On the generalized decomposition numbers of the symmetric group

Dedicated to Professor Iyanaga on his 60th birthday

By Masaru Osima

(Received Aug. 30, 1967)

Introduction

Let G be a group of finite order and let p be a fixed prime number. We consider the representations of G in the field Ω of the g-th roots of unity. Then every absolutely irreducible representation of G can be written with coefficients in Ω . Let \mathfrak{p} be a prime ideal divisor of p in Ω and let $\mathfrak{o}_{\mathfrak{p}}$ be the ring of all \mathfrak{p} -integers of Ω , and Ω^* the residue class field of $\mathfrak{o}_{\mathfrak{p}}$ (mod \mathfrak{p}). We denote by α^* the residue class of $\alpha \in \mathfrak{o}_{\mathfrak{p}}$.

Let $\zeta_0 = 1$, ζ_1 , \cdots , ζ_{m-1} be the (absolutely) irreducible characters of G and let $\varphi_0 = 1$, φ_1 , \cdots , φ_{n-1} be the modular irreducible characters of G for p. Then we have for a p-regular element p in G

(1)
$$\zeta_i(y) = \sum_{\kappa} d_{i\kappa} \varphi_{\kappa}(y)$$

where the $d_{i\kappa}$ are non-negative rational integers and are called the decomposition numbers of G. The irreducible characters ζ_i and the modular irreducible characters φ_{κ} are distributed into a certain number of blocks B_0 , B_1 , \cdots , B_{s-1} for p, each ζ_i and each φ_{κ} belonging to exactly one block B_{σ} . In (1) we have $d_{i\kappa} = 0$ for $\zeta_i \in B_{\sigma}$ if φ_{κ} is not contained in B_{σ} .

In the following we denote by x the p-element of G. Let $\varphi_0^x = 1$, φ_1^x , \cdots , φ_{r-1}^x be the modular irreducible characters of the normalizer N(x) of x in G. We have for a p-regular element y in N(x)

(2)
$$\zeta_i(xy) = \sum_{\kappa} d_{i\kappa}^x \varphi_{\kappa}^x(y)$$

where the $d_{i\kappa}^x$ are the algebraic integers and are called the generalized decomposition numbers of G. We have $d_{i\kappa} = d_{i\kappa}^1$ for $\kappa = 1$. Let us denote by $B^{(\sigma)}$ the collection of all blocks \widetilde{B}_{τ} of $N(\kappa)$ which determine a given block B_{σ} of G. In (2) we have $d_{i\kappa}^x = 0$ for $\zeta_i \in B_{\sigma}$ if φ_{κ}^x is not contained in $B^{(\sigma)}$ ([1], [3]).

Recently A. Kerber [5] proved the following

THEOREM 1. The generalized decomposition numbers of the symmetric group

are rational integers.

He also determined the generalized decomposition numbers of the symmetric group S_n for p=2 and $n \leq 9$. In section 1 we shall give a simpler proof of Theorem 1. By our method we can determine directly the generalized decomposition numbers of S_n . In section 2 we shall obtain the necessary and sufficient condition that two irreducible characters ζ_i^x and ζ_j^x of N(x) belong to the same block. As is well known, the block of S_n is determined by its p-core ([4], [6], [7], [9]). Similarly, we shall prove that the block of N(x) is determined by its p-core. The aim of section 3 is to find the block of S_n which is determined by a given block of N(x). We obtain the following

THEOREM 2. Let Young diagram $[\alpha_0]$ be the p-core of the block \widetilde{B}_{τ} of N(x). Then \widetilde{B}_{τ} determines the block of S_n with the same p-core $[\alpha_0]$.

Let $B^{(\sigma)}$ be the collection of all blocks \tilde{B}_{τ} which determine the block B_{σ} of S_n . Then Theorem 2 implies that every $B^{(\sigma)}$ consists of one block of N(x).

1. Proof of Theorem 1.

Let x be a p-element of S_n which consists of a_i cycles of length p^i $(0 \le i \le k, a_i \ge 0)$. The normalizer N(x) of x in S_n is the direct product of its subgroups $S(a_i, p^i)$:

(3)
$$N(x) = S(a_0, 1) \times S(a_1, p) \times \cdots \times S(a_k, p^k)$$

where the $S(a_i, p^i)$ are called the generalized symmetric groups ([8]). $S(a_i, p^i)$ is the semi-direct product of the normal subgroup Q_i of order $(p^i)^{a_i}$ and the subgroup $S_{a_i}^*$ which is isomorphic with the symmetric group S_{a_i} :

(4)
$$S(a_i, p^i) = S_{a_i}^* Q_i, \quad S_{a_i}^* \cap Q_i = 1, \quad S_{a_i}^* \cong S_{a_i}.$$

Evidently we have $S(a_0, 1) = S_{a_0}$. Since $S(a_i, p^i)/Q_i \cong S_{a_i}^*$, (4) implies that every modular irreducible character of $S(a_i, p^i)$ is given by the modular irreducible character of S_{a_i} . Let us denote by Φ_n and Φ^x the matrices of the modular irreducible characters of S_n and N(x) respectively. Since the modular irreducible character φ^x of N(x) is the product of the modular irreducible characters φ^i of S_{a_i} :

$$\varphi^x = \varphi^0 \varphi^1 \cdots \varphi^k,$$

we see that Φ^x is the Kronecker product of Φ_{a_i} :

(6)
$$\Phi^x = \Phi_{a_0} \times \Phi_{a_1} \times \cdots \times \Phi_{a_k}.$$

LEMMA 1. Let x be a p-element of S_n . Then the modular irreducible characters $\varphi^x(y)$ of N(x) are rational integers.

PROOF. As is well known, the irreducible characters $\zeta_i(g)$ of S_n are rational

integers. Since the modular irreducible characters $\varphi_{\kappa}(y)$ of S_n can be expressed by the irreducible characters $\zeta_i(y)$ of S_n (restricted to *p*-regular elements) with integral coefficients, $\varphi_{\kappa}(y)$ are rational integers. This, combining with (5), yields the proof of Lemma 1.

Let g be an element of S_n . We then have g = xy = yx where x is a p-element and y is a p-regular element. The p-element x is called the p-factor of g. Let $y_0 = 1$, y_1, \dots, y_{t-1} be a complete system of representatives for the p-regular elements in N(x) such that they all lie in different classes of N(x) but that every p-regular element in N(x) is conjugate to one of them. Then the xy_i $(i=0,1,\dots,t-1)$ consist of a complete system of representatives for the classes of G which contain an element whose p-factor is conjugate to x in G. We set

$$(7) Z^x = (\zeta_i(xy_i)).$$

We then have from (2)

$$(8) Z^x = D^x \Phi^x$$

where $D^x = (d_{i\kappa}^x)$. Hence

$$(9) D^x = Z^x(\boldsymbol{\Phi}^x)^{-1}.$$

This, combining with Lemma 1, shows that the $d_{i\kappa}^x$ are rational numbers. Since the $d_{i\kappa}^x$ are algebraic integers, we see readily that the $d_{i\kappa}^x$ are rational integers. This completes the proof of Theorem 1.

As an example we shall calculate the $d_{i\pi}^x$ of S_6 for p=2 and x=(12) (34) (56) (see [5] p. 45). Since N(x)=S(3,2), we have by (6)

$$\Phi^x = \Phi_3 = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$$

We have for $y_0 = 1$ and $y_1 = (135)(246)$

$$Z^{x} = \begin{bmatrix} 1 & 1 \\ -1 & -1 \\ 3 & 0 \\ -2 & 1 \\ -3 & 0 \\ 0 & 0 \\ 3 & 0 \\ 2 & -1 \\ -3 & 0 \\ 1 & 1 \\ -1 & -1 \end{bmatrix}.$$

Hence we can obtain from (9)

$$D^{x} = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 1 & 1 \\ 0 & -1 \\ -1 & -1 \\ 0 & 0 \\ 1 & 1 \\ 0 & 1 \\ -1 & -1 \\ 1 & 0 \\ -1 & 0 \end{bmatrix}.$$

2. The blocks of characters of the normalizer N(x).

First we shall mention the following

LEMMA 2. Two irreducible characters of S_n belong to the same block if and only if they have the same p-core.

This fact was first conjectured by Nakayama [6] and was proved by Brauer and Robinson jointly [4].

Let ζ^x be an irreducible character of N(x). According to (3), we have

$$\zeta^x = \zeta^0 \zeta^1 \cdots \zeta^k$$

where ζ^i denotes the irreducible character of $S(a_i, p^i)$. In particular, ζ^0 may be considered as the irreducible character of S_{a_0} .

LEMMA 3. Two irreducible characters

$$\zeta_i^x = \zeta_{i_0}^0 \zeta_{i_1}^1 \cdots \zeta_{i_k}^k$$

 $\zeta_j^x = \zeta_{j_0}^0 \zeta_{j_1}^1 \cdots \zeta_{j_k}^k$

of N(x) belong to the same block if and only if two characters $\zeta_{i_0}^0$ and $\zeta_{j_0}^0$ of S_{a_0} belong to the same block of S_{a_0} .

PROOF. For i > 0, $S(a_i, p^i)$ has only one block ([11], Lemma 10). Hence we readily obtain the proof of Lemma 3.

We shall denote by B_{τ}^0 the block of S_{a_0} which contains $\zeta_{i_0}^0$. Then the block of N(x) which contains ζ_i^x is completely determined by B_{τ}^0 . Hence we shall denote by \widetilde{B}_{τ} this block of N(x).

Let Young diagram $[\alpha_0]$ be the *p*-core of the irreducible character $\zeta_{i_0}^0 \in B_{\tau}^0$. Then we shall call $[\alpha_0]$ the *p*-core of the irreducible character $\zeta_i^x \in \widetilde{B}_{\tau}$. Then Lemma 2, combining with Lemma 3, yields

Theorem 3. Two irreducible characters of N(x) belong to the same block if and only if they have the same p-core.

Theorem 3 is reduced to Lemma 2 for x=1. We have (cf. [5], p. 49).

COROLLARY 1. N(x) has only one block if $a_0 \le 1$ for $p \ne 2$ and $a_0 \le 2$ for p = 2.

COROLLARY 2. Let B_0 be the first block of S_n , that is, the block which contains the principal character $\zeta_0 = 1$. Then $\zeta_i(xy) = 0$ for $\zeta_i \in B_0$ if $a_0 \leq 1$ for $p \neq 2$ and $a_0 \leq 2$ for p = 2.

We can also obtain Corollary 2 by using the Murnaghan-Nakayama recursion formula.

3. Proof of Theorem 2.

Let G be a group of finite order, and let $\Gamma = \Gamma(G)$ denote the group ring of G over Ω . We denote by $\Lambda = \Lambda(G)$ the center of Γ . Let K_{α} be a class of conjugate elements in G. If necessary, we denote by the same notation K_{α} the sum of all elements in K_{α} . Then K_1, K_2, \dots, K_m form a basis of Λ and we have

$$(11) K_{\alpha}K_{\beta} = \sum_{r} a_{\alpha\beta} r K_{r}$$

where the $a_{\alpha\beta\gamma}$ are non-negative rational integers.

Let H be a subgroup of G of an order p^h , $h \ge 0$, and let C(H) be the centralizer of H in G. We consider the subgroup N = HC(H). If we set $K_{\alpha}^0 = K_{\alpha}$ $\cap C(H)$, then either $K_{\alpha}^0 = 0$ or K_{α}^0 is a sum of complete classes of N. We obtain from (11)

(12)
$$K_{\alpha}^{0}K_{\beta}^{0} = \sum_{r} a_{\alpha\beta r}K_{r}^{0} \pmod{p}.$$

The classes K_{α} with $K_{\alpha}^{0} = 0$ form the basis of an ideal T^{*} of the center Λ^{*} of the modular group ring Γ^{*} . The $K_{\alpha}^{0} \neq 0$ can be considered as the basis of a subring R^{*} of the center $\Lambda^{*}(N)$ of the modular group ring $\Gamma^{*}(N)$. According to (12) we have (Γ^{2})

$$\Lambda^*(G)/T^* \cong R^*.$$

Let B be a block of G. We set

$$\eta = \sum_{\alpha=1}^{m} b_{\alpha} K_{\alpha}$$

where

(15)
$$b_{\alpha} = \sum_{\zeta_i \in B} \zeta_i(1)\bar{\zeta}_i(g_{\alpha})/g(G).$$

Here $g_{\alpha} \in K_{\alpha}$ and g(G) denotes the order of G. Then we see that $b_{\alpha} \in \mathfrak{o}_{\mathfrak{p}}$ and

(16)
$$\eta^* = \sum_{\alpha=1}^m b_\alpha^* K_\alpha$$

is a primitive idempotent of Λ^* corresponding to B([10]). We have $b_{\alpha}^* = 0$ for any p-singular class K_{α} . Let \mathfrak{D} be the defect group of B. We denote by \mathfrak{H}_{α} the defect group of K_{α} . If K_{α} is a p-regular class such that \mathfrak{H}_{α} is not con-

jugate to some subgroup of \mathfrak{D} , then we have $b_{\alpha}^* = 0$. On the other hand, there exists a *p*-regular class K_{β} with the defect group $\mathfrak{F}_{\beta} \cong \mathfrak{D}$ such that $b_{\beta}^* \neq 0$ and

(17)
$$w_i(K_{\beta}) = g(G)\zeta_i(g_{\beta})/n_{\beta}\zeta_i(1) \neq 0 \pmod{\mathfrak{p}}$$

where n_{β} denotes the order of the normalizer $N(g_{\beta})$ of g_{β} in G.

In the following we denote by η_{σ}^* the primitive idempotent of Λ^* corresponding to B_{σ} . If $\eta_{\sigma}^* \in T^*$, then the element $\tilde{\eta}_{\sigma}^*$ of R^* corresponding to η_{σ}^* in (13) is a sum of primitive idempotents of the center $\Lambda^*(N)$. Hence the collection $B^{(\sigma)}$ of the blocks \tilde{B}_{τ} of N corresponds to $\tilde{\eta}_{\sigma}^*$. If \tilde{B}_{τ} is contained in $B^{(\sigma)}$, then we shall say that B_{σ} is determined by \tilde{B}_{τ} of N([2]). If $w_i(K_{\sigma})$ is formed by means of a character ζ_i of B_{σ} while $\tilde{w}_j(\tilde{K}_{\beta})$ is formed in an analogous manner by means of a character of \tilde{B}_{τ} , then we see by (13) that

(18)
$$w_i(K_{\alpha}) \equiv \sum_{\beta} \widetilde{w}_j(\widetilde{K}_{\beta}) \pmod{\mathfrak{p}}$$
.

Here \widetilde{K}_{β} ranges over all classes of N which lie in K_{α} .

Let x be a p-element of S_n as in section 1. Let \widetilde{K}_{α} be a p-regular class of S_{α_0} . Then we see by (3) that \widetilde{K}_{α} is also a class of N(x). Since $S(a_i, p^i)$, i > 0 has only one block, if $\widetilde{w}_i(\widetilde{K}_{\alpha})$ is formed by means of a character ζ_i^x while $\overline{w}_{i_0}(\widetilde{K}_{\alpha})$ is formed by means of a character $\zeta_{i_0}^0$ in Lemma 3, then

(19)
$$\widetilde{w}_i(\widetilde{K}_{\alpha}) \equiv \overline{w}_{i_0}(\widetilde{K}_{\alpha}) \quad (\text{mod } \mathfrak{p}).$$

The defect group of B_{σ} of S_n is conjugate to the *p*-Sylow-subgroup of $S(\beta, p)$ for a suitable β where $n = a + \beta p$ ([4]). Hence we may denote by $\mathfrak{D}^{(\beta)}$ the defect group of B_{σ} . The defect of B_{σ} is given by

$$(20) d_{\beta} = \beta + e(\beta !).$$

Here e(m) denotes the exponent of the highest power of p dividing an integer m. Let K_{α} be the p-regular classes with the defect group $\mathfrak{F}_{\alpha} \cong \mathfrak{D}^{(\beta)}$. Then we see easily that K_{α} contains the p-regular element g_{α} of S_a such that the order of the normalizer $N(g_{\alpha})$ in S_a is prime to p.

Now we shall give the proof of Theorem 2. We have from (3)

(21)
$$n = \sum_{i=0}^{k} a_i p^i = a_0 + lp$$

where we set $l = \sum_{i=1}^k a_i p^{i-1}$. We shall first consider the block B_{σ} of defect d_{β} . such that $\beta < l$. Let K_{α} be the *p*-regular classes such that $\mathfrak{D}_{\alpha} \cong \mathfrak{D}^{(\beta)}$. Then we see by above argument that $K_{\alpha} \cap N(x) = 0$. This implies that $K_{\alpha} \in T^*$ and hence $\eta_{\sigma}^* \in T^*$. Thus the block B_{σ} which satisfies $\beta < l$ can not be determined by any block of N(x).

In what follows we may assume that $\beta \ge l$. Let \widetilde{B}_{τ} be a given block of

N(x) and let B_{τ}^0 be the block of S_{a_0} corresponding to \tilde{B}_{τ} . Let the defect of B_{τ}^0 be d_{τ} . Then $a_0 = b + \gamma p$. The p-core of B_{τ}^0 and hence that of \tilde{B}_{τ} consists of b nodes. If we set $l + \gamma = l'$, then n = b + l'p.

First we assume that $l' < \beta$. There exists a p-regular class \widetilde{K}_{α} of S_{a_0} with the defect group $\widetilde{\mathfrak{D}}_{\alpha} \cong \mathfrak{D}^{(r)}$ such that $\overline{w}_{i_0}(\widetilde{K}_{\alpha}) \not\equiv 0 \pmod{\mathfrak{p}}$ for $\zeta_{i_0}^0 \in B_{\tau}^0$. We then have by (19)

The class \widetilde{K}_{α} contains the *p*-regular element y_{α} of S_b such that the order of the normalizer $N(y_{\alpha})$ in S_b is prime to p. Let K_{α} be the class of S_n containing y_{α} . Then we have $K_{\alpha} \cap N(x) = \widetilde{K}_{\alpha}$. Since $l' < \beta$, we see that $h_{\alpha} < d_{\beta}$ where h_{α} denotes the defect of K_{α} . Hence we have for $\zeta_i \in B_{\sigma}$ ([10], Lemma 6)

(23)
$$w_i(K_\alpha) \equiv 0 \pmod{\mathfrak{p}}.$$

It follows from (18), (22) and (23) that if $l' < \beta$, then B_{σ} is not determined by \widetilde{B}_{τ} . By the similar argument we can see also that if $l \leq \beta < l'$, then B_{σ} is not determined by \widetilde{B}_{τ} .

Finally we consider the case that $\beta = l'$. Since $n = b + l'p = a + \beta p$, we have a = b and hence the p-cores of B_{σ} and \widetilde{B}_{τ} consist of a nodes. Let K_{α} be a p-regular class of S_n with the defect group $\mathfrak{D}^{(\beta)}$. Then $K_{\alpha} \cap N(x) = \widetilde{K}_{\alpha}$ is the p-regular class of S_{a_0} with the defect group $\mathfrak{D}^{(r)}$. Now we assume that both B_{σ} and \widetilde{B}_{τ} have the same p-core $[\alpha_0]$. Let χ_0 be the irreducible character of S_a determined by $[\alpha_0]$. Then χ_0 forms a block of its own. We see that $K_{\alpha} \cap S_a = K_{\alpha}^{(0)}$ is the p-regular class of S_a of defect 0.

Let g_r be an element of S_n possessing β cycles of length p such that $K_{\alpha}^{(0)} \ni g_{\alpha}$ is obtained by removing those β cycles of length p. We then have for $\zeta_j \in B_{\sigma}$

(24)
$$\zeta_j(g_\alpha) \equiv \zeta_j(g_\gamma) \pmod{\mathfrak{p}}.$$

If we choose $B_{\sigma} \ni \zeta_j$ of height 0, then we see easily that

$$e(n_{\alpha}) = e(n_{\gamma}) = e(g(G)/\zeta_i(1)) = d_{\beta}$$

and

$$n_{\alpha}/n_{\tau} = (\beta p)!/\beta!p^{\beta} \equiv (-1)^{\beta} \pmod{p}$$
.

Hence we have by (24)

(25)
$$w_j(K_\alpha) \equiv (-1)^\beta w_j(K_\gamma) \pmod{\mathfrak{p}}.$$

Consequently, from (25) and ([7], (11))

(26)
$$w_j(K_\alpha) \equiv w_{\alpha_0}(K_\alpha^{(0)}) \pmod{\mathfrak{p}}$$

where $w_{\alpha_0}(K_{\alpha}^{(0)})$ is formed by means of χ_0 . We obtain also by the same argument

(27)
$$\overline{w}_{i_0}(\widetilde{K}_{\alpha}) \equiv w_{\alpha_0}(K_{\alpha}^{(0)}) \pmod{\mathfrak{p}}$$

for $\zeta_{i_0}^0 \in B_{\tau}^0$.

It follows from (19), (26) and (27) that

(28)
$$w_j(K_\alpha) \equiv \widetilde{w}_i(\widetilde{K}_\alpha) \pmod{\mathfrak{p}}$$

for $\zeta_i^x \in \widetilde{B}_{\tau}$. Since we have (28) for any *p*-regular class K_{α} with the defect group $\mathfrak{D}^{(\beta)}$, we obtain the proof of Theorem 2 by (28) and ([10], Theorem 4, Corollary 2).

College of General Education Osaka University

References

- [1] R. Brauer, On the connection between the ordinary and the modular characters of groups of finite order, Ann. of Math., 42 (1941), 926-935.
- [2] R. Brauer, On blocks of characters of groups of finite order I, Proc. Nat. Acad. Sci. U.S. A., 32 (1946), 182-186.
- [3] R. Brauer, On blocks of characters of groups of finite order II, Proc. Nat. Acad. Sci. U. S. A., 32 (1946), 215-219.
- [4] R. Brauer, On a conjecture of Nakayama, Trans. Roy. Soc. Canada, Sec. III, 41 (1947), 11-19.
- [5] A. Kerber, Zur modularen Darstellungstheorie symmetrischer und alterniernder Gruppen, Mitt. Math. Sem. Univ. Giessen, 68 (1966), 1-80.
- [6] T. Nakayama, On some modular properties of irreducible representations of a symmetric group I, Japan. J. Math., 17 (1941), 89-108.
- [7] T. Nakayama and M. Osima, Note on blocks of symmetric groups, Nagoya Math. J., 8 (1954), 111-117.
- [8] M. Osima, On the representations of the generalized symmetric group, Math. J. Okayama Univ., 4 (1954), 39-56.
- [9] M. Osima, On blocks of characters of the symmetric group, Proc. Japan Acad., 31 (1955), 131-134.
- [10] M. Osima, Notes on blocks of group characters, Math. J. Okayama Univ., 4 (1955), 175-188.
- [11] M. Osima, On the representations of the generalized symmetric group II, Math. J. Okayama Univ., 6 (1956), 81-97.