# On rational points of homogeneous spaces over finite fields 

Dedicated to Professor S. Iyanaga on his 60 th birthday<br>By Makoto IshidA

(Received June 28, 1967)

Let $G$ be a connected algebraic group and $V$ a homogeneous space for $G_{r}$ which are defined over a finite field $k$. We denote by $G_{k}$ the subgroup of $G$ consisting of all the rational points over $k$ and also by $V_{k}$ the subset of $V$ consisting of all the rational points over $k$. Then the operation of $G$ to $V$ induces an operation of $G_{k}$ to $V_{k}$ and so $V_{k}$ is considered as a transformation. space for $G_{k}$ in the abstract sense.

The purpose of this paper is to calculate the number of the $G_{k}$-orbits in $V_{k}$ and the number of points in each $G_{k}$-orbit, under an assumption on $k$, which will be referred to by $(*)^{11}$. The main results are as follows (under the assumption (*)) :

1) Let $P_{0}$ be a point in $V_{k}$ and $H$ the isotropy group of $P_{0}$ in $G$. Let $s$ be the number of conjugate classes of the finite group $H / H_{0}{ }^{2)}$. Then $V_{k}$ is decomposed into the disjoint union of $s G_{k}$-orbits (Theorem 1). This fact is a consequence of 'Galois cohomology theory' (cf. [7]), but we shall give here an elementary proof of it. On the other hand, we can give an example, which shows that the number of points of each $G_{k}$-orbit is not necessarily same to each other.
2) We restrict ourselves to the case where $V$ is complete. Then it is proved that $H / H_{0}$ is commutative and the normalizer $N(H)$ of $H$ in $G$ is connected Proposition 1). From these facts, we can show that the number of $G_{k}$-orbits in $V_{k}$ is equal to the index ( $H: H_{0}$ ) and the numbers of points in any $G_{k}$-orbits are all same (Theorem 2). Moreover, if $G$ operates effectively on $V$, it is also proved that $H$ is connected Proposition 2). Hence, in this case, we see that $V_{k}$ is a homogeneous space for $G_{k}$ in the abstract sense(Theorem 2).
3) Let $\mathfrak{g}$ be a finite subgroup of $G_{k}$. Then, we shall prove that the num-
4) Cf. the beginning of the section 2 .
5) For an algebraic group $H$, we denote by $H_{0}$ the connected component containing the identity element.
ber of points in $(V / 9))_{k}{ }^{3}$ ) is equal to the number of points in $V_{k}$ (Theorem 3).
1. In this section, we prove two propositions on algebraic groups without any assumption on the ground fields.

Let $G$ be a connected algebraic group; let $L$ be the maximal connected linear normal algebraic subgroup of $G$ and $D$ the smallest normal algebraic subgroup of $G$ giving rise to a linear factor group (cf. [5]).

Proposition 1. Let $H$ be an algebraic subgroup of $G$, which contains a Borel subgroup $B$ of $L$. Then (i) $H / H_{0}$ is commutative and (ii) the normalizer $N(H)$ of $H$ in $G$ is connected and coincides with $D \cdot(H \cap L)$.

Proof. In the case where $G=L$, it is known that such an algebraic subgroup $H$ (i.e. a parabolic subgroup of $L$ ) is connected and coincides with its normalizer. In fact, we have $N(H) \supset H \supset H_{0} \supset B$ and so, for any element $y$ in $N(H), H_{0}=y H_{0} y^{-1} \supset y B y^{-1}$. Then there exists an element $h_{0}$ in $H_{0}$ such that $h_{0} B h_{0}^{-1}=y B y^{-1}$, which implies that $h_{0}^{-1} y \in B$ i. e. $y \in H$ and so we have $N(H)=H$ (cf. [2]). Applying this fact to the parabolic subgroup $H_{0}$ of $L$, we have $H_{0}=N\left(H_{0}\right) \supset H$ and so $H=H_{0}$. In this case, we have $D=\{e\}$ and so all the assertions of Proposition are proved. We return to the general case. Then $H \cap L$ is a parabolic subgroup of $L$ and so $H \cap L$ is connected and coincides with its normalizer $N_{L}(H \cap L)$ in $L$. Moreover, as $H \supset H \cap L$, we have $H_{0} \supset$ ( $H \cap L)_{0}=H \cap L \supset H_{0} \cap L$ and so $H_{0} \cap L=H \cap L$. Since $L$ contains the commutator of any two elements of $G$, we see that $H \cap L=H_{0} \cap L$ contains the commutator subgroup of $H$, which proves the commutativity of $H / H_{0}$. Now it is also known that $D$ is a central subgroup of $G$ and we have $G=D \cdot L$ (cf. [5]). Then, for any element $g$ of $N(H)$, we have $g=d l$ with $d \in D$ and $l \in L$. From $d l H l^{-1} d^{-1}=H$, it follows that $l H l^{-1}=H$ and so $l(H \cap L) l^{-1}=H \cap L$, which implies that $l \in N_{L}(H \cap L)=H \cap L$. Hence we have $N(H) \subset D \cdot(H \cap L)$. While it is clear that, as $D$ is a central subgroup, we have $N(H) \supset D \cdot(H \cap L)$. So we have $N(H)=D \cdot(H \cap L)$ and, as $D$ and $H \cap L$ are connected, $N(H)$ is also connected.

Proposition 2. Let $V$ be a complete homogeneous space for $G$. We suppose that $G$ operates effectively on $V$. Then, the isotropy group $H$ of a point on $V$ in $G$ is connected and linear.

Proof. If $G$ operates effectively on $V$, we have $H \cap D=\{e\}$ and so there exists a bijective rational homomorphism of $H$ to an algebraic subgroup $H D / D$ of the linear group $G / D$. Hence $H$ is linear and $H_{0} \subset L$. Since $V$ is complete, $H$ and $H_{0}$ contain a Borel subgroup of $L$ (cf. [1]). Then we have $N_{L}\left(H_{0}\right) \supset H \cap L \supset H_{0}$ and so $H \cap L=H_{0}$, which implies that $N(H)=D \cdot(H \cap L)$

[^0]$=D H_{0} \supset H$ by Proposition 1. Hence any element $h$ of $H$ can be written in the form $h=d h_{0}$ with $d \in D$ and $h_{0} \in H_{0}$. However $h=d h_{0}$ means that we have $d=h h_{0}^{-1}$ is in $D \cap H$. On the other hand, the effectiveness of the operation of $G$ on $V$ implies that we have $D \cap H=\{e\}$. So $h=h_{0}$ is in $H_{0}$ and we have $H=H_{0}$.
2. In this and the following sections of this paper, we suppose that the ground fields are finite fields.

Let $V$ be a homogeneous space for a connected algebraic group $G$, defined over a finite field $k$ with $q$ elements. We denote by $V_{k}$ and $G_{k}$ the sets of all the rational points of $V$ and $G$ over $k$ respectively. Then $G_{k}$ is a subgroup of $G$ and it is known that $V_{k}$ is not empty (cf. [4]).

The operation of $G$ to $V$ induces naturally an operation of $G_{k}$ to $V_{k}$. Since $V_{k}$ is a finite set, $V_{k}$ is decomposed into a disjoint union of a finite number of $G_{k}$-orbits and each $G_{k}$-orbit consists of a finite number of points.

For a point $P_{0}$ in $V_{k}$, let $H\left(P_{0}\right)$ be the isotropy group of $P_{0}$ in $G$. Then $H\left(P_{0}\right)$ and $H\left(P_{0}\right)_{0}$ are algebraic subgroups, defined over $k$, of $G$. By replacing $k$ by its finite extension if necessary, we assume that the ground field $k$ satisfies the following condition:
(*) There exists a point $P_{0}$ in $V_{k}$ such that $H\left(P_{0}\right)$ has a representative system modulo $H\left(P_{0}\right)_{0}$ consisting of $k$-rational elements, i. e. we have $H\left(P_{0}\right)$ $=\bigcup_{i=1}^{n} H\left(P_{0}\right)_{o} h_{i}$ (disjoint) with $h_{i} \in H_{k}(i=1, \cdots, n)$.

It is clear that if $k$ satisfies (*) then any finite extension of $k$ also satisfies the condition (*).

In the following, we always suppose that $k$ satisfies the condition (*). Let $P_{0}$ be a point in $V_{k}$ and $H^{\prime}=H\left(P_{0}\right)$ the isotropy group of $P_{0}$ in $G$ such that we have

$$
H=\bigcup_{i=1}^{n} H_{0} h_{i} \quad \text { (disjoint) } \quad \text { with } h_{1}, \cdots, h_{n} \in H_{k}
$$

We fix $P_{0}$ and $h_{1}, \cdots, h_{n}$ once for all.
Lemma 1. We fix an index $i(1 \leqq i \leqq n)$. Then, for any element $h_{0}^{\prime}$ in $H_{0}$, there exists an element $h_{0}$ in $H_{0}$ such that we have $h_{0}^{\prime}=h_{0}^{-1} h_{i} h_{0}^{(9)} h_{1}^{-14)}$.

Proof (cf. [4] and [6]). For a generic point $x$ of $H_{0}$ over $K=k\left(h_{0}^{\prime}\right), \varphi(x)$ $=x^{-1} h_{i} x^{(\varphi)} h_{i}^{-1}$ and $\psi(x)=x^{-1} h_{0}^{\prime} h_{i} x^{(\varphi)} h_{i}^{-1}$ are generic points of $H_{0}$ over $K$; so $\varphi$ and $\psi$ are generically surjective and everywhere defined rational mapping of $H_{0}$ to $H_{0}$. Then the images $\varphi\left(H_{0}\right)$ and $\psi\left(H_{0}\right)$ contain open sets of $H_{0}$ respectively and so we have $\varphi\left(H_{0}\right) \cap \phi\left(H_{0}\right) \neq \phi$. Let $t$ be an element of this inter-
4) (q) means the rational transformation induced by the automorphism of the universal domain: $\xi \rightarrow \xi^{q}$.
section. Then we have $u^{-1} h_{i} u^{(\varphi)} h_{i}^{-1}=t=v^{-1} h_{0}^{\prime} h_{i} v^{(\varphi)} h_{i}^{-1}$ with $u, v \in H_{0}$ and so we have $h_{0}^{\prime}=h_{0}^{-1} h_{i} h_{0}^{(q)} h_{i}^{-1}$ with $h_{0}=u v^{-1}$.

Now we can find $n$ elements $g_{1}, \cdots, g_{n}$ of $G$ such that

$$
\begin{equation*}
h_{i}=g_{i}^{-1} g_{i}^{(q)} \tag{1}
\end{equation*}
$$

(cf. [4]). Then, as $\left(g_{i} P_{0}\right)^{(q)}=g_{i}^{(\varphi)} P_{0}=g_{i} h_{i} P_{0}=g_{i} P_{0}$, the point $g_{i} P_{0}$ is in $V_{k}$. On. the other hand, let $g P_{0}$ with $g \in G$ be any point in $V_{k}$. Then, as $g^{(q)} P_{0}=g P_{0}$, we have $g^{-1} g^{(q)}=h_{0}^{\prime} h_{i}$ with some $h_{0}^{\prime} \in H_{0}$ and $1 \leqq i \leqq n$. By Lemma 1 and (1), there exists an element $h_{0}$ in $H_{0}$ such that we have $g^{-1} g^{(q)}=h_{0}^{-1} h_{i} h_{0}^{(\phi)} h_{i}^{-1} h_{i}=$ $h_{0}^{-1} g_{i}^{-1} g_{i}^{(\varphi)} h_{0}^{(\varphi)}$ and so $g h_{0}^{-1} g_{i}^{-1}$ is in $G_{k}$ and the given point $g P_{0}=\left(g h_{0} g_{i}^{-1}\right) g_{i} P_{0}$ is. in the $G_{k}$-orbit $G_{k}\left(g_{i} P_{0}\right)$ of $g_{i} P_{0}$. Hence we have

$$
V_{k}=\bigcup_{i=1}^{n} G_{k}\left(g_{i} P_{0}\right),
$$

which of course is not necessarily a disjoint union. Next, for $1 \leqq i, j \leqq n$, we suppose that $G_{k}\left(g_{i} P_{0}\right) \cap G_{k}\left(g_{j} P_{0}\right)$ is not empty i.e. $G_{k}\left(g_{i} P_{0}\right)=G_{k}\left(g_{j} P_{0}\right)$. Then $g_{j} P_{0}$ is in $G_{k}\left(g_{i} P_{0}\right)$ and so we have $g_{j}=g_{0} g_{i} h$ with some $g_{0} \in G_{k}$ and $h \in H$, which implies that we have $h_{j}=g_{j}^{-1} g_{j}^{(q)}=h^{-1} g_{i}^{-1} g_{i}^{(q)} h^{(q)}=h^{-1} h_{i} h^{(q)}$. Denoting by $\pi$ the canonical homomorphism of $H$ onto $H / H_{0}$ and writing $h=h_{0} h_{t}$ with $h_{0} \in H_{0}$ and $1 \leqq t \leqq n$, we have $h^{(q)}=h_{0}^{(\varphi)} h_{t}$ and so we see that $\pi\left(h_{j}\right)=$ $\pi\left(h_{t}\right)^{-1} \pi\left(h_{i}\right) \pi\left(h_{t}\right)$ is conjugate to $\pi\left(h_{i}\right)$ in $H / H_{0}$. Conversely, for $1 \leqq i, j \leqq n$, we suppose that $\pi\left(h_{j}\right)$ is conjugate to $\pi\left(h_{i}\right)$ in $H / H_{0}$. Then we can write $h_{0}^{\prime} h_{j}=$ $h_{t} h_{i} h_{t}^{-1}$ with some $h_{0}^{\prime} \in H_{0}$ and $1 \leqq t \leqq n$. By Lemma 1, we have $h_{0}^{\prime}=h_{0}^{-1} h_{j} h_{0}^{(\phi)} h_{j}^{-1}$ with some $h_{0} \in H_{0}$ and so $h_{0}^{-1} h_{j} h_{0}^{(q)}=h_{t} h_{i} h_{t}^{-1}$ i. e. $h_{0}^{-1} g_{j}^{-1} g_{j}^{(\phi)} h_{0}^{(q)}=h_{t} g_{i}^{-1} g_{i}^{(Q)} h_{t}^{-1}$. So $g_{j} h_{0} h_{t} g_{i}^{-1}$ is in $G_{k}$ and $g_{j} P_{0}=\left(g_{j} h_{0} h_{t} g_{i}^{-1}\right) g_{i} P_{0}$ is in the orbit $G_{k}\left(g_{i} P_{0}\right)$.

Therefore we have the following
Theorem 1. Let $V$ be a homogeneous space for $G$ defined over a finite field $k$ with $q$ elements and $P_{0}$ a point in $V_{k}$. Let $H$ be the isotropy group of $P_{0}$ in $G$ and let $s$ be the number of conjugate classes of $H / H_{0}$. We suppose that $H_{0} h_{1}, \cdots, H_{0} h_{s}$ are the representatives of all the conjugate classes and $h_{i} \in H_{k}$. $(i=1, \cdots, s)$. Then, writing $h_{i}=g_{i}^{-1} g_{i}^{(q)}$ with $g_{i} \in G(i=1, \cdots, s)$, we have

$$
\begin{equation*}
V_{k}=\bigcup_{i=1}^{s} G_{k}\left(g_{i} P_{0}\right) \quad \text { (disjoint union). } \tag{2}
\end{equation*}
$$

Remark. The number $s$ and the representatives $H_{0} h_{i}(i=1, \cdots, s)$ are not dependent on the ground field but the elements $g_{i}(i=1, \cdots, s)$ are dependent on the ground field i.e. on the number $q$ of the elements of $k$.

In the rest of this section, we consider the case where $H$ is a finite subgroup of $G$, i.e. $H_{0}$ consists of a single element $e$. As in Theorem 1, we suppose that $H$ is contained in $G_{k}$. Let $g P_{0}$ be any point in $V_{k}$; so $g^{-1} g^{(q)}=h$ is in $H$. The isotropy group of $g P_{0}$ in $G$ is clearly $g \mathrm{Hg}^{-1}$. Then an element.
$g h^{\prime} g^{-1}$ with $h^{\prime} \in H=H_{k}$ belongs to $\left(g H g^{-1}\right)_{k}$ if and only if $g^{(q)} h^{\prime} g^{(q)-1}=g h^{\prime} g^{-1}$ i. e. $h^{\prime}$ is in the normalizer $N_{H}(h)$ of $h$ in $H$. Since the number of points in $G_{k}\left(g P_{0}\right)$ is equal to the index of $\left(g H g^{-1}\right) \cap G_{k}=\left(g H g^{-1}\right)_{k}$ in $G_{k}$, we have

$$
\begin{equation*}
\# G_{k}\left(g P_{0}\right)=\# G_{k} / \# N_{H}(h)^{5)}, \tag{3}
\end{equation*}
$$

where $h=g^{-1} g^{(q)}$. Then, by Theorem 1, we have

$$
\begin{aligned}
\#(G / H)_{k} & =\# V_{k}=\sum_{i=1}^{s} \# G_{k} / \# N_{H}\left(h_{i}\right) \\
& =\left(\# G_{k} / \# H\right) \cdot \sum_{i=1}^{s}\left(H: N_{H}\left(h_{i}\right)\right),
\end{aligned}
$$

where $h_{1}, \cdots, h_{s}$ are the representatives of all the conjugate classes of $H$. As $\sum_{i=1}^{s}\left(H: N_{H}\left(h_{i}\right)\right)=\# H=\# H_{k}$, we have

$$
\begin{equation*}
\#(G / H)_{k}=\# G_{k}, \tag{4}
\end{equation*}
$$

which is a result of Lang (cf. [4]).
The formula (3) implies that the number of points in each $G_{k}$-orbit in $V_{k}$ is not necessarily same (cf. Theorem 2). For example, let $\Omega$ be the universal domain containing $k$ and $G=G L(3, \Omega)$, which is a connected algebraic group defined over $k$. Then there exists a subgroup $H$ of $G$ such that we have $H \cong S_{3}$ (the symmetric group of 3 letters) and $H \subset G_{k}$. In this case, by Theorem 1 and (3), we see that $(G / H)_{k}$ consists of three disjoint $G_{k}$-orbits $G_{k} P_{1}, G_{k} P_{2}$ and $G_{k} P_{3}$ such that $\# G_{k} P_{1}=\# G_{k} / 2, \# G_{k} P_{2}=\# G_{k} / 3$ and $\# G_{k} P_{3}=\# G_{k} / 6$. So the numbers of points in $G_{k}$-orbits in $(G / H)_{k}$ are distinct to each other. Moreover this example shows the following fact: even if $G$ operates effectively on $V$, the operation of $G_{k}$ on $V_{k}$ is not necessarily transitive (cf. Theorem 2). In fact, from the elementary properties of $S_{3}$, we see that, for any element $h \neq e$ in $H \cong S_{3}$, there exists an element $h^{\prime}$ of $H$ such that $h^{\prime} h \neq h h^{\prime}$. Writing $h^{\prime}=g g^{(q)-1}$ with $g \in G$, we see that $g^{(q)-1} h g^{(q)} \neq g^{-1} h g$ i. e. $g^{-1} h g$ is not rational over $k$. Hence $g^{-1} h g$ does not belong to $H=H_{k}$ i. e. $h \notin g H g^{-1}$, which implies that we have $\bigcap_{g \in G} g H g^{-1}=\{e\}$. So $G$ operates effectively on $G / H$, but $G_{k}$ does not operate transitively on $(G / H)_{k}$.
3. Now we consider the case where $V$ is a complete homogeneous space for $G$ (defined over $k$ with the property (*)). Then, using the notations of Theorem 1, $H$ contains a Borel subgroup of the maximal connected linear normal algebraic subgroup $L$ of $G$ (cf. [1]) and so, by Proposition 1, we see that $H / H_{0}$ is commutative and the normalizer $N(H)$ of $H$ is connected. Hence,
5) For a finite set $S$, we denote by $\# S$ the number of elements in $S$.
in Theorem 1, we have $s=\left(H: H_{0}\right)$. Moreover, also using the notations of Theorem 1, the isotropy group $g_{i} \mathrm{Hg}_{i}^{-1}$ of $g_{i} P_{0}$ in $G$ is defined over $k$. Then the set $g_{i} N(H)=\left\{g \in G \mid g H g^{-1}=g_{i}{\left.H g_{i}^{-1}\right\}}\right.$ is not empty and is a homogeneous space for a connected algebraic group $N(H)$, defined over $k$. So $g_{i} N(H)$ has a rational point $g_{i}^{(0)}$ over $k$ (cf. [4]) and so $g_{i} \mathrm{Hg}_{i}^{-1}=g_{i}^{(0)} \mathrm{Hg}_{i}^{(0)-1}$, which implies that we have $\#\left(g_{i} H g_{i}^{-1}\right)_{k}=\#\left(g_{i}^{(0)} H g_{i}^{(0)-1}\right)_{k}=\# H_{k}$. Hence the number of points in the orbit $G_{k}\left(g_{i} P_{0}\right)$ is equal to $\# G_{k} / \#\left(g_{i} H g_{i}^{-1}\right)_{k}=\# G_{k} / \# H_{k}$, which is independent of the index $i$.

Therefore we have the following
Theorem 2. Let $V$ be a complete homogeneous space for $G$ defined over a finite field $k$. Let $H$ be the isotropy group of a point $P_{0}$ in $V_{k}$ in $G$. Then the number of distinct $G_{k}$-orbits in $V_{k}$ is equal to the index $\left(H: H_{0}\right)$ and each $G_{k^{-}}$ orbit consists of the same number $\# G_{k} / \# H_{k}$ of points.

Corollary. We have

$$
\# V_{k}=\# G_{k} / \#\left(H_{0}\right)_{k} .
$$

Proof. We have $H_{k}=\bigcup_{i=1}^{n}\left(H_{0}\right)_{k} h_{i}$ and so $\# H_{k}=\left(\#\left(H_{0}\right)_{k}\right) \cdot\left(H: H_{0}\right)$. Hence we have, by Theorem 2, \# $V_{k}=\left(H: H_{0}\right) \cdot\left(\# G_{k} / \# H_{k}\right)=\# G_{k} / \#\left(H_{0}\right)_{k}$.

Theorem 2'. In Theorem 2, we suppose that $G$ operates effectively on $V$. Then we have

$$
\begin{equation*}
V_{k}=G_{k} P_{0}, \tag{6}
\end{equation*}
$$

i.e. $G_{k}$ operates transitively on $V_{k}$.

Proof. By Proposition 2, we have $\left(H: H_{0}\right)=1$. Then the assertion follows from Theorem 2.

Corollary 1. In Theorem 2, let $N$ be a normal algebraic subgroup of $G$ defined over $k$. Then, for any points $P_{0}$ and $P_{0}^{\prime}$ in $V_{k}$, we have

$$
\begin{equation*}
\#\left(N P_{0}\right)_{k}=\#\left(N P_{0}^{\prime}\right)_{k} . \tag{7}
\end{equation*}
$$

Proof. Let $M$ be the intersection of the isotropy groups of all the points on $V$, which is a normal algebraic subgroup of $G$ defined over $k$. Let $f$ be the canonical homomorphism of $G$ onto $G^{\prime}=G / M$. Then $G^{\prime}$ operates transitively and effectively on $V$ by $f(g) P=g P$ for $g \in G$ and $P \in V$. Clearly $f(N)$ $=N^{\prime}$ is a normal algebraic subgroup of $G^{\prime}$ and we have $N^{\prime} P_{0}=N P_{0}$ and $N^{\prime} P_{0}^{\prime}=N P_{0}^{\prime}$. By Theorem $2^{\prime}$, there exists an element $g_{0}^{\prime}$ in $G_{k}^{\prime}$ such that we have $g_{0}^{\prime} P_{0}=P_{0}^{\prime}$. Then the mapping of $N^{\prime} P_{0}$ to $N^{\prime} P_{0}^{\prime}$ defined by $n^{\prime} P_{0} \rightarrow g_{0}^{\prime} n^{\prime} P_{0}$ $\left(n^{\prime} \in N^{\prime}\right)$ induces a bijective mapping of $\left(N^{\prime} P_{0}\right)_{k}=\left(N P_{0}\right)_{k}$ onto $\left(N^{\prime} P_{0}^{\prime}\right)_{k}=\left(N P_{0}^{\prime}\right)_{k}$.

Corollary 2. In Theorem 2, let $A$ be an Albanese variety of $V$, defined over $k$. Then, for any point $P_{0}$ in $V_{k}$, we have

$$
\begin{equation*}
\# V_{k}=\# A_{k} \cdot \#\left(L P_{0}\right)_{k} . \tag{8}
\end{equation*}
$$

Proof (cf. [3]). It is clear that, denoting by $\alpha$ the canonical mapping of $V$ into $A$, we have

$$
\# V_{k}=\sum_{a \in A_{k}}^{\# \alpha^{-1}(a)_{k},}
$$

where the sum ranges over all $a \in A_{k}$. Moreover we have $\alpha^{-1}(a)=L P_{0}^{\prime}$ with some $P_{0}^{\prime} \in V_{k}$. Then the assertion follows from Corollary 1 .
4. Finally, we prove a generalization of the result of Lang stated in the end of 2 , which asserts that, for a connected algebraic group $G$ defined over a finite field $k$, if g is a finite subgroup of $G_{k}$ then we have $\#(G / \mathrm{g})_{k}=\# G_{k}$ (cf. [4]).

Lemma 2. Let $G$ be a connected algebraic group, which operates regularly on an irreducible variety $V$, all defined over a finite field $k$. Let g be a finite subgroup of $G_{k}$ such that the quotient variety $V / \mathfrak{g}$ exists. Then we have

$$
\begin{equation*}
\#(V / \mathrm{g})_{k}=\# V_{k} . \tag{9}
\end{equation*}
$$

Proof. Let $q$ be the number of elements in $k$ and $n$ the order of $g: g=$ $\left\{h_{1}, \cdots, h_{n}\right\}$. We put, for each $h_{i} \in \mathfrak{g}, F_{i}=\left\{P \in V \mid P^{(g)}=h_{i} P\right\}$. Then it is easily verified that we have

$$
\begin{equation*}
\#(V / \mathrm{g})_{k}=(1 / n) \cdot \sum_{i=1}^{n} \# F_{i} . \tag{10}
\end{equation*}
$$

Since $h_{i}$ is an element of a connected algebraic group $G$ defined over $k$, there exists an element $g_{i}$ of $G$ such that $h_{i}=g_{i}^{(q)-1} g_{i}$ (cf. [4]). Then we have a bijective mapping $\varphi_{i}$ of $F_{i}$ to $V_{k}$ by $\varphi_{i}(P)=g_{i} P$. In fact, $\left(g_{i} P\right)^{(q)}=g_{i}^{(\varphi)} P^{(q)}=$ $g_{i} h_{i}^{-1} P^{(q)}=g_{i} P$ i. e. $g_{i} P \in V_{k}$. The injectiveness of $\varphi_{i}$ is trivial and, for any point $P_{0}$ in $V_{k},\left(g_{i}^{-1} P_{0}\right)^{(q)}=g_{i}^{(q)-1} P_{0}=h_{i} g_{i}^{-1} P_{0}$ i. e. $g_{i}^{-1} P_{0} \in F_{i}$ and $\varphi_{i}\left(g_{i}^{-1} P_{0}\right)=P_{0}$. Hence, by (10), we have $\#(V / \mathrm{g})_{k}=(1 / n) \cdot \sum_{i=1}^{n} \# F_{i}=(1 / n) \cdot \sum_{i=1}^{n} \# V_{k}=\# V_{k}$.

Theorem 3. Let $V$ be a homogeneous space for $G$ defined over a finite field $k$. If $\mathfrak{g}$ is a finite subgroup of $G_{k}$, then we have

$$
\begin{equation*}
\#(V / \mathrm{g})_{k}=\# V_{k} . \tag{11}
\end{equation*}
$$

Proof. By Lemma 2, we have only to show that there exists the quotient variety $V / g$. This is a consequence of the fact that $V$ has a projective embedding (cf. [6]).

Tokyo Metropolitan University

## References

[1] A. Borel, Groupes linéaires algébriques, Ann. of Math., 64 (1956), 20-82.
[2] C. Chevalley, Classification des groupes de Lie algébriques, Séminaire E.N.S. (1956-58).
[3] M. Ishida, On algebraic homogeneous spaces, Pacific J. Math., 15 (1965), 525-535.
[4] S. Lang, Algebraic groups over finite fields, Amer. J. Math., 78 (1956), 555-563.
[5] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math., 78 (1956), 401-443.
[6] J.-P. Serre, Groupes algébriques et corps de classes, Paris, 1959.
[7] J.-P. Serre, Cohomologie galoisienne, Berlin, 1964.


[^0]:    3) For an algebraic set $X$ defined over a field $k$, we denote by $X_{k}$ the subset of $X$ consisting of all the rational points over $k$.
