On %,-complete cardinals

By Kanji NAMBA

(Received Oct. 29, 1965)

In [4], D. Scott proved that, if we assume V = L and the existence of a measurable cardinal number in the set theory Σ^* of [1], then we have a contradiction.

The main purpose of this parer is to investigate on the problem concerning to certain kind of constructibility and the existence of \aleph_0 -complete cardinal numbers (2-valued measurable cardinal numbers). In view of this point, we first remark that if the system Σ^* , $\exists x T(x)$ is consistent, then the system

$$\Sigma^*$$
, $\exists y (T(y) \land \exists x (V = L_x \land Od_x "x \subset 2^y))$

is consistent, where T(y) is the statement that there is a non-principal \aleph_0 complete ultrafilter over the set y whose character is cardinal number y, and L_x is the class constructed from the set x by Lévy's method in [2].

In this paper we prove the following several results:

- 1) The system Σ^* , $\exists y (T(y) \land \exists x (V = L_x \land Od_x "x \subset y))$ is not consistent.
- 2) Let $\Phi(a)$ be a standard defining postulate defined later. Then the system Σ^* , $\exists x (T(x) \land \Phi(x))$ is not consistent.

Remark that, as is well known, all of the defining postulates of the following cardinals are standard: $\aleph_0, \aleph_1, \dots, \aleph_{\omega}, \dots$; the first one of weakly inaccessible cardinal, strongly inaccessible cardinal, hyper-inaccessible cardinal; the first cardinal α such that α is hyper-inaccessible of type α ; and so on.

Concerning to this kind of results, I would like to propose the following problem: For what kind of formula A(a), is the system Σ^* , $\exists x(T(x) \land A(a))$ not consistent? Especially what will happen for the formulas $\exists x(V=L_x \land \sup(Od_x``x) < 2^{\bar{a}})$ or $\exists x(V=L_x \land \sup(Od_x``x) < a^+)$ where a^+ is the smallest cardinal number strictly greater than a.

I would like to express my thanks to Professor T. Nishimura for his valuable suggestions and conversations.

1. We shall begin by introducing several notations and the terminology. Definition. An ultrafilter \mathcal{F} is said to be \aleph_{α} -complete, if the following condition is satisfied:

if
$$A_{\nu} \in \mathcal{F}$$
 for each $\nu \in I$, then $\bigcap_{\nu \in I} A_{\nu} \in \mathcal{F}$, where $\overline{I} \leq \aleph_{\alpha}$.

A cardinal number \aleph_{λ} is said to be \aleph_{α} -complete, if there exists a non-principal ultrafilter $\mathscr{F}_{\aleph_{\lambda}}$ over \aleph_{λ} such that $\mathscr{F}_{\aleph_{\lambda}}$ is \aleph_{α} -complete. A cardinal number \aleph_{α} is said to be the character of a non-principal ultrafilter \mathscr{F} , if \aleph_{α} is the least cardinal number such that \mathscr{F} is not \aleph_{α} -complete.

The character of a non-principal ultrafilter \mathcal{F} is sometimes written as $ch(\mathcal{F})$.

Conventions. A set of the form

$$\{\langle x_0, 0 \rangle, \langle x_1, 1 \rangle, \cdots, \langle x_\nu, \nu \rangle, \cdots \}$$

is sometimes written as

$$(x_0, x_1, \cdots, x_{\nu}, \cdots)$$
.

Let $\mathcal{G}_{\aleph_{\tau}}$ be an ultrafilter over a cardinal number \aleph_{τ} and let $a, b \in V^{\aleph_{\tau}}$, where V is the universe of Σ^* . Then $a \in {}^*b$, $a = {}^*b$ and $a < {}^*b$ are defined by

$$a \in *b \equiv \{\alpha : a'\alpha \in b'\alpha\} \in \mathfrak{F}_{\aleph_{\tau}},$$

 $a = *b \equiv \{\alpha : a'\alpha = b'\alpha\} \in \mathfrak{F}_{\aleph_{\tau}},$
 $a < *b \equiv \{\alpha : a'\alpha < b'\alpha\} \in \mathfrak{F}_{\aleph_{\tau}}.$

Now, we have the following lemmata.

LEMMA 1. There is a function G in Σ^* which gives the 1-1 correspondence between the class V, and the class On, consisting of all ordinal numbers of Σ^* , and it has the property that if $\alpha < \beta$, then $R'G'\alpha \leq R'G'\beta$, where R'x is the rank of the set x.

This is well-known.

LEMMA 2. There is a class K such that $V = L_K$.

PROOF. Let K be the class defined by the following postulate:

$$\langle x\alpha \rangle \in K \equiv x \in G'\alpha$$
.

Then the class K has the required property.

LEMMA 3. Let \aleph_{τ} be an \aleph_0 -complete cardinal number and $\mathfrak{F}\aleph_{\tau}$ be a non-principal \aleph_0 -complete ultrafilter over \aleph_{τ} . Then there is a class H such that

$$H \subset On^{\aleph_r} \wedge \forall a (a \in On^{\aleph_r} \to \exists b (b \in H \wedge a = *b))$$
$$\wedge \forall a \forall b (a \in H \wedge b \in H \wedge a = *b \to a = b).$$

Moreover, the class H is well-ordered by the relation <*.

PROOF. Similarly to [4] we can prove that the class H is well-ordered by the relation <*. We show the existence of the class H. By Lemma 1, there is a enumeration function G. We consider a function defined by

$$On^{\aleph_{\tau}} \cap G$$
.

We define a function A by the following postulate:

$$\langle x\alpha \rangle \in A \cdot \equiv \cdot \alpha \in \mathfrak{D}(On^{\aleph_{\tau}} \cap G) \wedge \forall \beta (\beta < \alpha \to \{\delta : ((On^{\aleph_{\tau}} \cap G)'\beta)'\delta\}$$
$$= ((On^{\aleph_{\tau}} \cap G)'\alpha)'\delta \} \in \mathcal{F}_{\aleph_{\tau}} \wedge x = (On^{\aleph_{\tau}} \cap G)'\alpha.$$

Then $\mathfrak{W}(A)$ is the required class.

In order to show this, we consider any $a \in On^{\aleph_r}$. By the definition of G, there is an α such that

$$a = G'\alpha$$
.

If for all β less than α ,

$$\{\delta: ((On^{\aleph_{\tau}} \cap G)'\beta)'\delta = a'\delta\} \oplus \mathcal{G}_{\aleph_{\tau}},$$

then $\langle G'\alpha, \alpha \rangle \in A$ and so $a = G'\alpha \in \mathfrak{W}(A)$.

In the case where there is a β less than α such that

$$\{\delta: ((On^{leph_{ au}}\cap G)`eta)`\delta=a`\delta\}\in \mathscr{F}_{leph_{ au}}$$
 ,

we consider the least such ordinal number β . Then $\langle (On^{\aleph_r} \cap G)'\beta, \beta \rangle \in A$. Hence there is a set b such that

$$\{\delta: a'\delta = b'\delta\} \in \mathcal{G}_{\aleph_{\tau}} \text{ and } b \in \mathfrak{W}(A).$$

Next, we shall show that

$$\forall a \forall b (a \in \mathfrak{W}(A) \land b \in \mathfrak{W}(A) \land \{\delta : a'\delta = b'\delta\} \in \mathfrak{F}_{\aleph_{\tau}} \rightarrow a = b).$$

Let $a = A'\alpha$, $b = A'\beta$ and $\{\delta : a'\delta = b'\delta\} \in \mathcal{G}_{\aleph_r}$. If $\alpha < \beta$, then $\langle b\beta \rangle \in A$ by the definition of A, which is a contradiction. By the symmetry of the reason, we see a = b. Thus we complete the proof of the lemma.

DEFINITION. By α^* we denote the α -th element of H by the well-ordering $<^*$.

LEMMA 4. If the character of the ultrafilter $\mathfrak{F}_{\aleph_{\tau}}$ is \aleph_{α} , then

$$\gamma^* = {}^*(\gamma, \gamma, \dots, \gamma, \dots)$$
 for every γ less than \aleph_{α} .

This is proved by the induction on γ .

DEFINITION. Let N, K_1 , K_2 , J be the functions defined by the same method as 9.1, 9.24 in [1] except that the constant 9 is replaced by 10 so that the following condition is satisfied:

$$\alpha = J' \langle N'\alpha, K_1'\alpha, K_2'\alpha \rangle$$
 $(N'\alpha = 0, 1, \dots, 9).$

Given any class K, we define the function F_K in the same way as in [2], Dfn. 1.1, where the functions $J_0^*, \dots, J_9^*, K_1^*, K_2^*$ are replaced by $J'(0, *, *), \dots, J'(9, *, *), K_1, K_2$ respectively. The class L_K is defined by $L_K = F_K$ "On as in [2].

We define N^* , K_1^* , K_2^* and J^* as follows:

Let a be a function of the form $a=(\alpha_1,\alpha_2,\cdots,\alpha_\nu,\cdots)$. We consider a function defined by $(N'\alpha_1,N'\alpha_2,\cdots,N'\alpha_\nu,\cdots)$. By the property of the class H, there is $b\in H$ uniquely such that

$$\{\nu: b'\nu = N'\alpha_{\nu}\} \in \mathcal{F}_{\aleph_{\tau}}.$$

Then, we put $N^*a = b$. K_1^*, K_2^* and J^* are defined similarly. We consider the following two functions:

$$f: \alpha \to \alpha^*$$

 $g: \alpha \to J^{*'}\langle (N'\alpha)^*, (K_1'\alpha)^*, (K_2'\alpha)^* \rangle$.

Since they are order-preserving onto-mappings, we obtain

$$\alpha^* = J^*(\langle (N'\alpha)^*, (K_1'\alpha)^*, (K_2'\alpha)^* \rangle$$
.

Hence $N^*'\alpha^* = (N'\alpha)^*$, $K_1^{*'}\alpha^* = (K_1'\alpha)^*$ and $K_2^{*'}\alpha^* = (K_2'\alpha)^*$ by the definitions. Next, we take a function F_K^* defined on the class On^{\aleph_r} as follows:

$$F_{\kappa}^{*}(a = (F_{\kappa}'(a'0), F_{\kappa}'(a'1), \dots, F_{\kappa}'(a'\nu), \dots).$$

2. Let $\mathcal{G}_{\aleph_{\tau}}$ be a non-principal \aleph_0 -complete ultrafilter over cardinal number \aleph_{τ} which has the character \aleph_{τ} .

We define a function σ by the following:

$$\begin{cases} \sigma(F_K^{*'}0^*) = \phi \text{,} & \text{for } \alpha = 0 \text{,} \\ \sigma(F_K^{*'}\alpha^*) = \{\sigma(F_K^{*'}\beta^*) : F_K^{*'}\beta^* \in {}^*F_K^{*'}\alpha^* \text{ and } \beta^* < {}^*\alpha^*\}, \text{ for } \alpha > 0 \text{.} \end{cases}$$

The class

$$\{\sigma(F_{\kappa}^{*}, \alpha^{*}): \{\delta: (F_{\kappa}^{*}, \alpha^{*}), \delta \in K\} \in \mathcal{F}_{\kappa_{\tau}}\}$$

is abbreviated by $\sigma(F_K^*(K^*))$.

LEMMA 5. We have $\sigma(F_K^*, \alpha^*) = F_U^*, \text{ where } U \text{ is } \sigma(F_K^*(K^*)).$

PROOF. This is proved by the induction on α . In the case where $\alpha = 0$, we have $\sigma(F_K^{*,0}) = \phi = F_U$.

The case where $\alpha > 0$, is divided into several subcases. Since other cases are treated similarly, we treat only the cases where $N'\alpha = 5$ and $N'\alpha = 9$. To do this, we note that $\sigma(F_K^*'\beta^*) \in \sigma(F_K^*'\alpha^*) \longleftrightarrow F_K^*'\beta^* \in F_K^*'\alpha^*$ and $\sigma(F_K^*'\beta^*) = \sigma(F_K^*'\alpha^*) \longleftrightarrow F_K^*'\beta^* = F_K^*'\alpha^*$.

In the case where $N'\alpha = 5$, we have the followings:

$$\begin{split} \sigma(F_K^{*'}\alpha^*) &= \sigma(F_K^{*'}J^{*'}\langle 5^*, (K_1^{'}\alpha)^*, (K_2^{'}\alpha)^*\rangle) \\ &= \{\sigma(F_K^{*'}\beta^*) : F_K^{*'}\beta^* \in {}^*F_K^{*'}(K_1^{'}\alpha)^* \text{ and there exist } F_K^{*'}\delta_1^* \\ &\text{and } F_K^{*'}\delta_2^* \text{ such that } \langle F_K^{*'}\delta_1^*, F_K^{*'}\delta_2 \rangle \in {}^*F_K^{*'}(K_2^{'}\alpha)^* \\ &\text{and } F_K^{*'}\delta_2^* = {}^*F_K^{*'}\beta^*\} \\ &= \{F_U^{'}\beta : F_U^{'}\beta \in F_U^{'}K_1^{'}\alpha \text{ and there exist } F_U^{'}\delta_1 \text{ and } F_U^{'}\delta_2 \\ &\text{such that } \langle F_U^{'}\delta_1, F_U^{'}\delta_2 \rangle \in F_U^{'}K_2^{'}\alpha \text{ and } F_U^{'}\delta_2 = F_U^{'}\beta \} \end{split}$$

$$=F_{U}J'\langle 5, K_{1}'\alpha, K_{2}'\alpha \rangle$$
$$=F_{U}'\alpha.$$

In the case where $N'\alpha = 9$, we have the followings:

$$\begin{split} \sigma(F_{K}^{*'}\alpha^{*}) &= \sigma(F_{K}^{*'}J^{*'}\langle 9^{*}, (K_{1}^{'}\alpha)^{*}, (K_{2}^{'}\alpha)^{*}\rangle) \\ &= \{\sigma(F_{K}^{*'}\beta^{*}) : \{\delta : (F_{K}^{*'}\beta^{*})^{'}\delta \in K\} \in \mathcal{F}_{\kappa_{\tau}} \text{ and } F_{K}^{*'}\beta^{*} \in F_{K}^{*'}(K_{1}^{'}\alpha)^{*}\} \\ &= \{F_{U}^{'}\beta : F_{U}^{'}\beta \in U \text{ and } F_{U}^{'}\beta \in F_{U}^{'}K_{1}^{'}\alpha\} \\ &= F_{U}^{'}J^{'}\langle 9, K_{1}^{'}\alpha, K_{2}^{'}\alpha \rangle \\ &= F_{U}^{'}\alpha \,. \end{split}$$

Thus, the proof of the lemma is established.

Note that, if K is a set k, then

$$U = \{ \sigma(F_K^*'\alpha^*) : \{ \delta : (F_K^*'\alpha^*)'\delta \in k \} \in \mathcal{G}_{\aleph_{\tau}} \}$$

is a set.

In fact, let k^* be (k, k, \dots, k, \dots) . Then we have $U = \{\sigma(F_K^*, \beta^*) : F_K^*, \beta^* \in k^*\}$. By the fact that k is a set, there is an ordinal number γ such that

$$Od_k$$
" $k \subset \gamma$ and $N'\gamma = 0$.

We consider an element θ^* of H such that $\theta^* = (\gamma, \gamma, \dots, \gamma, \dots)$. We have $U = \sigma(F_K^* J^* (9^*, \theta^*, 0^*))$. Thus U is a set.

LEMMA 6. For every γ less than \aleph_{τ} , we have $F_{\kappa}{}'\gamma = F_{U}{}'\gamma$, where $U = \sigma(F_{\kappa}{}'(K^{*}))$. PROOF. We prove this by the induction on γ . It is clear that $F_{\kappa}{}'0 = \phi = F_{U}{}'0$. We assume that the lemma is true for all β less than γ . Namely we assume that $F_{\kappa}{}'\beta = F_{U}{}'\beta$ for all β less than γ . If $F_{\kappa}{}'\beta \in F_{\kappa}{}'\gamma$, then we have $F_{\kappa}{}''\beta^{*} \in F_{\kappa}{}'\gamma^{*}$ by Lemma 4. Hence, using Lemma 5, we have

$$F_{\kappa}'\beta = F_{U}'\beta = \sigma(F_{\kappa}^{*'}\beta^{*}) \in \sigma(F_{\kappa}^{*'}\gamma^{*}) = F_{U}'\gamma$$
.

Therefore, we see $F_{\upsilon}'\gamma \supset F_{\kappa}'\gamma$. On the other hand. If $F_{\upsilon}'\beta \in F_{\upsilon}'\gamma$, then we have $F_{\kappa}^{*'}\beta^{*} \in F_{\kappa}^{*'}\gamma^{*}$ by Lemma 5 and the definition of σ . Using Lemma 4, and the hypothesis of the induction

$$F_{U}'\beta = F_{K}'\beta \in F_{K}'\gamma$$
.

Therefore, we see $F_U'\gamma \subset F_K'\gamma$. Thus, we have $F_K'\gamma = F_U'\gamma$.

LEMMA 7. Let $\mathcal{F}_{\aleph_{\tau}}$ be a non-principal ultrafilter over \aleph_{τ} such that $ch(\mathcal{F}_{\aleph_{\tau}}) = \aleph_{\tau} > \aleph_{0}$. Then

$$\theta^* = {}^*(\aleph_{\tau}, \aleph_{\tau}, \cdots, \aleph_{\tau}, \cdots)$$
 implies $2^{\aleph_{\tau}} < \theta$.

PROOF. There is $(\alpha_1, \alpha_2, \dots, \alpha_{\nu}, \dots)$ such that $\aleph_{\tau}^* = *(\alpha_1, \alpha_2, \dots, \alpha_{\nu}, \dots)$ where every α_{ν} is less than \aleph_{τ} . We consider a function $f_{\alpha_{\nu}}$ for each α_{ν} such

that $f_{\alpha_{\nu}}$ is a 1-1 correspondence between $\mathfrak{P}(\alpha_{\nu})$ and $2^{\overline{\alpha_{\nu}}}$, where $\mathfrak{P}(\alpha_{\nu})$ is the power-set of α_{ν} .

We consider a function t defined by

$$t'a = (f_{\alpha_1}'(a \cap \alpha_1), \dots, f_{\alpha_n}'(a \cap \alpha_n), \dots)$$
 for any $a \subset \aleph_{\tau}$.

Then, for any $a \subset \aleph_{\tau}$, we have

$$t'a < *(2^{\overline{\alpha}_1}, \dots, 2^{\overline{\alpha}_{\nu}}, \dots)$$
.

Let $a \subset \aleph_{\tau}$, $b \subset \aleph_{\tau}$ and $a \neq b$. Because, there is a $\nu_0 < \aleph_{\tau}$ such that

$$a \cap \nu \neq b \cap \nu$$
 for all $\nu > \nu_0$,

we obtain

$$\{\nu: (t'a)'\nu \neq (t'b)'\nu\} \supset \{\nu: \alpha_{\nu} > \nu_{0}\} \in \mathfrak{F}_{\aleph_{\tau}}.$$

Hence, if $\beta^* = *(2^{\overline{\alpha}_1}, \dots, 2^{\overline{\alpha}_{\nu}}, \dots)$, then $2^{\aleph_{\tau}} \leq \beta$.

But $(2^{\overline{\alpha}_1}, \dots, 2^{\overline{\alpha}_{\nu}}, \dots) < *(\aleph_{\tau}, \dots, \aleph_{\tau}, \dots) = *\theta^*$, from which we obtain $2^{\aleph_{\tau}} \leq \beta < \theta$. Thus we complete the proof of the lemma.

3. We consider the model Δ_X determined by the class X. Namely, we consider the model whose sets are the members of L_X whose classes are the X-constructible classes and whose ε -relation is the ε -relation of set theory (cf. [2]).

Definition. A formula $\Phi(a_1, \cdots, a_n)$ is called normal if it has no class variable.

LEMMA 8. Let $\Phi(a_1, \dots, a_n)$ be a normal formula. Then for any class K such that $V = L_K$, we have the following equivalence:

$$\Phi_{\Delta_U}(F_U, \alpha_1, \cdots, F_U, \alpha_n) \equiv \{\delta : \Phi((F_K, \alpha_1^*), \delta, \cdots, (F_K, \alpha_n^*), \delta)\} \in \mathcal{F}_{\aleph_T}.$$

where $\Phi_{A_U}(a_1, \dots, a_n)$ is the relativization of $\Phi(a_1, \dots, a_n)$ to the model Δ_U and $U = \sigma(F_K^*(K^*))$.

PROOF. We prove the lemma by the induction on the number of logical symbols of $\Phi(a_1, \dots, a_n)$. In the case where the outermost symbol of $\Phi(a_1, \dots, a_n)$ is \in or =, the lemma is easily proved by Lemma 5. If the outermost symbol is \nearrow , \lor , \land or \rightarrow , then the proof is clear. Therefore, we prove only the case the outermost symbol of $\Phi(a_1, \dots, a_n)$ is \exists .

First, we shall prove that

$$\exists x (x \in F_{U}"On \land \Psi_{A_{U}}(F_{U}'\alpha_{1}, \dots, F_{U}'\alpha_{n}, x))$$

$$\rightarrow \{\delta : \exists x (\Psi((F_{K}"\alpha_{1}")'\delta, \dots, (F_{K}"\alpha_{n}")'\delta, x))\} \in \mathcal{F} \bowtie_{\tau}.$$

We assume that

$$\exists x (x \in F_{U}"On \land \Psi_{\Delta_{U}}(F_{U}'\alpha_{1}, \cdots, F_{U}'\alpha_{n}, x)).$$

Then there is an ordinal number β such that

$$\Psi_{\Delta_{II}}(F_{II}'\alpha_1, \cdots, F_{II}'\alpha_n, F_{II}'\beta)$$
.

By the hypothesis of the induction, we obtain

$$\{\delta: \varPsi((F_K^{*'}lpha_1^*)`\delta,\cdots,(F_K^{*'}lpha_n^*)`\delta,(F_K^{*'}eta^*)`\delta)\} \in \mathscr{F}_{lpha_{ au}}$$
 ,

which implies

$$\{\delta: \exists x (\Psi((F_K^*'\alpha_1^*)'\delta, \cdots, (F_K^*'\alpha_n^*)'\delta, x))\} \in \mathcal{I}_{\aleph_{\tau}}.$$

Next, we shall show that

$$\begin{aligned} \{\delta: \exists x (\varPsi(F_K^*'\alpha_1^*)'\delta, \, \cdots, \, (F_K^*'\alpha_n^*)'\delta, \, x))\} &\in \mathcal{F}_{\aleph_{\tau}} \\ &\rightarrow \exists x (x \in F_U"On \, \land \, \varPsi_{\Delta_U}(F_U'\alpha_1, \, \cdots, \, F_U'\alpha_n, \, x)) \, . \end{aligned}$$

We assume that

$$\{\delta: \exists x (\Psi((F_{\kappa}^*, \alpha_1^*), \delta, \cdots, (F_{\kappa}^*, \alpha_n^*), \delta, x))\} \in \mathcal{F}_{\kappa_{\tau}}.$$

By $V = L_K$, there is a function $a \in On^{\aleph_r}$ such that

$$\{\delta: \Psi((F_K^{*'}\alpha_1^*)'\delta, \cdots, (F_K^{*'}\alpha_n^*)'\delta, (F_K^{*'}a)'\delta)\} \in \mathcal{F}_{\aleph_{\tau}}.$$

Therefore by the property of the class H, there is an ordinal number α such that

$$\{\delta: a'\delta = \alpha^{*'}\delta\} \in \mathcal{F}_{\aleph_{\tau}}.$$

Hence we obtain

$$\{\delta: \Psi((F_{\kappa}^{*'}\alpha_1^{*})'\delta, \cdots, (F_{\kappa}^{*'}\alpha_n^{*})'\delta, (F_{\kappa}^{*'}\alpha^{*})'\delta)\} \in \mathcal{F}_{\aleph_{\tau}}.$$

By the hypothesis of the induction, we have

$$F_{II}'\alpha \in F_{II}''On \wedge \Psi_{AII}(F_{II}'\alpha_1, \dots, F_{II}'\alpha_n, F_{II}'\alpha)$$
,

which implies

$$\exists x (x \in F_U"On \land \Psi_{\Delta_U}(F_U'\alpha_1, \dots, F_U'\alpha_n, x)).$$

Thus, the lemma is proved.

DEFINITION. Let $a \sim b$ be an abbreviation of the formula $\exists f(\mathfrak{Un}_2(f) \land \mathfrak{W}(f) = a \land \mathfrak{D}(f) = b)$. Let T(a) be a normal formula satisfying the following conditions:

- 1) T(a) and $a \sim b$ imply T(b).
- 2) T(a) implies that there is a non-principal \aleph_0 -complete ultrafilter \mathscr{F}_a over the set a such that the character of the filter \mathscr{F}_a is \overline{a} .
 - 3) T(a) and $\overline{b} < \overline{a}$ imply $\nearrow T(b)$.

For example, the statement ' \bar{a} is the first \aleph_0 -complete cardinal', satisfies the above conditions 1) to 3).

Lemma 9. We have $T(\aleph_{\tau}) \wedge \alpha \leq 2^{\aleph_{\tau}} \rightarrow \forall T_{\Delta_U}(F_U, \alpha)$ in Σ^* , where U

 $= \sigma(F_K^*(K^*))$ and $V = L_K$.

In fact, we assume $T(\aleph_{\tau})$. Then there is an ultrafilter $\mathscr{F}_{\aleph_{\tau}}$ such that $ch(\mathscr{F}_{\aleph_{\tau}}) = \aleph_{\tau}$. We take the class H (cf. Lemma 3) determined by this ultrafilter. Let α be an ordinal number such that $\alpha \leq 2^{\aleph_{\tau}}$. We easily see $\{\delta: \mathcal{T}((F_K^*(\alpha^*)'\delta)\} \supset \{\delta: (F_K^*(\alpha^*)'\delta < \aleph_{\tau}\} \supset \{\delta: \alpha^*'\delta < \aleph_{\tau}\}$. By lemma 7, we have $\{\delta: \alpha^*'\delta < \aleph_{\tau}\} \in \mathscr{F}_{\aleph_{\tau}}$. Then we have $\{\delta: \mathcal{T}((F_K^*(\alpha^*)'\delta)\} \in \mathscr{F}_{\aleph_{\tau}}$, which implies $\mathcal{T}T_{A_U}(F_U(\alpha))$ by Lemma 8.

LEMMA 10. Let K be any class. Then $V \neq L_{\overline{v}}$ under Σ^* , $V = L_{\overline{K}}$, $T(\aleph_{\overline{v}})$ where $U = \sigma(F_K^*(K^*))$.

To prove this, assume $V = L_U$, then $T_{\mathcal{A}_U}(F_U' \aleph_{\tau})$ would be equivalent to $T(F_U' \aleph_{\tau})$. By Lemma 9, we have $\mathcal{T}T_{\mathcal{A}_U}(F_U' \aleph_{\tau})$. But $F_{U'} \aleph_{\tau}$ has the cardinality \aleph_{τ} , so we have $T(F_U' \aleph_{\tau})$, which contradicts to the above. Thus we have $V \neq L_U$.

4. Now, we have the following theorems.

THEOREM 1. Let k be any set. The we have $7(Od_k"k \subset \aleph_\tau)$ under Σ^* , $T(\aleph_\tau)$, $V = L_k$.

PROOF. We assume Σ^* , $T(\aleph_{\tau})$, $V = L_k$ and Od_k " $k \subset \aleph_{\tau}$. Then by Lemma 6, we have

$$k = F_U \mathcal{J}(9, \aleph_{\tau}, 0)$$
,

where $U = \{ \sigma(F_K^*; \alpha^*) : F_K^*; \alpha^* \in k^* \}$. Therefore, we have $k \in F_U^*$ on which means $V = L_U$. But this contradicts to Lemma 10.

DEFINITION. Let Δ_1 and Δ_2 be two models of set theory Σ^* . We say that Δ_1 is a complete inner model of Δ_2 (denoted by $\Delta_1 \subset \Delta_2$), if the following conditions are satisfied:

- 1) $\mathfrak{Cls}_{d_1}(X)$ implies $\mathfrak{Els}_{d_2}(X)$.
- 2) $\mathfrak{M}_{d_1}(X)$ implies $\mathfrak{M}_{d_2}(X)$.
- 3) $X \in A_1 Y$ is equivalent to $\mathfrak{M}_{A_1}(X) \wedge \mathfrak{Gls}_{A_1}(Y) \wedge X \in A_2 Y$.
- 4) $X = {}_{\mathcal{A}_1}Y$ is equivalent to $\mathfrak{E}\mathfrak{l}\mathfrak{g}_{\mathcal{A}_1}(X) \wedge \mathfrak{E}\mathfrak{l}\mathfrak{g}_{\mathcal{A}_1}(Y) \wedge X = {}_{\mathcal{A}_2}Y$.
- 5) $X \in \mathcal{A}_2 Y \wedge \mathfrak{M}_{\mathcal{A}_1}(Y)$ implies $\mathfrak{M}_{\mathcal{A}_1}(X)$.
- 6) The class On_{Δ_1} of all ordinal numbers of Δ_1 coincides with the class of ordinal numbers On_{Δ_2} of Δ_2 .

Moreover, if $\mathfrak{CIS}_{d_2}(X)$, $\mathfrak{M}_{d_2}(X)$, $X \in {}_{d_2}Y$ and $X = {}_{d_2}Y$ are equivalent to $\mathfrak{CIS}(X)$, $\mathfrak{M}(X)$, $X \in Y$ and X = Y respectively, then \mathcal{L}_1 is called a complete inner model of set theory Σ^* .

THEOREM 2. If there is a model of $\exists x T(x)$ and Σ^* , then there are countably many complete inner models $\Delta_1 \supset \Delta_2 \supset \cdots \supset \Delta_n \supset \cdots$ of Σ^* , such that the following conditions are satisfied:

- 1) $\exists x(V=L_x)$, $\exists xT(x)$, Σ^* are satisfied in every Δ_i .
- 2) Let a_n be the initial ordinal such that $T_{A_n}(a_n)$. Then we have the fol-

lowing inequality:

$$a_1 < (2^{a_1})_{\Delta_1} < a_2 < (2^{a_2})_{\Delta_2} < \dots < a_n < (2^{a_n})_{\Delta_n} < \dots$$

PROOF. As mentioned in the introduction, there is an complete inner model Δ_1 of Σ^* for the system of axioms

$$\exists x (V = L_x), \exists x T(x), \Sigma^*$$
.

We assume that the complete inner models $\Delta_1 \supset \Delta_2 \supset \cdots \supset \Delta_n$ are already defined and they have the following properties:

- 1) $\exists x(V=L_x), \exists xT(x), \Sigma^*$ are satisfied in every Δ_i $(i=1, \dots, n)$.
- 2) Let a_i be the initial ordinal such that $T_{\Delta_i}(a_i)$. Then we have the following inequality:

$$a_1 < (2^{a_1})_{A_1} < a_2 < (2^{a_2})_{A_2} < \cdots < a_n < (2^{a_n})_{A_n}$$
.

Now we consider the model Δ_n . Since Δ_n is a model for $\exists x(V=L_x) \land \exists x T(x)$, there are k and \aleph_ρ such that $V=L_k$ and $T(\aleph_\rho)$ in Δ_n . As in Lemma 5, we can define the function σ and a set k_1 so that $\sigma(F_k^*, \alpha^*) = F_{k_1}, \alpha$ for all α . Δ_{n+1} is defined to be the inner model defined by this set k_1 . Then by Lemma 8, we see that $V=L_{k_1}$ and $T(\sigma(F_k^*, \beta^*))$ in Δ_{n+1} where $\beta^*=(\delta, \delta, \dots, \delta, \dots)$ and $\aleph_\rho=F_k, \delta$. Therefore there is a complete inner model Δ_{n+1} of Δ_n such that

- 1) $\exists x(V=L_x), \exists x T(x), \Sigma^*$ are satisfied in the model Δ_{n+1} .
- 2) Let a_{n+1} be the first ordinal number such that $T_{\Delta_{n+1}}(a_{n+1})$. Then $a_n < (2^{a_n})_{\Delta_n} < a_{n+1}$.

Thus we complete the proof of the theorem.

DEFINITION. A formula of the form $\Phi(a)$ is said to be a postulate, if the following conditions are satisfied:

- 1) $\Phi(a)$ is a normal formula.
- 2) $\forall a \forall b (\Phi(a) \land \Phi(b) \rightarrow a = b)$.

A postulate $\Phi(a)$ is said to be 'standard', if the following conditions are satisfied:

- 1) $\Phi(a)$ implies $\mathfrak{Orb}(a)$.
- 2) Let $\Phi_{\mathcal{A}_i}(a)$ be the relativization of the formula $\Phi(a)$ to the model \mathcal{A}_i . Then we have that if $\mathcal{A}_1 \subset \mathcal{A}_2$, $\Phi_{\mathcal{A}_1}(a)$ and $\Phi_{\mathcal{A}_2}(b)$ then $a \leq b$.

THEOREM 3. The system Σ^* , $\exists x(T(x) \land \Phi(x))$ is not consistent, where $\Phi(a)$ is a standard postulate.

PROOF. We assume Σ^* , $\exists x(T(x) \land \Phi(x))$. By Lemma 2, we have a class K such that $V = L_K$. By $\exists x(T(x) \land \Phi(x))$, there is an ordinal number α such that $T(F_K \alpha)$ and $\Phi(F_K \alpha)$.

By the property of the formula $\Phi(a)$, we have

$$\Phi(F_{\kappa}'\alpha)$$
 implies $\mathfrak{Orb}(F_{\kappa}'\alpha)$.

We put $\aleph_{\tau} = F_{\kappa'\alpha}$. Then we have $T(\aleph_{\tau})$ by the property 1) of T. Moreover by the property 2) we have an \aleph_0 -complete ultrafilter $\mathscr{F}_{\aleph_{\tau}}$ over \aleph_{τ} such that $ch(\mathscr{F}_{\aleph_{\tau}}) = \aleph_{\tau}$. And we also consider the class H (cf. Lemma 3) determined by this ultrafilter. Let $\beta^* = {}^*(\alpha, \alpha, \dots, \alpha, \dots)$. Then by Lemma 8, we obtain

$$T_{\Delta_U}(F_U, \beta) \wedge \Phi_{\Delta_U}(F_U, \beta) \wedge \operatorname{Ord}_{\Delta_U}(F_U, \beta)$$
,

where $U = \sigma(F_R^*(K^*))$. Since Ord is absolute, we have $\operatorname{Ord}(F_U^*\beta)$. By the property of the standard postulate $\Phi(a)$, we obtain

$$\Phi(F_K'\alpha) \wedge \Phi_{\Delta_U}(F_U'\beta)$$
 implies $F_U'\beta \leq F_K'\alpha$.

Since $F_U'\beta$ is an ordinal number such that $F_U'\beta \leq F_{K'}\alpha < \aleph_{\tau+1}$, it is constructible from the class U with the ordinal less than $\aleph_{\tau+1}$ (cf. [2]). Namely, we see that

$$F_{U}'\beta = F_{U}'\gamma$$
 for some γ less than $\aleph_{\tau+1}$.

Let $\gamma^*=^*(\gamma_1,\gamma_2,\cdots,\gamma_\nu,\cdots)$. Then, by Lemma 7, we obtain $\{\nu:\gamma_\nu<\aleph_\tau\}\in F_{\aleph_\tau}$, and hence, $\{\delta: \mathcal{T}((F_K^*'\gamma^*)'\delta\}\in \mathcal{F}_{\aleph_\tau}$. By using Lemma 8, we obtain $\mathcal{T}T_{\Delta_U}(F_U^*\gamma)$, i. e. $\mathcal{T}T_{\Delta_U}(F_U^*\beta)$ which contradicts to $T_{\Delta_U}(F_U^*\beta)$ and $\Phi_{\Delta_U}(F_U^*\beta)$. Thus we complete the proof of the theorem.

Note that Theorem 3 means that for any cardinal number \aleph_{τ} defined by a standard defining postulate $\Phi(a)$, we have

$$\Sigma^*$$
, $\Phi(\aleph_{\tau}) \rightarrow 7T(\aleph_{\tau})$.

For example, the cardinal number \aleph_{τ} such that $\Phi(\aleph_{\tau})$ is not the first \aleph_0 -complete cardinal number.

DEFINITION. A model Δ of Σ^* is called an absolute cardinal model, if for any complete inner model Δ_1 of Δ ,

$$\operatorname{Carb}_{\Delta_1}(a) \to \operatorname{Carb}_{\Delta}(a)$$

where $\operatorname{Carb}(a)$ means that a is a cardinal number.

Cleary a complete inner model of the system V = L, Σ^* is an absolute cardinal model.

THEOREM 4. Let Δ be any absolute cardinal model. Then $\exists x T(x)$ is not satisfied in the model Δ .

PROOF. We assume that $\exists x T(x)$ is satisfied in an absolute cardinal model Δ . In the proof of this theorem, discussion will be done in the model Δ . We omit the subscript Δ which expresses the relativization to the model Δ . Let \aleph_{τ} be a cardinal number such that $T(\aleph_{\tau})$. By Lemma 2, there is a class K such that $V = L_K$. We consider a complete inner model Δ_U defined by the class

$$U = \{ \sigma(F_K^*, \alpha^*) : \{ \delta : (F_K^*, \alpha^*), \delta \in K \} \in \mathcal{F}_{\aleph_\tau} \}.$$

We now consider an ordinal number η such that

$$\eta^* = {}^*(\aleph_{\tau}, \aleph_{\tau}, \cdots, \aleph_{\tau}, \cdots).$$

Let \aleph_{τ} be the least cardinal number such that $2^{\aleph_{\tau}} < \aleph_{\tau}$. Then we have $2^{\aleph_{\tau}} < \eta < \aleph_{\tau}$, by Lemma 7. Let Ord_{κ} ' $\aleph_{\tau} = \sigma < \aleph_{\tau}$, and put $\beta^* = *(\alpha, \alpha, \dots, \alpha, \dots)$. Then we have

$$2^{\aleph \tau} < \beta < \aleph_{\tau}$$
.

By $\operatorname{Carb}(\aleph_{\tau})$, we obtain

$$\{\delta: \mathfrak{Card}((F_R^*, \beta^*), \delta)\} \in \mathfrak{F}_{\aleph_{\tau}}.$$

Hence, by Lemma 8, we obtain $\mathfrak{Earb}_{\mathcal{A}_U}(F_U,\beta)$. By the definition of β , we have

$$2^{\aleph_{\tau}} < F_{U}'\beta < \aleph_{\tau}$$
.

We use here the absolute cardinality of the model. Then we obtain $\mathfrak{Earb}(F_{\sigma}'\beta)$. This contradicts to the fact that \aleph_{τ} is the least cardinal number such that $2^{\aleph_{\tau}} < \aleph_{\tau}$.

NOTICE. Let $\Psi(a)$ be a normal formula such that $\Psi(\aleph_{\tau})$ means that ' \aleph_{τ} is the least srtongly inaccessible cardinal for which $2^{\aleph_{\tau}} > \aleph_{\tau+1}$ '. Then we have Σ^* , $\exists x(T(x) \land \Psi(x))$ is not consistent.

PROOF. We assume Σ^* , $\exists x (T(x) \land \Psi(x))$. Then there is a cardinal number \aleph_{τ} such that

$$T(\aleph_{\tau})$$
 and $\Psi(\aleph_{\tau})$.

Since \aleph_{τ} is a cardinal number, we obtain that $\{\nu : \mathfrak{E}\mathfrak{arb}(\aleph_{\tau}^{*'}\nu)\} \in \mathfrak{F}_{\aleph_{\tau}}$. Let $\aleph_{\tau}^{*} = {}^{*}(\aleph_{\alpha_{1}}, \aleph_{\alpha_{2}}, \cdots, \aleph_{\alpha_{\nu}}, \cdots)$. Then by $T(\aleph_{\tau})$, we have

$$\{\delta: \aleph_{\alpha_{\delta}} \text{ is strongly inaccessible}\} \in \mathscr{G}_{\aleph_{\tau}}.$$

Therefore by the property of the formula $\Psi(\aleph_{\tau})$, we have

$$\{\delta: 2^{\aleph_{\alpha_{\delta}}} = \aleph_{\alpha_{\delta+1}}\} \in \mathcal{F}_{\aleph_{\tau}}.$$

We shall now consider an ordinal number such that

$$\eta^* = {}^*(\aleph_{\alpha_{1+1}}, \cdots, \aleph_{\alpha_{\nu+1}}, \cdots).$$

Since $\eta^* = *(2^{\aleph_{\alpha_1}}, \dots, 2^{\aleph_{\alpha_{\nu}}}, \dots)$, we have $\eta \ge 2^{\aleph_{\tau}} > \aleph_{\tau+1}$, by the proof of the lemma 7. We shall now consider $\aleph^*_{\tau+1}$, clearly there are cardinal numbers such that $\aleph^*_{\tau+1} = *(\aleph_{\beta_1}, \dots, \aleph_{\beta_{\nu}}, \dots)$. But then we have

$$\{\delta: \aleph_{\alpha_{\delta}} < \aleph_{\beta_{\delta}} < \aleph_{\alpha_{\delta}+1}\} \in \mathcal{F}_{\aleph_{\tau}}.$$

which is a contradiction.

Tokyo University of Education

References

- [1] K. Gödel, The consistency of the axiom of choice and of the generalized continuum hypothesis with the anxiom of set theory, Princeton, 1951.
- [2] A. Lévy, A generation of Gödel's notion of constructivity, J. Symb. Logic, 25 (1960), 147-155.
- [3] A. Lévy, Axiom schemata of strong infinity in axiomatic set theory, Pacific J. Math., 10 (1960), 223-238.
- [4] D. Scott, Measurable cardinals and constructible sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys., 9 (1961), 521-524.