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A group W, to be studied in this note, is supposed to have some special
subset R, i.e. (1) R generates W, each element of R is involutive, (i.e. of
order two), (2) R satisfies a certain condition (C) given in our [Definition 1.
Such an R will be called a good system of involutive generators of W. For
example take the Weyl group of a semi-simple Lie algebra as W, and take the
set of fundamental reflexions as R, then our requirements (1) and (2) are ful-
filled by them. Indeed, as H. Matsumoto has shown, a good system of
involutive generators is a natural generalization of a set of fundamental reflex-
tons in a Weyl group in the following sense.

(I) If W is a Weyl group (in the generalized sense) associated to a BN-pair,
and R be the set of canonical generators of W (see Tits [3]), then R is a good
system of involutive generators of .

(II) All the group theoretical properties of W follow from (C). Indeed
we can write down the fundamental relations among the elements of R.

Now let /" be a group of automorphisms of W, and assume that each
element of [’ induces a permutation of R. The purpose of this note is to
study the structure of the group W7T of the set of all ['-fixed points of W.
Let R; (jeJ’) be [-orbits of R, and W; be the group generated by R;. Our
theorems say;

WT is either of order one or of order two (Theorem I).

Take the generator s; from each non-trivial WT, then {s;} is a good system
of involutive generators of WT (Theorem 2 and 3). ;

Such phenomena for a Weyl group (in the ordinary sense) was recognized
by R. Steinberg [2], and used in his construction of new simple groups.
Generalized version treated in this note has of course similar application to the
theory of descent of BN-pairs (cf. [4]).

* After the manuscript was submitted, the author has learned from Prof. N. Iwahori
that the result of this paper (including appendix) was known by R. Steinberg (yet
unpublished) by using a geometrical realization of W.
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§1. Let W be a group generated by involutive elements, and R be a set
of involutive generators indexed by aset I, R={r;;i< I} (we always assume
r;x=1 and r;x7r; if i2j). Since W is generated by R, any we W has an ex-
pression like w=r;"w -+ 30y Where [ is called the length of the expression.
Such an expression is called a reduced expression of w if it has the smallest
length among all the expressions of w by R. For any we W, let [(w) denote
the length of a reduced expression of w. A finite sequence of indices (i(1),
1(2), .-+, 1(})) is called reduced if l(w)=1 for w=r;"ie - 7« Let 2 denote
the set of all the reduced sequences of indices. If (i(1),i(2), ---,i([)) e ¥, then
it is obvious that (i(?), i(t-+1), ---,1(s))e 2, for any pair of integers t,s 1<t
<s=1. For a pair of sequences (i(1),i(2), ---, 1)) and (J(),(2), --+, j(m)), if
Tiw¥ie - Yiay = Tiwlie -+ Vies We call they are equivalent, and write as (i(1),
U2), -+, N~ G, J(D), -, j(m)).

DErFINITION 1. A system of involutive generators R is called a good sys-
tem of involutive generators of W, if it satisfies the following condition (C).

(C) For i(0)eTI and (Q),i?2), -, i), if @(0),iQ), -,i(l))& Y, then
there exists an integer m, 1 <m <[, s. t. (i(1), i(2), ---, i(m))~((0), i(1), ---, i(m—1)).

We will write down some of the consequences of the condition (C'). Proofs
are given in [17.

(C1) An integer m appeared in the statement of (C) is uniquely determind
by 1(0) and (¢(1), i(2), ---, i/(D)).

(C2) I(ruw)=+Uw) for any we W and r, e R.

(C3) Let S be a subset of R and Wy denote the set of elements which
admits a reduced expression as a product of elements of S. Then Wy is a
group and S is a good system of involutive generators of Wig.

(C4) R is a minimal set of generators of W.

(C5) If l(w) is bounded for any w < W, then R is finite and consequently
W itself is of finite order.

LEMMA 1. Let S be a subset of a good system of involutive generalors R,
and Wg be a group generated by S. If we W satisfies the following conditions ;

(*) l(rjw)<Iw) for any 7,8

Then for any element s of Wg, l(w)=I(s) and I(sw) = [(w)—I(s).

Furthermore let S=7;"je *** Tiamyy N =1(S) be a reduced expression of s by
the elements of S (such an expression exists by (C3)). Then w has a reduced
expression w="ryylsm -+ Vi S- 1 W) =j(1), (2)=j(2), -+, i(n) = j(n).

Proor. We will prove the last statement by induction on n. All the rest
of our claim follows immediately from it. Let w=r;;w - ¥sy be a reduced
expression of w. The assumption [(»,w) < [(w) implies (j(1), i(1), i(2), ---, (D)) 2.
Since R is a good system of involutive generators, there exists m, 1<m</
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s.t. (JQ), 1), -, ilm—D)~EQ), i(2), -, i(m)), therefore (i(1),1(2), ---, i)~
U@, 1), -+, im—1), i(m+-1), -+, (D), i. €. W=7 j;xVsc> *** Vitm-vstmen ** Vip- L HUS
‘we get a reduced expression of w starting with 7, i.e. Our claim is true
for n=1. Now assume our claim is true for any positive integer less than n.
Then w has a reduced expression w=7r; " - Vi St 1(1)=732),1(2)=7j3),
-, i(n—1)=j(n). The assumption of Lemma implies (j(1), i(1), i(2), -+, i) e 2.
By the condition (C), there exists m, 1<m <1 s.t. (i(1), i(2), -, i(m)) ~(J(1),
1), o+, im—=1)). If m>n—1, then (1), 1(2), -+, W)~ GA), j2), -+, j(m), i(n), -+,
i(m—1), i(m+1), ---,i(l)), i.e. w has a reduced expression starting with 7;q, 7
-+ Tjy- Now we will show that m >n—1 is the only case possible and con-
clude the proof. Assume m <n—1. Since i(1)=j(2), i(2)=j(3), ---, i(m) = j(m—+1),
m-+1<n, we have following equivalence; (j(2),j(3), .-, jJ(m)~ ), j(D), -,
jm—1)), i.e. (), j(2), -, j()~(5(2), j3), -+, j(m—1), j(m+-1), ---, j(n)). This
last equivalence relation contradicts the assumption that (j(1), j(2), ---, j(n)) is
reduced.

COROLLARY 1. There actually exists we W satisfying the assumption (x) of
Lemma 1 if and only if the group Wg is of finite order.

PrOOF. If there exists w satisfying the assumption (x) of Lemma 1. [(w’)
=Ilw) for any w’e Wg By the property (C5), Wy is of finite order. Con-
versely if Wy is finite, there exists w with the maximal length [(w) in Wy,
this w obviously satisfies the assumption (x) of Lemma 1.

COROLLARY 2. Assume W itself is of finite order. (1) Then the following
two conditions (a), (b) for we W are equivalent,

@) I(ryw) <l(w) for any r;< R.

(b) w has the maximal length.

(i) An element w satisfying one of the above conditions (a), (b) is uniquely
determined and consequently such a w is involutive. (iii) Let w be the element
of the maximal length. Then for any (j(1), j(2), ---,j(n) e 2, w has a reduced
eXPression W= "rypl -+ Titp = Vrwlew = e S- L WD) =7A), (2)=7j(2), -+, i(n)=
j(n) and jn)y=kQ), j(n—1)=k(-1), -, jA)= k(l—n-+1).

Proor. (b)=>(a) is obvious. Let w satisfy (a), and w’ = 7;y7;c =++ ¥3o have
the maximal length /. By Lemma 1, w has an expression starting with 7,7,
-+ 73, then by the maximality of [(w’), w=7r;p¥ie -+ ey =w’. This proves
(a)=(b) and at the same time our claim (ii). Once we know that w is involu-
tive, (iii) is immediate from Lemma 1.

COROLLARY 3*. Let S be a subset of R. Assume the group Wy generated

* The referee has noticed that the statement of Cor. 3 of is true without
the assumption of the finiteness of Wy, and in that stronger form it is already proved
in the lecture given by N. Iwahori at the University of Paris in 1966. The way of
proof is similar to our proof of [Lemma 1l



Certain groups with involutive generators 47

by S is finite. If I@rw)>Il(w) for any r;e S, then I(sw)=I(s)41(w) for any
se W

ProoOF. Let s, be the element of the maximal length n of Wg In view
of Corollary 2 (iii), it suffices to see that [(s,w) = n-+I{(w). Let W=7,V =+ *iw>
be a reduced expression of w. Since Wy is finite, {I{(sw): s Wy} is bounded.
Let s=7;47@ -+ ¥jo» D& an element s.t. [(sw) attains the maximal length
t+1l(w), then [(r;sw)<I(sw) for any r;S. If s=+s, by Corollary 3 (iii), there
exists r,gp S s.t. (JQ), J@), -, J@), jJ¢+1D))e 2. By Lemma 1 sw has a re-
duced expression, Sw=r;pTim -+ Yicawn St (1) =7Q), i(2)=7(2), -, 1(t+1)=
j(t+1), i.e. w has a reduced expression starting with 7;,,,, which contradicts
our assumption that I(r;w)>I(w) for any r; = S.

§2. Let I’ be a group of automorphisms of W. Throughout this section
assume each y [’ keeps R invariant i.e. yeI'=2"R=R. Let R; (jJ') be
I'-orbits of R, i.e. each R; is a minimal /'-invariant subset of R, and R;+ R,
if j# k. For any ['-invariant subset V of W, let VI denote the set of /'-fixed
elements of V, VI={v:ve V,v=v for any y'}.

THEOREM 1. Let W; be the group generated by R;. When W; is of infinite
order, WT is trivial (= {1}). When W, 1is of finite order, WT is a cyclic group
of order two generated by the element s; of the maximal length of W.

Proor. If we WT and l(w)=1, there exists some r, € R; s. t. {(rw)<I(w).
Since [’ is transitive on R, applying y [ to the both sides of I(rw)<I(w),
we get [(rw) <l(w) for any r € R;. Existence of such an element w implies W;
is finite (Corollary 1). When W; is finite, the above conditions for w means
that w is of the maximal length in W; (Corollary 2). An element of the
maximal length is unique and involutive (Corollary 2 (ii)) and certainly in-
variant by [I.

THEOREM 2. Let J denote the set of index j for which W; is finite, J=
{j;7€d, |W;|<ow}. If we WI' w1, then there exists jeJ s.t. I(s;w)=I(w)
—I(sy). Consequently WT is generated by involutive elements sj & J).

Proor. Since l(w) > 1, there exists some r; & R; s.t. {(r;w) < I(w), and con-
sequently [(rw) < l(w) for any r = R;. By Corollary 1 W; is finite, i.e. jJ.
Now [(s;w) = l(w)—I(s;) is a direct consequence of Lemma 1.

Let R*={s;; jeJ}. R* is a system of involutive generators of W7I. Let
2* denote the set of reduced sequences of index set J with respect to WT
and R*. Qur next aim is to show that R* is a good system of involutive
generators of WZI. For any index j<J, let j* denote a sequence (i(1), i(2), ---,
i), s.t. s;=7yie - Tiw. For such sequences j(1)*=(),i(2), ---, (), j2)*
=('(D), 1/(2), ---, '), ---, we use a convention that (j(1)*, j(2)*, ---) denote the
sequence (i(1), i(2), -+, (D), '), (D), ---, /"), --+)
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LEMMA 2. If (JQ* 2%, -, (O e 2 and (G*, jQO*, -, i(OD¥ & 2, then
there exists an integer m, 1= m =<1 s.t. (j*, jQ)*, -, j(im—1)*) 1s reduced, and
(JO*, J2)*, ---, J(m)¥) ~ (g%, JQO*, -+v, jim—1)*). Consequently j* has the same
length as j(m)*.

ProoOF. Choose m so that (j*, j(1)*, ---, j(im—1)*) e X and (5*, jQ1)*, ---, jJ(m)*)
e . Let jim)*=(0Q), 1(2), ---,1(p). If l(raw)>Il(w) for any r,€ R; and w=
SicnSie +* Sjamy then I(s;w)=I(s))+Il(w) by Corollary 3, i.e. (5%, jQ)*, -, j(m)*)
e 2 contradicting our assumption. So (i, j(1)*, 7(2)%, ---, j(m)*) is not reduced
for some »;, € R;, and consequently for any » € R;. Since (j*, j(1)*, .-+, j(im—1)¥)
e Y, there must be some 7, € Ry, s.t. (4, j(1)*, j(2)*, ---, j(m—1))e 2. For this
7;, the condition (C) implies that there exists an integer ¢, 1 < ¢ < p s.t. (4, j(1)*,

-y Jm—=1)%, 1), -+, 1lg—1) ~ G, j@)*, -+, jm—1)%,1(1), ---,i(g)). That means
7= Sj - Siam-vTiw  Tig-pVi@liq-1 *** YawSjom-» *** Sjco- 1D particular,

7i € Sjco *** Sjm-0WiamSim-1 *** Sjco -

Since the right hand side is invariant by I', and [' is transitive on R;, the
right hand side contains whole R; and consequently contains W;. Taking /'-fixed
points of both sides, we get, s; =S *** Sjm-pSimSim-1 *** Sjcys 1. € (GAY*, J(2)*,
oo, J(mY) ~ (%, (LY, -, j(m—1Y%). By our choice of m, (j%, j(L)%, -+, j(m—1)%)
is reduced.

COROLLARY 1. If (GQ*, j2)*, ---, j(O® & X, then (JQ), j(2), ---, j(1)) & 2'*.

ProoF. Assume (G)*, j(2)*, ---, j(D*¥) & X, there exists n 2=n=<1[ s.t.
(%, j(n4-1%, -, j) e X but (j(n—1¥i(n)*, -+, j()*) & 2. By Lemma 2,
there exists m n=<m=l s.t. (Gn)* j(n+1)%*, ..., j(m)*) ~(Gn—1y*, j(n)*, -,
jim—1)%) therefore (DX, j@)%, -, JA¥)~ G, §@)%, - , jim—1)%, jm+1)%, -,
JO). That means $;uSje *** Sjw = SiwSi *** Sicm-Simev *** Siws 1- € (JA), 7(2),
e j) e 2.

COROLLARY 2. If (JQU*, j(2)%, ---, j(D*) € X, (k(L)*, k(2)*, ---, k(n)¥) € X, and
GAY, @Y%, «oe, JUF) ~ (RQAY*, R, -+, k(n)*), then [=n.

PrROOF. Induction on n. Obvious for n=0. By Lemma 2, ((1)*, j(2)*, .-,
JAF) ~ (RCLY™, JQ*, oo, jim—1)*j(mA-1)%, -, jJU)F) ~ (R, R(2)%, -+, k(n)*). Drop
out k(1)* and (j(L)*, ---, j(m—1)y*, j(m=41)*, ---, J(1)*) ~ (R(2)*, k(3)*, --+, k(n)*). Since
the right hand side of the above relation is reduced, and j(m)* and k(/)* has
the same length, the left hand side is also reduced. By induction assumption
[—1=n—-1, i.e. [=n.

COROLLARY 3. (JQL)*, j(2)*, -, j(D®) € X if and only if (GQ1), j(2), ---, j(D)es X*.

Proor. If part is Corollary 2. Let w=S;pSjm --- Sjp and let w = SySge»
-+ Spa D€ @ reduced expression of w w.r.t. R* (kQ), k(2), ---, k(m)) € X* im-
plies (RQL)*, k(2)*, ---, k(m)*)e 2. By Corollary 2 m=1, i.e. (FQ1),j2), ---, j())
e X*,

THEOREM 3. R*={s;;j=J} is a good system of involutive generators of
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wr,

ProoOF. Assume (j(1), j(2), -+, j(I)) € X* and (j, j(1), ---, (J(D))e&2*. By Corol-
lary 3, (G(QL)*, j(2)%, -, j(D*) e X and (J*, jQ)*, -, j()*) & 2. Now our Theorem
is immediate from Lemma 2.

Appendix

In this appendix, we intend to give more explicit structure of the group
WT, i.e. for any pair of j and k € J, we will determine the structure of R;\U R,
and the action of I" on it. For any pair of elements w, w’ of W, let m(w, w’")
denote the order of the element ww’ in W. Since we already knew that WT
is generated by a good system of involutive generators s; (j €J), the numbers
m(s;, Sy) J, k€ J completely determine the structure of WI as an abstract
group.

LEMMA. The group generated by U R; is a finite group if and only if the
group WT is a finite group. =

Proor. Only if part is obvious. Assume WT is finite and let w be the
element of the maximal length in W7 and w=sy, -+ Sj,»y be a reduced ex-
pression of w by sjqy, -+, Sj € R*.  Since (j(D*, -, j(n)*) € X by Corollary 3
in §2, we have l(w)=1I(Sjq)+ - +1(Sjony). Since s;,, is the element of the
maximal length in Wy, we have [(rw)<l(w) for any r & R;,. But for any
jeJ, w has a reduced expression starting with s; (Corollary 2. (iii) in §1), and

consequently we have [(rw)<l(w) for any re \JR;. Now the existence of
jed

such a w implies that the group generated by UJRj is finite (Corollary 1 in §1).
COROLLARY. For a pair of indices j, k e.]I, let W;, denote the group gen-
erated by R;\JR,. Then m(s; s) is finite if and only if W;,1is a finite group.
Assume W, is finite. Let s;, denote the element of the maximal length in
Wi then m(s;, sp) =2 1(8;)/A(S)+1(si))-
Proor. The former part of our claim is immediate from Lemma. Assume
W, is finite, then (W, )T is a dihedral group generated by s; and s, Let

D ——

m=m(S;, S), then s; , =s;5,--- =s;5;--+ is a reduced expression of s;, by s; and
m m

si. By Corollary 3 Lemma 2, I(s;;)=I(s)4I(sp)+ - =I(sp)+(sp)+ ---. Hence
m is odd only if I(s;)=I(s;), and we have I(s; ;)= é m(l(s )+ 1(sy))- Q. E.D.

A subset S of R will be called connected if S is not the union of two
mutually elementwise commutative subsets. A maximal connected subset of
S will be called a connected component of S. Let S, (o« € A) be all the con-
nected components of R;\UR,. Now the following four conditions are obviously
mutually equivalent,
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(I) R; and R, are not mutually elementwise commutative.

(II) There exists « € A s.t. neither R;~ S, nor R, S, is vacant.

(IIl) For any a = A, neither R, S, nor R, S, is vacant.

({IV) I' permutes {S,; a« € A} transitively.

Let I', be the isotropy subgroup of S,inI",I",={y;yel’, S, S,} and
let s;, (resp. s;,) be the element of the maximal length in the group generated
by R;N\S, (resp. RN\ S,).

THEOREM. (i) S;=TISjm St=1ILSk,a and $;5,=TI1(S;45k,a)» Where each pro-

[24 o o

duct TI is commutative. (ii) If R; and R, are mutually elementwise commuta-

te, then m(s;, s,)=2. (iii) If R; and R, are not mutually elementwise com-
mutative, then m(s;, ;) = M(Sj,e S,a) JOr any a A, (iv) m(s;, sp) is infinite if
and only if the group W;, generated by R;\UR, is infinite. In this case, the
group generated by S,N\(R;\JRy) is infinite for any a € A. (v) Assume R; and
R, are not mutually elementwise commutative and W;, is finite then the only
possibilities are following ;

(D) Iy s trivial, Sy Ry={r}, San\ Ry={s} and m(s;, s;)=m(r, s)=m.

(4y) I, is of order two, S, consists of three elements and m(s;, s;) =4

(A) I',is of order two, S, consists of four elements and m(s;, sp) =4

(D) I, is either a cyclic group of ovder three or the full permutation
group of three letters, S, consists of four elements and m(s;, s;)=6.

In the first case S, generates a dihedral group. In the other three cases,
Sy can be identified as the set of fundamental reflexions of the Weyl group of
type A, (A, or D, respectively) and I, is the group of symmetries of its Dynkin
diagram.

PrROOF. (i) and (ii) are obvious from their definitions. (iii) By our remark
(AV), for any B e A, there exists y =" s.t. 7(Sg) =S, Since s; 5 (resp. sz is
the element of the maximal length, y necessarily transforms s; g (resp. s;z) to
Sj,a (resp. si.), therefore m(s; g Si,5) = M(Sj,ar Si,a) = M(Sj, Sp). (iv) follows im-
mediately from Corollary in the appendix and the above (iii). (v) We know
that S, is connected and that S, generates a finite group. Such a system was
completely classified (cf. Witt [5]). [, is obviously transitive on S, R; or
S.N\R,. If I', is trivial, then S, consists of two elements and we have the
case (D,). If I', is not trivial, the existence of non-trivial symmetries restricts
S, to the type of A, D, or E,. But except D,, I', is of order two, and we
know that S, has two orbits under /', thus n (=the cardinality of S,) must
be at most four.

University of Tokyo
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