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Groups with a certain type of Sylow 2-subgroups1)
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1. The purpose of this paper is to prove the following theorem:
THEOREM. Let $G$ be a finite group. If a Sylow 2-group $S$ of $G$ has the

following form
$S=A\times B$

where $A$ is a non trivial cyclic 2-group and $B$ is a 2-group with a cyclic sub-
group of index 2. Then one of the following possibilities holds:

(a) $S$ is an elementary abelian 2-group of order 4 or 8.
(b) The index $[G:G^{\prime}]$ is even, where $G^{\prime}$ is the commutator subgroup of $G$ .
(c) The group $G/0_{2},(G)$ has a normal 2-subgroup, where $0_{2}(G)$ is the maximal

normal subgroup of $G$ of odd order.
In particular, a 2-group $S$ satisfying the assumption of the theorem can

be a Sylow 2-subgroup of a simple group only when $S$ is an elementary abe-
lian group of order 4 or 8. Using the argument in proving our theorem, we
shall get next proposition.

PROPOSITION. Let $G$ be a finite group and $\tau$ a central involution of a
Sylow 2-subgroup of G. If the centralizer of $\tau C_{G}(\tau)$ is isomorphic to the group
$\langle\tau\rangle\times PSL(2, q)$ where $q\geqq 5$ , then one of the following possibilities holds;

(a) $S$ is an elementary abelian 2-group.
(b) The factor group $G/0_{2},(G)$ is isomorphic to the group $\langle\tau\rangle\times PSL(2, q)$ .

In particular the index $[G:G^{\prime}]=2$ .
This proposition generalizes more or less the following theorem of Z.

Janko and J. G. Thompson [5]:

THEOREM. Let $G$ be a finite group with the following properties:
(i) 2-Sylow subgroups are abelian,

(ii) the index $[G;G^{\prime}]$ is odd,
(iii) $G$ has an element $\tau$ of order 2 such that

$C_{G}(\tau)=\langle\tau\rangle\times PSL(2, q)$ , where $q>5$ .
Then $G$ is a non-abelian simple group with $q=3^{2n+1}(n\geqq 1)$ .

NOTATION. All the groups considered are finite.

1) The author thanks to Dr. T. Kondo for pointing out a gap in an original proof
of the Theorem.
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$Z(X)\cdots\cdots\cdots the$ center of a group $X$ .
$D(X)\cdots\cdots\cdots the$ Frattini subgroup of a group $X$ .
$\Omega_{1}(X)$ ......the group generated by all the elements of order $p$ of a $p$-group

X.
$o(X)$ the order of an element $X$ .
$\langle a, b, \rangle\cdots the$ group generated by the elements $a,$ $b,$ $\cdots$

$X<Y$ a set $X$ is properly contained in a set $Y$.
Next theorem due to G. Glauberman [3] is very useful in our proof.
THEOREM. Let $G$ be a finite group of even order. Assume that a Sylow

2-subgroup $S$ of $G$ contains an involution $\tau$ which is not conjugate in $G$ to any
involution $\sigma(\neq\tau)$ of S. Then $\tau$ is contained in the center of $G/0_{2},(G)$ .

2. Let $B$ be a 2-group with a cyclic subgroup of index 2. Then $B$ has
one of the following forms (see M. Hall [4]).

(I) Cyclic 2-group.
(II) Abelian group of type $(2, 2^{n})$ , $n\geqq 1$ .

(III) Generalized quaternion group.
(IV) $n\geqq 4,$ $ B=\langle a, b|a^{z^{n-1}}=b^{2}=1, bab=a^{1+z^{n\leftrightarrow z}}\rangle$ .
(V) $n\geqq 4,$ $ B=\langle a, b|a^{z^{n-1}}=b^{2}=1, bab=a^{-1+2^{n-2}}\rangle$ .

(VI) Dihedral group of order $\geqq 8$ .
We call a group $G$ a group of type $(N)(N=I\sim Vl)$ , if a Sylow 2-subgroup

of $G$ has the form $S=A\times B$ where $A$ is a non trivial cyclic 2-group and $B$

is a 2-group of type $(N)$ in the above list. We shall prove our theorem in
each case of type $(N)(N=I\sim Vl)$ . In the rest of this note we assume that $S$

is not an elementary abelian 2-group.

3. Let $G$ be one of the groups of type (I). Then $S$ is an abelian group
of type $(2^{m}, 2^{n})(m\geqq n)$ . If $m>n$ , then $N_{G}(S)=C_{G}(S)$ . The theorem of Burn-
side shows that $G$ has a normal 2-complement. If $m=n\geqq 2$ , by a theorem [1]

of R. Brauer [1] we have

$G/O_{2^{\prime}}(G)\triangleright S\cdot O_{2},(G)/O_{2^{\prime}}(G)$ .
Hence we have proved the theorem in this case.

4. Let $G$ be one of the groups of type (II). Then $S$ is an abelian 2-group
of type $(2^{m}, 2^{n}, 2)(m\geqq n\geqq 1)$ . If $m>n>1$ , then $N_{G}(S)=C_{G}(S)$ . The theorem
of Burnside shows that $G$ has a normal 2-complement. Assume $m=n>1$ or
$m>n=1$ . We shall show that the group $Z(N_{G}(S))\cap S$ is non-trivial. If so,
the transfer theorem shows that the index $[G:G^{\prime}]$ is even. Form the group
$N_{G}(S)/C_{G}(S)$ . Then the group $N_{G}(S)/C_{\theta}(S)$ is a subgroup of the automorphism
group of $S$ of odd order. Since $S$ is an abelian group of type $(2^{m}, 2^{m}, 2)$ or
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$(2^{m}, 2,2)$ where $m>1$ , we can conclude the order of $N_{G}(S)/C_{G}(S)$ is 1 or 3. If
$N_{G}(S)=C_{G}(S)$ , we have $Z(N_{G}(S))\cap S=S$ . Assume $|N_{G}(S)/C_{G}(S)|=3$ . Let $x$ be
an element of $N_{G}(S)$ which is not contained in $C_{G}(S)$ . Then $x$ induces an auto-
morphism $\overline{x}$ of $S$ of order 3. Since $|\Omega_{1}(S)|=8,\overline{x}$ has a fixed point $\tau$ in $\Omega_{1}(S)$ .
Hence $\tau\in Z(N_{G}(S))\cap S$ . Thus we have proved our theorem in this case.

5. Let $G$ be one of the groups of type (III), of type (IV) or of type (V).

Then $\Omega_{1}(Z(S))$ is an abelian group of type $(2, 2)$ , and $\Omega_{1}(S^{\prime})$ is a group of
order 2. Therefore if $x\in N_{G}(S),$ $x$ centralizes $\Omega_{1}(S$ ‘ $)$ . Since $\Omega_{1}(S^{\prime})\subset\Omega_{1}(Z(S))$ ,

$x$ centralizes $\Omega_{1}(Z(S))$ . Hence by the argument of Burnside, any two central
involutions of $S$ are not conjugate to each other in $G$ . Comparing the struc-
ture of $B$, we conclude that $S$ has at most 2 classes of non-central involutions.
Therefore a certain involution of $\Omega_{1}(Z(S))$ is not conjugate to any involution
of $S$ . By the theorem of Glauberman [3], we have our theorem in this case.

6. Let $G$ be one of the groups of type (VI). In this case the proof of
the theorem is a little complicated. We need several lemmas.

LEMMA 1. Any two central involutions of a Sylow 2-subgroup of $G$ are not
conjugate to one another in $G$ .

PROOF. As in the previous section, this lemma is easy to prove. We omit
the proof.

Put $A=\langle\eta\rangle,$ $B=\langle\rho, \sigma|\rho^{2}n-1=\sigma^{2}=1, \sigma\rho\sigma=\rho^{-1}, (n>2)\rangle,$ $\rho^{2}n-z=\pi$ and
$\Omega_{1}(Z(S))=\langle\tau, \pi\rangle$ . $S$ has 7 conjugate classes (in $S$ ) of involutions. The repre-
sentatives of 7 classes are $\pi,$ $\sigma,$ $\sigma\rho,$ $\tau,$ $\tau\pi,$ $\tau\sigma,$ $\tau\sigma\rho$ . We first consider the fusion
of involutions of $S$ . Assume $ z*=Z(G/O_{2},(G))=\langle 1\rangle$ . We write $a\sim bs$ or $a\sim b$

if two elements $a,$
$b$ are conjugate to each other in $S$ or in $G$ respectively.

LEMMA 2. If we choose the suitable elements $\tau,$ $\rho,$
$\sigma$ , we can set

(a) $\pi\sim\sigma,$ $\tau\sim\sigma\rho,$ $\tau\pi\sim\tau\sigma$ , or

(b) $\pi\sim\sigma,$ $\tau\sim\sigma\rho,$ $\tau\pi\sim\tau\sigma\rho$ .
PROOF. By the theorem of Glauberman and Lemma 1, $\pi$ is conjugate to

a non central involution of $S$ . Any non central involution of $S$ has the form
$\alpha\sigma\rho^{j},$ $\alpha\in\Omega_{1}(A),$ $j\geqq 0$ . Therefore, if we choose a direct factor $B$ , we can
assume $\pi\sim\sigma$ . Since $\pi,$ $\tau,$ $\tau\pi$ are not conjugate to one another and by the
assumption $ Z^{*}=\langle 1\rangle$ , there are the following six possibilities for the fusion of
$\tau,$ $\tau\pi$ ;

(1) $\tau\sim\sigma\rho$ , $\tau\pi\sim\tau\sigma$ ,

(2) $\tau\sim\sigma\rho$ , $\tau\pi\sim\tau\sigma\rho$ ,

(3) $\tau\sim\tau\sigma$ , $\tau\pi\sim\sigma\rho$ ,
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(4) $\tau\sim\tau\sigma$ , $\tau\pi\sim\tau a\rho$ ,

(5) $\tau\sim\tau\sigma\rho$ , $\tau\pi\sim\sigma\rho$ ,

(6) $\tau\sim\tau\sigma\rho$ , $\tau\pi\sim\tau a$ .
If we replace $\tau$ by $\tau\pi,$ (3) goes to (1); (6) to (4); (5) to (2). If we replace

$\rho$ by $\rho\tau,$ (4) goes to (1). Thus we have proved the lemma.
LEMMA 3. Choosing the suitable elements $\tau,$ $\rho,$

$\sigma$ , the fusion of involutions
of (a), (b) in Lemma 2 do not occur except the following one2).

$\pi\sim\sigma\sim\tau\sigma\rho$ , $\tau\sim\sigma\rho$ , $\tau\pi\sim\tau a$ .
PROOF. Assume that $\pi\sim\sigma,$ $\tau\sim\sigma\rho,$ $\tau\pi\sim\tau\sigma$ . A group $C_{G}(\sigma\rho)$ contains an

elementary 2-group $\langle\pi, \tau, \sigma\rho\rangle$ . Let $S_{1}$ be a Sylow 2-subgroup of $C_{G}(\sigma\rho)$ which
contains $\langle\pi, \rho, \sigma\rho\rangle$ . Since $\tau\sim\sigma\rho,$

$S_{1}$ is a Sylow 2-subgroup of $G$ . By the
structure of $S_{1},$ $\Omega_{1}(Z(S_{1}))$ is contained in $\langle\pi, \tau, \sigma\rangle$ . Put $\langle\pi_{1}\rangle=\Omega_{1}(S_{1}^{\prime})$ . Then
$\pi\sim\pi_{1}$ . Since $\pi_{1}\in\langle\pi, \tau, \sigma\rangle$ , we have, by Lemma $2.(a)$ ,

$\pi_{1}=\pi,$ $\tau\sigma\rho$ or $\tau\pi\sigma\rho$

If $\pi_{1}=\pi$ then $\Omega_{1}(Z(S_{1}))=\langle\pi, \sigma\rho\rangle$ . Since $\sigma\rho\sim\pi\sigma\rho s$ two central involutions of
$S_{1}$ are conjugate. This is impossible by Lemma 1. Similarly $\pi_{1}\neq\tau a\rho$ . Hence
we get

$\pi_{1}=\tau\pi\sigma\rho$ and $\pi\sim\sigma\sim\tau\pi\sigma\rho\sim\tau\sigma\rho s$ .
Next assume $\pi\sim\sigma,$ $\tau\sim\sigma\rho,$ $\tau\pi\sim\tau\sigma\rho$ . Let $S_{z}$ be a Sylow 2-group of $C_{G}(a\rho)$

and $\langle\pi_{2}\rangle$ the group $\Omega_{1}(S_{2}^{\prime})$ . Then $\pi\sim\pi_{2}$ and $\pi_{2}\in\langle\pi, \tau, \sigma\rho\rangle$ . By the assump-
tion $\pi\sim\sigma,$ $\tau\sim a\rho,$ $\tau\pi\sim\tau\sigma\rho$ we conclude $\pi_{2}=\pi$ . By the same argument as in
the case (a) this is impossible.

LEMMA 4. If an element $\alpha\in S$ is conjugate to $\rho^{i}$ with $o(\rho^{i})\geqq 4$ , then $\alpha=\rho^{i}$

or $\rho^{-i}$ .
PROOF. Assume $\alpha\sim\rho^{i}$ and $o(\rho^{i})\geqq 4$ . Then we can conclude $\alpha=\beta\cdot\rho^{j}$

where $\beta\in A$ and $o(\beta)<o(\rho^{j})$ because any two central involutions are not con-
jugate to each other. $S_{1}=\langle\eta\rangle\times\langle\rho\rangle=S\cap C_{G}(\alpha)=S\cap C_{G}(\rho^{i})$ . Since an element
$\rho^{i}$ does not conjugate to a central element of $S,$ $S_{1}$ is a 2-Sylow group of
$C_{G}(\rho^{i})$ . Let $\alpha^{x}=\rho^{i}$ . Then there exist an element $y\in C_{G}(\rho^{i})$ and $S_{1}^{xy}=S_{1}$ ,
$\alpha^{xy}=\rho^{i}$ hold. Since any two involutions of $\Omega_{1}(S_{1})$ are not conjugate to each
other, we conclude $|N_{O}(S_{1})/C_{G}(S_{1})|=2$ . Therefore the element $xy$ is contained
in $\langle\sigma\rangle\cdot C_{G}(S_{1})$ . Hence we have $\alpha=\rho^{i}$ or $\rho^{-i}$ .

Now we shall prove our theorem in this case. Denote the focal subgroup
of $S$ by $S^{*}$ . If $|A|=2$, then $ S^{*}=\langle\tau\rho, \sigma\rangle$ (by Lemma 3 and Lemma 4). Hence

2) The group $G=S_{6}$ or $S_{7}$ , symmetric group of degree 6 or 7 has this fusion of
involutions.
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$S>S^{*}$ . By the transfer theorem, we have $[G:G^{\prime}]=even$ . Thus we have
proved the theorem. Next, assume $|A|\geqq 4$ . We consider the fusion of ele-
ments of order $\geqq 4$ . Let an element $\alpha$ of $S$ has the order larger than 4, then
a is written in the from

$\alpha=\eta^{i},$ $\eta^{j}\sigma\rho^{k},$ $\eta^{\iota}\rho^{s},$ $\rho^{t}$ , where $i,$ $j,$ $k,$ $1,$
$s,$

$t$ are suitable integers.

In order to prove $S>S^{*}$ , we can assume $\alpha\neq\rho^{\iota}$ by Lemma 4. If $\alpha=\eta^{i}\sim\eta^{j}\sigma\rho^{k}$

then $o(\eta^{\iota})=o(\eta^{j})$ . Therefore $o(\eta^{-i}\eta^{j}a\rho^{k})=\max\{o(\eta^{-i}\eta^{j}), o(\sigma\rho^{k})\}<o(\eta^{i})$ . If $\alpha$

$=\eta^{i}\sim\eta^{l}\rho^{s}$ , we have $o(\eta^{i})=o(\eta^{\iota})>o(\rho^{s})$ because any two central involutions are
not conjugate to each other. Therefore $o(\eta^{-i}\eta^{\iota}\rho^{s})=\max\{o(\eta^{-i}\eta^{\iota}), o(\rho^{s})\}<o(\eta^{i})$ .
If $\alpha=\eta^{j}\sigma\rho^{k}\sim\eta^{\iota}\rho^{s}=\beta$ we have $o(\eta^{j}\sigma\rho^{k})=o(\eta^{\iota}\rho^{s})>o(\rho^{s})$ . Therefore $o(\alpha^{-1}\beta)$

$<o(\eta^{j})$ . In any cases $\eta\not\in S^{*}$ . Hence the transfer theorem show that the index
$[G:G^{\prime}]$ is even.

7. Next we shall prove the proposition stated in Section 1. Let $G$ be a
finite group satisfying the assumption of our proposition. Furthermore assume
that Sylow 2-subgroups of $G$ are not abelian. Then $G$ is one of the groups
of type (VI). Since the group $PSL(2, q)$ , where $q\geqq 5$ , has one class of involu-
tions, the involution $\tau$ is not conjugate to any involution $a(\neq\tau)$ of $\langle\tau\rangle\times$

$PSL(2, q)$ . Hence $\tau$ is contained in $Z(G/O_{2},(G))$ . Hence $G=C_{a}(\tau)\cdot O_{2}(G)$ . Clearly
$ C_{G}(\tau)\cap O_{2},(G)=\langle 1\rangle$ . Thus we have proved our proposition.

Nagoya University
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