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§ 0. Introduction.

The Picard number of an algebraic variety is closely related to the arith-
metical properties of the algebraic variety. The well-known Lefschetz-Hodge
theorem asserts that, in the case of algebraic surfaces, 2-cycles on an algebraic
surface are algebraic if and only if the periods of all the holomorphic 2-forms
are zero (cf. Lefschetz [5], Kodaira-Spencer [4]). However, the determination
of values of the periods on algebraic surfaces are extremely difficult. In
this paper we examine some properties of the periods of holomorphic 2-forms
on the algebraic surface S=3S, (¢, a®) in the three dimensional projective
space P,(C) defined by

0.1) jI=Il (xg—aj’ xy) :j];[l (x,—aPx,),

where (x,, x;, X,, X;) are homogenous co-ordinates of P,(C), and study the

Picard number of this surface.
We shall summarize our results briefly. The first three sections are pre-

liminaries. We calculate the Picard number in the final section. In the first
section we show the following properties of our surface S defined by (0.1):
Let C; be the (plane) algebraic curve defined by

©.2) =11 w—aPu) (=12,
=1

where (u,, u,, 4,) are homogenous co-ordinates of projective plane P,(C), and
let G,={ol:1=1,2,..-,n} be the automorphism group of C; defined by

2y/~1
0ty 1) = (o 13 Cot), G exp ((ZEY LY,

Then we prove that S is birationally equivalent to the quotient surface

(C;xCy)/G, (Lemma 1I).
Let p(S) be the Picard number of S and let p“»(C,xC,) be the number of

homologically independent algebraic curves on C,Xx(C, whose homology classes
are invariant under the operations of G,. Then we obtain from
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easily the following

LEMMA 1.2.
0.3) 0(S) = p@w(C; X Cy)+n>—2n+2 .

In the second section we determine certain Betti bases I'% (k=1, .-, n—1,
J=1,--,n—2) of the algebraic curve C; in such a way that

CAMAIEVE 1

(0.4) n—1
@5 =="3 1%,

holds, where (¢,), denotes the operation of the automorphism o, on the 1-cycles on
C;- In the third section we examine some properties of periods of holomorphic

1-forms on the plane algebraic curve C: y"= ﬁ(x——aj) (where (x, y) are affine
j=1

co-ordinates). Let o™ = x"y"~®*0dx (0<r+vy < n—3) be holomorphic 1-forms on
C, and let J, J,, J, be the Jacobian varieties of the algebraic curves C, C,, C,.
First we give ‘ period matrices’ X¥, X, X® whose entries are the periods

j X7y~ Ddx for [, ], J;» and give period relations of these ¢ period matrices’
r
J

and a formula (concerning matrix representations of homomorphisms between J,
and J,) expressed by ‘periods’. These results are restatements of G. Shimura
under somewhat weaker conditions. We give power-series expansions of
the holomorphic functions W;-’”(a):jr1 xTy*~@-0dx at the point a,=(,, 3,

J
-+, Cr' 1) and, as an application of the power-series expansions, we obtain the
n

following results :
THEOREM 3.1. Let ny"(@)=W4r"(a)/Wy'(a) =1, -+, n—=3) and define a
holomorphic mapping H™*(a) from a neighborhood of the point a, into C"* by

H™Y (@) =(p7(@), -, 9225(@)) -

Then the rank of the Jacobian matrix of the mapping H""(a) at the point a, is
equal to n—3.

In Section 4, we calculate the Picard number p(S) of our surface S. From
and we obtain easily

THEOREM 4.2. If n is a prime number, for general values of the parameters
(@™, a®), we have

0(S(a®, a®)) =n*—2n+2,
and for general values of the parameters (a)
o(S,(a, a)) =n*—2n-F2+(n—1).

Secondly we calculate the Picard number of the quartic and quintic sur-
faces S,(a®’, a®) and S,(a®, a®). For the quartic surface S,(a®’, a®), putting
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z-(a):fr{(wy'zdx/fré(a)y“zdx, we obtain
THEOREM 4.4.
D If (@), r(a®) € Qv —1), then p(S,(a®, a®)) = 20.
() If z(a®), v(a®) & Q(v/'—1), and if there is a relation

0.4 r(a®) = My T(@)+my, My,

My T(A)+ 1y,
then p(S,(a®, a®))=19.
(1) If there is no relation (0.4) between them, then p(S(a, a®))=18.
For the quintic surface S;(a®, a®), we obtain the following partial results:
Put

. my,
for a matrix
Myy My

le @,

'cl(a):f . ‘ugzdul/j . ugtdu,,
Irya) I';(a)

rz(a):j ) \u;zdul/f . uy?du, .
I'y(a) I3la)

Then we obtain
THEOREM 4.6. For any a®, a®

37 = p(Sy(a®, a®) = 17 .

If =(a®), 7,(a®) € Q(y),
0(Sy(a®, a®)) =37,

Finally we calculate the Picard number p(S,) of a surface S, of the Fermat
type xp+x7+x74+x2=0. Let [, be the number of (i, ;) (mod n) which satisfy
the simultaneous congruences for som= v, p, p’:

y=—2, o, n—2

0.5 i=vp, j=vp’ (modn)
p=1, ., v—1, p'=1, .-, n—(—1).

Then we obtain
THEOREM 4.7.
=n2—2n+24+-mn—-1002n—5).

The author expresses his gratitude to Professor G. Shimura for his advices
and inspirements, to Professor S. Iyanaga and to Professor M. Kuga for their
encouragements and to the referee for his careful reading.

€1. Some elementary properties of S.
1.

First we shall make a simply observation on the algebraic surfaces
with a certain type of fibering to which our surfaces belong. Let %, be a field
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of any characteristic, S, an algebraic surface and (%, 7) a generic point of §0
over %, such that dim Z,(%)=1 and £,(%, 7) is a regular extension of Z,(%). We
denote by [ an algebraic curve which is a locus of (¥) over %, and define a
rational map @ from S, to J by @& ) =% Moreover we denote by C(¥) the
“fibre at #” which is a locus of (§) over %y().

Now we make the following

ASSUMPTION. There is an algebraic curve £ defined over 2, which is
biregularly equivalent to C(%) over the universal domain. We may assume that
a biregular map T* between F and C(%) is defined over an algebraic extension
Ey(2) of Ey(%). Moreover we assume that E (%) is a regular Galois extension of
ky(2) and (%) and () are linearly disjoint over %,(%). Let E be a locus of (8)
over %, Define a rational map # from £ to D by 7(¢)=(%) and a rational
map R from the product £ExF to § by

{ &= R, @) =7,

MH=R®, en=T0,

where { is a generic point of F over k,. Then we obtain easily the following
commutative diagram:
. R

S —0
l
D+—ro
It can be easily proved that the product £xF is a Galois extension of S whose
Galois group is isomorphic to 5,,. In fact, let a,=(T%1-T for every o<G.
Put a,=(T7?)*-T. Then the a,’s form a group G’ of automorphisms of F, and
the action of ¢ on EXF is given by o(t, z) = (a,(t), 0(2)). By a suitable choice
of h(z), we can assume that 777 unless 0 =1. Then G’ is isomorphic to G.

2. Let P,C) be a three dimensional projective space with homogenous®»

co-ordinates (x,, x,, x,, x;). We define a non-singlar algebraic surface in P,(C)
by

ExF
lPr;
E

n n
(1.1) II (x;—afPxy) = I1 (x;—aPx) ,
=1 i=1
where two systems of parameters (a®)=(a{®, ---, a®) and (@®)=(a?, ---, a®)
satisfy the inequalities
L2) 11 (aP—a?)#0,  TI(aP—aP)+0.
=2 iFj

We denote by S the (non-singular) algebraic surface defined by [I.I} Let C,

1) These facts were pointed out by Professor G. Shimura.
2) The arguments of n° 6 are not necessarily needed below but it will clarify our
situations.
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and C, be two plane curves defined, respectively, by the equations

gy = 1T (ufP—aPufd),
i=1
(1.3) {

n
Py = 1T (P —aPug)
=1

where u®=(u®, uf®, uf®) and u®=wP, u®, uP) are two systems of homogeneous
co-ordinates and two systems of parameters (a¢®) and (a®) satisfy the in-
equalities [1.2). Let o and ¢ be, respectively, the biregular automorphisms
of C, and C, defined by

o - (U, ufP, u) = (u, uf?, L),
o - (P, uf, uP) = (U, uf, L),

where , is a primitive n-th root of unity. Define a group G of auto-

morphisms of C, by )
CE = () i=1,2 -, n}.

Let P® (=1, 2) be points of C, and let C;XC, denote the product of C,
and C,. Define a biregular automorphism ¢, of C,XC, by
(14) o-n(P(l) XP(Z)) — Gg)(Pu))Xg;z)(P(z)) ,
and denote by G, the group of automorphisms of C,xXC, generated by g,. Let
(C,%xC,)/G, be the quotient surface of the product C; xXC, by G,. Consider points
P® on C, and P® on C,, respectively, with homogenous co-ordinates (1, ¢, 0)
and (1, a®,0) ¢=1,2,--,n). Then it can be easily verified that the quotient
surface C,xC,/G, has n? singular points corresponding to PP X P (,j=1,2,
.., n). First we obtain®

LeMMA 1.1. The surface S is birationally equivalent to the quotient surface
(Cy X Cy)/ Gy

ProOF. (1) Let P¥®(C), k=1, 2, be two projective planes with homogenous
co-ordinates (y{, v{®, v{) and let P,(C)=(CP\JC®) be a projective line with
affine co-ordinate {® in C® (k=1, 2) such that {®.®» =1,

Let W® be the product variety P§*(C)XC; and form the variety W= W®
U W® by means of the transformation law

(1.5 ht,=1, y=y7, »Wh=y", wWh=yP.
We define a non-singular algebraic surface S, in W by

11 (5 —aPy) = Py - T G—a®) G W)

(1.6)
TI (39 —a®y®) = (@) - TT (L—a®t) (in W)
i=1 i=1

3')7‘ erjhiewpz)grbifi is quite easy. But, for the calculations done telow,
the precise relation between S and (C,xC,)/G, are needed.
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and a regular map ¥, from S, onto S by
X; Y P—XYP=0, X, YP—-XYP=0, X,—#X,=0,
XY P—X,YP=0 in W,,
1 X,YP—-X,YP=0, X,YP-XY®»=0, X,—X,=0,
X;YP—-X,YP=0 in W,.
Let 0 (1=1, 2, ---, n) denote, respectively, the rational curves on S, defined by
Py iy =0:1:a, k=12,

and by Q; i=1,2,..-,n) the points on S with the homogenous co-ordinates

1.7

Xot Xyt X0 x,=0:0:1:a.
Then it can be easily verified that ¥,(0P)=Q, (:=1, 2, ---, n) and ¥, induces
a biregular map between S,— (i) f® and S— &") Q;.
(i) Let (w,, w,) be a hom(z)—gleneous co-orzizilnate on a projective line P,(C).

Form a variety X=WXxP,(C)=(W,XP,(C)YW,XxP,(C)) and define an algebraic
surface S, in X by

11 (o —aye) = oy - T t—a),

1 in W, XP(C)
w, yP—w, ¥ =0,
(1.8)

s

OP—aPy?)= e - T a-apt),

{

1

ﬁ.

in W,xP,(C).

w Y —w, 3P =0,
Denote by R; t=1, 2, ---, n) the points on S, with co-ordinates
Lh=a®, yP:iyPiyP=1:0:0.

Denote by 0 (1=1, 2, ---, n) the rational curve R;xXP,(C) on S,. Let Pr, be
the projection from X (= WxP,(C)) onto the variety W and denote the re-
striction of Pr, to S, by the same symbol Pr,. Then it can be easily verified
that Pr,(0®)=R; (:=1, 2, ---, n) and that Pr, induces a biregular map between
S;— U6 and S—\UR,.

(iii) Define a rational map ¥, from C,xC, into S, by®

L —u =0,

YOUD YL YDy Dy ® = Q| .
(from C,XC, into S, W,),

W4, @ g, DDy @, (D
yPuPud —yPuPu® =0,

WP —w,u® =0,

(1.9)
4) Cf. Kodaira [3], p. 584.
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2 ) -
tuP—u® =0,

2 —
yé )u(()Z)uél)__y(()mué%uél) __O s )
(from C;xC, into S, W,),
(2) 4,2 1 9. D) —
yPuPuP —yPuPu =0,

wuP —w,uP =0.
Denote by Z,; the rational curve on S, defined by the following equations:

h=a®, yP—aPyP=0, wiw,=aP:l,
Then ¥, is a regular map from C,xC,— C} PPxP$ onto S,—~&,;;, and for
i.j=1
points P, X P,, P{XP; on C;XCy— \J PPXPP, U (P, XPy)=U(P{X P} holds
i,j=1
if and only if: (6,)(P,XP,)=P{X P} Thus we see that S, is a non-singular
model of the quotient surface C,;XC,/G,.
From (i), (ii), (iii), we obtain the following diagram,

(excy)

"
¥,

v, Pr,
s s, L5, =={(G,%xC)/G,

This proves Lemma 1.1

3. We denote by p(S), o(Sy), (S, the Picard numbers of S, S, S, re-
spectively. We define p“%»(C;XC,) to be the number of homologically in-
dependent curves which are invariant under the actions of G,, where we
consider homology with coefficients in @. Then we have

LEMMA 1.2.

p(S) = p€»(C, X Cy)+n*—2n .

Proor. (i) As was shown in the proof of Lemma 1.1, the surface S is
obtained from the surface S, by contracting 2n exceptional curves (of the first
kind) on S. Hence we obtain

(1.10) p(S) = p(Sp)—2n .
(ii)) Define local co-ordinates £® of C, (k=1, 2) at the points P® (k=1, 2,
j=12,..-,n) by
eV =up/uP  (k=12).
Define local co-ordinates (z{®, z®) of S, W, (k=1,2) in a neighborhood of
5 by
1J

n
2 =11 (ti—a). 20 =50/,

n
20 =11 w/w—a®), 2=y .
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Then the rational map ¥, is expressed in terms of these local co-ordinates in
the following form:

{ 21(1) — (Eu))n , Zél) — 5(1)/5(2) , if 5(2) +0 s

2= (O, ZP=ER/ED, i EW 0,
(cf. Kodaira [3]). We obtain

(1.11)

1 dlog E®=(1/n)dlog z®, dlogé&®=(/n)dlog zP—d log z{,
a1z |

dlog é®=(1/n)d log z®, dlog &P =(1/n)dlog z®—d log z .

We define a G,-invariant holomorphic function H at PPXP® and f-d&w
+g-d&é® a G,-invariant holomorphic 1-form at PP X P®. We write

HE®, ED)=5 51 a9y - o),

(1.13) fedEWtg. de® = Z{ S b, (§<1>)p1(5<2>)q1}d10g g

k1=l M p1+ ‘11—- 1n

+ E » 0(22,112(5(1))1’2(5(2))‘12} dlog €@ .

kaz1 I’z+¢Z2— an

Then the holomorphic function (¥ )4«(H) and the holomorphic 1-form
W )i(f - dED+g - dE®) in a neighborhood of & ,; are given by

o= 5 { B ageorh e dn Wy,
= z{zam EO)TLED: (n Wy,

Wl - ds+g - dew)={ 3 ) bl Y} (- d log 20)

k121 p1=

{3 z: e k2<zal>>qz<z9>>'ﬂz}{, dlog z’—dlog z} (in W)

ko=l g2=1

= {3 3 bRy} L dlogz—dlog )

k1=l py=
o«  kon 1 .
H{E T R ey} dlog 27} (n W)
2=l g2=

(iii) Let {9D,, -+, Dobnec,xcp} bE a base of G,-invariant algebraic curves on
C,xC,. We may assume that the divisors 9, (k=1, 2, ---) are defined by the
quotients of G,-invariant holomorphic functions H®(ED, £@) and HP(ED, £@)
at the point PP X P®. Then we obtain the divisor (¥')«(9;) which is defined
at the points on 5;; by

T ) (HE) /(T )x(HP) .
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Let € be a divisor on S, and put
8:81+2 mij'Eij,

where &£, does not contain 5,; as components. Let &/ be the divisor on C;xC,
induced from &, by the rational map ¥,. By definition we can find integers
m, ml: tt mggl?)xgz) Such that

(1.149) me— 3 mpD,~0,

k
where the symbol ~ indicates homology with coefficients in @. Then there
is a G,-invariant meromorphic closed 1-form h such that mé’{e%mk.@k are

logarithmic divisors of A» (cf. Hodge-Atiyah [2]. Let (¥)«(h) be a closed
1-form on S which can be induced by the process of (ii). Then we verify that
the logarithmic divisor of (¥ )«(%) is expressed in the form

(me— % my(¥ )«(D)+ 12} mz‘/,j"—’;i,f ~0.

On the other hand we can easily verify that (¥ )«(9,) and 5,; are homologically
independent. g.e.d.

§2. Some homological properties.

4. Let C be an affine algebraic curve defined by
2.1 " =}=Il(x~— as) »

where (x, y) are affine co-ordinates of the two-dimensional affine space C®
Take a projective line P,(C)=C,\JC, and let v, be an affine co-ordinate of the
affine line C, (k=1,2), where v;y,=1. We let = denote the projection from
C onto (; defined by

2.2) y,=7lx, )==x.

Let C be a non-singular complete algebraic curve whose (rational) function
field is isomorphic to that of C and denote the canonical map from C onto the
completion of C by j. Denote the extension to the completion of C of the
projection 7 also by = and put #=x -4 Then 7 is a projection from C onto
P,(C). The ramification points of the projection # are given by

Y,==a; G=12--,n).

We denote by D; the point v, =a;. Take a point P, with a co-ordinate x, in
C, which is different from D, (j=1,2, ---, n). We draw oriented® C>-arcs 7;

5) This means that the residue of % around &1 Dy are equal to m, my.
6) We define the direction from P, to D; as positive orientation.
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from P, to D; (j=1,2, -, n) in such a way that any two of them have no
common point other than P,. Define a subset Y of P,(C) by

I=PO)-U7;.

Now we determine branches y®(x) (i=1, 2, ---, n) of the algebraic function y
of x defined by at the point P, in such a way that

(2.3) YOx) =Ly P (x) .

To a point P on y; we continue analytically y®(x) along y; and to a point P
on Y N C{ we continue analytically y®(x) along any arc y starting at P, and
passing between 7, and 7,. (See fig. 1) Now we define mappings (=1,
---, n) from the oriented arcs y; (j=1, ---, n) into the algebraic curve C by

(2.4) 0= (x, y2(x) (G mod n).
We also define a cross-section 2* from the intersection X ~C, into C by
25) 7@ = g, y9().

The cross-section 1* can be easily extended to the subset Y. We denote this
(extended) cross-section by the same symbol 1. We define an oriented 1-cell
74 (on the algebraic curve C) to be the image 1§ (5. We define an oriented
2-cell 3% to be the image of ¥ by i’. Moreover put Ji=ii(P,) and D= (D).
Thus we obtain a cell decomposition K of C consisting of (Z’~ e ﬁ{;, ﬁ}). Take
C=-arcs 0; (j=1, 2, ---, n) which issue and end at P, and surround, respectively,
the arcs y; in a positive direction (see fig. 2). Then the results of analytic

D, Py
Fig. 1. Fig. 2.

continuation of y® along d; are as follows:
(2.6) yO—=C v (G=L2, -, m).

5. Now we obtain easily boundary operators on the cell-decomposition K
of C. First, for the 1-cells 74, we obtain

Q2.7 oFp=Di-D; (=12 ,m,
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and, for the 2-cells 3%, from the results of (2.6),,

S I miriet sitd "1+, i+j—1 (mod n)
\(28)] 8(2 ) —Jé{rj+] 1’“7’]‘_”} (]:1, 2’ e, m ) .
Define 1-cycles I'} on C by
. S ) A 1, 1-+1 (mod n
@9 Ti=pi—rrirta (J217 040,

Then the operation (o,). of the automorphism o, on these 1-cycles are given by

(2.10) (o)) =T (Jl :f—li—’ 12’(1'1.1.0,dnn) ‘

From the boundary relation (2.8), we obtain
LEMMA 2.1.8 The 1-cycles

. i=1 e, 1
2.11) ri (GZyala)

constitute a Betti-base of l-cycles on C.

6. Now, using the previous result [2.10] and Lemma 2.1, we examine some
homological properties of our surface S, from the point of view taken up by
Lefschetz. Let O; (1=1, 2, ---, n) be the points on P,(C) with the affine co-

ordinates t, = a®, H:Pl(C)—C)Oi and let =,(/]) be the fundamental group of
=1

the domain /I. Take a point O, on P,(C) which is different from O, (=1, 2,
--,n) and let 0, ¢=1,2,--,n) be Cxarcs which surround the point O; in
the positive sense and have no common points other than O, (see figure 3).

0,

Fig. 3.

Denote the homotopy class which is represented by the arc d; (=1, 2, ---, n)
by 6;. Let @, be the regular map from the algebraic surface S, onto P,(C)
defined by

@, (3, (0, ) =1,  (k=1,2).

Then the singular fibres with respect to this map &, are &-1(0,), 7=12,---,n
(cf. Kodaira [3]). Now we denote the operation of the fundamental group
n,({I) on the one dimensional homology group H,(&-*(O0,), Z) of the (general)
fibre @-(0y) by 7. Let ¢, be the isomorphism from ¢, onto &0, and let

7) If j=n+1, we understand that I'}=yf — 54 pitl— o1,
8) In the case of n=prime odd, these cycles are used in Lefschetz [5]
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(ty)x denote the operation of ¢, on the chain groups of C,. Concerning this
operation, we obtain easily the following
THEOREM 2.1.
e ; i i, 1+1 (mod n
KEWT Y=oy (A mAm).
Proof is obvious.

§3. Some results on periods®.

7. It is known that any rational 1-form on the algebraic curve C defined
by is expressed as a linear combination (with coefficients in ) of 1-forms
of the following type:

n
WEP T = j[=]i (x—apPiy= @, (x)dx ,

where §; and p are positive integers and @,(x) is a polynomial of degree r
which does not vanish at x=ua; (j=1, -, n) (cf. Lefschetz [5]). It can be
easily verified that w®?*" is of the first kind if and only if

PR
(] — 17 o 71)
D—iﬂjzn
=1

Put »,=v—1, B,=0. Let a be a complex number different from a;/s
(G=1,2, -, n), and define the holomorphic 1-form w”” by

Vr — - Ta—V ”:1’ Tt n—1
(31) @ —-];[(-X_a)y dx <7’:1, e, Ty )’

so @ constitute the basis of holomorphic 1-forms on C. And we see that
3.2) 7T, =n—2.

Denote the period of w™* over the l-cycle I't by z}7. Then, from (2.10), we:
obtain

3.3 T =TT, (i, i-+k(mod n)) .
For the sake of simplicity, put z%”=<cy7. Define r,-vectors p} by
tg"; — (T}{'l, T;'Z, ey T"]{a'ru) ,

and matrices X, 1=y <[n/2]) by

(34) X = 31“, gg’ Tty g;—2 ] .

Tp—V Fn—V rn—y
P ¥ I L

9) In §3, we mainly follow the notations of Shimura [7].
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Then, from the classical bilinear equality and inequality, we obtain the following
¢ Periods relations’ of X, :

(3.5) VIXT X, =] ’%‘" Qg ]

where N, € M, (C) and B, € M,,_,(C) are positive definite Hermitian matrices
and T;! is a skew-Hermitian matrix. Moreover T,! is expressed by means of
certain polynomials #,;({) of one variable { with coefficients in @ in the following
form:
T;'=[t;4¢»]  (cf. Shimura [7]).

Denote by J, J,, /. the Jacobian varieties of C 51, C, respectively, and by &(s,)
the automorphism of / which corresponds to the automorphism ¢, of C. By
the matrix representations @(¢,) of #(s,) by means of the holomorphic
1-forms w™” is expressed in the following form:

0.
(3.6) O,) = O,C) ,

D oS
‘where

w_[CE, _ 0
@V(Cn)—[ 0 Crl: ’I'n—y:l M
Denotes, as usual, by Hom (J,, /;) the module of all homomorphisms of J, into J,
and by &(J) the endomorphism ring of J. Put Hom, (J,, J,) =Hom (H,, J,) Rz Q,
E()=E(J)RzQ. Let A be an arbitrary element of Hom, (J,, /;). We denote
by A the matrix which represents A. If the homomorphism A satisfies

3.7 Aob(0,)=0(0,)° 2,
then the matrix 4 must be expressed in the following form:
Aj
A3
(3.8) A= . ,
En/Q] -
where

/ SV 0
A”:[ 0 Au]’ ZuEMru(C)’ d,= M., (C).

Y, 0
=7 3]
Then, from and [3.7), we obtain
(39) -/IVXI(/D = XEIZ) tUV H Uu = (uij(cz»i,j:hm,n—z ’ (” = 11 tt [n/2]) ’

Put
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where u;;(tf) are polynomials of one variable ¢ with coefficients in @ and X
(k=1, 2) are the periods matrices of C, (k=1, 2). Conversely, if a matrix A of
the form (3.8) satisfies the equation (3.9), then the matrix /A represents an element
of Hom, (J,, J,). Thus, in order to determine Hom,(/;, J,), it suffices to find
matrices 4, (or matrices U,) satisfying the condition stated above.

8. To clarify the dependence of our objects on the parameters (a), we
denote the curve C, the rational l-form @ on (, the 2-cycles 7i on C -
respectively, by CN(a), w(a), ria),---. Define a point (a,) in C* by (a,)= (., &,
-, {7 1) and, in some neighborhood A of (a,), define holomorphic 1-forms

w”"(a) on ﬁ(a) (which depends holomorphically on the parameters (@) in %) by

(3.10) wu,?‘(a):x?‘y—vdx s )):1’ CERIN n_—«]_ s Y = 1, cee Ty R

Define a holomorphic function W}"(a) in U by

(3.11) WH(a) = j w”(a),

rj(a)
where ['}(a) is a l-cycle on C(a) defined in (2.9). Write the power series ex-
pansion of W¥7(a) at the point a,=({,, {3, -+, (&%, 1) in the following form:

(312) W;”(a):. Z} 0 (J VT) (al"Cn)il (an—l'ﬁcg_l)inﬂl(an_‘lyn .

11, =

Now we examine certain relations between the coefficients ¢{:%7 .

(i) First we note that there is a biregular morphism ¢, of the algebraic
curve C(ag): y*=x"—1 such that r,(x, ¥)=(l.x, ») and that the operation (z,)s
of 7, on the l-cycles of the algebraic curve C is expressed in the following
form:

Ed i a) =1u(a)  (J j+1 (mod m) .

By a small deformation of I'i, we obtain l-cycles ¢ such that the ramification
points of C do not lie on d; and such that

(3.13) (tw)#(0%a) = 03u(@)  (j, j+1 (mod n)).
Secondly, we note that, by exchange of integration and differentiation, we

obtain easily

Gl =i i) g [ G I L) dx
a;.<ao> J=1

where
Qipiy = (—Lyirerin jg (w/n) - {/m)—i;+D)} .

Hence, from and [(3.11), we obtain

o G=D{r+1)— 21 ! W
(3'15) 11 n FC N Cz] i]7:4.1 zj+n_1 .
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(i) Define definite integrals B(, v, i;, ---, i,) by

(3.16) B(r, v, iy, s i)=[ w1y T (e tida.
=1

I’}(ao)
For any integer ¢t >0, we put

. ik b —h— ... —kn_
.17 A= (lc)=(k0,2~,kn_1)(kzo) . (1 o 0) (l 0 lkn 1) )

where (k)= (k,, ---, k,_,) satisfies
ky=0, -, k-, =0,
kotkyt - +hy =1,
ki4-2ky+ o +(n—Dk,,=t.
Moreover, for any integers s=0, we set

n

) T —j(igety)
(318) Bgiln"'ﬂn) = 2 Ail,tp R Ain,tn ‘ C_:‘-—l ¢
ty+etty=8

0=ty,+, 0ty

Then, from the identity (1/x)—¢i=_1/x"—1) -nZ_)IC;ﬂ’““’ - x*, we obtain easily
k=0

. L D) Lo et
3.19) Br,v, 1, - ,1,)= ) Béu.'--.zn)f xS (x P 1) @m—Grtetind x|
§=0 Iio
Put

By(p, v, l):j 1 x?. (xn___D(v/n)_;dx )
Tl(ao)

Now we shall examine two recursion formulas for the definite integrals
By(p,v,1). We obtain the following
PROPOSITION 3.1.

3.20) (p+1) - By(p, v, +(w—in) - B(p-+n, v, [+1)=0,
(321 {(0+D+(—In)} B(p+n, v, I+D—(p+DB(p, v, [+1)=0.
PrOOF. For the rational function x?*(x"—1)*»-t on €, we obtain
d(xP(x"—1)¥m= = (p+Dx?(x"— 1)t x+n(q/n—Dx?*(x"—1)dx
422 = (p+—In) xPHa(xm— 1)@m= d x—( p4-1)xP(x"— 1)@m= x |

From the first equality of (3.22) we obtain

(3.23) (P+DBy(p, v, D+(q—nl)By(p+n, v, [+1)=0
and, from the second equality of (3.22), we obtain

q.e.d.
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From this proposition, we easily obtain

(3.25) Y —v)(n—y) - {{—2n—v}{{—Dn—v}B(p, v, )

= (p+1-n)(p+1-2n) --- (p+1—In)B(p—in, v, 0),
3.26)  (p+1—m)(p+1—2n) - (p+1—km)B(p—kn, v, )

={pt+v+A—qn}{p+v+C—gn} - {p+v+k—n}B(p, v, 9 -
Let p=p,+tn, 0< p,<n. From and (3.26) we obtain
B2 (=)@—y) - {U=Dn—v}B(p, », )= {p+1—(—t+Dn)
< AG+HD—InH{(pAv+n) - (pF2)+U=D}B(Dy, v, 0) -

9. Now we fix the index (v, ) and define holomorphic functions W;7(a)
in the neighborhood % of (a,) by

Wer(a)y=0Wyr(a)/0a; .
Moreover we define a matrix 4*7(a) by
wyra) - Wyr(a)
(3.28) A" (@)= Wir(a) - Wria)

Wrila) --- Wan(a)
and a cyclic matrix W by

Weiay) Wrilay) -+ Wiiay)
(3.29) W= Wii(ay) Wiia)) - Wgilag
WZ'f{(ao) W;’_ﬁ,l(ao) Wf,'lr (ay)
We put
1 Cn %ﬂ
4 L:
gz o g
l_ 1 :Cz—l - é;n—-l)(n—l)
[ LaWr(a) 0
330) M= B
0 -2 B,
L n
[ 1
Cn
[ N= ‘ 0
L 0 ‘C;(n%)

and



Some results on the Picard numbers 313

B(+n—1,v, 1

(3.31) B= CalBy(r+n—2, v, 1)

gﬁlBO(r’ Y, 1)
Then, from the formula [3.15), we obtain

!
(3.32) arr@y=m[ 1 & IS

From the recursion formula [3.27), we obtain

10l g, e 07_r1 0
¢33 [o o1 L™ oy 0 L=l 5™

10. Define a holomorphic map H™” from the neighborhood U of (a,) into
the complex Euclid space C"® in the following way:

(334‘) Hhv(al’ ) an): (ﬁf’y(a)r 775'”(0)’ M) 77;?!3(61)) ’

where
(@) = WiHa)/ WiZ(a), -+, (@) = WiZ(a)/ Wi(a) .

Denote by J,(H™*(a)) the Jacobian matrix of the mapping H"*(a) at the point
a,., Now we obtain
THEOREM 3.1. The rank of J,(H™*(a)) is equal to n—3.
PrRoOF. (i) Let the indices (i, -, t,-,) and (j, -+ ,J.-5) be subsets of
1,2, -, n). Define a matrix W7%,. .., ,»» by
(jl»""jn—3
WiXag) - WEZ(ay)
(3.35) WT';L---,LZn—z - W;i:}il(ao) W;i:}in—z(ao)
J1rIn-38 . :
W;his»il(ao) W;;zv—s,in—z(ao)

Then, from the transformation laws (3.32) and (3.33), we obtain

n—1
5 i]-—l n—3

(3.36 nl, =" Il B(r+n—i; v, )= > det W2t i o\Cripvmin
J Tl in-—-2 11 in-2
i=1 @1 in-2)C1, 2 n) jl-"‘-jn~3) (jlr“yjn,—3

Girnin-30CTUs 2y mn)

are constants.

win-2
»ain-3

(i) On the other hand, we can verify that xr+"—i(x”—1){7“ldx is not a
derived form, if (r+n—i+n—1, —v). From (3.36) and the recursion formula

(3.27), we can easily verify that

where ¢ ; .
(2

3.37) Br+n—i,v, ) £0, if r+n—i+n-—1.

(iii) From (i) and (ii), we conclude that, for some indices (Jl.l’ ’JZ.”‘Z )
1 """ s n-3
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(3.38) det W%, ..in-oy 0.

Giinos
On the other hand, from the boundary relation (2.8) in §2, we conclude that
I't (j=1, .-+, n) are expressed as a linear combination of I'} (j=1, 2, -+, n—2).
Hence, for suitable indices (j,, -+-, j,-,) We obtain,
(3.39 det W7%,...na\ # 0.

J1ovdn-3

(iv) Let (j,, =+, Ja-s) be the indices for which the inequality holds
and let J,(H™"(a));,, -, D€ the sub-matrix of [,(H"*(a)) defined by

_[ 0n3*(@)/day, - On3*(a)/day,_,
G40 JH Dsvsnes=[ G013, . a3y Yoy =@
Then we obtain
(3.41) det J,(H™"(a)) = (Wi2(@)== - det Wiy.ong
J1win-2

Thus we prove the assertion of [Theorem 3.1l

§4. Picard numbers.

We examine the module HomE»(J(a®), J(a®)) and the endomorphism ring
e@n(J(a)), where J(a®) and J(a) are the Jacobian varieties of the algebraic

n

curves C®: y*=T[ (x—a{) and C: y"= f[ (x—ay;), respectively.

ji=1 Jj=1
11. Define an (n—3)-vector Z(a), which depends on the parameter (a) by
@D Z(a®) = (10a®), ga®), -, pfa®)  (k=1,2),

and let B® (=1, 2) be a small neighborhood of the point Z(a{®) (=1, 2) in
the complex space C»3.

(i) Let 2 be an element of HomE(J(aV), J(a®)), /A the matrix representa-
tion of 2 (as was defined in §3) and let U :[2 Z] be the corresponding
matrix appeared in (3.9), where ac M, _(Q((.), bEM,_; 1(Q.), €E M,,,-5(QL.)),
de M(Q(,). Then, we obtain
4.2) [‘Z(a®)-c+d]- Z(aP)=a  Z(a®)+Db

(cf. Shimura §4).
For an element A1 of the endomorphism ring €,(J(a)), we obtain, by setting
(@) = (a®) = (a), CP(a®) = C»(a®) = C(a), a similar equation:

4.2y [*Z(a)c+d]1Z(a) = aZ(a)+b,

where the matrices a, b, ¢, d have the same meaning as in [42) For any
vectors Z® = (9P, -+, pLy), ZP=x?, -, 9@y and Z=ZP =7 in the neigh-
borhoods B, (k=1, 2), we consider the following equations with respect to
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_sa b
Z= (c d
(4.3) [(Z®c+d]Z®=aZ®+Db,
4.3) [(Zc+d]Z=aZ+Db.

Then it can be easily verified that, for general values of (Z®, Z®) in BWD xBX,
the equation has no other solutions than U= I:e'-.e] (e=QE,)) (cf. Shi-
mura §4).

(iiiy On the other hand, since, by [Theorem 3.1, the rank of the Jacobian
matrix of H7¥(a,) is equal to n—3, we conclude that a small neighborhood B*
of Z(a®) is fulfilled by the Image H*>%%(), where % is a certain neighborhood
of the point q,.

From (i), (ii) and the relation we obtain

THEOREM 4.1. If n is a prime number, for general values of the parameters
a®, a®, we have

44 Hom{#»(J(a®), J(a®))=0
and, for general values of the parameters (a), we have
4.5) e (J(a)) = Q) -
As to the Picard number, we obtain in view of Lemma 1.21®

THEOREM 4.2. If n is a prime number, for general values of the parameters
(ay), (a,) and (a), we have

4.4y p(S(a®, a®)) =n2—2n+2
and
4.5y 0(Sy(a, @)) =n*—2n+2+(mn—1).

12. Quartic and Quintic surfaces. We examine some results concerning
the maximum of the dimension of Hom{(J(a®), J(a®)) (and the maximum of
the Picard number p(S,(a®, a®)), in two cases: n=4 and n=>5.

(i) n=m=4. In this case, our curves (and surfaces which are obtained
as the quotient of product of our curves) are as follows:

Ca): yi= II (x—ay),
L

4 4
S,(a®, a®): Hl(x3~a§1>x2) = Hz(xl-—a§2’x0) .
j= j=

For the curve C(a), we have a base of holomorphic 1-forms consisting of the
following forms:

4.6 w"'=dx/y3, wll=xdx/y*, w2 =dx/y%.
y /

10) It is obvious that: dimy Hom{E» ( J(a®), J(a®)) +Q=p¢" (C;x Cy).
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‘We define rational 1-cycles f’;(a) on the algebraic curve C(a) (k=1, 2, j=1,2,3) by

Fr@= 5t @+TE@),  Fi@= 5 THa+T5a)
@7 1
Fi@= 5 TH)+TH@),  (k=1,2).

Then the period matrix of the algebraic curve C(a) with respect to bases of
holomorphic 1-form: and bases of l-cycles: (4.7) are expressed in the fol-
lowing form:

@ T @ I ') ')
wl»O
@8 2(a) 0
w*? 0 2 w*® 2 w*?
o jf%@ _..jf%@ ,,,,,

where 2(a) is a complex matrix of 2 rows and 4 columns.
Now we define two abelian varieties J;(a¢) and J,(a) by

4.9) Ji(@)=C?/(a),
(4.10) Juay=c/( j Ti(a)wl’o , j Téwwz’o) .

Then, obviously, our Jacobian variety J(a) is isogenous to the product [,(a)
X Jo(a@). The automorphism 6’(s,) of the abelian variety J,(a) corresponding to
the automorphism o,: (x, y) —(x, {,v) of the algebraic curve C(a) is expressed
in the following form:
V=1 0

/ — ——
(4.11) 0'e)=| \/_1].
Thus the Jacobian variety J,(a) is isogenous to the product of two elliptic
curves whose endomorphism ring is the Gaussian field Q(+/—1), (cf. Shimura
[71 Prop. 14). Obviously J,(a) is an elliptic curve whose analytic invariant is:

n(a):f y‘za’x/j y2dx .

ri@ )
THEOREM 4.3.
@)y If J(a®) and J(a®) are not isogenous, then dim Hom{c»(j(a®), J(a®)) =8.
@) If J(@a®) and J(a®) are isogenous, and are not isogenous to [(a,), then
dim Hom{»(J(a®), J(a®))=09.
@) If J(a®) (k=1, 2) are isogenous to J(a,), then dim HomE»(J(a®), J(a®))
=10.
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We indicate isogeny by the symbol ~.
In view of Lemma 1.2, we obtain
THEOREM 4.4.
@Y If J@®) % Ja®), then o(Sa®, a®))=18.
AL If J@®)~ J@®), Ja®) # J(ay), then p(S(a®, a®))=19.
(A1)’ If J(a®)~ [a,), k=1, 2, then p(S,(a®, a®))=20.
(i) n=>5. In this case we have

Cl@: y= 13 (x—ay),

5 5
Ss(ay, as): I—Il(xs'_aé'l)xz) = III(xl_“a;?)xo) .
i= j=

For the sake of simplicity, we ask only the maximum of the dimension
of the endomorphism ring & (J(a)). Put

XP(@=[X{"), XP@], X9)=[XP@), XP(a)],

and put
_rus, v
vo=log vil
where
{ XP(a), U e M(C), XP(a), U e M, ,(C),
XP(a), U e My(C), XP(@), UB e M,,(C).
We define

¢ ¢
[/ — [lUl,t ”‘tUz,l]
s
U1,2 - Uz,z

I =XP@ - XP(@), Z9=XP(@™ XP(a).
Then the equality is reduced to the following :

Z%a)
1, Z¥(a)JU'™® - =0
(4.12) : @3 [ E, ]

[Z%@), E,JU'® [, ZXa)]=0.

Now we define P(a) to be the subalgebra of the full matrix algebra with co-
efficients in cyclotomis field Q) M,(Q(;)) consisting of matrices UJ® such
that the corresponding matrices U/® satisfy the equality (4.11). From the
inequality [3.5), we know that

I AL
(4.13) det [ (E@] £0.
Hence, obviously, we obtain from (4.11) and
(4.14) [P(@: QLHI=5.

Now we prove the existence of a parameter (a¢) for which the equality [P(a):
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Q)] =05 holds.
Let

(4.15) H®={(Z], Z9); | Z{|*+|Z4]* <1} .

Then, from Shimura [8], we know that, by means of suitable linear fractional
functions L,, L, with entries in Q({,), the generic point of £® is written in
the form:

(4.16) Z{y=L(Z,(a)), Zya)=Lya).

Choosing (Z{(a), Zi(a)) so that the entries of (Z{(a), Z4(a)) belong to the cyclo-
tomic field Q(Z,)'», we obtain the following results:
THEOREM 4.5. For the algebraic cnrve C(a) we have the inequalities

“.17 20 = dim &{f»(J(a)) = 4.
Moreover, if Z®(a), Z®(a) € Q(&,), then we have the equality
(4.18) 20 =dim &f»(J(a)) .

Hence, in view of Lemma 1.2, we obtain:
THEOREM 4.6. For the Picard uumber p(S;(a®, a®)) of the quintic surface
S;(a®, a®), we have

4.17y 37 = p(S;(a®, a®) =17.
Moreover, if Z®(a), Z9(a) € Q) the equality
(4.18y 0(Ss(a, a)) =37
holds.

13. Surfaces of Fermat type. Now we consider a surface of Fermat type
defined by an equation of the form: x?+xp+x2+x7 =0, where we assume that
the order n is a prime number =5. We examine the dimension of the sub-
endomorphism ring & (J(a®)) of the algebraic curve defined by the equation:
ym=(x"—1); (i) From the recursion formula [3.I5), we obtain

L0 0 1¢, - 2—3—
(419) X(V)ZI: ), . ] ) 1 Cgl Ci(n 3)
0 TE(;’),V—D :
1 £e-D ... b=y
We write

11) The existence of the parameters (a) such that (z{(a), z5(a)) are matrices with
entries in Q({s) are assured by [Theorem 4.1 Moreover, by Shimura [2], we know that
the inverse function of r;(a), r.(a) are automorphic functions w, 7, ¢t certain arithmetic

groups.
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Y T/’(V)
(420 7= T“”’ il
.20)
U (u) U .
™) — 02
ve=lvg” vil
where

TP, U e M, Q&)
Ti®, Ul e M 1n-:(QE)
50, USl € My - 1(QED)
T4, U e M 1u--1(Q0C0)
and define a matrix V¢ (€ M,-,(Q(%)) by

) U , — U W T (:J) s tT (:J)
(4.21) V&= %ul) —US (u)] [—JT%f’é i __th:a;)] .
Then, the matrix V¢ has the following form:
(4.22) VO = @i(EDi,g=1,0m-2 5

where v ;(t) is a polynomial of one variable { with coefficients in the rational
number field Q. Let

L gy G
(4.23) F= [ : ] .

1 CZ~1 C;Zuvl)m—:%)
Then, by the elimination of the matrix A, in (3.9) and replacing the matrix
U® by the matrix V®, we obtain the following period relations:
{ F®. YO pa-n—=( 1

4.2 =1, .,
( 4) F(,n__y). V(V)'tFVZO, (U 2

(i) In what follows we assume that »n is a prime number =5 and let P
be the subalgebra of the full matrix algebra M, _,(Q((,)) defined by

(4.25) P:{V e M, (Q(,)); where the conjugates V® of V

satisfy the equations (4.24) for v=1, ---, ,”2 L

Let g be the automorphism of the cyclotomic field @((%) such that

g7 =Ca
and let «, be the integer such that «,-v=1 (modn). We denote by gP(F)
the matrix which is obtained by applying g% on the entries of the matrix
F®, Then the equation (4.24) is equivalent to

guF) -V lg(F ) =0

(4.26)
ghF") - Vg =0
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Define vectors ¢ by

=L, Ch e, L)
and denote by r® ®14 the tensor product of ;@ and r¥. Consider the linear
equation (whose indeterminates are the entries y,; of the matrix V):

n—2 )
[r® V) :klz_lcgl(k—nﬂafn Sy, =0,

Then the equation (4.26) is equivalent to

(427) [g&%) @g&‘;)](V) =0 ’ iu =y, Zaw ) (V_l)av ’
jv =a,, zaw Tt C(,,(?’l—‘l)—l) s
(=1, -, n—2).

Denote by [, the number of linearly independent vectors ¢ &®rdy, where 1,
and j, subordinate to the conditions in [[4.27). Then we have

(4.28) [dim P: Q)] = (n—2)*—1, .
We note that, in the following six cases:
1) 1=0 (modn), 2) 1=1 (modn), 3) j=0 (modn),
4) j=1 (modn), 5 i+7=0 (moan), 6) j—i=1 (modn),

the congruences: i,=1, j,=; (mod n) have no solutions i, j, satisfying the
conditions in [4.27). Hence we obtain,

[dim P: Q(,)]=2n—-3.

For the surface S; of Fermat type defined by x7-+x7+x7-+x2=0, where
n is a prime number =5, we obtain p(S,) = (n—1)(2n—5)+n2—2n+2.

University of Tokyo
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