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Groups with a certain type of Sylow 2-subgroups?
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1. The purpose of this paper is to prove the following theorem:
THEOREM. Let G be a finite group. If a Sylow 2-group S of G has the
Jollowing form
S=AXB

where A is a non trivial cyclic 2-group and B is a 2-group with a cyclic sub-
group of index 2. Then one of the following possibilities holds:

@) S is an elementary abelian 2-group of ovder 4 or 8.

(b) The index [G:G'] is even, where G’ is the commutator subgroup of G.

(©) The group G/0,{G) has a normal 2-subgroup, where 0,,(G) is the maximal

normal subgroup of G of odd order.

In particular, a 2-group S satisfying the assumption of the theorem can
be a Sylow 2-subgroup of a simple group only when S is an elementary abe-
lian group of order 4 or 8 Using the argument in proving our theorem, we
shall get next proposition.

PROPOSITION. Let G be a finite group and t a central involution of a
Sylow 2-subgroup of G. If the centralizer of © Cq(z) is isomorphic to the group
{t> X PSL(2, q) where q=5, then one of the following possibilities holds:

@) S is an elementary abelian 2-group.

(b) The factor group G/0,(G) is isomorphic to the group {z) X PSL(2, g).

In particular the index [G:G']=2.

This proposition generalizes more or less the following theorem of Z.
Janko and J.G. Thompson [5]:

THEOREM. Let G be a finite group with the following properties:

(i) 2-Sylow subgroups are abelian,
(1) the index [G:G'] is odd,
(iii) G has an element t of order 2 such that

Ce(r)=<7z) X PSL(2, @), where ¢>5.

Then G is a non-abelian simple group with g=3"*" (n=1).
NOTATION. All the groups considered are finite.

1) The author thanks to Dr. T. Kondo for pointing out a gap in an original proof
of the [Theoreml.
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Z(X ) orneeens the center of a group X.

D(X)-eeeeeens the Frattini subgroup of a group X.

RUX) -oveee the group generated by all the elements of order p of a p-group
X.

O(X) wevrerees the order of an element X.

XY «uen a set X is properly contained in a set Y.

Next theorem due to G. Glauberman is very useful in our proof.

THEOREM. Let G be a finite group of even order. Assume that a Sylow
2-subgroup S of G contains an involution t which is not conjugate in G to any
involution ¢ (#+1t) of S. Then ¢ is contained in the center of G/0,/(G).

2. Let B be a 2-group with a cyclic subgroup of index 2. Then B has

one of the following forms (see M. Hall [4]).
(D Cyclic 2-group.

(IT) Abelian group of type (2,2%), n=1.

(III)  Generalized quaternion group.

(IV) n=4, B=<a, bla®" ' =b2=1, bab=a"*2""?).

(V) n=4, B={a,bla®™" =b2=1, bab=a"1+2"*),

(VD) Dihedral group of order = 8.

We call a group G a group of type (V) (N =I~VI), if a Sylow 2-subgroup
of G has the form S= A x B where A is a non trivial cyclic 2-group and B
is a 2-group of type () in the above list. We shall prove our theorem in
each case of type (V) (N=1I~VI). In the rest of this note we assume that S
is not an elementary abelian 2-group.

3. Let G be one of the groups of type (I). Then S is an abelian group
of type (2™, 2% (m=n). If m>n, then N4S)=C4(S). The theorem of Burn-
side shows that G has a normal 2-complement. If m =n=2, by a theorem [1]
of R. Brauer we have

G/OZI(G) D S * Ozl(G)/OZI(G) .

Hence we have proved the theorem in this case.

4. Let G be one of the groups of type (II). Then S is an abelian 2-group
of type 2™, 2% 2) (m=n=1). If m>n>1, then NyS)=CxS). The theorem
of Burnside shows that G has a normal 2-complement. Assume m=mn>1 or
m>n=1. We shall show that the group Z(N4S)) N S is non-trivial. If so,
the transfer theorem shows that the index [G:G’] is even. Form the group
NgS)/Cs(S). Then the group Ng(S)/Cy(S) is a subgroup of the automorphism
group of S of odd order. Since S is an abelian group of type (2™, 2™ 2) or
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(2m, 2, 2) where m >1, we can conclude the order of Ny(S)/Cg(S) is 1 or 3. If
Ng(S)=C4(S), we have Z(Ng(SHNS=S. Assume |Ng(S)/Cex(S)|=3. Let x be
an element of Ng(S) which is not contained in Cg(S). Then x induces an auto-
morphism % of S of order 3. Since |2,(S)|=28, % has a fixed point z in 2,(S).
Hence 7 & Z(N4S) N S. Thus we have proved our theorem in this case.

5. Let G be one of the groups of type (III), of type (IV) or of type (V).
Then £,(Z(S)) is an abelian group of type (2, 2), and £,(S") is a group of
order 2. Therefore if x & N4(S), x centralizes 2,(S"). Since 2,(S)C £2,(Z(S)),
x centralizes 2,(Z(S)). Hence by the argument of Burnside, any two central
involutions of S are not conjugate to each other in G. Comparing the struc-
ture of B, we conclude that S has at most 2 classes of non-central involutions.
Therefore a certain involution of £,(Z(S)) is not conjugate to any involution
of S. By the theorem of Glauberman [37], we have our theorem in this case.

6. Let G be one of the groups of type (VI). In this case the proof of
the theorem is a little complicated. We need several lemmas.

LEMMA 1. Any two central involutions of a Sylow 2-subgroup of G are not
conjugate to one another in G.

PROOF. As in the previous section, this lemma is easy to prove. We omit
the proof.

Put A=<(7%), B={p, o|lp*™'=0*=1, opo=p71, (n>2)), p*"*=r and
2.(Z(S) =<z, w>. S has 7 conjugate classes (in S) of involutions. The repre-
sentatives of 7 classes are =, g, gp, 7, 77, 70, Top. We first consider the fusion
of involutions of S. Assume Z*=Z(G/0,(G))=<1). We write aXbor a~b
if two elements a, b are conjugate to each other in S or in G respectively.

LEMMA 2. If we choose the suitable elements t, p, o, we can set

@) T~G, T~ 0GP, T~ TG, OF
(b) T~ O, TA~OP, TE~TOP .

Proor. By the theorem of Glauberman and Lemma 1, = is conjugate to
a non central involution of S. Any non central involution of S has the form
acp’, a € 2,(A), j=0. Therefore, if we choose a direct factor B, we can
assume m~g¢. Since =z, 7, tw are not conjugate to one another and by the
assumption Z* =(1), there are the following six possibilities for the fusion of

T, TT .
€))] T~0p, TN ~TO,
@ T~Op, TR~TOP,

®)) T~TO, TR~ 0P,
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€)) T~TG, TR~TOP,
) T~TOP, T ~OP,
6 T~TOp, TR~TO.

If we replace 7 by ¢z, (3) goes to (1); (6) to (4); (5) to (2). If we replace
o by pz, (4) goes to (1). Thus we have proved the lemma.

LEMMA 3. Choosing the suitable elements t, p, o, the fusion of involutions
of (@), (b) in Lemma 2 do not occur except the following one?®.

T~O~TOP, T~OCP, TA~NTO.

PrROOF. Assume that #~a, t~op, twr~70o. A group Cglop) contains an
elementary 2-group {=, z, op). Let S, bea Sylow 2-subgroup of C4ocp) which
contains {r, p, op). Since r~oap, S, is a Sylow 2-subgroup of G. By the
structure of S,, 2,(Z(S)) is contained in {x, 7,0). Put {(z,>=82,S,"). Then
w~m,. Since m,{rx, z,0) we have, by Lemma 2.(a),

T, =mx, T6p Of THOP.

If 7,=rx then £2,(Z(S)))=<=x, op). Since oprinap, two central involutions of
S, are conjugate. This is impossible by [Lemma 1 Similarly =, # zop. Hence
we get

s
T,=twop and w~O~TTOP~TOP.

Next assume 7 ~og, t~op, tt~70p. Let S, be a Sylow 2-group of Cglop)
and {=,) the group £,(S,). Then n~w=, and =, e{x, 7, op). By the assump-
tion 7 ~o, T~0op, Tt ~top we conclude 7,==z. By the same argument as in
the case (a) this is impossible.

LEMMA 4. If an element a € S is conjugate to p* with o(p®) =4, then a = p
or p~t.

PROOF. Assume a~p' and o(p?)=4. Then we can conclude a=pf-p’
where 8= A and o(f) < o(p’) because any two central involutions are not con-
jugate to each other. S, =(%) X {(p> =S Cqxla)=SNC4p?). Since an element
p¢ does not conjugate to a central element of S, S, is a 2-Sylow group of
Celp®). Let a®=p’. Then there exist an element ye Cgp?) and S,*¥=3S,,
a® = p* hold. Since any two involutions of £,(S;) are not conjugate to each
other, we conclude |Ng(S,)/Ce(Sy)|=2. Therefore the element xy is contained
in (o) -C4S,). Hence we have a=p* or p~*

Now we shall prove our theorem in this case. Denote the focal subgroup
of S by S*. 1If |A|=2, then S*=(7p, o) (by Lemma 3 and Lemma 4). Hence

2) The group G =S; or S;, symmetric group of degree 6 or 7 has this fusion of
involutions.
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S>S* By the transfer theorem, we have [G:G’]=even. Thus we have
proved the theorem. Next, assume |A|=4. We consider the fusion of ele-
ments of order =4. Let an element « of S has the order larger than 4, then
« is written in the from

a =" plop®, 7'e’, o', where 1,7, k, [, s, t are suitable integers.

In order to prove S>S* we can assume a = p' by If a=ypi~rpiop
then o(y®)=o0(y?). Therefore o(y~*piop®) =max {o(y~*p%), o(cp"} <o(y). I «a
=’ ~7'p%, we have o(n%) = o(y") > 0(p*) because any two central involutions are
not conjugate to each other. Therefore o(n~*3'p%) = max {o(n~"9"), 0(p*} <o(n®.
If a=yplopt~7y'p*=pF we have o(piop")=o0(y'p%) > 0(p®). Therefore ola'p)
< o(»?). In any cases & S*. Hence the transfer theorem show that the index
[G:G"] is even.

7. Next we shall prove the proposition stated in Section 1. Let G be a
finite group satisfying the assumption of our proposition. Furthermore assume
that Sylow 2-subgroups of G are not abelian. Then G is one of the groups
of type (VI). Since the group PSL(2, q), where ¢=5, has one class of involu-
tions, the involution 7 is not conjugate to any involution ¢ (x7) of (r) X
PSL(2, 9. Hence 7 is contained in Z(G/0..(G)). Hence G = C4(7) - 0(G). Clearly
Co(t) N 0,(G)=<1>. Thus we have proved our proposition.

Nagoya University
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