
J. Math. Soc. Japan
Vol. 20, Nos. 1-2, 1968

On rational points of homogeneous spaces
over finite fields

Dedicated to Professor S. Iyanaga on his 60th birthday

By Makoto ISHIDA

(Received June 28, 1967)

Let $G$ be a connected algebraic group and $V$ a homogeneous space for $G_{r}$

which are defined over a finite field $k$ . We denote by $G_{k}$ the subgroup of $G$

consisting of all the rational points over $k$ and also by $V_{k}$ the subset of $V$

consisting of all the rational points over $k$ . Then the operation of $G$ to $V$

induces an operation of $G_{k}$ to $V_{k}$ and so $V_{k}$ is considered as a transformation
space for $G_{k}$ in the abstract sense.

The purpose of this paper is to calculate the number of the $G_{k}$-orbits in$\cdot$

$V_{c}$ and the number of points in each $G_{k}$-orbit, under an assumption on $k,$ .

which will be referred to by $(*)^{1)}$ . The main results are as follows (under the $\cdot$

assumption $(*))$ :
1) Let $P_{0}$ be a point in $V_{k}$ and $H$ the isotropy group of $P_{0}$ in $G$ . Let $s$

be the number of conjugate classes of the finite group $H/H_{0^{2)}}$ . Then $V_{k}$ is
decomposed into the disjoint union of $sG_{k}$-orbits (Theorem 1). This fact is a
consequence of ‘ Galois cohomology theory ’ (cf. [7]), but we shall give here $\cdot$

an elementary proof of it. On the other hand, we can give an example, which
shows that the number of points of each $G_{k}$-orbit is not necessarily same to
each other.

2) We restrict ourselves to the case where $V$ is complete. Then it is,

proved that $H/H_{0}$ is commutative and the normalizer $N(H)$ of $H$ in $G$ is con-
nected (Proposition 1). From these facts, we can show that the number of
$G_{k}$-orbits in $V_{k}$ is equal to the index $(H:H_{0})$ and the numbers of points in
any $G_{k}$-orbits are all same (Theorem 2). Moreover, if $G$ operates effectively
on $V$ , it is also proved that $H$ is connected (Proposition 2). Hence, in this.
case, we see that $V_{k}$ is a homogeneous space for $G_{k}$ in the abstract sense
(Theorem 2’).

3) Let $\mathfrak{g}$ be a finite subgroup of $G_{k}$ . Then, we shall prove that the num-

1) Cf. the beginning of the section 2.
2) For an algebraic group $H$, we denote by $H_{0}$ the connected component containing

the identity element.
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ber of points in $(V/\mathfrak{g})_{k^{3)}}$ is equal to the number of points in $V_{k}$ (Theorem 3).

1. In this section, we prove two propositions on algebraic groups without
any assumption on the ground fields.

Let $G$ be a connected algebraic group; let $L$ be the maximal connected
linear normal algebraic subgroup of $G$ and $D$ the smallest normal algebraic
subgroup of $G$ giving rise to a linear factor group (cf. [5]).

PROPOSITION 1. Let $H$ be an algebraic subgroup of $G$ , which contains a
Borel subgroup $B$ of L. Then (i) $H/H_{0}$ is commutative and (ii) the normalizer
$N(H)$ of $H$ in $G$ is connected and coincides with D. $(H_{\cap}L)$ .

PROOF. In the case where $G=L$ , it is known that such an algebraic sub-
group $H$ ($i.e$ . a parabolic subgroup of $L$) is connected and coincides with its
normalizer. In fact, we have $N(H)\supset H\supset H_{0}\supset B$ and so, for any element $y$ in
$N(H),$ $H_{0}=yH_{0}y^{-1}\supset yBy^{-1}$ . Then there exists an element $h_{0}$ in $H_{0}$ such that
$h_{0}Bh_{0}^{-1}=yBy^{-1}$ , which implies that $h_{0}^{-1}y\in Bi$ . $e$ . $y\in H$ and so we have $N(H)=H$
(cf. [2]). Applying this fact to the parabolic subgroup $H_{0}$ of $L$ , we have
$H_{0}=N(H_{0})\supset H$ and so $H=H_{0}$ . In this case, we have $D=\{e\}$ and so all the
assertions of Proposition are proved. We return to the general case. Then
$H_{\cap}L$ is a parabolic subgroup of $L$ and so $H_{\cap}L$ is connected and coincides
with its normalizer $N_{L}(H_{\cap}L)$ in $L$ . Moreover, as $H\supset H\cap L$ , we have $ H_{0}\supset$

$(H_{\cap}L)_{0}=H_{\cap}L\supset H_{0}\cap L$ and so $H_{0}\cap L=H_{\cap}L$ . Since $L$ contains the com-
mutator of any two elements of $G$ , we see that $H_{\cap}L=H_{0}\cap L$ contains the
commutator subgroup of $H$, which proves the commutativity of $H/H_{0}$ . Now
it is also known that $D$ is a central subgroup of $G$ and we have $G=D\cdot L$ (cf.
[5]). Then, for any element $g$ of $N(H)$ , we haveg $=dl$ with $d\in D$ and $l\in L$ .
From $dlHl^{-1}d^{-1}=H$, it follows that lHl $=H$ and so $l(H_{\cap}L)l^{-1}=H_{\cap}L$ , which
implies that $l\in N_{L}(H_{\cap}L)=H_{\cap}L$ . Hence we have $N(H)\subset D\cdot(H_{\cap}L)$ . While
it is clear that, as $D$ is a central subgroup, we have $N(H)\supset D\cdot(H_{\cap}L)$ . So
we have $N(H)=D\cdot(H_{\cap}L)$ and, as $D$ and $H_{\cap}L$ are connected, $N(H)$ is also
connected.

PROPOSITION 2. Let $V$ be a complete homogeneous space for G. We sup-
pose that $G$ operates effectively on V. Then, the isotropy group $H$ of a point
on $V$ in $G$ is connected and linear.

PROOF. If $G$ operates effectively on $V$ , we have $H_{\cap}D=\{e\}$ and so there
exists a bijective rational homomorphism of $H$ to an algebraic subgroup
$HD/D$ of the linear group $G/D$ . Hence $H$ is linear and $H_{0}\subset L$ . Since $V$ is
complete, $H$ and $H_{0}$ contain a Borel subgroup of $L$ (cf. [1]). Then we have
$N_{L}(H_{0})\supset H\cap L\supset H_{0}$ and so $H_{\cap}L=H_{0}$ , which implies that $N(H)=D\cdot(H_{\cap}L)|$

3) For an algebraic set $X$ defined over a field $k$ , we denote by $X_{k}$ the subset of $X$

consisting of all the rational points over $k$ .
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$=DH_{0}\supset H$ by Proposition 1. Hence any element $h$ of $H$ can be written in
the form $h=dh_{0}$ with $d\in D$ and $h_{0}\in H_{0}$ . However $h=dh_{0}$ means that we
have $d=hh_{0}^{-1}$ is in $D\cap H$. On the other hand, the effectiveness of the opera-
tion of $G$ on $V$ implies that we have $D\cap H=\{e\}$ . So $h=h_{0}$ is in $H_{0}$ and we
have $H=H_{0}$ .

2. $\ln$ this and the following sections of this paper, we suppose that the
ground fields are finite fields.

Let $V$ be a homogeneous space for a connected algebraic group $G$ , defined
over a finite field $k$ with $q$ elements. We denote by $V_{k}$ and $G_{k}$ the sets of
all the rational points of $V$ and $G$ over $k$ respectively. Then $G_{k}$ is a subgroup
of $G$ and it is known that $V_{k}$ is not empty (cf. [4]).

The $op\vee\circ ration$ of $G$ to $V$ induces naturally an operation of $G_{k}$ to $V_{k}$ .
Since $V_{k}$ is a finite set, $V_{k}$ is decomposed into a disjoint union of a finite
number of $G_{k}$-orbits and each $G_{k}$-orbit consists of a finite number of points.

For a point $P_{0}$ in $V_{k}$ , let $H(P_{0})$ be the isotropy group of $P_{0}$ in $G$ . Then
$H(P_{0})$ and $H(P_{0})_{0}$ are algebraic subgroups, defined over $k$ , of $G$ . By replacing
$k$ by its finite extension if necessary, we assume that the ground field $k$ satisfies
the following condition:

$(*)$ There exists a point $P_{0}$ in $V_{k}$ such that $H(P_{0})$ has a representative
system modulo $H(P_{0})_{0}$ consisting of k-rational elements, $i$ . $e$ . we have $H(P_{0})$

$=\bigcup_{i=1}^{n}H(P_{0})_{0}h_{i}$ (disjoint) with $h_{i}\in H_{k}(i=1, n)$ .

It is clear that if $k$ satisfies $(*)$ then any finite extension of $k$ also satisfies
the condition $(*)$ .

In the following, we always suppose that $k$ satisfies the condition $(*)$ . Let
$P_{0}$ be a point in $V_{k}$ and $H=H(P_{0})$ the isotropy group of $P_{0}$ in $G$ such that
we have

$H=\bigcup_{i=1}^{n}H_{0}h_{i}$ (disjoint) with $h_{1},$ $\cdots$ , $h_{n}\in H_{k}$ .

We fix $P_{0}$ and $h_{1},$ $\cdots$ , $h_{n}$ once for all.
LEMMA 1. We fix an index $i(1\leqq i\leqq n)$ . Then, for any element $h_{0}^{\prime}$ in $H_{0}$ ,

there exists an element $h_{0}$ in $H_{0}$ such that we have $h_{0}^{\prime}=h_{0}^{-1}h_{i}h_{0^{(q)}}h_{i}^{-14)}$ .
PROOF (cf. [4] and [6]). For a generic point $x$ of $H_{0}$ over $K=k(h_{0}^{\prime}),$ $\varphi(x)$

$=x^{-1}h_{i}x^{(q)}h_{i}^{-1}$ and $\varphi^{f}(x)=x^{-1}h_{0}^{\prime}h_{i}x^{(Q)}h_{i}^{-}$ are generic points of $H_{0}$ over $K$ ; so $\varphi$

and $\psi$ are generically surjective and everywhere defined rational mapping of
$H_{0}$ to $H_{0}$ . Then the images $\varphi(H_{0})$ and $\psi(H_{0})$ contain open sets of $H_{0}$ respec-
tively and so we have $\varphi(H_{0})\cap\psi(H_{0})\neq\phi$ . Let $t$ be an element of this inter-

4) $(q)$ means the rational transformation induced by the automorphism of the
universal domain: $\xi\rightarrow\xi^{q}$ .
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section. Then we have $u^{-1}h_{i}u^{(q)}h_{i}^{-1}=t=v^{-1}h_{0}^{\prime}h_{i}v^{(q)}1_{h^{-1}}$ with $u,$ $v\in H_{0}$ and so we
have $h_{0}^{\prime}=h_{0}^{-1}h_{i}h_{0}^{(q)}h_{i}^{-1}$ with $h_{0}=uv^{-1}$ .

Now we can find $n$ elements $g_{1}$ , $\cdot$ .. , $g_{n}$ of $G$ such that

(1) $h_{i}=g_{i}^{-1}g_{i}^{(q)}$

(cf. [4]). Then, as $(g_{i}P_{0})^{(q)}=g_{i^{(q)}}P_{0}=g_{i}h_{i}P_{0}=g_{i}P_{0}$ , the point $g_{i}P_{0}$ is in $V_{k}$ . On
the other hand, let $gP_{0}$ with $g\in G$ be any point in $V_{k}$ . Then, as $g^{(q)}P_{0}=gP_{0^{f}}$

we have $g^{-1}g^{(q)}=h_{0}^{\prime}h_{i}$ with some $h_{0}^{f}\in H_{0}$ and $1\leqq i\leqq n$ . By Lemma 1 and (1),

there exists an element $h_{0}$ in $H_{0}$ such that we have $g^{-1}g^{(q)}=h_{0}^{-1}h_{i}h_{0}^{(q)}h_{i}^{-1}h_{i}=$

$h_{0}^{-1}g_{i}^{-1}g_{i^{(q)}}h_{0}^{(q)}$ and so $gh_{0}^{-1}g_{i}^{-1}$ is in $G_{k}$ and the given point $gP_{0}=(gh_{0}g_{i}^{-1})g_{i}P_{0}$ is.
in the $G_{k}$-orbit $G_{k}(g_{i}P_{0})$ of $g_{i}P_{0}$ . Hence we have

$V_{k}=\bigcup_{i=1}^{n}G_{k}(g_{i}P_{0})$ ,

which of course is not necessarily a disjoint union. Next, for $1\leqq i,$ $j\leqq n$ , we
suppose that $G_{k}(g_{i}P_{0})\cap G_{k}(g_{j}P_{0})$ is not empty $i$ . $e$ . $G_{k}(g_{i}P_{0})=G_{k}(g_{j}P_{0})$ . Then
$g_{j}P_{0}$ is in $G_{k}(g_{i}P_{0})$ and so we have $g_{j}=g_{0}g_{i}h$ with some $g_{0}\in G_{k}$ and $h\in H$,

which implies that we have $h_{j}=g_{j}^{-1}g_{j}^{(q)}=h^{-1}g_{i}^{-1}g_{i^{(q)}}h^{(q)}=h^{-1}h_{i}h^{(q)}$ . Denoting by
$\pi$ the canonical homomorphism of $H$ onto $H/H_{0}$ and writing $h=h_{0}h_{t}$ with
$h_{0}\in H_{0}$ and $1\leqq t\leqq n$ , we have $h^{(q)}=h_{0}^{(q)}h_{t}$ and so we see that $\pi(h_{j})=$

$\pi(h_{c})^{-1}\pi(h_{i})\pi(h_{t})$ is conjugate to $\pi(h_{i})$ in $H/H_{0}$ . Conversely, for $1\leqq i,$ $j\leqq n$ , we
suppose that $\pi(h_{j})$ is conjugate to $\pi(h_{i})$ in $H/H_{0}$ . Then we can write $h_{0}^{\prime}h_{j}=$

$h_{t}h_{i}h_{t}^{-1}$ with some $h_{0}^{\prime}\in H_{0}$ and $1\leqq t\leqq n$ . By Lemma 1, we have $h_{0}^{\prime}=h_{0}^{-1}h_{j}h_{0}^{(q)}h_{j}^{-1}$

with some $h_{0}\in H_{0}$ and so $h_{0}^{-1}h_{j}h_{0^{q)}}^{(}=h_{c}h_{i}h_{t}^{-1}$ i. e. $h_{0}^{-1}g_{j}^{-1}g_{J^{q)}}^{(}h_{0}^{(q)}=h_{t}g_{i}^{-1}g_{i^{(q)}}h_{t}^{-1}$ . So
$g_{j}h_{0}h_{t}g_{i}^{-1}$ is in $G_{k}$ and $g_{j}P_{0}=(g_{j}h_{0}h_{t}g_{i}^{-1})g_{r}\cdot P_{0}$ is in the orbit $G_{k}(g_{i}P_{0})$ .

Therefore we have the following
THEOREM 1. Let $V$ be a homogeneous space for $G$ defined over a finite

field $k$ with $q$ elements and $P_{0}$ a point in $V_{k}$ . Let $H$ be the isotropy group of
$P_{0}$ in $G$ and let $s$ be the number of conjugate classes of $H/H_{0}$ . We suppose
that $H_{0}h_{1},$ $\cdots$ , $H_{0}h_{s}$ are the representatives of all the conjugate classes and $h_{i}\in H_{k}$

$(i=1, \cdot.. , s)$ . Then, writing $h_{i}=g_{i}^{-1}g_{t}^{(q)}$ with $g_{\dot{t}}\in G(i=1, \cdot.. , s)$ , we have

(2) $V_{k}=\bigcup_{i=1}^{s}G_{k}(g_{i}P_{0})$ (disjoint union).

REMARK. The number $s$ and the representatives $H_{0}h_{i}$ ($i=1,$ $\cdots$ , s) are not
dependent on the ground field but the elements $g_{i}$ ($i=1,$ $\cdots$ , s) are dependent
on the ground field i. e. on the number $q$ of the elements of $k$ .

In the rest of this section, we consider the case where $H$ is a finite sub-
group of $G$ , i. e. $H_{0}$ consists of a single element $e$ . As in Theorem 1, we sup-
pose that $H$ is contained in $G_{k}$ . Let $gP_{0}$ be any point in $V_{k}$ ; so $g^{-1}g^{(q)}=h$ is
in $H$. The isotropy group of $gP_{0}$ in $G$ is clearly $gHg^{-1}$ . Then an element



126 M. ISHIDA

$gh^{\prime}g^{-1}$ with $h^{\prime}\in H=H_{k}$ belongs to $(gHg^{-1})_{k}$ if and only if $g^{(q)}h^{\prime}g^{(q)- 1}=gh^{\prime}g^{-1}$

$i$ . $e$ . $h^{\prime}$ is in the normalizer $N_{H}(h)$ of $h$ in $H$. Since the number of points in
$G_{k}(gP_{0})$ is equal to the index of $(gHg^{-1})\cap G_{k}=(gHg^{-1})_{k}$ in $G_{k}$ , we have

$’(3)$ $\# G_{k}(gP_{0})=\# G_{k}/\# N_{H}(h)^{5)}$ ,

where $h=g^{-1}g^{(q)}$ Then, by Theorem 1, we have

$\#(G/H)_{k}=\# V_{k}=\sum_{?=1}^{\epsilon}\# G_{k}/\# N_{H}(h_{i})$

$=(\# G_{k}/\# H)\cdot\sum_{\iota=1}^{l}(H:N_{H}(h_{i}))$ ,

where $h_{1},$ $\cdots$ , $h_{s}$ are the representatives of all the conjugate classes of $H$. As

$\hat{\sum_{i=1}}(H:N_{H}(h_{i}))=\# H=\# H_{k}$ , we have

$((4)$ $\#(G/H)_{k}=\# G_{k}$ ,

which is a result of Lang (cf. [4]).

The formula (3) implies that the number of points in each $G_{k}$-orbit in $V_{k}$

$\tilde{1}S$ not necessarily same (cf. Theorem 2). For example, let $\Omega$ be the universal
domain containing $k$ and $G=GL(3, \Omega)$ , which is a connected algebraic group
defined over $k$ . Then there exists a subgroup $H$ of $G$ such that we have $H\cong S_{3}$

(the symmetric group of 3 letters) and $H\subset G_{k}$ . In this case, by Theorem 1
and (3), we see that $(G/H)_{k}$ consists of three disjoint $G_{k}$-orbits $G_{k}P_{1},$ $G_{k}P_{2}$ and
$G_{k}P_{3}$ such that $\# G_{k}P_{1}=\# G_{k}/2,$ $\# G_{k}P_{2}=\# G_{k}/3$ and $\# G_{k}P_{3}=\# G_{k}/6$ . So the num-
bers of points in $G_{k}$-orbits in $(G/H)_{k}$ are distinct to each other. Moreover
this example shows the following fact: even if $G$ operates effectively on $V$ ,

the operation of $G_{k}$ on $V_{k}$ is not necessarily transitive (cf. Theorem 2’). In
fact, from the elementary properties of $S_{3}$ , we see that, for any element $h\neq e$

in $H\cong S_{8}$ , there exists an element $h^{\prime}$ of $H$ such that $h^{\prime}h\neq hh^{\prime}$ . Writing
$h^{\prime}=gg^{(Q)- 1}$ with $g\in G$ , we see that $g^{(q)- 1}hg^{(q)}\neq g^{-1}hgi$ . $e$ . $g^{-1}hg$ is not rational
over $k$ . Hence $g^{-1}hg$ does not belong to $H=H_{k}$ i. e. $h\in EgHg^{-1}$ , which implies
that we have $\cap gHg^{-1}=\{e\}$ . So $G$ operates effectively on $G/H$, but $G_{k}$ does

$g\in Ci$

not operate transitively on $(G/H)_{k}$ .

3. Now we consider the case where $V$ is a complete homogeneous space
for $G$ (defined over $k$ with the property $(*)$). Then, using the notations of
Theorem 1, $H$ contains a Borel subgroup of the maximal connected linear
normal algebraic subgroup $L$ of $G$ (cf. [1]) and so, by Proposition 1, we see
that $H/H_{0}$ is commutative and the normalizer $N(H)$ of $H$ is connected. Hence,

5) For a finite set $S$, we denote by $\# S$ the number of elements in $S$ .
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in Theorem 1, we have $s=(H:H_{0})$ . Moreover, also using the notations of
Theorem 1, the isotropy group $g_{i}Hg_{i}^{-1}$ of $g_{i}P_{0}$ in $G$ is defined over $k$ . Then
the set $g_{i}N(H)=\{g\in G|gHg^{-1}=g_{i}Hg_{i}^{-1}\}$ is not empty and is a homogeneous
space for a connected algebraic group $N(H)$ , defined over $k$ . So $g_{i}N(H)$

has a rational point $g_{t}^{(0)}$ over $k$ (cf. [4]) and so $g_{i}Hg_{i}^{-1}=g_{i^{(0)}}Hg_{t^{(0)-1}}$ , which im-
plies that we have $\#(g_{i}Hg_{i}^{-1})_{k}=\#(g_{i}^{(0)}Hg_{i}^{(0)-1})_{k}=\# H_{k}$ . Hence the number of
points in the orbit $G_{k}(g_{i}P_{0})$ is equal to $\# G_{k}/\#(g_{i}Hg_{i}^{-1})_{k}=\# G_{k}/\# H_{k}$ , which is inde-
pendent of the index $i$ .

Therefore we have the following
THEOREM 2. Let $V$ be a complete homogeneous space for $G$ defined over a

fnite field $k$ . Let $H$ be the isotropy group of a point $P_{0}$ in $V_{k}$ in G. Then the
number of distinct $G_{k}$-orbits in $V_{k}$ is equal to the index $(H:H_{0})$ and each $G_{k^{-}}$

orbit consists of the same number $\# G_{k}/\# H_{k}$ of points.
$CoROLLARY$ . We have

$\# V_{k}=\# G_{k}/\#(H_{0})_{k}$ .

PROOF. We have $H_{k}=\bigcup_{t=J}^{n}(H_{0})_{k}h_{i}$ and so $\# H_{k}=(\#(H_{0})_{k})\cdot(H:H_{0})$ . Hence we
have, by Theorem 2, $\# V_{k}=(H:H_{0})\cdot(\# G_{k}/\# H_{k})=\# G_{k}/fl(H_{0})_{k}$ .

THEOREM 2’. In Theorem 2, we suppose that $G$ operates effectively on $V$ .
Then we have

\langle 6) $V_{k}=G{}_{k}P_{0}$ ,

$i$ . $e$ . $G_{k}$ operates transitively on $V_{k}$ .
PROOF. By Proposition 2, we have $(H:H_{0})=1$ . Then the assertion follows

from Theorem 2.
COROLLARY 1. In Theorem 2, let $N$ be a normal algebraic subgroup of $G$

defined over $k$ . Then, for any points $P_{0}$ and $P_{0}^{\prime}$ in $V_{k}$ , we have

\langle 7) $\#(NP_{0})_{k}=\#(NP_{0}^{\prime})_{k}$ .
PROOF. Let $M$ be the intersection of the isotropy groups of all the points

on $V$ , which is a normal algebraic subgroup of $G$ defined over $k$ . Let $f$ be
the canonical homomorphism of $G$ onto $c/=G/M$. Then $G^{\prime}$ operates transi-
tively and effectively on $V$ by $f(g)P=gP$ for $g\in G$ and $P\in V$ . Clearly $f(N)$

$=N^{\prime}$ is a normal algebraic subgroup of $G^{\prime}$ and we have $N^{\prime}P_{0}=NP_{0}$ and
$N^{\prime}P_{0}^{\prime}=NP_{0}^{\prime}$ . By Theorem 2’, there exists an element g\’o in $G_{k}^{\prime}$ such that we
have $g^{\prime}{}_{0}P_{0}=P_{0}^{\prime}$ . Then the mapping of $N^{\prime}P_{0}$ to $N^{\prime}P_{0}^{\prime}$ defined by $n^{\prime}P_{0}\rightarrow g_{0}^{\prime}n^{\prime}P_{0}$

$(n^{\prime}\in N^{\prime})$ induces a bijective mapping of $(N^{\prime}P_{0})_{k}=(NP_{0})_{\lambda}$. onto $(N^{\prime}P_{0}^{\prime})_{k}=(NP_{0}^{\prime})_{k}$ .
COROLLARY 2. In Theorem 2, let $A$ be an Albanese variety of $V$ , defined over

$k$ . Then, for any point $P_{0}$ in $V_{k}$ , we have

(8) $\# V_{k}=\# A_{k}\cdot\#(LP_{0})_{k}$ .
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PROOF (cf. [3]). It is clear that, denoting by $\alpha$ the canonical mapping of
$V$ into $A$ , we have

$\# V_{k}=\sum_{a\in A_{k}}\#\alpha^{-1}(a)_{k}$
,

where the sum ranges over all $a\in A_{k}$ . Moreover we have $\alpha^{-1}(a)=LP_{0}^{\prime}$ with
some $P_{0}^{\prime}\in V_{k}$ . Then the assertion follows from Corollary 1.

4. Finally, we prove a generalization of the result of Lang stated in the
end of 2, which asserts that, for a connected algebraic group $G$ defined over
a finite field $k$ , if $\mathfrak{g}$ is a finite subgroup of $G_{k}$ then we have $\#(G/\mathfrak{g})_{k}=\# G_{k}$ (cf.
[4]).

LEMMA 2. Let $G$ be a connected algebraic group, which operates regularly
on an irreducible variety $V$ , all defined over a finite field $k$ . Let $\mathfrak{g}$ be a finite
subgroup of $G_{k}$ such that the quotient variety $V/\mathfrak{g}$ exists. Then we have

(9) $\#(V/\mathfrak{g})_{k}=\# V_{k}$ .

PROOF. Let $q$ be the number of elements in $k$ and $n$ the order of $\mathfrak{g}:\mathfrak{g}=$

$\{h_{1}$ , $\cdot$ .. , $h_{n}\}$ . We put, for each $h_{i}\in \mathfrak{g},$ $F_{i}=\{P\in V|P^{(Q)}=h{}_{t}P\}$ . Then it is easily
verified that we have

(10) $\#(V/\mathfrak{g})_{k}=(1/n)\cdot\sum_{i=1}^{n}\# F_{i}$ .

Since $h_{i}$ is an element of a connected algebraic group $G$ defined over $k$ , there
exists an element $g_{i}$ of $G$ such that $h_{i}=g_{i}^{(q)-1}g_{i}$ (cf. [4]). Then we have a
bijective mapping $\varphi_{i}$ of $F_{i}$ to $V_{k}$ by $\varphi_{i}(P)=g_{i}P$. In fact, $(g_{i}P)^{(q)}=g_{i}^{(q)}P^{(q)}=$

$g_{i}h_{i}^{-1}P^{(q)}=g_{i}Pi$ . $e$ . $g_{i}P\in V_{k}$ . The injectiveness of $\varphi_{i}$ is trivial and, for any
point $P_{0}$ in $V_{k},$ $(g_{i}^{-1}P_{0})^{(q)}=g_{i}^{(q)-1}P_{0}=h_{i}g_{i}^{-1}P_{0}i$ . $e$ . $g_{i}^{-1}P_{0}\in F_{i}$ and $\varphi_{i}(g_{i}^{-1}P_{0})=P_{0}$ .
Hence, by (10), we have $fl(V/\mathfrak{g})_{k}=(1/n)\cdot\sum_{i=1}^{n}\# F_{i}=(1/n)\cdot\sum_{\iota=1}^{n}\# V_{k}=\# V_{k}$ .

THEOREM 3. Let $V$ be a homogeneous space for $G$ defined over a finite
field $k$ . If $\mathfrak{g}$ is a finite subgroup of $G_{k}$ , then we have

(11) $\#(V/\mathfrak{g})_{k}=\# V_{k}$ .

PROOF. By Lemma 2, we have only to show that there exists the quotient
variety $V/g$ . This is a consequence of the fact that $V$ has a projective em-
bedding (cf. [6]).

Tokyo Metropolitan University
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