On rational points of homogeneous spaces over finite fields

Dedicated to Professor S. Iyanaga on his 60th birthday

By Makoto ISHIDA

(Received June 28, 1967)

Let G be a connected algebraic group and V a homogeneous space for G_{k} , which are defined over a finite field k. We denote by G_{k} the subgroup of G consisting of all the rational points over k and also by V_{k} the subset of V consisting of all the rational points over k. Then the operation of G to V induces an operation of G_{k} to V_{k} and so V_{k} is considered as a transformation space for G_{k} in the abstract sense.

The purpose of this paper is to calculate the number of the G_k -orbits in V_k and the number of points in each G_k -orbit, under an assumption on k, which will be referred to by $(*)^{1}$. The main results are as follows (under the assumption (*)):

1) Let P_0 be a point in V_k and H the isotropy group of P_0 in G. Let s be the number of conjugate classes of the finite group $H/H_0^{(2)}$. Then V_k is decomposed into the disjoint union of $s \ G_k$ -orbits (Theorem 1). This fact is a consequence of 'Galois cohomology theory' (cf. [7]), but we shall give here an elementary proof of it. On the other hand, we can give an example, which shows that the number of points of each G_k -orbit is not necessarily same to each other.

2) We restrict ourselves to the case where V is complete. Then it is proved that H/H_0 is commutative and the normalizer N(H) of H in G is connected (Proposition 1). From these facts, we can show that the number of G_k -orbits in V_k is equal to the index $(H:H_0)$ and the numbers of points in any G_k -orbits are all same (Theorem 2). Moreover, if G operates effectively on V, it is also proved that H is connected (Proposition 2). Hence, in this case, we see that V_k is a homogeneous space for G_k in the abstract sense (Theorem 2').

3) Let g be a finite subgroup of G_k . Then, we shall prove that the num-

¹⁾ Cf. the beginning of the section 2.

²⁾ For an algebraic group H, we denote by H_0 the connected component containing the identity element.

ber of points in $(V/\mathfrak{g})_k^{3}$ is equal to the number of points in V_k (Theorem 3).

1. In this section, we prove two propositions on algebraic groups without any assumption on the ground fields.

Let G be a connected algebraic group; let L be the maximal connected linear normal algebraic subgroup of G and D the smallest normal algebraic subgroup of G giving rise to a linear factor group (cf. [5]).

PROPOSITION 1. Let H be an algebraic subgroup of G, which contains a Borel subgroup B of L. Then (i) H/H_0 is commutative and (ii) the normalizer N(H) of H in G is connected and coincides with $D \cdot (H \cap L)$.

PROOF. In the case where G = L, it is known that such an algebraic subgroup H (i.e. a parabolic subgroup of L) is connected and coincides with its normalizer. In fact, we have $N(H) \supset H \supset H_0 \supset B$ and so, for any element y in N(H), $H_0 = yH_0y^{-1} \supset yBy^{-1}$. Then there exists an element h_0 in H_0 such that $h_0Bh_0^{-1} = yBy^{-1}$, which implies that $h_0^{-1}y \in B$ i.e. $y \in H$ and so we have N(H) = H(cf. [2]). Applying this fact to the parabolic subgroup H_0 of L, we have $H_0 = N(H_0) \supset H$ and so $H = H_0$. In this case, we have $D = \{e\}$ and so all the assertions of Proposition are proved. We return to the general case. Then $H \cap L$ is a parabolic subgroup of L and so $H \cap L$ is connected and coincides with its normalizer $N_L(H \cap L)$ in L. Moreover, as $H \supset H \cap L$, we have $H_0 \supset$ $(H \cap L)_0 = H \cap L \supset H_0 \cap L$ and so $H_0 \cap L = H \cap L$. Since L contains the commutator of any two elements of G, we see that $H \cap L = H_0 \cap L$ contains the commutator subgroup of H, which proves the commutativity of H/H_0 . Now it is also known that D is a central subgroup of G and we have $G = D \cdot L$ (cf. [5]). Then, for any element g of N(H), we have g = dl with $d \in D$ and $l \in L$. From $dlHl^{-1}d^{-1} = H$, it follows that $lHl^{-1} = H$ and so $l(H \cap L)l^{-1} = H \cap L$, which implies that $l \in N_L(H \cap L) = H \cap L$. Hence we have $N(H) \subset D \cdot (H \cap L)$. While it is clear that, as D is a central subgroup, we have $N(H) \supset D \cdot (H \cap L)$. So we have $N(H) = D \cdot (H \cap L)$ and, as D and $H \cap L$ are connected, N(H) is also connected.

PROPOSITION 2. Let V be a complete homogeneous space for G. We suppose that G operates effectively on V. Then, the isotropy group H of a point on V in G is connected and linear.

PROOF. If G operates effectively on V, we have $H \cap D = \{e\}$ and so there exists a bijective rational homomorphism of H to an algebraic subgroup HD/D of the linear group G/D. Hence H is linear and $H_0 \subset L$. Since V is complete, H and H_0 contain a Borel subgroup of L (cf. [1]). Then we have $N_L(H_0) \supset H \cap L \supset H_0$ and so $H \cap L = H_0$, which implies that $N(H) = D \cdot (H \cap L)$

³⁾ For an algebraic set X defined over a field k, we denote by X_k the subset of X consisting of all the rational points over k.

 $=DH_0 \supset H$ by Proposition 1. Hence any element h of H can be written in the form $h = dh_0$ with $d \in D$ and $h_0 \in H_0$. However $h = dh_0$ means that we have $d = hh_0^{-1}$ is in $D \cap H$. On the other hand, the effectiveness of the operation of G on V implies that we have $D \cap H = \{e\}$. So $h = h_0$ is in H_0 and we have $H = H_0$.

2. In this and the following sections of this paper, we suppose that the ground fields are finite fields.

Let V be a homogeneous space for a connected algebraic group G, defined over a finite field k with q elements. We denote by V_k and G_k the sets of all the rational points of V and G over k respectively. Then G_k is a subgroup of G and it is known that V_k is not empty (cf. [4]).

The operation of G to V induces naturally an operation of G_k to V_k . Since V_k is a finite set, V_k is decomposed into a disjoint union of a finite number of G_k -orbits and each G_k -orbit consists of a finite number of points.

For a point P_0 in V_k , let $H(P_0)$ be the isotropy group of P_0 in G. Then $H(P_0)$ and $H(P_0)_0$ are algebraic subgroups, defined over k, of G. By replacing k by its finite extension if necessary, we assume that the ground field k satisfies the following condition:

(*) There exists a point P_0 in V_k such that $H(P_0)$ has a representative system modulo $H(P_0)_0$ consisting of k-rational elements, i.e. we have $H(P_0) = \bigcup_{i=1}^{n} H(P_0)_0 h_i$ (disjoint) with $h_i \in H_k$ $(i = 1, \dots, n)$.

It is clear that if k satisfies (*) then any finite extension of k also satisfies the condition (*).

In the following, we always suppose that k satisfies the condition (*). Let P_0 be a point in V_k and $H = H(P_0)$ the isotropy group of P_0 in G such that we have

$$H = \bigcup_{i=1}^{n} H_0 h_i$$
 (disjoint) with $h_1, \dots, h_n \in H_k$.

We fix P_0 and h_1, \dots, h_n once for all.

LEMMA 1. We fix an index i $(1 \le i \le n)$. Then, for any element h'_0 in H_0 , there exists an element h_0 in H_0 such that we have $h'_0 = h_0^{-1}h_i h_0^{(q)} h_i^{-1/4}$.

PROOF (cf. [4] and [6]). For a generic point x of H_0 over $K = k(h'_0)$, $\varphi(x) = x^{-1}h_i x^{(q)}h_i^{-1}$ and $\psi(x) = x^{-1}h'_0 h_i x^{(q)}h_i^{-1}$ are generic points of H_0 over K; so φ and φ are generically surjective and everywhere defined rational mapping of H_0 to H_0 . Then the images $\varphi(H_0)$ and $\psi(H_0)$ contain open sets of H_0 respectively and so we have $\varphi(H_0) \cap \psi(H_0) \neq \phi$. Let t be an element of this inter-

^{4) (}q) means the rational transformation induced by the automorphism of the universal domain: $\xi \rightarrow \xi^{q}$.

section. Then we have $u^{-1}h_i u^{(q)}h_i^{-1} = t = v^{-1}h'_0 h_i v^{(q)}h_i^{-1}$ with $u, v \in H_0$ and so we have $h'_0 = h_0^{-1}h_i h_0^{(q)}h_i^{-1}$ with $h_0 = uv^{-1}$.

Now we can find n elements g_1, \dots, g_n of G such that

(1)
$$h_i = g_i^{-1} g_i^{(q)}$$

(cf. [4]). Then, as $(g_iP_0)^{(q)} = g_i^{(q)}P_0 = g_ih_iP_0 = g_iP_0$, the point g_iP_0 is in V_k . On the other hand, let gP_0 with $g \in G$ be any point in V_k . Then, as $g^{(q)}P_0 = gP_0$, we have $g^{-1}g^{(q)} = h'_0h_i$ with some $h'_0 \in H_0$ and $1 \leq i \leq n$. By Lemma 1 and (1), there exists an element h_0 in H_0 such that we have $g^{-1}g^{(q)} = h_0^{-1}h_ih_0^{(q)}h_i^{-1}h_i = h_0^{-1}g_i^{-1}g_i^{(q)}h_0^{(q)}$ and so $gh_0^{-1}g_i^{-1}$ is in G_k and the given point $gP_0 = (gh_0g_i^{-1})g_iP_0$ is in the G_k -orbit $G_k(g_iP_0)$ of g_iP_0 . Hence we have

$$V_k = \bigcup_{i=1}^n G_k(g_i P_0)$$

which of course is not necessarily a disjoint union. Next, for $1 \leq i, j \leq n$, we suppose that $G_k(g_iP_0) \cap G_k(g_jP_0)$ is not empty i.e. $G_k(g_iP_0) = G_k(g_jP_0)$. Then g_jP_0 is in $G_k(g_iP_0)$ and so we have $g_j = g_0g_ih$ with some $g_0 \in G_k$ and $h \in H$, which implies that we have $h_j = g_j^{-1}g_j^{(q)} = h^{-1}g_i^{-1}g_i^{(q)}h^{(q)} = h^{-1}h_ih^{(q)}$. Denoting by π the canonical homomorphism of H onto H/H_0 and writing $h = h_0h_t$ with $h_0 \in H_0$ and $1 \leq t \leq n$, we have $h^{(q)} = h_0^{(q)}h_t$ and so we see that $\pi(h_j) =$ $\pi(h_t)^{-1}\pi(h_t)\pi(h_t)$ is conjugate to $\pi(h_i)$ in H/H_0 . Conversely, for $1 \leq i, j \leq n$, we suppose that $\pi(h_j)$ is conjugate to $\pi(h_i)$ in H/H_0 . Then we can write $h'_0h_j =$ $h_th_ih_t^{-1}$ with some $h'_0 \in H_0$ and $1 \leq t \leq n$. By Lemma 1, we have $h'_0 = h_0^{-1}h_jh_0^{(q)}h_j^{-1}$ with some $h_0 \in H_0$ and so $h_0^{-1}h_jh_0^{(q)} = h_th_ih_t^{-1}$ i.e. $h_0^{-1}g_j^{-1}g_j^{(q)}h_0^{(q)} = h_tg_i^{-1}g_i^{(q)}h_t^{-1}$. So $g_jh_0h_tg_i^{-1}$ is in G_k and $g_jP_0 = (g_jh_0h_tg_i^{-1})g_iP_0$ is in the orbit $G_k(g_iP_0)$.

Therefore we have the following

THEOREM 1. Let V be a homogeneous space for G defined over a finite field k with q elements and P_0 a point in V_k . Let H be the isotropy group of P_0 in G and let s be the number of conjugate classes of H/H_0 . We suppose that H_0h_1, \dots, H_0h_s are the representatives of all the conjugate classes and $h_i \in H_k$. $(i = 1, \dots, s)$. Then, writing $h_i = g_i^{-1}g_i^{(q)}$ with $g_i \in G$ $(i = 1, \dots, s)$, we have

(2)
$$V_k = \bigcup_{i=1}^s G_k(g_i P_0)$$
 (disjoint union).

REMARK. The number s and the representatives H_0h_i $(i=1, \dots, s)$ are not dependent on the ground field but the elements g_i $(i=1, \dots, s)$ are dependent on the ground field i.e. on the number q of the elements of k.

In the rest of this section, we consider the case where H is a finite subgroup of G, i.e. H_0 consists of a single element e. As in Theorem 1, we suppose that H is contained in G_k . Let gP_0 be any point in V_k ; so $g^{-1}g^{(q)} = h$ is in H. The isotropy group of gP_0 in G is clearly gHg^{-1} . Then an element. $gh'g^{-1}$ with $h' \in H = H_k$ belongs to $(gHg^{-1})_k$ if and only if $g^{(q)}h'g^{(q)-1} = gh'g^{-1}$ i.e. h' is in the normalizer $N_H(h)$ of h in H. Since the number of points in $G_k(gP_0)$ is equal to the index of $(gHg^{-1}) \cap G_k = (gHg^{-1})_k$ in G_k , we have

(3) $\#G_k(gP_0) = \#G_k/\#N_H(h)^{5},$

where $h = g^{-1}g^{(q)}$. Then, by Theorem 1, we have

$$#(G/H)_k = #V_k = \sum_{i=1}^s #G_k / #N_H(h_i)$$
$$= (#G_k / #H) \cdot \sum_{i=1}^s (H: N_H(h_i)),$$

where h_1, \dots, h_s are the representatives of all the conjugate classes of H. As $\sum_{i=1}^{s} (H: N_H(h_i)) = \#H = \#H_k, \text{ we have}$ (4) $\#(G/H)_k = \#G_k,$

which is a result of Lang (cf. [4]).

The formula (3) implies that the number of points in each G_k -orbit in V_k is not necessarily same (cf. Theorem 2). For example, let Ω be the universal domain containing k and $G = GL(3, \Omega)$, which is a connected algebraic group defined over k. Then there exists a subgroup H of G such that we have $H \cong S_3$ (the symmetric group of 3 letters) and $H \subset G_k$. In this case, by Theorem 1 and (3), we see that $(G/H)_k$ consists of three disjoint G_k -orbits G_kP_1 , G_kP_2 and $G_k P_3$ such that $\#G_k P_1 = \#G_k/2$, $\#G_k P_2 = \#G_k/3$ and $\#G_k P_3 = \#G_k/6$. So the numbers of points in G_k -orbits in $(G/H)_k$ are distinct to each other. Moreover this example shows the following fact: even if G operates effectively on V, the operation of G_k on V_k is not necessarily transitive (cf. Theorem 2'). In fact, from the elementary properties of S_3 , we see that, for any element $h \neq e$ in $H \cong S_{\mathfrak{s}}$, there exists an element h' of H such that $h'h \neq hh'$. Writing $h' = gg^{(q)-1}$ with $g \in G$, we see that $g^{(q)-1}hg^{(q)} \neq g^{-1}hg$ i.e. $g^{-1}hg$ is not rational over k. Hence $g^{-1}hg$ does not belong to $H = H_k$ i.e. $h \in gHg^{-1}$, which implies that we have $\bigcap_{g \in G} gHg^{-1} = \{e\}$. So G operates effectively on G/H, but G_k does not operate transitively on $(G/H)_k$.

3. Now we consider the case where V is a complete homogeneous space for G (defined over k with the property (*)). Then, using the notations of Theorem 1, H contains a Borel subgroup of the maximal connected linear normal algebraic subgroup L of G (cf. [1]) and so, by Proposition 1, we see that H/H_0 is commutative and the normalizer N(H) of H is connected. Hence,

⁵⁾ For a finite set S, we denote by #S the number of elements in S.

in Theorem 1, we have $s = (H: H_0)$. Moreover, also using the notations of Theorem 1, the isotropy group $g_i Hg_i^{-1}$ of $g_i P_0$ in G is defined over k. Then the set $g_i N(H) = \{g \in G | gHg^{-1} = g_i Hg_i^{-1}\}$ is not empty and is a homogeneous space for a connected algebraic group N(H), defined over k. So $g_i N(H)$ has a rational point $g_i^{(0)}$ over k (cf. [4]) and so $g_i Hg_i^{-1} = g_i^{(0)} Hg_i^{(0)-1}$, which implies that we have $\#(g_i Hg_i^{-1})_k = \#(g_i^{(0)} Hg_i^{(0)-1})_k = \#H_k$. Hence the number of points in the orbit $G_k(g_i P_0)$ is equal to $\#G_k/\#(g_i Hg_i^{-1})_k = \#G_k/\#H_k$, which is independent of the index *i*.

Therefore we have the following

THEOREM 2. Let V be a complete homogeneous space for G defined over a finite field k. Let H be the isotropy group of a point P_0 in V_k in G. Then the number of distinct G_k -orbits in V_k is equal to the index $(H:H_0)$ and each G_k -orbit consists of the same number $\#G_k/\#H_k$ of points.

COROLLARY. We have

$$\#V_k = \#G_k/\#(H_0)_k.$$

PROOF. We have $H_k = \bigcup_{i=1}^{n} (H_0)_k h_i$ and so $\#H_k = (\#(H_0)_k) \cdot (H:H_0)$. Hence we have, by Theorem 2, $\#V_k = (H:H_0) \cdot (\#G_k/\#H_k) = \#G_k/\#(H_0)_k$.

THEOREM 2'. In Theorem 2, we suppose that G operates effectively on V. Then we have

$$V_k = G_k P_0,$$

i.e. G_k operates transitively on V_k .

PROOF. By Proposition 2, we have $(H: H_0) = 1$. Then the assertion follows from Theorem 2.

COROLLARY 1. In Theorem 2, let N be a normal algebraic subgroup of G defined over k. Then, for any points P_0 and P'_0 in V_k , we have

(7)
$$\#(NP_0)_k = \#(NP'_0)_k.$$

PROOF. Let M be the intersection of the isotropy groups of all the points on V, which is a normal algebraic subgroup of G defined over k. Let f be the canonical homomorphism of G onto G' = G/M. Then G' operates transitively and effectively on V by f(g)P = gP for $g \in G$ and $P \in V$. Clearly f(N)= N' is a normal algebraic subgroup of G' and we have $N'P_0 = NP_0$ and $N'P'_0 = NP'_0$. By Theorem 2', there exists an element g'_0 in G'_k such that we have $g'_0P_0 = P'_0$. Then the mapping of $N'P_0$ to $N'P'_0$ defined by $n'P_0 \rightarrow g'_0n'P_0$ $(n' \in N')$ induces a bijective mapping of $(N'P_0)_k = (NP_0)_k$ onto $(N'P'_0)_k = (NP'_0)_k$.

COROLLARY 2. In Theorem 2, let A be an Albanese variety of V, defined over k. Then, for any point P_0 in V_k , we have

(8)
$$\#V_k = \#A_k \cdot \#(LP_0)_k$$
.

PROOF (cf. [3]). It is clear that, denoting by α the canonical mapping of V into A, we have

$$\#V_k = \sum_{a \in A_k} \#\alpha^{-1}(a)_k,$$

where the sum ranges over all $a \in A_k$. Moreover we have $\alpha^{-1}(a) = LP'_0$ with some $P'_0 \in V_k$. Then the assertion follows from Corollary 1.

4. Finally, we prove a generalization of the result of Lang stated in the end of 2, which asserts that, for a connected algebraic group G defined over a finite field k, if g is a finite subgroup of G_k then we have $\#(G/g)_k = \#G_k$ (cf. [4]).

LEMMA 2. Let G be a connected algebraic group, which operates regularly on an irreducible variety V, all defined over a finite field k. Let g be a finite subgroup of G_k such that the quotient variety V/g exists. Then we have

(9)
$$\#(V/\mathfrak{g})_k = \#V_k.$$

PROOF. Let q be the number of elements in k and n the order of $g:g = \{h_1, \dots, h_n\}$. We put, for each $h_i \in g$, $F_i = \{P \in V | P^{(q)} = h_i P\}$. Then it is easily verified that we have

(10)
$$\#(V/\mathfrak{g})_k = (1/n) \cdot \sum_{i=1}^n \#F_i.$$

Since h_i is an element of a connected algebraic group G defined over k, there exists an element g_i of G such that $h_i = g_i^{(q)-1}g_i$ (cf. [4]). Then we have a bijective mapping φ_i of F_i to V_k by $\varphi_i(P) = g_iP$. In fact, $(g_iP)^{(q)} = g_i^{(q)}P^{(q)} = g_ih_i^{-1}P^{(q)} = g_iP$ i.e. $g_iP \in V_k$. The injectiveness of φ_i is trivial and, for any point P_0 in V_k , $(g_i^{-1}P_0)^{(q)} = g_i^{(q)-1}P_0 = h_ig_i^{-1}P_0$ i.e. $g_i^{-1}P_0 \in F_i$ and $\varphi_i(g_i^{-1}P_0) = P_0$. Hence, by (10), we have $\#(V/\mathfrak{g})_k = (1/n) \cdot \sum_{i=1}^n \#F_i = (1/n) \cdot \sum_{i=1}^n \#V_k = \#V_k$.

THEOREM 3. Let V be a homogeneous space for G defined over a finite field k. If \mathfrak{g} is a finite subgroup of G_k , then we have

(11)
$$\#(V/\mathfrak{g})_k = \#V_k.$$

PROOF. By Lemma 2, we have only to show that there exists the quotient variety V/\mathfrak{g} . This is a consequence of the fact that V has a projective embedding (cf. [6]).

Tokyo Metropolitan University

128

References

- [1] A. Borel, Groupes linéaires algébriques, Ann. of Math., 64 (1956), 20-82.
- [2] C. Chevalley, Classification des groupes de Lie algébriques, Séminaire E. N. S. (1956-58).
- [3] M. Ishida, On algebraic homogeneous spaces, Pacific J. Math., 15 (1965), 525-535.
- [4] S. Lang, Algebraic groups over finite fields, Amer. J. Math., 78 (1956), 555-563.
- [5] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math., 78 (1956), 401-443.
- [6] J.-P. Serre, Groupes algébriques et corps de classes, Paris, 1959.
- [7] J.-P. Serre, Cohomologie galoisienne, Berlin, 1964.