one restores the situation considered above (except for the condition (P_2) on k, which we do not need), and the last statement of the Theorem follows.

5. The case ${}^{2}E_{6}$. Let G_{1} and G'_{1} be simply connected Steinberg groups over k of type ${}^{2}E_{6}$ and ${}^{2}A_{5}$, respectively. Then there exists a quadratic extension k' of k over which G_{1} splits (i. e., becomes of Chevalley type). For any fixed isomorphism $Z_{1} \cong \mathbf{E}_{3}$, the 'splitting field' k' can be characterized by the action of the Galois group as follows:

328

$$Z_{1} \ni z \leftrightarrow \zeta \in \mathbf{E}_{3}$$

$$\Longrightarrow \left\{ \begin{array}{ccc} z^{\sigma} \leftrightarrow \zeta^{\sigma} & \text{if } \sigma \in \operatorname{Gal}\left(\bar{k}/k'\right), \\ z^{\sigma} \leftrightarrow \zeta^{-\sigma} & \text{if } \sigma \in \operatorname{Gal}\left(\bar{k}/k'\right). \end{array} \right.$$

The situation is quite similar for G'_1 . Hence, if there is a k-morphism φ_1 : $G'_1 \to G_1$ as described in Lemma 1, then the injection: $Z_1 \to \varphi_1(Z'_1)$ will induce a \mathscr{Q} -monomorphism of Z_1 into Z'_1 , and so the splitting fields for G_1 and G'_1 should coincide. Conversely, if G_1 and G'_1 have a common splitting field k', then one can find a k-morphism φ_1 as follows. Let T_1 and T'_1 be maximal tori defined over k in G_1 and G'_1 , respectively, containing a maximal k-trivial torus in the respective groups, and take a \mathscr{Q} -fundamental system $\mathscr{A} = \{\alpha_1, \dots, \alpha_6\}$ in the sense of [8]. (These imply that T_1 and T'_1 are k'-trivial and, if σ_0 denotes the generator of $\operatorname{Gal}(k'/k)$, one has $\alpha_1^{\sigma_0} = \alpha_5$, $\alpha_2^{\sigma_0} = \alpha_4$, $\alpha_3^{\sigma_0} = \alpha_3$, $\alpha_6^{\sigma_0} = \alpha_6$.) It is then clear that $G_1(\{\alpha_1, \dots, \alpha_5\})$ is a k-closed subgroup of G_1 , which is also a Steinberg group with the same splitting field k', and $T_1 \cap G_1(\{\alpha_1, \dots, \alpha_5\})$ contains a maximal k-trivial torus in $G_1(\{\alpha_1, \dots, \alpha_5\})$. Therefore, there exists a k-isogeny φ_1 of G'_1 onto $G_1(\{\alpha_1, \dots, \alpha_5\})$ such that $\varphi_1(T'_1) \subset T_1$ ([8], p. 233).

Since the conditions (i), (ii) of Lemma 1 have nothing to do with the ground field k, the proofs given in 4 remain valid in the present case. Also one has $G_1'' = G_1(\{\mu\}) \cong SL(2)$ (over k). Hence one can apply Lemma 1 to obtain a quite similar result as in 4. In particular, if (G, f) is an inner k-form of G_1 corresponding to an inner k-form (G', f') of G_1' in the sense of Lemma 1, then $\gamma(G)$ is given by the Z-part of $\varphi^*(\gamma(G'))$. Also, by a similar argument, one obtains the following

THEOREM 1'. Let G be a simply connected absolutely simple algebraic group of type E_6 defined over k. Suppose there exists a regular k-closed subgroup G' of type 2A_5 . Then, G is of type 2E_6 (belonging to the same quadratic extension k'/k) and $\gamma(G)$ is given by the Z-part of $\gamma(G')$.

6. The case E_{τ} . Let G_1 and G'_1 be simply connected Chevalley groups over k of type E_{τ} and D_{ϵ} , respectively. Then one has

$$Z_1 \cong \mathbf{E}_2 , \qquad Z_1' \cong \mathbf{E}_2 \times \mathbf{E}_2 .$$

(This time the operations of the Galois group are all trivial.) Let T_1 and T'_1 be k-trivial maximal tori in G_1 and G'_1 , respectively, and let $\{\alpha_1, \dots, \alpha_7\}$ be a

I. SATAKE

fundamental system of G_1 relative to T_1 , and μ the lowest root (i.e., $-\mu = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 + 3\alpha_5 + 2\alpha_6 + 2\alpha_7$) (see the figure). Then one has a k-isogeny φ_1 of G'_1 onto $G_1(\{\alpha_1, \dots, \alpha_5, \alpha_7\})$ such that $\varphi_1(T'_1) \subset T_1$. One puts also $G''_1 = G_1(\{\mu\})$. Then one has the following

LEMMA 3. Let ρ_1 be an irreducible representation of G_1 of dimension 56 with the highest weight $\lambda_1 = \frac{3}{2}\alpha_1 + 2\alpha_2 + \frac{5}{2}\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6 + \frac{3}{2}\alpha_7$. Then, one has

$$ho_{1}\circ arphi_{1}\!\sim\!
ho_{1}'\!+\!
ho_{1}'\!+\!
ho_{6}'$$
 ,

where ρ'_1 and ρ'_6 are the irreducible representations of G'_1 corresponding to the fundamental weights λ'_1 and λ'_6 , respectively. (The λ'_i 's are numerated in such a way that $\frac{2\langle \alpha'_i, \lambda'_j \rangle}{\langle \alpha'_i, \alpha'_i \rangle} = \delta_{ij}$, where $\alpha'_i = \alpha_i \circ (\varphi_1 | T'_1)$ for $1 \leq i \leq 5$ and $\alpha'_6 = \alpha_7 \circ (\varphi_1 | T'_1)$. In particular, ρ'_6 is the "second spin representation" in this numbering.)

(Cf. [2], pp. 143-144; [3], pp. 24-27. Note that in this case $\rho_1(G_1)$ leaves an alternating form invariant.)

In virtue of this Lemma, it can be proved exactly as in 4 that the conditions (i), (ii) of Lemma 1 are satisfied. Moreover, one can find generators z_{1} and z_{2} of Z'_{1} such that

$$ho_1(arphi_1(z_1)) = ext{diag.}(-1_{24}, 1_{32}),$$

 $ho_1(arphi_1(z_2)) = -1_{56}.$

Thus $\varphi_1(z_1)$ and $\varphi_1(z_2)$ are the generators of Z_1'' and Z_1 , respectively. In the following, we shall fix once and for all the isomorphisms (5) given by this choice of the generators.

One concludes from Lemma 1 that, if (G, f) is an inner k-form of G_1 corresponding to an inner k-form (G', f') of G'_1 , then $\gamma(G)$ is given by the Z-part of $\varphi^*(\gamma(G'))$. Through the identification of $Z' \cong Z'_1$ (resp. $Z \cong Z_1$) with $\mathbf{E}_2 \times \mathbf{E}_2$ (resp. \mathbf{E}_2) mentioned above, one has

(6)
$$\gamma(G') = (c(\mathfrak{C}_1), c(\mathfrak{C}_2)), \quad \gamma(G) = c(\mathfrak{C}_2),$$

where \mathfrak{C}_1 and \mathfrak{C}_2 denote the first and the second Clifford algebras (over k) associated with G' supplying the spin representations ρ'_5 and ρ'_6 respectively ([9], p. 249). From this, one obtains the following

THEOREM 2. Let G be a simply connected absolutely simple algebraic group of type E_7 over k. Suppose there exists a regular k-closed subgroup G' of type D_6 . Then, G' is of type 1D_6 and, if \mathfrak{C}_2 is the second Clifford algebra associated with G' (in the sense explained above), one has

$$\gamma(G) = c(\mathfrak{C}_2).$$

In fact, since there is only one class of regular closed subgroups of type

 D_6 in G ([4], loc. cit.), one may suppose that G' is of the form $G(\{\alpha_1, \dots, \alpha_5, \alpha_7\})$. On the other hand, since the Galois group operates trivially on $Z' = Z \times Z''$, G' is of type 1D_6 . The rest of the proof runs exactly in the same way as for Theorem 1.

7. Tits [12] gave recently a new method of constructing k-forms of (absolutely) simple Lie algebras of type E_6 and E_7 which contain in an obvious way simple Lie algebras of type A_5 and D_6 , respectively. The invariant $\gamma(G)$ of the corresponding simply connected simple algebraic group G defined over k can therefore be determined by Theorems 1, 1' and 2. Moreover, when k is a local field, all k-forms of E_6 and E_7 are obtained in this manner.

First, let us recall briefly the construction of Tits for the case E_6^{4} . Let \mathfrak{D} (resp. \mathcal{C}) be a quaternion (resp. octanion) algebra over k, and let \mathcal{S} be a normal simple Jordan algebra of degree 3 and of dimension 9 over k (with the product \circ)⁵⁾. Then one obtains simple Lie algebras of type E_6 and A_5 over k in the following form:

(7)
$$\begin{cases} \mathfrak{g} = D(\mathcal{C}) + \mathcal{C}_0 \otimes \mathcal{S}_0 + D(\mathcal{G}), \\ \mathfrak{g}' = D(\mathfrak{D}) + \mathfrak{D}_0 \otimes \mathcal{S}_0 + D(\mathcal{G}), \end{cases}$$

where $D(\dots)$ denotes the derivation algebra of \dots and $(\dots)_0$ is the subspace of \dots formed of all elements of (reduced) trace zero. The product [] in g is defined by the following rule: (i) $D(\mathcal{C})$ and $D(\mathcal{J})$ are Lie subalgebras of g satisfying $[D(\mathcal{C}), D(\mathcal{J})] = 0$; (ii) for $D \in D(\mathcal{C}), D' \in D(\mathcal{J})$, and $a \otimes u \in \mathcal{C}_0 \otimes \mathcal{J}_0$, one has

$$[D+D', a \otimes u] = (Da) \otimes u + a \otimes (D'u);$$

(iii) for $a \otimes u$, $b \otimes v \in C_0 \otimes \mathcal{J}_0$, one has

$$[a \otimes u, b \otimes v] = (u, v)\langle a, b \rangle + (a * b) \otimes (u * v) + (a, b)\langle u, v \rangle,$$

where $(a, b) = \frac{1}{2} tr(ab)$, $a * b = ab - (a, b)1 \in C_0$, and $\langle a, b \rangle$ is a derivation of C defined by

$$\langle a, b \rangle (x) = \frac{1}{4} [[a, b], x] - \frac{3}{4} [a, b, x] \quad \text{for } x \in \mathcal{C},$$

and similarly $(u, v) = \frac{1}{3} tr(u \circ v)$, $u * v = u \circ v - (u, v)$, and

$$\langle u, v \rangle (x) = u \circ (v \circ x) - v \circ (u \circ x)$$
 for $x \in \mathcal{G}$.

The product in g' is defined similarly.

Now suppose $\mathfrak{D}\subset \mathcal{C}$. Then one may write $\mathcal{C}=\mathfrak{D}+\mathfrak{D}\varepsilon_4$ with $\varepsilon_4\in \mathcal{C}_0$, $\varepsilon_4^2=\lambda$

⁴⁾ Actually there are two different constructions of the Lie algebras of type E_6 and E_7 , but for the sake of simplicity we consider here only one of them.

⁵⁾ For the theory of Jordan algebras the reader is referred to [7], [10], [12], [13].

 $\in k$, $\lambda \neq 0$, and one has

$$(a+b\varepsilon_4)(c+d\varepsilon_4) = (ac+\lambda \bar{d}b)+(da+b\bar{c})\varepsilon_4$$

for a, b, c, $d \in \mathfrak{D}$, where the bar denotes the canonical involution in \mathfrak{D} . We imbed $D(\mathfrak{D})$ into $D(\mathcal{C})$ as follows. One has $D(\mathfrak{D}) = \{D_a \ (a \in \mathfrak{D}_0)\}$, where $D_a(x) = [a, x]$ for $x \in \mathfrak{D}$, and D_a can be extended to a derivation of \mathcal{C} by setting

$$D_a(x+y\varepsilon_4) = [a, x] - (ya)\varepsilon_4$$

(Note that this extension of D_a is independent of the choice of ε_4 .) The injection $D(\mathfrak{D}) \rightarrow D(\mathcal{C})$ thus defined is clearly a monomorphism of Lie algebra, and gives rise in a natural way to a monomorphism of \mathfrak{g}' into \mathfrak{g} . In this sense, we have the following

LEMMA 4. When $\mathfrak{D} \subset \mathcal{C}$, \mathfrak{g}' is a regular subalgebra of \mathfrak{g} .

In fact, take any non-zero element a_1 in \mathfrak{D}_0 . Then one can define another sort of derivation of \mathcal{C} by setting

$$D'_{a_1}(x+y\varepsilon_4) = (a_1y)\varepsilon_4$$
.

It is easy to check that one has $[D'_{a_1}, X] = 0$ for all $X \in \mathfrak{g}'$. Hence, if a_1 is semi-simple and if \mathfrak{h}' is any Cartan subalgebra of \mathfrak{g}' , then $\mathfrak{h} = \{D'_{a_1}\}_k + \mathfrak{h}'$ is a Cartan subalgebra of \mathfrak{g} such that $[\mathfrak{h}, \mathfrak{g}'] \subset \mathfrak{g}'$. Therefore, \mathfrak{g}' is a regular subalgebra of \mathfrak{g} with respect to \mathfrak{h} .

Now we have the following two cases:

1°. $\mathcal{J} = \mathcal{J}(\mathfrak{A}_3)$, where \mathfrak{A}_3 is a normal simple (associative) algebra of degree 3 over k and $\mathcal{J}(\mathfrak{A}_3)$ denotes the Jordan algebra obtained from \mathfrak{A}_3 by endowing it with the Jordan product $x \circ y = \frac{1}{2}(xy+yx)$ for $x, y \in \mathfrak{A}_3$.

2°. $\mathcal{J} = \mathcal{H}(\mathfrak{A}'_3, \iota)$, where \mathfrak{A}'_3 is a normal simple (associative) algebra of degree 3 over a quadratic extension k' of k with an involution of the second kind ι , and $\mathcal{H}(\mathfrak{A}'_3, \iota)$ denotes the Jordan algebra formed of all ' ι -hermitian' element in \mathfrak{A}'_3 (i.e., all $x \in \mathfrak{A}'_3$ such that x' = x) with the Jordan product as above. In particular, when $\mathfrak{A}'_3 \sim 1$ (over k'), one may write

$$\mathcal{J} = \mathcal{H}_{3}(k'/k; \gamma_{1}, \gamma_{2}, \gamma_{3}) = \{X \in \mathcal{M}_{3}(k') | H^{-1t} \overline{X} H = X\},\$$

where $\gamma_i \in k$, $\gamma_i \neq 0$ $(1 \leq i \leq 3)$, and $H = \text{diag.}(\gamma_1, \gamma_2, \gamma_3)$.

It is then easy to show that, in the case 1°, g' is canonically identified with the Lie algebra $(\mathfrak{D} \otimes \mathfrak{A}_3)_0$ with the Lie product [x, y] = xy - yx; while, in the case 2°, g' is canonically identified with the Lie algebra formed of all $x \in \mathfrak{D} \otimes_k \mathfrak{A}'_3$ such that $tr_{\mathfrak{D} \otimes \mathfrak{A}'_3/k'}(x) = 0$ and x'' + x = 0, with the Lie product as above, where ι' denotes the involution of the second kind in $\mathfrak{D} \otimes_k \mathfrak{A}'_3$ defined by $(x \otimes y)'' = \bar{x} \otimes y'$ for $x \in \mathfrak{D}$, $y \in \mathfrak{A}'_3$. Let G and G' be the simply connected simple algebraic groups defined over k corresponding to g and g', respectively.

332

Then, in the case 1°, G' is of type ${}^{1}A_{5}$ and by Theorem 1 one has

(8)
$$\gamma(G) = c(\mathfrak{A}_3).$$

In the case 2°, G' is of type ${}^{2}A_{5}$ and $\gamma(G)$ can be determined by Theorem 1' and by [9], p. 245, (14); in particular, if $\mathfrak{A}'_{3} \sim 1$ (over k'), one has

$$\gamma(G) = (c'_{\sigma,\tau})$$

where

$$c'_{\sigma,\tau} = \begin{cases} 1 & \text{if } \sigma \in \text{Gal}(\bar{k}/k'), \\ \sqrt[3]{\gamma_1 \gamma_2 \gamma_3}^{\tau-1} & \text{if } \sigma \notin \text{Gal}(\bar{k}/k'), \tau \in \text{Gal}(\bar{k}/k'), \\ \sqrt[3]{\gamma_1 \gamma_2 \gamma_3}^{1-\tau} & \text{if } \sigma, \tau \notin \text{Gal}(\bar{k}/k'), \end{cases}$$

whence it is easy to see that $(c'_{\sigma,\tau}) \sim 1$ and so $\gamma(G) = 1$.

8. The simple Lie algebras of type E_7 and D_6 constructed by Tits are of the following form:⁴⁾

(9)
$$\begin{cases} \mathfrak{g} = D(\mathcal{C}) + \mathcal{C}_0 \otimes \mathcal{G}_0' + D(\mathcal{G}'), \\ \mathfrak{g}' = D(\mathfrak{D}) + \mathfrak{D}_0 \otimes \mathcal{G}_0' + D(\mathcal{G}'), \end{cases}$$

where \mathfrak{D} and \mathcal{C} are as before, but \mathcal{G}' is a normal simple Jordan algebra of degree 3 and of dimension 15 over k. When k satisfies (P_2) , one may assume

(10)
$$\mathcal{G}' = \mathcal{H}_{3}(\mathfrak{D}'; \gamma_{1}, \gamma_{2}, \gamma_{3}),$$

where \mathfrak{D}' is another quaternion algebra over $k, \gamma_i \in k, \gamma_i \neq 0$, and $\mathcal{H}_{\mathfrak{g}}(\mathfrak{D}'; \gamma_1, \gamma_2, \gamma_3)$ denotes the Jordan algebra formed of all $X \in \mathcal{M}_{\mathfrak{g}}(\mathfrak{D}')$ such that $H^{-1t}\overline{X}H = X$ with $H = \operatorname{diag.}(\gamma_1, \gamma_2, \gamma_3)$. The products are defined quite similarly as in 7.

Now, analogously to Lemma 4, one sees that, when $\mathfrak{D} \subset \mathcal{C}$, \mathfrak{g}' is a regular subalgebra of \mathfrak{g} . Also, it is easy to see that \mathfrak{g}' can be identified canonically with the Lie algebra formed of all $X \in \mathcal{M}_{\mathfrak{g}}(\mathfrak{D} \otimes \mathfrak{D}')$ such that tr(X) = 0 and ${}^{t}\overline{X}H + HX = 0$, where \overline{X} is defined by means of the involution of the first kind in $\mathfrak{D} \otimes \mathfrak{D}'$ defined by $\overline{x \otimes y} = \overline{x} \otimes \overline{y}$ for $x \in \mathfrak{D}$, $y \in \mathfrak{D}'$. It follows that G' is of type ${}^{1}D_{\mathfrak{g}}$ and so by Theorem 2, denoting by $\mathfrak{C}_{\mathfrak{g}}$ the second Clifford algebra associated with G', one has

$$\gamma(G) = c(\mathfrak{C}_2).$$

In the special cases, where $\mathfrak{D}' \subset \mathcal{C}$ or $\mathcal{C} \sim 1$, one can show that $\mathfrak{C}_2 \sim \mathfrak{D}'$ and so

(11)
$$\gamma(G) = c(\mathfrak{D}').$$

(This is always the case when k is a local field.)

In fact, if $\mathfrak{D}' \subset \mathcal{C}$, one may take $\mathfrak{D} = \mathfrak{D}' = (\beta, \gamma)$. Then $\mathfrak{D} \otimes \mathfrak{D}' \sim 1$ and the 3-dimensional hermitian vector space over $\mathfrak{D} \otimes \mathfrak{D}'$ with the hermitian form H

reduces in an obvious manner to a 12-dimensional quadratic vector space over k with a symmetric bilinear form $S = \text{diag.}(1, -\beta, -\gamma, \beta\gamma) \otimes H$. By an easy calculation, one then sees that the full Clifford algebra C(S) is $\sim(\beta,\gamma)$ and so $\mathfrak{C}_1 \sim \mathfrak{C}_2 \sim (\beta, \gamma)$. Next, when $\mathcal{C}' \sim 1$, one may take $\mathfrak{D} \sim 1$; put $\mathfrak{D}' = (\beta', \gamma')$. Then the 3-dimensional hermitian vector space over $\mathfrak{D}\otimes\mathfrak{D}'$ reduces to a 6dimensional (right) vector space V' over \mathfrak{D}' with a skew-hermitian form of index 3. Let (e_1, \dots, e_6) be any basis of V' over \mathfrak{D}' for which the skewhermitian form takes the form $\begin{pmatrix} 0 & -1_3 \\ 1_3 & 0 \end{pmatrix}$ and put $e_i = e_i \varepsilon'_{11}$ $(1 \le i \le 6)$, where $\varepsilon_1' \in \mathfrak{D}_0', \ \varepsilon_1'^2 = \beta', \ \varepsilon_{11}' = -\frac{1}{2} (1 + \sqrt{\beta'} - \varepsilon_1').$ Put further $K = k(\sqrt{\beta'}).$ Then $W = \{e_1, e_2\}$..., $e_{\mathfrak{s}}_{\mathfrak{k}}$ is a maximal totally isotropic subspace of $V'_{\mathfrak{k}}\varepsilon'_{\mathfrak{ll}}$, which is now viewed as a 12-dimensional quadratic vector space over K. Let $W' = \{e_{\tau}, \dots, e_{\tau_2}\}_K$ be a complementary totally isotropic subspace such that $S(e_i, e_{j+6}) = \delta_{ij}$ $(1 \leq i, j \leq 6)$, S denoting the symmetric bilinear form on $V'_{K}\varepsilon'_{11}$. In terms of this basis, one can show that the second Clifford algebra \mathfrak{G}_2 (in the sense explained in 6) corresponds to the simple component of the even Clifford algebra $C^+(S)$ whose unit element is given by $\frac{1}{2} \left\{ 1 + \prod_{i=1}^{6} (e_i e_{i+6} - e_{i+6} e_i) \right\}$. From this, one can conclude by a straightforward calculation that $\mathfrak{G}_2 \sim (\beta', \gamma')$.

9. The cases ${}^{3}D_{4}$ and ${}^{6}D_{4}$. Let G_{1} and $G'_{1}(=\prod_{i=1}^{3}G'_{1i})$ be simply connected Steinberg groups over k of type ${}^{3}D_{4}$ (or ${}^{6}D_{4}$) and ${}^{3}(3A_{1})$ (or ${}^{6}(3A_{1})$), respectively. Then, there is a cubic extension k'_{1} of k such that $G'_{1} = R_{k'_{1}/k}(G'_{11})$, and the splitting field k' for G'_{1} is the smallest Galois extension (of degree 3 or 6) of k containing k'_{1} . One has

In view of the operations of the Galois group on Z_1 and Z'_1 , it is easy to see (as in 5) that one has a k-isogeny φ_1 of G'_1 onto $G_1(\{\alpha_1, \alpha_3, \alpha_4\})$ if and only if G_1 has the same splitting field k'. One puts also $G''_1 = G_1(\{\mu\})$, where μ is the lowest root. Then (as in 4) one can show that all the assumptions of Lemma 1 are satisfied, provided k satisfies (P_2) . Moreover, if one calls z_i the generator of the center of G'_{1i} (i=1, 2, 3), one sees that $\varphi_1(z_1z_2)$ and $\varphi_1(z_1z_3)$ are generators

of Z_1 and $\varphi_1(z_1z_2z_3)$ is the generator of Z_1'' . One fixes once and for all the isomorphisms (12) defined by this choice of the generators. Then, by the same argument as before one obtains the following

THEOREM 3. Let G be a simply connected absolutely simple algebraic group of type D_4 defined over k. Suppose there exists a regular k-closed subgroup G' of type ${}^{3}(3A_1)$ or ${}^{6}(3A_1)$. Then, G is of type ${}^{3}D_4$ or ${}^{6}D_4$ (with the same 'nuclear' field k' 6). If G' is k-isomorphic to $R_{k'_1/k}(SL(1, \mathfrak{D}'))$, where k'_1 is a cubic extension of k and \mathfrak{D}' is a quaternion algebra over k'_1 , then $\gamma(G)$ is given by the Zpart of $R_{k'_1/k}^{*}(c(\mathfrak{D}')) \in H^2(k, Z')$.

In particular, if there is a quaternion algebra \mathfrak{D} over k such that $\mathfrak{D}' = \mathfrak{D} \bigotimes_k k'$ (as is always the case when k is a local field), then it can easily be seen that $\gamma(G) = 1$.

University of Chicago

References

- [1] H. P. Allen, Jordan algebras and Lie algebras of type D_4 , Bull. Amer. Math. Soc., 72 (1966), 65-67.
- [2] E. Cartan, Sur la structure des groupes de transformations finis et continus (Thèse), Paris, 1894; Oeuvres complètes, Vol. 1, Paris, Gauthier-Villars, 1952, 137-287.
- [3] E. Cartan, Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bull. Soc. Math. France, 4 (1913), 53-96; Oeuvres complètes, ibid., 355-398.
- [4] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sb. N. S., 30 (72) (1952), 349-462; Amer. Math. Soc. Transl., Ser. 2, 6 (1957), 111-244.
- $\begin{bmatrix} 5 \end{bmatrix}$ J.C. Ferrar, On Lie algebras of type E_6 , Bull. Amer. Math. Soc., 73 (1967), 151–155.
- [6] M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über p-adischen Körpern, II, Math. Zeit., 89 (1965), 250-272.
- [7] M. Koecher and H. Braun, Jordan-Algebren, Springer-Verlag, Berlin-Heidelberg-New York, 1966.
- [8] I. Satake, On the theory of reductive algebraic groups over a perfect field, J. Math. Soc. Japan, 15 (1963), 210-235.
- [9] I. Satake, Symplectic representations of algebraic groups satisfying a certain analyticity condition, Acta Math., 117 (1967), 215-279.
- [10] T. Springer, Oktaven, Jordan-Algebren und Ausnahmegruppen, Lecture Note, Göttingen, 1963.
- [11] J. Tits, Classification of algebraic semisimple groups, Proc. of Symposia in pure Math., Vol. 9 (1966), 33-62.
- [12] J. Tits, Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionelles, I. Construction, Indag. Math., 28 (=Proc. Kon. Ned. Akad. Wet. Ser. A, 69) (1966), 223-237.
- [13] R.D. Schafer, An introduction to nonassociative algebras, Academic Press, New York and London, 1966.

⁶⁾ This terminology was borrowed from T. Ono, On algebraic groups and discrete groups, Nagoya Math. J., 27 (1966), 279-322.