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In [4], D. Scott proved that, if we assume V=L and the existence of a
measurable cardinal number in the set theory 3* of [1], then we have a con-
tradiction.

The main purpose of this parer is to investigate on the problem concern-
ing to certain kind of constructibility and the existence of ¥R ,-complete cardinal
numbers (2-valued measurable cardinal numbers). In view of this point, we
first remark that if the system X*, dx7(x) is consistent, then the system

2%, 3y(T(y) A 3x(V =L, A Od,“xC 2%))

is consistent, where T(y) is the statement that there is a non-principal ¥,-
complete ultrafilter over the set y whose character is cardinal number y, and
L, is the class constructed from the set x by Lévy’s method in [2].

In this paper we prove the following several results:
1) The system X*, 3y(T(y) A 3x(V =L, A Od,“x C »)) is not consistent.
2) Let @(a) be a standard defining postulate defined later. Then the system
2%, Ax(T(x) A @(x)) is not consistent.

Remark that, as is well known, all of the defining postulates of the fol-
lowing cardinals are standerd: W, Ry, ', Ry, -+ ; the first one of weakly
inaccessible cardinal, strongly inaccessible cardinal, hyper-inaccessible cardinal;
the first cardinal « such that « is hyper-inaccessible of type «; and so on.

Concerning to this kind of results, I would like to propose the following
problem: For what kind of formula A(a), is the system X*, Jx(T(x) A A(a))
not consistent? Especially what will happen for the formulas Ix(V=L, A
sup (0d,“x) < 2% or Jx(V =L, A sup (Od,“x) < a*) where a* is the smallest
cardinal number strictly greater than a.

I would like to express my thanks to Professor T. Nishimura for his
valuable suggestions and conversations.

1. We shall begin by introducing several notations and the terminology.
DEFINITION. An ultrafilter & is said to be R,-complete, if the following
condition is satisfied :

if A, e & for each v =], then ﬂIA,, e F, where ISR, .
ye&
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A cardinal number ¥R, is said to be R ,-complete, if there exists a non-principal
ultrafilter Fx; over R; such that Fx;is R,-complete. A cardinal number R,
is said to be the character of a non-principal ultrafilter &, if R, is the least
cardinal number such that & is not R,-complete.

The character of a non-principal ultrafilter & is sometimes written as
ch(F).

CONVENTIONS. A set of the form

{<x0) O>» <x1: 1>: Tty <xw ”>’ }
is sometimes written as
(xo, Xys ey Xy, ) .

Let x. be an ultrafilter over a cardinal number R, and let q, b= V*¥r, where
V is the universe of X*. Then a&*b, a=*b and a < *b are defined by

ac*h={a:dachbale Fx,,
a=*={a: da=ba} € Fx,,
a<*h={a:da<balc Fx,.

Now, we have the following lemmata.

LEMMA 1. There is a function G in X* which gives the 1—1 correspondence
between the class V, and the class On, consisting of all ordinal numbers of X*,
and it has the property that if a<p, then R‘G'a = R‘G‘S, where R‘x is the
rank of the set x.

This is well-known.

LEMMA 2. There is a class K such that V= Lg.
Proor. Let K be the class defined by the following postulate:

{xa)e K=xec G'a.

Then the class K has the required property.
LEMMA 3. Let R, be an R,-complete cardinal number and Fx. be a non-
principal R-complete ultrafilter over R.. Then there is a class H such that

HC On® AVa(ae On¥—3b(be H A a="*b))
NANVaVblace HAbe HAa=*%—a=Db).

Moveover, the class H is well-ordered by the relation <*.

PrROOF. Similarly to [4] we can prove that the class H is well-ordered by
the relation <*. We show the existence of the class H. By Lemma 1, there
is a enumeration function G. We consider a function defined by

on¥1G.
We define a function A by the following postulate :
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(xade A =-acDOrX1G) ANVB(B<a—{0:(On*1G)'B)o
=({(On*1G)a)0} & Fx. A x=(0n¥1G)a.

Then 28(A) is the required class.
In order to show this, we consider any a € On®". By the definition of G,
there is an a such that
a=GCGa.
If for all 8 less than «,
{0:((On~1GYpB)od=10a'0} & Fx.,

then (G‘a, a) € A and so a=G‘a = WB(A4).
In the case where there is a j less than « such that

{0:((On®*1G)B)d=0a'd} € Fx.,

we consider the least such ordinal number B. Then ((On®1G)B, B) < A.
Hence there is a set b such that

{0:a'0=00} € I, and b W(A).
Next, we shall show that
VaVo(a e WA AN B(A) N {0:a'0=0'0} € Fx,—a=D).

Let a=A‘a, b=A‘8 and {0:a'0=00} & Fx,. If a<pB, then (bB) & A by the
definition of A, which is a contradiotion. By the symmetry of the reason, we
see a=>b. Thus we complete the proof of the lemma.

DEFINITION. By a* we denote the a-th element of H by the well-ordering
<*,

LEMMA 4. If the character of the ultrafilter 9w, is R, then

rE=*(y, 7, -, 7, ) for every y less than R,.
This is proved by the induction on 7.
DEFINITION. Let N, K|, K,,/ be the functions defined by the same method

as 9.1, 9.24 in [1] except that the constant 9 is replaced by 10 so that the
following condition is satisfied :

a=J](Na, K/‘a, K, > (N'a=0,1, ---,9.

Given any class K, we define the function Fy in the same way as in [2],
Dfn. 1.1, where the functions J¥, .-, J¥, K¥, K¥ are replaced by J(0, %, x>, .-+,
J<9, %, %>, K;, K, respectively. The class Ly is defined by Lx=F;“On as in
2]

We define N*, K¥, K¥ and J* as follows:

Let a be a function of the form a=(ay, a,, -+, a,, --). We consider a
function defined by (N‘a;, N‘aty, -, N'ax,, ---). By the property of the class H,
there is b & H uniquely such that
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{v:bv=Nua} & Fx,.

Then, we put N*¥a=»5b. K¥ K¥ and J* are defined similarly.
We consider the following two functions:

fra—a*
gra—*{(N'ay*, (K,'a)*, (Ky'a)*>.
Since they are order-preserving onto-mappings, we obtain
a* = (N'a)*, (Ky'a)*, (Ky'a)*).
Hence N*a* =(N‘a)*, K¥a*= (K a)* and K§a*=(K,'a)* by the definitions.

Next, we take a function F¥ defined on the class On®+ as follows :

F¥a=(Fg'(a0), Fg(al), -, Fg(a%), ).

2. Let &x. be a non-principal ¥,-complete ultrafilter over cardinal num-
ber ¥, which has the character R..
We define a function ¢ by the following :
o(FE0) =06, for a=0,
o(FEa*)={o(F§p*) F¥p*e*F¥a* and f* <*a*}, for a >0.
The class
{oF¥a*): {0: Fa*)oec K} e Fxr.}

is abbreviated by o(F ¥(K*)).

LEMMA 5. We have o(F ¥a*)=Fy‘a, where U is o(F §(K*)).

Proor. This is proved by the induction on «. In the case where a =0,
we have o(F §0%)= ¢ = Fy“0.

The case where « >0, is divided into several subcases. Since other cases
are treated similarly, we treat only the cases where N‘a =5 and N‘a=9. To
do this, we note that o(F¥f*) e o(F¥a*)—F¥p*c*F§a* and o(F¥p*)=
o(F ¥ a*)— F¥B* =*F §a*.

In the case where N‘a =5, we have the followings:

o(F ¥ a*)=o(F ET* (5%, (K 'a)*, (K, a)*))
={o(F¥B*) :F¥p*e*F¥(K ‘a)* and there exist F¥0F
and F}'0F such that {(F¥0f, F¥0,) e*F (K, a)*
and F 0¥ =*F ¥ 5*}
={Fy'B:Fy'Be Fy'K,‘a and there exist Fy‘0, and Fy‘0,
such that (Fy‘d;, Fy0,) € Fy'K,'a and Fy‘0, = Fy‘B}
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=FyJ{5, K/a, K;'a)
=Fy'a.

In the case where N'a = 9, we have the followings:

o(F ¥ a*)=a(FET* {9, (K 'a)*, (Ky'a)*))

={o(FEBY):{0:(FEPHIe K} € Fx, and FFB* e*FE(K ' a)*}
={Fy'B:Fy'fc U and Fy'f e Fy'K,‘a}
=FyJ9, Ka, Ky'a)
=Fja.

Thus, the proof of the lemma is established.

Note that, if K is a set k, then

U={oc(F¥a*): {0:F¥a*)ock} e Fx.}

is a set.

In fact, let B* be (&, B, -, k, ---). Then we have U= {o(F ¥8*): F }f*=*k*}.
By the fact that % is a set, there is an ordinal number y such that

Odi“kCy and Nr=0.

We consider an ‘element 6* of H such that 6*=*(y,7, -, 7,---). We have
U=g(F¥J*(9% 6* 0*>). Thus U is a set.

LEMMA 6. For every 7 less than R., we have Fg'y=Fy‘y, where U= o(F ¥ K*)).

PrROOF. We prove this by the induction on y. It is clear that F ‘0 = ¢ =F 0.
We assume that the lemma is true for all 8 less than y. Namely we assume

that Fg‘'B8=Fy‘f for all B less than y. If Fi'BeFy, then we have F¥p8*
e*F¥r* by Lemma 4. Hence, using Lemma 5, we have

Fe'B=Fy'B=0F e cFEr*)=FyTr.

Therefore, we see Fy‘y DFg‘y. On the other hand. If F,‘8e F,‘, then we
have F¥p*e*F¥y* by Lemma 5 and the definition of ¢. Using Lemma 4,
and the hypothesis of the induction

FU‘ﬁ:FK‘ﬁEFK‘r .

Therefore, we see Fy‘y CFg‘y. Thus, we have Fg'y =Fy‘y.
LEMMA 7. Let Fx. be a non-principal ultrafilter over R. such that ch(Fx.)
=R:> Ry Then

0* :*(Rr’ Rr) oy Rw “') 1mpll€3 ZRT < 6 .

PrOOF. There is (ay, a -+, a,, ---) such that R *=*(ay, a, -, a,, )
where every a, is less than R, We consider a function f,, for each a, such
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that f,, is a 1—1 correspondence between P(a,) and 2%, where $(a,) is the
power-set of «,.

We consider a function ¢ defined by

t‘a:(fall(amaJ: :fay‘(amax/): ) fOI' any aC}{r .

Then, for any aC R,, we have

ta <*F(2%, ... 2% ),
Let aC R, bC R, and a+#b. Because, there is a v, < R, such that

any#bny for all y>vy,,
we obtain

{v:@a)v =Dy} D{yv:a,> v} € Fx,.

Hence) if ,B*:*(Zﬁl, Tt 22’;, "'), then Zxré ﬁ.
But (2%, -v, 2%, ) <*(Ry, o+, Ry, ) =*6%, from which we obtain 2% < 8
< 6. Thus we complete the proof of the lemma.

3. We consider the model 4y determined by the class X. Namely, we
consider the model whose sets are the members of Ly whose classes are the
X-constructible classes and whose ¢-relation is the e-relation of set theory (cf.
£2D.

DerFINITION. A formula @(a,, ---, a,) is called normal if it has no class
variable.

LemMmA 8. Let ®(a,, ---, a,) be a normal formula. Then for any class K
such that V= Lg, we have the following equivalence:

Quy(Fy'ay, -, Fyay) ={0: O(F ¥a,*)0, -, F¥a,*)0)} € Fx,.

where @ay(ay, -+, a,) 1s the relativization of ®(a,, ---, a,) to the model 4y and
U=o(FE(K*)).

PrROOF. We prove the lemma by the induction on the number of logical
symbols of @(a,, -, a,). In the case where the outermost symbol of &(a,, -,

a,) is € or =, the lemma is easily proved by Lemma 5 If the outermost
symbol is 7, \V, A or —, then the proof is clear. Therefore, we prove only
the case the outermost symbol of @(qa,, .-+, a,) is 3.

First, we shall prove that
Ax(x € Fp“On N Uay(Fyay, -, Fy'a,, X))
—{0:FxT(FEa*)0, -, FEa,*)0, X))} € Fx..
‘We assume that

Ax(x e Fp“On A\ U ap(Fptay, -+, Fyfay, X)).
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Then there is an ordinal number § such that
Uay(Fray, -, Fy'ay, Fy'B).
By the hypothesis of the induction, we obtain
{0: ¥ ((FEay )0, -, FEa )0, FEL0)} € Fxe,
which implies
{0:3x(F((FEa,*)0, -+, FEa*)0, 1)} € Fx.
Next, we shall show that

{0: IxTEF¥a*)0, -, FEa,*)0, X))} € Fx,

—»E{x(x S FU“On AN WAU(FU‘QH, Tty FU‘anr X)) .
We assume that

{0: 3 (FEa,*)9, -+, FEa, )0, 0)} € Fxe.

By V= Lg, there is a function a & On®® such that

{0: ¥ (F¥a®)o, -, F¥a,)o, FEa)o)} & Ix..
Therefore by the property of the class H, there is an ordinal number « such
that
{0:00=a*0} & Fx,.
Hence we obtain

(0 :T(F¥a®)0, -, FEa,®)0, (F¥a*)d)} e Fx..
By the hypothesis of the induction, we have

Fy'a e Fg“On AN ¥ ay(Fy'ay, -, Fy'ay, Fy'a),
which implies

Ax(x € Fp“On N\ U ag(Fpiay, -+, Fylay, x)).

Thus, the lemma is proved.

DEFINITION. Let a~b be an abbreviation of the formula Ff(Un,(f) A
W(f=a AND(f)=>b). Let T(a) be a normal formula satisfying the follow-
ing conditions :

1) T(a) and a~b imply T(D).

2) T(a) implies that there is a non-principal R,-complete ultrafilter &,
over the set a such that the character of the filter &, is a.

3) T(a) and b <@ imply 7 T(b).

For example, the statement ‘a is the first R ,-complete cardinal’, satisfies the
above conditions 1) to 3).

LEMMA 9. We have T(R) A a=Z2%— 7 Tay(Fy'a) in 2%, where U
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=o(F§K*) and V = Lg.

In fact, we assume T(R,). Then there is an ultrafilter Fx. such that
cM(Fr)=R,. We take the class H (cf. determined by this ultra-
filter. Let a be an ordinal number such that a<2%. We easily see {0:
TTF$a*)0)} D{0:FEa*)0< R} D{0:a*0<R;}. By lemma 7, we have
{0:a%0 < R,} € Fxr,. Then we have {§: 7T(F¥a*)d)} € Fxr, which implies
7 Tay(Fy‘a) by

LEMMA 10. Let K be any class. Then V = Ly under 2*, V= Lg, T(R:)
where U=o(F¥K*)).

To prove this, assume V = L, then Tay(FyR.) would be equivalent to
T(Fy*'R.). By we have 7 Tay(Fy*R.). But Fy*R. has the cardinality
R. 80 we have T(F;‘R,), which contradicts to the above. Thus we have

V= Ly.

4. Now, we have the following theorems.
THEOREM 1. Let k be any set. The we have 7(0d“kC R.) under X%,
TR, V=1L,
PROOF. We assume X*, T(R,), V=L, and 0d;“kCR,. Then by Lemma
6, we have
k=Fy749 R, 0,

where U= {o(F¥a*):F¥a*c*k*}. Therefore, we have ke Fy“On which
means V = L,. But this contradicts to Lemma 10.

DEFINITION. Let 4, and 4, be two models of set theory 2*. We say
that 4, is a complete inner model of 4, (denoted by 4,C 4,), if the following
conditions are satisfied :

1) @18,,(X) implies €18 4,(X).

2) M, (X) implies M ,,(X).

3) Xe,4Y is equivalent to M, (X)) A CRRL(Y) A X € 4Y.

4) X=,7Y is equivalent to €18, (X) A €la,(Y) A X=4Y.

5) Xe& 4,Y AM,(Y) implies M4, (X).

6) The class On,, of all ordinal numbers of 4, coincides with the class
of ordinal numbers On,, of 4,.

Moreover, if €18,,(X), M4(X), Xe,Y and X=,Y are equivalent to
Gla(X), MX), XY and X=1Y respectively, then 4, is called a complete
inner model of set theory JX'*,

THEOREM 2. If there is a model of AxT(x) and X*, then there are countably
many complete inner models 4,24, - DA, D+ of X*, such that the follow-
ing conditions are satisfied:

1) Ix(V=L,), 3xT(x), X* are satisfied in every d,.

2) Let a, be the initial ordinal such that T,(a,). Then we have the fol-
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lowing inequality :
al < (2“1)41 < az < (2“2)42 < ce < an < (2“”)4n < .

PrROOF. As mentioned in the introduction, there is an complete inner
model 4, of 2* for the system of axioms

Ax(V = L), IxT(x), T*.

We assume that the complete inner models 4, 24,0 --- D4, are already de-
fined and they have the following properties:

1) 3Ix(V=L,),3xT(x), 2* are satisfied in every 4; (=1, ---, n).

2) Let a; be the initial ordinal such that T,,(a;). Then we have the fol-
lowing inequality :

a; < (201)41 <a,< (2%)42 < <a, < (zan)dn .

Now we consider the model 4,. Since 4, is a model for Ax(V = L,) A 3xT(x),
there are k£ and R, such that V=L, and T(R)) in 4,. As in Lemma 5, we
can define the function ¢ and a set k; so that o(F }a*) =F;,‘a for all a. 4,.,
is defined to be the inner model defined by this set %, Then by Lemma 8,
we see that V=1L;, and T(e(F¥p*) in 4,., where f*=(0,d, -+, d, ---) and
R,=F,6. Therefore there is a complete inner model 4,,, of 4, such that

) 3Ix(V=L,),IxT(x), 2* are satisfied in the model 4,.;.

2) Let a,., be the first ordinal number such that Ta,.,(a,s,). Then
Ay <(2°) 4, < Cpag-
Thus we complete the proof of the theorem.

DEFINITION. A formula of the form @(a) is said to be a postulate, if the
following conditions are satisfied :

1) @(a) is a normal formula.

2) VYavVb(@(a) A O(b)—a=D).
A postulate @(a) is said to be ‘standard’, if the following conditions are
satisfied :

1) @(a) implies Drd(a).

2) Let @,,(a) be the relativization of the formula @(a) to the model 4,.
Then we have that if 4, 4, , @,4(a) and @ ,,(b) then a 0.

THEOREM 3. The system 2X*,3x(T(x) A @(x)) is not consistent, where
D(a) is a standard postulate.

PrROOF. We assume X*, 3x(T(x) A @®(x)). By Lemma 2, we have a class
K such that V= Lg By Ix(T(x) A O(x)), there is an ordinal number « such
that T(Fg‘a) and O(Fx‘a).

By the property of the formula @(a), we have

O(Fx‘a) implies Ord(Fx'a).
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We put R.=Fx‘a. Then we have T(R,) by the property 1) of 7. Moreover
by the property 2) we have an R,-complete ultrafilter F», over ¥, such that
ch(Fx)=X,. And we also consider the class H (cf. determined by
this ultrafilter. Let p*=*(a, a, ---, a, ---). Then by we obtain

Tay(Fy'B) A Qay(Fy'B) A\ Otday(Fy'B),

where U=o(F #(K*)). Since Orbd is absolute, we have Ordb(Fy‘f). By the pro-
perty of the standard postulate @(a), we obtain

@(FK‘Q) /\ @Au<FU“B) implies FU“B é FK‘C( .

Since Fy‘B is an ordinal number such that Fy‘8 < Fx'a <R, it is con-
structible from the class U with the ordinal less than R.,, (cf. [2]). Namely,
we see that

Fy'B=Fy‘y for some 7 less than R.y;.

Let *=*(yy, 72 -+, 7» ---). Then, by Lemma 7, we obtain {v:y, <R.} & Fx,
and hence, {3: 7T((F¥7*)0} € F».. By using we obtain 7 Tay(Fy'7),
i.e. 7Tay(Fy'B) which contradicts to Tay(Fy‘B) and @ay(Fy‘B). Thus we com-
plete the proof of the theorem.

Note that means that for any cardinal number R, defined by
a standard defining postulate @(a), we have

For example, the cardinal number R, such that @(R,) is not the first R,-
complete cardinal number.

DEFINITION. A model 4 of 3* is called an absolute cardinal model, if for
any complete inner model 4, of 4,

Cardy,(a) —EGard,(a)

where €ard(a) means that ¢ is a cardinal number.

Cleary a complete inner model of the system V=L, Y* is an absolute
cardinal model.

THEOREM 4. Let 4 be any absolute cardinal model. Then IxT(x) is not
satisfied in the model 4.

PrROOF. We assume that 3xT(x) is satisfied in an absolute cardinal model
4. In the proof of this theorem, discussion will be done in the model 4. We
omit the subscript 4 which expresses the relativization to the model 4. Let
R, be a cardinal number such that T(\R.). By Lemma 2, there is a class K
such that V= Lg. We consider a complete inner model 4, defined by the
class

U={cFa*):{0:(F¥a")ocs K} e Fx.}.
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We now consider an ordinal number % such that

77* :*(xn Rr: A Rn "') .

Let R, be the least cardinal number such that 2% <R,. Then we have
< <Ry, by Let Ordg'R; =0 < Ry, and put f*=*(a, a, -+, a, =)
Then we have

2% < B Ry
By €ard(R,), we obtain

(8 : Gard((F £ B*)0)} € Fx. .
Hence, by we obtain Earday(Fy‘f). By the definition of B, we have
2 < Fy'B< Ry

We use here the absolute cardinality of the model. Then we obtain €ard(Fy*B)-
This contradicts to the fact that R, is the least cardinal number such that
2% <Ry

NoTicE. Let ¥'(a) be a normal formula such that ¥(R,) means that ‘R
is the least srtongly inaccessible cardinal for which 2% > .., . Then we
have X*, 3x(T(x) A ¥'(x)) is not consistent.

ProOF. We assume 2*, 3x(T(x) A ¥ (x)). Then there is a cardinal num-
ber R, such that

T(Ro) and ¥(Ro).

Since R, is a cardinal number, we obtain that {v:€ardb(R. *v)} € Fx.. Let
Rr*:*(}{m; }{azy Tty Raw ) Then bY T(Rr): we have

{0:R,; is strongly inaccessible} € Fx..
Therefore by the property of the formula ¥(R.), we have
{0:2%0 =R4;,,} € Fre.
We shall now consider an ordinal number such that
77*:*(}{&14.11 oy Rapen ).

Since p* =*(2%e1, ..., 2%y, ...) we have 7=2% >Ry, by the proof of the
lemma 7. We shall now consider W*.,,, clearly there are cardinal numbers
such that R*.,; =*(Rg, -+, R, -++). But then we have

{5 :Ra5< R‘B6<Raa+l} = g}(r.

which is a contradiction.
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