# Holomorphic imbeddings of symmetric domains 

By Shin-ichiro IHARA

(Received Feb. 23, 1967)

The purpose of this paper is to determine all (equivariant) holomorphic imbeddings of a symmetric domain $D$ into another symmetric domain $D^{\prime}$; a part of results has been announced in [3] without proofs.

In the case $D^{\prime}$ is of type (III) $)_{p}$ or of type ( $\mathrm{I}_{p, q}$, this problem was solved completely (and partially in the case $D^{\prime}$ is of type (II) $)_{p}$ ) by Satake in his paper [4]. Our methods are similar to those adopted in [4], but depend further on general properties of Lie algebras. Our results are essentially applicable to any cases.

Let $g$ and $\mathfrak{g}^{\prime}$ be the Lie algebras of the groups of all analytic automorphisms of $D$ and $D^{\prime}$ respectively. Then the problem is equivalent to that of finding all monomorphisms of $\mathfrak{g}$ into $\mathfrak{g}^{\prime}$ satisfying a condition called ( $H_{1}$ ) in [4]. Therefore we shall consider a slightly generalized problem as was done in [4], that is to determine all homomorphisms of a Lie algebra of hermitian type into another satisfying ( $H_{1}$ ). A more precise exposition of our problem will be given in § 1.

We shall make reductions of the problem in § 2. Namely, if we find all regular subalgebras (see 2.3) of $\mathfrak{g}^{\prime}$, and if we determine all pairs ( $\mathfrak{g}, \rho$ ) of a Lie algebra of hermitian type and a homomorphism of $\mathfrak{g}$ into a regular subalgebra $g_{1}^{\prime}$ of $g^{\prime}$ satisfying a certain condition $\left(H_{2}\right)$ stronger than ( $H_{1}$ ), we shall get all solutions; moreover, we shall be able to assume that both $g$ and $g^{\prime}$ are simple. The determination of regular subalgebras of each non-compact simple Lie algebra of hermitian type will be done in §4. For a simple Lie algebra $\mathfrak{g}^{\prime}$ of type ( $\mathrm{I}_{p, q}$, (II) $)_{p}$, or (III) $)_{p}$, all pairs ( $\mathfrak{g}, \rho$ ) of a non-compact simple Lie algebra and a homomorphism into $g^{\prime}$ satisfying $\left(H_{2}\right)$ can be determined by combining the results tabulated in [4] and our results in §4; for the remaining cases $\mathfrak{g}^{\prime}=(\mathrm{IV})_{p}$, (EIII), or (EVII), they are determined in $\S 5$. Our $\S 3$ is devoted to the preparations to $\S 5$. In the Appendix, we shall refer to some results, supplementary to those given by Satake in [5], about the correspondence of boundary components by holomorphic imbeddings of symmetric domains.

Throughout this paper, the usual symbols $\left(\mathrm{I}_{p},(\mathrm{II})_{p},(\mathrm{III})_{p},(\mathrm{IV})_{p}\right.$, (EIII), and (EVII) for the irreducible symmetric domains will be also used to denote
the corresponding simple Lie algebras, and the symbols $\left(A_{l}\right),\left(B_{l}\right), \cdots$ for the complex simple Lie algebras to denote their compact real forms.

On account of the well known isomorphisms between simple Lie algebras, one may restrict the parameters as follows:

$$
\begin{array}{lll}
(\mathrm{I})_{p, q}: & 1 \leqq p \leqq q, & (\mathrm{II})_{p}: \\
(\mathrm{III})_{p}: & p \geqq 2, & (\mathrm{IV})_{p}:
\end{array}
$$

## § 1. Exposition of the problem.

1.1. Let $D$ and $D^{\prime}$ be symmetric domains. A holomorphic imbedding of $D$ into $D^{\prime}$ is a holomorphic isometry $\varphi$ of $D$ into $D^{\prime}$ such that $\varphi(D)$ is totally geodesic in $D^{\prime}$. Let $G$ (resp. $G^{\prime}$ ) be the connected component of the identity of the group of all analytic automorphisms. Two holomorphic imbeddings $\varphi_{1}$ and $\varphi_{2}$ of $D$ into $D^{\prime}$ are said to be equivalent if there is an element $g$ of $G^{\prime}$ such that $\varphi_{2}=g \circ \varphi_{1}$. (For convenience, we shall not say equivalent when $g$ is an analytic automorphism not contained in $G^{\prime}$.) The problem is precisely to find out, for a given symmetric domain $D^{\prime}$, all equivalence classes (defined naturally) of pairs ( $D, \varphi$ ) of a symmetric domain $D$ and a holomorphic imbedding $\varphi$ of $D$ into $D^{\prime}$. Hence, if $o$ and $o^{\prime}$ are origins fixed in $D$ and $D^{\prime}$ respectively, we may assume that

$$
\begin{equation*}
\varphi(o)=o^{\prime} . \tag{1}
\end{equation*}
$$

If $g$ is the Lie algebra of $G$, one has the Cartan decomposition

$$
\mathfrak{g}=\mathfrak{q}+\mathfrak{p}
$$

corresponding to $o$, where $\mathfrak{f}$ is the (maximal compact) subalgebra of $g$, corresponding to the isotropy subgroup at $o$. The vector space $\mathfrak{p}$ is identified with the tangent space to $D$ at $o$, and has a complex structure $J$ which agrees with that of $D$. Similarly we have $\mathfrak{g}^{\prime}=\mathfrak{f}^{\prime}+\mathfrak{p}^{\prime}$ and $J^{\prime}$. For a holomorphic imbedding $\varphi$ of $D$ into $D^{\prime}$ satisfying (1), we have a monomorphism $\rho$ of $g$ into $\mathrm{g}^{\prime}$ such that

$$
\begin{equation*}
\rho\left(\mathfrak{l}^{\mathfrak{l}}\right) \subset \mathfrak{q}^{\prime}, \quad \rho(\mathfrak{p}) \subset \mathfrak{p}^{\prime} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho \circ J=J^{\prime} \circ \rho \text { on } p . \tag{3}
\end{equation*}
$$

Conversely, for a monomorphism $\rho$ saitisfying (2) and (3), there corresponds a holomorphic imbedding satisfying (1).

On the other hand, there is the uniquely determined element $H_{0}$ (resp. $H_{0}^{\prime}$ ) in the center of $\mathfrak{f}$ (resp. $f^{\prime}$ ) such that

$$
\begin{equation*}
J=a d\left(H_{0}\right) \text { on } \mathfrak{p}, \quad J^{\prime}=a d\left(H_{0}^{\prime}\right) \text { on } \mathfrak{p}^{\prime} . \tag{4}
\end{equation*}
$$

The inner automorphism $\exp \pi a d\left(H_{0}\right)$ (resp. $\left.\exp \pi a d\left(H_{0}^{\prime}\right)\right)$ of $g\left(\right.$ resp. $\left.\mathrm{g}^{\prime}\right)$ gives rise to the involution corresponding to the Cartan decomposition $g=f+p$ (resp. $\left.\mathfrak{g}^{\prime}=\mathfrak{l}^{\prime}+\mathfrak{p}^{\prime}\right)$. Thus we have a condition

$$
\begin{equation*}
\rho \circ a d\left(H_{0}\right)=a d\left(H_{0}^{\prime}\right) \circ \rho \tag{1}
\end{equation*}
$$

which is equivalent to (2) and (3) taken together.
Clearly the problem is equivalent to determine all equivalence classes under the group of all inner automorphisms of $g^{\prime}$ of monomorphisms $\rho$ of $g$ into $\mathfrak{g}^{\prime}$ satisfying $\left(H_{1}\right)$. We shall investigate the problem in this manner, but actually in a slightly generalized form similar to that treated in [4].
1.2. A semi-simple Lie algebra over $\boldsymbol{R}$ is of hermitian type if all the noncompact simple components of it correspond to symmetric domains (i.e. the center of a maximal compact subalgebra of each non-compact simple component has the dimension 1). Let $\mathfrak{g}$ be a Lie algebra of hermitian type, and $\mathfrak{f}$ maximal compact subalgebra of $\mathfrak{g}$. Let further

$$
\begin{equation*}
\mathrm{g}=\mathrm{g}_{0}+\sum_{i=1}^{d} \mathrm{~g}_{i} \tag{5}
\end{equation*}
$$

be a decomposition of $g$ into the direct sum of ideals, where $g_{0}$ is compact and $\mathfrak{g}_{i}(1 \leqq i \leqq d)$ are simple and non-compact, and put

$$
\mathfrak{f}_{i}=\mathrm{g}_{i} \cap \mathfrak{} \quad(1 \leqq i \leqq d) .
$$

Hence $\mathfrak{f}=\mathfrak{g}_{0}+\sum_{i=1}^{d} \mathfrak{f}_{i}$. To each pair $\left(\mathfrak{g}_{i}, \mathfrak{f}_{i}\right)(1 \leqq i \leqq d)$, there corresponds a (simply connected) symmetric space $D_{i}$ and an element $H_{0 i}$ of the center of $\dot{x}_{i}$ which determines a complex structure of $D_{i}$ so as to make it a symmetric domain. Actually, $H_{0 i}$ is unique within the sign $\pm$. For simplicity, we shall say that the element of $g$ defined by

$$
\begin{equation*}
H_{0}=\sum_{i=1}^{a} H_{0 i} \tag{6}
\end{equation*}
$$

is a complex structure of the pair ( $\mathfrak{g}, \mathfrak{f}$ ). If $\mathfrak{g}$ is compact, clearly $H_{0}=0$. It is easy to see that a complex structure $H_{0}$ of (g,f) is contained in the center of $\mathfrak{f}$ and the inner automorphism $\exp \pi a d\left(H_{0}\right)$ of $g$ is the Cartan involution of ( $g$, $\mathrm{f}^{\prime}$ ). Let $\mathrm{g}^{\prime}$ be another Lie algebra of hermitian type, $f^{\prime}$ its maximal compact subalgebra, and $H_{0}^{\prime}$ a complex structure of ( $\mathfrak{g}^{\prime}, \mathfrak{q}^{\prime}$ ). The condition ( $H_{1}$ ) may be stated for any homomorphism $\rho$ of $\mathfrak{g}$ into $\mathfrak{g}^{\prime}$ and complex structures $H_{0}$ and $H_{0}^{\prime}$. Then our problem will be as follows:

For a given Lie algebra $\mathfrak{g}^{\prime}$ of hermitian type, determine all equivalence classes of pairs ( $g, \rho$ ) of a Lie algebra $g$ of hermitian type and a homomorphism $\rho$ of g into $\mathrm{g}^{\prime}$ satisfying $\left(H_{1}\right.$ ) (for given $H_{0}$ and $H_{0}^{\prime}$ w.r.t. fixed maximal compact subalgebras $\mathfrak{f}$ and $\left.\mathfrak{f}^{\prime}\right)$.

Since $\exp \pi a d\left(H_{0}\right)\left(\right.$ resp. $\left.\exp \pi a d\left(H_{0}^{\prime}\right)\right)$ is the Cartan involution attached to
$\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ (resp. $\mathfrak{g}^{\prime}=\mathfrak{f}^{\prime}+\mathfrak{p}^{\prime}$ ), a homomorphism satisfying $\left(H_{1}\right)$ also satisfies (2).
1.3. For a semi-simple Lie algebra $g$ and a maximal compact subalgebra $\mathfrak{F}$ of g , $\operatorname{Int}(\mathrm{g})$ and $K$ will denote the group of all inner automorphisms of $g$ and its subgroup corresponding to $\%$. We shall say briefly that two subalgebras $g_{1}$ and $g_{2}$ of $g$ are ( $k$ )-conjugate if they are conjugate in $g$ under an element of $K$ (i.e. there is an element $k \in K$ such that $\left.g_{2}=k\left(g_{1}\right)\right)$. Let $\rho_{1}$ and $\rho_{2}$ be two homomorphisms of a semi-simple Lie algebra $\mathfrak{g}$ into another $g^{\prime}$. We shall say that they are ( $k$ )-equivalent if there is an element $k$ of $K^{\prime}$ such that $\rho_{2}=k \circ \rho_{1}$.

Lemma 1. Let $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ be a semi-simple Lie algebra over $\boldsymbol{R}$ with a fixed Cartan decomposition, and $\mathfrak{g}_{1}=\mathfrak{f}_{1}+\mathfrak{p}_{1}, \mathfrak{g}_{2}=\mathfrak{f}_{2}+\mathfrak{p}_{2}$ be Cartan decompositions of two semi-simple subalgebras of $\mathfrak{g}$ such that $\mathfrak{f}_{i} \subset \mathfrak{f}$ and $\mathfrak{p}_{i} \subset \mathfrak{p}(i=1,2)$. Then $\mathfrak{g}_{1}$ and $\mathrm{g}_{2}$ are conjugate in g if and only if they are ( $k$ )-conjugate.

Proof. The only if part should be shown. Since $g_{1}$ and $g_{2}$ are conjugate in $\mathfrak{g}$, there is an element $s_{0}$ in $\operatorname{Int}(\mathfrak{g})$ such that $g_{2}=s_{0}\left(g_{1}\right)$. Put $\mathfrak{g}_{2}^{\prime}=s_{0}\left(\mathfrak{f}_{1}\right)$ and $\mathfrak{p}_{2}^{\prime}=s_{0}\left(\mathfrak{p}_{1}\right)$. By the conjugacy of Cartan decompositions, we have an element $t$ in Int $\left(g_{2}\right)$ such that $t\left(\mathfrak{f}_{2}^{\prime}\right)=\mathfrak{f}_{2}$ and $t\left(\mathfrak{p}_{2}\right)=\mathfrak{p}_{2}$. Let $s_{1}$ be the element in the subgroup of $\operatorname{Int}(\mathrm{g})$ corresponding to $\mathrm{g}_{2}$ such that its restriction on $\mathrm{g}_{2}$ is $t$, and put $s=s_{1} s_{0}$. Then,

$$
\begin{equation*}
s\left(\mathfrak{g}_{1}\right)=\mathfrak{g}_{2}, \quad s\left(\mathfrak{f}_{1}\right)=\mathfrak{f}_{2}, \quad s\left(\mathfrak{p}_{1}\right)=\mathfrak{p}_{2} . \tag{7}
\end{equation*}
$$

On the other hand, one knows that

$$
\begin{equation*}
s=k v \tag{8}
\end{equation*}
$$

where $k$ is a uniquely determined element in $K$ and

$$
v=\exp \operatorname{ad}(X), \quad X \in \mathfrak{p}
$$

By (7) and (8), we have

$$
\begin{equation*}
v\left(\mathfrak{f}_{1}\right) \subset \mathfrak{f}, \quad v\left(\mathfrak{p}_{1}\right) \subset \mathfrak{p} . \tag{9}
\end{equation*}
$$

Putting $v_{1}=\cosh \operatorname{ad}(X)$ and $v_{2}=\sinh \operatorname{ad}(X)$, we have

$$
\begin{array}{ll}
v_{1}\left(\mathfrak{f}_{1}\right) \subset \mathfrak{f}, & v_{1}\left(\mathfrak{p}_{1}\right) \subset \mathfrak{p}, \\
v_{2}\left(\mathfrak{f}_{1}\right) \subset \mathfrak{p}, & v_{2}\left(\mathfrak{p}_{1}\right) \subset \mathfrak{f}, \tag{10}
\end{array}
$$

and $v=v_{1}+v_{2}$. Since $v_{2}\left(\mathfrak{f}_{1}\right)=v_{2}\left(\mathfrak{p}_{1}\right)=0$ by (9) and (10), the subalgebra $g_{1}=\mathfrak{f}_{1}+\mathfrak{p}_{1}$ is contained in the kernel of semi-simple linear transformation $v_{2}=\sinh a d(X)$ whose eigen-values are altogether real, hence also in the kernel of $\operatorname{ad}(X)$. Thus the inner automorphism $v$ acts on $g_{1}$ as the identity, and we see that

$$
s\left(g_{1}\right)=k\left(g_{1}\right)
$$

q. e.d.

Proposition 1. Let $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ and $\mathfrak{g}^{\prime}=\mathfrak{f}^{\prime}+\mathfrak{p}^{\prime}$ be Lie algebras of hermitian types with fixed Cartan decompositions. Suppose that two homomorphisms $\rho_{1}$
and $\rho_{2}$ satisfy $\left(H_{1}\right)$ for same complex structures $H_{0}$ of $(\mathfrak{g}, \mathfrak{f})$ and $H_{0}^{\prime}$ of $\left(\mathfrak{g}^{\prime}, \mathfrak{l}_{1}\right)$. Then $\rho_{1}$ and $\rho_{2}$ are equivalent (in $g^{\prime}$ ) if and only if they are ( $k$ )-equivalent.

Proof. Let $s=k v\left(k \in K^{\prime}, v \in \exp a d\left(p^{\prime}\right)\right)$ be an element of Int ( $g^{\prime}$ ) such that $\rho_{2}=s \circ \rho_{1}$. Clearly, $s\left(\rho_{1}(\mathfrak{f})\right)=\rho_{2}(f) \subset \mathcal{f}^{\prime}$. Then, we can prove by the same way as in the proof of Lemma 1 that $v$ acts on $\rho_{1}(\mathrm{~g})$ as the identity, and we have $\rho_{2}=k \circ \rho_{1}$.
q. e.d.

It is easy to see that the condition $\left(H_{1}\right)$ is invariant under ( $k$ )-equivalence, hence our problem is equivalent to determining all ( $k$ )-equivalence classes of ( $\mathrm{g}, \rho$ ).
1.4. Let $g$ be a Lie algebra of hermitian type, and $\neq$ (fixed) maximal compact subalgebra. It is known that there is a Cartan subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ in f. All such Cartan subalgebras are mutually ( $k$ )-con jugate, and can be regarded as those of $\mathfrak{f}$. We denote by $g_{C}$ and $q_{C}$ the complexifications of $g$ and a vector subspace $\mathfrak{q}$ of it. One knows that the root system $\mathfrak{r}$ of $\mathfrak{g}_{c}$ relative to $\mathfrak{h}_{c}$ is the disjoint union of two subsets $\mathfrak{H}$ and $\mathfrak{v}$ consisting of so-called compact roots and non-compact roots respectively, i. e.

$$
\begin{equation*}
\mathfrak{f}_{C}=\mathfrak{h}_{C}+\sum_{\alpha \in \mathfrak{u}} \mathfrak{g}_{\alpha}, \quad \mathfrak{p}_{C}=\sum_{\alpha \in \mathfrak{b}} \mathfrak{g}_{\alpha}, \tag{11}
\end{equation*}
$$

where $\mathrm{g}_{\alpha}=\left\{X \in \mathfrak{g}_{C} \mid a d(H) X=\alpha(H) X\right.$ for every $\left.H \in \mathfrak{h}_{C}\right\}$ (see e. g. [2]). Moreover, one knows that $\alpha\left(H_{0}\right)=0$ or $\pm \sqrt{-1}$ according as $\alpha \in \mathfrak{t}$ or $\alpha \in \mathfrak{b}$. Put

$$
\begin{equation*}
\mathfrak{v}_{ \pm}=\left\{\alpha \in \mathfrak{r} \mid \alpha\left(H_{0}\right)= \pm \sqrt{-1}\right\} \tag{12}
\end{equation*}
$$

and take an order of $\mathfrak{r}$ so as to make all the roots of $\mathfrak{v}_{+}$positive. Let further $\Pi$ be the fundamental root system w.r.t. this order, and

$$
\begin{equation*}
\Pi=\Pi_{0} \cup \Pi_{1} \cup \cdots \cup \Pi_{d} \tag{13}
\end{equation*}
$$

the decomposition of $\Pi$ into a union of ideals; where $\Pi_{0}$ contains only compact roots, and $\Pi_{i}(1 \leqq i \leqq d)$ has a connected Dynkin diagram in which there is one and only one non-compact positive root. The decomposition (13) corresponds actually to (5). In fact, each $\Pi_{i}(0 \leqq i \leqq d)$ is a fundamental system of roots of the ideal $\mathfrak{g}_{i c}$ of $\mathfrak{g}_{c}$ relative to $\mathfrak{h}_{i C}=\mathfrak{h}_{C} \cap g_{i c}$.

If $\boldsymbol{\Pi}=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{l}\right\}$, we have a basis $H_{1}, \cdots, H_{l}$ of the vector space $\sqrt{-1 \mathfrak{h}}$ over $\boldsymbol{R}$ such that

$$
\begin{equation*}
\alpha_{i}\left(H_{j}\right)=\frac{2\left\langle\alpha_{i}, \alpha_{j}\right\rangle}{\left\langle\alpha_{j}, \alpha_{j}\right\rangle} \tag{14}
\end{equation*}
$$

In other words by the usual identification, $H_{j}=2 \alpha_{j} /\left\langle\alpha_{j}, \alpha_{j}\right\rangle$. In the following §§, we shall also put $H_{\alpha}=2 \alpha /\langle\alpha, \alpha\rangle$ for every root $\alpha \in \mathfrak{r}$, and regard it as an element of $\sqrt{-1} \mathfrak{h}$.

Since $\sqrt{-1^{-1}} H_{0} \in \sqrt{-1} \mathfrak{h}$, we can express it as a linear combination of $H_{1}, \cdots, H_{l}$ with real coefficients. We shall give here such expressions of
$\sqrt{ }-1^{-1} H_{0}$ for all the simple Lie algebras of hermitian types. The element $\alpha_{7}$ in $\Pi$ will always be the unique non-compact simple root, hence $\alpha_{1}\left(\sqrt{-1^{-1}} H_{0}\right)$, $=1$ and $\alpha_{i}\left(\sqrt{-1^{-1}} H_{0}\right)=0(i \geqq 2)$. On the other hand, putting

$$
a_{i j}=\alpha_{i}\left(H_{j}\right), \quad \frac{1}{\sqrt{-1}} H_{0}=\sum_{j=1}^{i} r_{j} H_{j}
$$

we have

$$
\alpha_{i}\left(\frac{1}{\sqrt{ }-1} H_{0}\right)=\sum_{j=1}^{\iota} a_{i j} r_{j} \quad(1 \leqq i \leqq l)
$$

Since the Cartan matrix ( $a_{i j}$ ) is non-singular, this equation in $r_{j}$ can be solved. Now we have the following list:
( $)_{p, q}(1 \leqq p \leqq q): \quad[\mathfrak{f}, \mathfrak{f}] \cong\left(A_{p-1}\right) \times\left(A_{q-1}\right)$.
I:

$\frac{1}{\sqrt{-1}} H_{0}=\frac{1}{p+q}\left(q H_{q+1}+2 q H_{q+2}+\cdots+(p-1) q H_{l}+p q H_{1}+p(q-1) H_{2}+\cdots+p H_{q}\right)$.
$(\mathrm{II})_{p}(p \geqq 5): \quad[\mathfrak{f}, \mathrm{f}] \cong\left(A_{p-1}\right)$.

II:


$$
\frac{1}{\sqrt{ }-1} H_{0}=\frac{1}{4}\left(p H_{1}+2(p-2) H_{2}+2(p-3) H_{3}+\cdots+2 H_{p-1}+(p-2) H_{p}\right) .
$$

$(\mathrm{III})_{p}(p \geqq 2): \quad[\mathfrak{f}, \mathfrak{f}] \cong\left(A_{p-1}\right)$.

## II:



$$
\frac{1}{\sqrt{ }-1} H_{0}=\frac{1}{2}\left(p H_{1}+(p-1) H_{2}+\cdots+2 H_{p-1}+H_{p}\right) .
$$

(IV) $p_{p}(p \geqq 5)$ :
$p=$ odd : $[\mathfrak{f}, \mathfrak{f}] \cong\left(B_{l-1}\right), l=\frac{p+1}{2}$.
$\Pi$ :


$$
\frac{1}{\sqrt{ }-1} H_{0}=\frac{1}{2}\left(2 H_{1}+2 H_{2}+\cdots+2 H_{l-1}+H_{l}\right)
$$

$p=$ even:

$$
[\mathfrak{f}, \mathfrak{f}] \cong\left(D_{l-1}\right), l=\frac{p}{2}+1 .
$$

I:


$$
\frac{1}{\sqrt{-1}} H_{0}=\frac{1}{2}\left(2 H_{1}+\cdots+2 H_{l-2}+H_{l-1}+H_{l}\right) .
$$

(EIII): $[\mathfrak{f}, \mathfrak{f}] \cong\left(D_{5}\right)$.


$$
\frac{1}{\sqrt{-1}} H_{0}=\frac{1}{3}\left(4 H_{1}+5 H_{2}+6 H_{3}+4 H_{4}+2 H_{5}+3 H_{6}\right) .
$$

(EVII): $[\mathfrak{f}, \mathrm{f}] \cong\left(E_{6}\right)$.
$\Pi$ :


$$
\frac{1}{\sqrt{-1}} H_{0}=\frac{1}{2}\left(3 H_{1}+4 H_{2}+5 H_{3}+6 H_{4}+4 H_{5}+2 H_{6}+3 H_{7}\right) .
$$

## § 2. Reduction of the problem.

2.1. Let the notations $\mathfrak{g}, \mathfrak{g}^{\prime}, \cdots, H_{0}, H_{0}^{\prime}$ be as before. The following condition $\left(H_{2}\right)$ about a homomorphism $\rho$ of $\mathfrak{g}$ into $\mathfrak{g}^{\prime}$, which is stronger than $\left(H_{1}\right)$, will play an important rôle for the reduction of our problem :
( $\mathrm{H}_{2}$ )

$$
\rho\left(H_{0}\right)=H_{0}^{\prime} .
$$

Now that all the Cartan subalgebras of $\mathfrak{g}^{\prime}$ in $\mathfrak{q}^{\prime}$ are mutually ( $k$ )-conjugate, any homomorphism satisfying $\left(H_{1}\right)$ must be $(k)$-equivalent to a homomorphism $\rho$ such that

$$
\begin{equation*}
\rho(\mathfrak{h}) \subset \mathfrak{h}^{\prime} . \tag{15}
\end{equation*}
$$

Hence, in the following, we shall always assume without mentioning specifically that a homomorphism $\rho$ satisfying $\left(H_{1}\right)$ or $\left(H_{2}\right)$ also satisfies (15).
2.2. Let $g_{c}$ be a complex semi-simple Lie algebra, $g_{u}$ a compact real form of $g_{c}$. The usual complex conjugation acts on $g_{c}$ by

$$
Z=X+\sqrt{-1} Y \rightarrow \bar{Z}=X-\sqrt{-1} Y \quad\left(X, Y \in g_{u}\right) .
$$

It is well known that, twisting this action in the following manner, we have all (sets of real points of) real forms of $g_{c}$ : if $\tau_{u}$ is an involutive automorphism of $g_{c}$ which preserves $g_{u}$ and if we put

$$
f_{\alpha}=\left\{\begin{array}{l}
1 \quad(a=i d .)  \tag{16}\\
\tau_{u}(a \neq i d .)
\end{array} \quad \text { for } \quad a \in \operatorname{Aut}_{\boldsymbol{R}}(\boldsymbol{C})\right.
$$

we can define another action of $\operatorname{Aut}_{\boldsymbol{R}}(\boldsymbol{C})$ on $g_{C}$ by

$$
\begin{equation*}
[a](X)=f_{a}(\bar{X}) . \tag{17}
\end{equation*}
$$

The set of ' $\boldsymbol{R}$-rational points' $g$ of $g_{c}$ corresponding to this action is usually called a real form of $g_{c}$, and $\sigma=[a]\left(a \neq i d\right.$.) a conjugation of $g_{c}$ w.r.t. g. Let $g_{c}^{\prime}$ be another complex semi-simple Lie algebra with a real form $\mathfrak{g}^{\prime}, \sigma^{\prime}$ the conjugation of $\mathfrak{g}_{c}^{\prime}$ w.r.t. $\mathfrak{g}^{\prime}$. A homomorphism $\rho$ of $\mathfrak{g}_{c}$ into $\mathfrak{g}_{c}^{\prime}$ is defined over $\boldsymbol{R}$, or in other words $\rho$ induces a homomorphism of $g$ into $g^{\prime}$, if and only if

$$
\begin{equation*}
\rho \circ \sigma=\sigma^{\prime} \circ \rho . \tag{18}
\end{equation*}
$$

Suppose that the compact real form $\mathrm{g}_{u}^{\prime}$ of $\mathrm{g}_{c}^{\prime}$ is taken as $\rho\left(\mathrm{g}_{u}\right) \subset \mathrm{g}_{u}^{\prime}$. Then, in view of the relations (16) and (17), the condition (18) is equivalent to

$$
\begin{equation*}
\rho \circ \tau_{u}=\tau_{u}^{\prime} \circ \rho . \tag{19}
\end{equation*}
$$

Now, let $g=f+p$ (resp. $\left.g^{\prime}=f^{\prime}+\mathfrak{p}^{\prime}\right)$ be a Lie algebra of hermitian type with a Cartan decomposition, $H_{0}$ (resp. $H_{0}^{\prime}$ ) a complex structure of (g, f) (resp. ( $\left.\mathfrak{g}^{\prime}, \mathfrak{f}^{\prime}\right)$. Taking the compact duals of $\mathfrak{g}$ and $\mathfrak{g}^{\prime}$ for $g_{u}$ and $\mathfrak{g}_{u}^{\prime}$ respectively, i.e.

$$
\mathfrak{g}_{u}=\mathfrak{f}+\sqrt{-1} \mathfrak{p}, \quad \mathfrak{g}_{u}^{\prime}=\mathfrak{f}^{\prime}+\sqrt{-1} \mathfrak{p}^{\prime},
$$

we can see that the conjugations of $g_{c}$ and $\mathfrak{g}_{c}^{\prime}$ w.r.t. $\mathfrak{g}$ and $\mathfrak{g}^{\prime}$ are defined as above by

$$
\begin{equation*}
\tau_{u}=\exp \pi a d_{o}\left(H_{0}\right) \quad \text { and } \quad \tau_{u}^{\prime}=\exp \pi a d_{c}\left(H_{0}^{\prime}\right) \tag{20}
\end{equation*}
$$

respectively, where $a d_{C}$ denotes the adjoint representations of the complex Lie algebras $g_{c}$ and $g_{c}^{\prime}$. If $\rho$ is a homorphism of $g_{c}$ into $g_{c}^{\prime}$ such that $\rho\left(g_{u}\right)$ $\subset g_{u}^{\prime}$ and that

$$
\begin{equation*}
\rho \circ a d_{C}\left(H_{0}\right)=a d_{c}\left(H_{0}^{\prime}\right) \circ \rho, \tag{21}
\end{equation*}
$$

it satifies the condition (19), hence also (18), Then the image of $g$ by $\rho$ is in $g^{\prime}$, and according to (21) the restriction of $\rho$ to $g$ satisfies ( $H_{1}$ ). Conversely, if $\rho$ is a homomorphism of $\mathfrak{g}$ into $g^{\prime}$ satisfying $\left(H_{1}\right)$, its extension to that of $g_{C}$ into $g_{c}^{\prime}$ carries $g_{u}$ into $g_{u}^{\prime}$ and has the property (21). Thus we have proved the following

Proposition 2. Let $\mathfrak{g}$ and $\mathfrak{g}^{\prime}$ be of hermitian type. Then a homomorphism $\rho$ of $\mathfrak{g}_{c}$ into $\mathfrak{g}_{c}^{\prime}$ induces one of $\mathfrak{g}$ into $\mathfrak{g}^{\prime}$ satisfying $\left(H_{1}\right)\left(\right.$ resp. $\left.\left(H_{2}\right)\right)$ if and only if $\rho\left(\mathrm{g}_{u}\right) \subset \mathrm{g}_{u}^{\prime}$ and $\rho \circ a d_{0}\left(H_{0}\right)=a d_{0}\left(H_{0}^{\prime}\right) \circ \rho$ (resp. $\rho\left(H_{0}\right)=H_{0}^{\prime}$ ), where $\mathrm{g}_{u}$ (resp. $\mathrm{g}_{u}^{\prime}$ ) denotes the compact dual of $g$ (resp. $\mathrm{g}^{\prime}$ ).
2.3. In this paragraph, we shall define a certain type of subalgebras of a Lie algebra of hermitian type.

Let the notations be as in 1.4. A subset $\Delta$ of the root system $\mathfrak{r}$ is called by Dynkin a $\Pi$-system if it has the following properties:
(i) If $\alpha=\Delta$ and $\beta \in \Delta, \alpha-\beta$ is not in $\mathfrak{r}$.
(ii) $\Delta$ is a linearly independent system in $\sqrt{-1} h$.

If $\Delta$ is a $\Pi$-system, the subset $g_{c}(\Delta)$ of $g_{c}$ defined by

$$
\begin{equation*}
g_{c}(\Delta)=\sum_{\alpha \in \boldsymbol{A}} \boldsymbol{C} H_{\alpha}+\sum_{\alpha \in \mathfrak{r}(\boldsymbol{A})} \mathrm{g}_{\alpha} ; \quad \mathfrak{r}(\boldsymbol{\Delta})=\left(\sum_{\alpha \in \boldsymbol{A}} \boldsymbol{Z} \alpha\right) \cap \mathfrak{r}, \tag{22}
\end{equation*}
$$

is a regular semi-simple subalgebra of $g_{C} ; \mathfrak{r}(\Delta)$ can be considered as the root system of $g_{c}(\Delta)$ relative to the Cartan subalgebra $\sum_{\alpha \in \Delta} \boldsymbol{C} H_{\alpha}$, in which the $\Pi$ system $\Delta$ forms a simple root system ([1], Chap. II).

A II-system, however, will be needed in this paper, only when it has moreover the following property:
(iii) Each connected component of the Dynkin diagram of $\Delta$ contains at most one positive non-compact root besides compact roots.

Therefore we shall say that a subset $\Delta$ of $\mathfrak{r}$ is a $\Pi$-system if it has the property (iii) in addition to (i) and (ii).

Proposition 3. Let $\Delta$ be a $\Pi$-system in $\mathfrak{r}$. Then the regular subalgebra $\mathrm{g}_{c}(\Delta)$ of $\mathrm{g}_{c}$ is defined over $\boldsymbol{R}$ whose real form $\mathrm{g}(\Delta)=g_{c}(\Delta) \cap \mathrm{g}$ is a Lie algebra of hermitian type, and there is a unique complex structure of $(g(\Delta), f(\Delta))$ by which the injection of $\mathfrak{g}(\Delta)$ into $\mathfrak{g}$ satisfies $\left(H_{1}\right)$, where $\mathfrak{f}(\Delta)=g(\Delta) \cap \mathfrak{f}$.

Proof. Let $\Delta=\Delta_{0} \cup \Delta_{1} \cup \cdots \cup \Delta_{d}$ be the decomposition of $\Delta$ into a disjoint union, where $\Delta_{0}$ contains only compact roots, and $\Delta_{i}=\left\{\gamma, \beta_{1}, \cdots, \beta_{t}\right\} \quad(1 \leqq i \leqq d)$ has a connected Dynkin diagram, in which $\gamma$ denotes the unique positive noncompact root. Then all the roots in $\mathfrak{r}\left(\Delta_{i}\right)(\subset \mathfrak{r})$ are of the form

$$
\begin{equation*}
\pm\left(\gamma+\sum_{j=1}^{t} c_{j} \beta_{j}\right) \in \mathfrak{v}_{ \pm} \quad \text { or } \quad \pm \sum_{j=1}^{t} d_{j} \beta_{j} \in \mathfrak{u} \tag{23}
\end{equation*}
$$

where $c_{j}$ and $d_{j}$ are non-negative integers. Define an element $H_{0 i}$ of $\mathrm{g}_{c}\left(\Delta_{i}\right)$ by

$$
\begin{equation*}
\frac{1}{\sqrt{-1}} \gamma\left(H_{0 i}\right)=1, \quad \frac{1}{\sqrt{-1}} \beta_{j}\left(H_{0 i}\right)=0 \quad(1 \leqq j \leqq t), \tag{24}
\end{equation*}
$$

and an element $H_{0 \Delta}$ of $g_{c}(\Delta)$ by

$$
\begin{equation*}
H_{04}=\sum_{i=1}^{d} H_{0 i} . \tag{25}
\end{equation*}
$$

In view of (12), (23), (24), and (25), we have

$$
\begin{equation*}
\alpha\left(H_{0 \Lambda}\right)=\alpha\left(H_{0}\right) \quad \text { for } \quad \alpha \in \mathfrak{r}(\Delta) . \tag{26}
\end{equation*}
$$

Now, let $\mathrm{g}_{u}(\Delta)$ be a compact real form of $\mathrm{g}_{c}(\Delta)$ contained in $\mathrm{g}_{u}$, i. e.

$$
\mathrm{g}_{u}(\Delta)=\mathrm{g}_{c}(\Delta) \cap \mathrm{g}_{u}
$$

The equations (24) and (25) show that $H_{0 \Delta}$ is an element of the center of the intersection $\mathfrak{f}(\Delta)$ of $g_{u}(\Delta)$ and $\mathfrak{f}$, and that the inner automorphism $\tau_{u \Delta}$ of $g_{c}(\Delta)$ defined by

$$
\tau_{u d}=\exp \pi a d_{C}\left(H_{0 \Delta}\right)
$$

is involutive and keeps $g_{u}(\Delta)$ invariant. The real form $g(\Delta)$ of $g_{c}(\Delta)$ defined by $\tau_{u s}$ is a Lie algebra of hermitian type, in which $f(\Delta)$ is a maximal compact subalgebra, and $H_{0 \Delta}$ is a complex structure of $(g(\Delta), f(\Delta))$. Since the equation (26) means that the injection $c$ of $g_{c}(\Delta)$ into $g_{C}$ satisfies

$$
\iota \circ a d_{c}\left(H_{04}\right)=a d_{c}\left(H_{0}\right) \circ \iota,
$$

the proposition follows from Proposition 2, q.e.d.
A subalgebra of a Lie algebra $g$ of hermitian type will also be called in the following a regular subalgebra (of $\mathfrak{g}$ ), if it is a real form $g(\Delta)$ of a regular semi-simple subalgebra $g_{c}(\Delta)$ of $g_{c}$, as defined in Proposition 3 for a $\Pi$-system $\Delta$ in our sense. Two regular subalgebras $g_{1}$ and $g_{2}$ of $g$ (w.r.t. the fixed Cartan subalgebra) will be called ( $k$ )-equivalent if they are ( $k$ )-conjugate. (Note that our definition of a regular subalgebra depends on the choice of a Cartan subalgebra in f.)
2.4. In this paragraph, we shall give a condition of $(k)$-equivalence between regular subalgebras of a Lie algebra of hermitian type.

Let $\mathfrak{g}$ be a Lie algebra of hermitian type. Let further $\mathfrak{f}, \mathfrak{h}, \mathfrak{r}$, and $\Pi$ be same things as in 1.4, $K$ the subgroup of $\operatorname{Int}(g)$ corresponding to $\AA$. The subgroup $W_{K}$ of the Weyl group of $g_{c}$ generated by all 'reflections' associated to compact roots can be considered as the Weyl group of the reductive Lie algebra $\mathfrak{f}$ : a reflection $w_{\beta}$ (in the dual vector space of $\sqrt{-1} \mathfrak{h}$ ) associated to a root $\beta$ is defined by

$$
\begin{equation*}
w_{\beta}(\alpha)=\alpha-\alpha\left(H_{\beta}\right) \beta \quad(\alpha \in \mathfrak{r}) . \tag{27}
\end{equation*}
$$

One knows that $W_{B}$ is isomorphic to the quotient group of the normalizer $N_{K}(\mathfrak{h})$ of $\mathfrak{h}$ in $K$ by the centralizer $Z_{K}(\mathfrak{h})$ of $\mathfrak{h}$ in $K$. Now that an element of $W_{K}$ carries a compact root to a compact root, positive non-compact root to a positive non-compact root respectively, every image of a $\Pi$-system by it must be also a $\Pi$-system.

Now we shall show the following
Theorem 1. Let $\mathfrak{g}$ be a Lie algebra of hermitian type, $\mathfrak{f}$ a maximal compact subalgebra of $\mathfrak{g}, \mathfrak{h}$ a Cartan subalgebra of $\mathfrak{g}$ in $\mathfrak{q}$. Take an order of the root system $\mathfrak{r}$ of $\mathfrak{g}_{c}$ relative to $\mathfrak{h}_{c}$ w.r.t. a complex structure of $(\mathfrak{g}, \mathfrak{f})$, and let $\Delta_{1}, \Delta_{2}$ be $\Pi$ systems in $\mathfrak{r}$ w.r.t. this order. Then the regular subalgebras $\mathfrak{g}\left(\Lambda_{1}\right)$ and $\mathfrak{g}\left(\Delta_{2}\right)$ of g are conjugate in g , if and only if there is an element $w$ of the Weyl group $W_{K}$ of $\mathfrak{\text { such that }} \Delta_{2}=w\left(\Delta_{1}\right)$.

By Lemma 1, it is easy to see that two regular subalgebras are mutually conjugate if and only if they are ( $k$ )-equivalent.

To begin with, we establish some lemmas.
Lemma 2. Two subalgebras $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ of $\mathfrak{g}$ contained in $\mathfrak{h}$ are ( $k$ )-conjugate, if and only if there is an element $k$ of $N_{K}(\mathfrak{G})$ such that $\mathfrak{h}_{2}=k\left(\mathfrak{h}_{1}\right)$.

Proof. Suppose that $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ are ( $k$ )-conjugate, and let $k$ be an element of $K$ such that $\mathfrak{g}_{2}=k\left(\mathfrak{h}_{1}\right)$. Then we have another Cartan subalgebra $\mathfrak{h}^{*}=k(\mathfrak{h})$ of $\mathfrak{f}$, and $\mathfrak{h}_{2}$ is contained in $\mathfrak{G} \cap \mathfrak{b}^{*}$. The normalizer of $\mathfrak{h} \cap \mathfrak{h}^{*}$ in $\mathfrak{f}$ is a direct sum

$$
\begin{equation*}
\mathfrak{n}_{\mathfrak{t}}\left(\mathfrak{h} \cap \mathfrak{b}^{*}\right)=\mathfrak{a}+\mathfrak{f}_{0} \tag{28}
\end{equation*}
$$

of an abelian subalgebra $a$ and a compact semi-simple subalgebra $f_{0}$. The Cartan subalgebras $\mathfrak{h}$ and $\mathfrak{h}^{*}$ are clearly in $\mathfrak{n}_{\mathfrak{t}}\left(\mathfrak{h} \cap \mathfrak{h}^{*}\right)$, hence there are Cartan subalgebras $\mathfrak{Y}_{0}$ and $\mathfrak{\xi}_{0}^{*}$ of $\mathfrak{f}_{0}$ such that

$$
\begin{equation*}
\mathfrak{h}=\mathfrak{a}+\mathfrak{h}_{0}, \quad \mathfrak{b}^{*}=\mathfrak{a}+\mathfrak{b}_{0}^{*} . \tag{29}
\end{equation*}
$$

Since all Cartan subalgebras of a compact semi-simple Lie algebra are mutually conjugate, there is an element $k_{1}$ of a subgroup of $\operatorname{Int}(\mathrm{g})$ corresponding to $f_{0}$ such that

$$
\begin{equation*}
k_{1}\left(\mathfrak{h}_{0}^{*}\right)=\mathfrak{h}_{0}, \quad k_{1}=i d . \quad \text { on } a, \quad k_{1} \mid \mathfrak{f}_{0} \in \operatorname{Int}\left(\mathfrak{f}_{0}\right) . \tag{30}
\end{equation*}
$$

Since the intersection $\mathfrak{h} \cap \mathfrak{h}^{*}$ is contained in $\mathfrak{a}$, the automorphism $k_{1}$ preserves each element of $\mathfrak{h}_{2}$. Therefore the composition $k_{1} k$ is an element of $N_{K}(\mathfrak{h})$ (by (29) and (30)), which maps $\mathfrak{h}_{1}$ onto $\mathfrak{H}_{2}$, q.e.d.

Lemma 3. Let $\mathfrak{g}$ be a non-compact simple Lie algebra of hermitian type, $\mathfrak{F}^{\circ}$ a maximal compact subalgebra of $\mathfrak{g}$, and let $\mathfrak{h}$ be a Cartan subalgebra of $\mathfrak{g}$ contained in $\mathfrak{f}$. Take an order of the root system of $g_{c}$ relative to $\mathfrak{h}_{c}$ as above for a fixed complex structure of ( $\mathfrak{g}, \mathfrak{f}$ ). Then for each fundamental system $\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{l-1}\right\}$ of compact roots of $\mathfrak{g}_{C}$, there is a uniquely determined positive non-compact root $\gamma$ such that $\left\{\gamma, \beta_{1}, \cdots, \beta_{l-1}\right\}$ becomes a fundamental root system of $\mathrm{g}_{\mathrm{c}}$.

Proof. Let $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{l}\right\}$ be the simple root system of $g_{C}$ w.r.t. the fixed order, in which $\alpha_{1}$ is the simple non-compact root. Then $\left\{\alpha_{2}, \alpha_{3}, \cdots, \alpha_{l}\right\}$ becomes a fundamental system of compact roots, hence there is an element $w$ of $W_{B}$ such that $w\left(\left\{\alpha_{i}\right\}\right)=\left\{\beta_{j}\right\}$. Thus we have a positive non-compact root $\gamma=w\left(\alpha_{1}\right)$, which is required. Suppose that we get another positive non-compact root $\gamma_{1}$ such that $\left\{\gamma_{1}, \beta_{1}, \cdots, \beta_{l-1}\right\}$ becomes a fundamental root system. Then it is easy to see that the following equations should be held:

$$
\gamma_{1}=\gamma+\sum_{i=1}^{l-1} c_{i} \beta_{i}, \quad \gamma=\gamma_{1}+\sum_{j=1}^{l-1} d_{j} \beta_{j}
$$

where $c_{i}, d_{j}$ are all non-negative integers. But since $\beta_{1}, \cdots, \beta_{l-1}$ are linearly
independent, we can see at once

$$
\begin{aligned}
& c_{i}=d_{i}=0, \quad \text { and hence } \\
& \gamma_{1}=\gamma,
\end{aligned} \quad \text { q.e. d. }
$$

Proof of Theorem 1. Suppose that there is an element $w \in W_{K}$, such that $\Delta_{2}=w\left(\Delta_{1}\right)$. Then we have an element $k$ of $N_{K}(\mathfrak{h})$ such that

$$
\begin{equation*}
k\left(\frac{1}{\sqrt{ }-1} H_{\alpha}\right)=\frac{1}{\sqrt{ }-1} H_{w(\alpha)} \quad(\alpha \in \mathfrak{x}) \tag{31}
\end{equation*}
$$

Extending $k$ linearly to $\mathfrak{g}_{C}$, we can see that $k\left(\mathfrak{g}_{\alpha}\right)=\mathfrak{g}_{w(\alpha)}$, where $\mathfrak{g}_{\alpha}$ (resp. $\mathfrak{g}_{w(\alpha)}$ ) is the eigen space of the adjoint representation belonging to a root $\alpha$ (resp. $w(\alpha))$. Thus we have

$$
\begin{equation*}
k\left(g_{c}\left(\Delta_{1}\right)\right)=g_{c}\left(\Delta_{2}\right) \tag{32}
\end{equation*}
$$

Since $k$ preserves $\mathfrak{g}$, (32) means that $\mathfrak{g}\left(\Delta_{2}\right)=k\left(g\left(\Delta_{1}\right)\right)$. Conversely, let $\mathfrak{g}\left(\Delta_{1}\right)$ and $\mathfrak{g}\left(\Delta_{2}\right)$ be conjugate in $g$. Then they are ( $k$ )-equivalent, i.e. there is an element $k$ of $K$ such that $k\left(g\left(\Delta_{1}\right)\right)$ is equal to $g\left(\Delta_{2}\right)$. Let $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ be the Cartan subalgebras of $g\left(\Delta_{1}\right)$ and $g\left(\Delta_{2}\right)$ generated by $\left\{\sqrt{-1^{-1}} H_{\alpha}: \alpha \in \Delta_{i}\right\}$ and $\left\{\sqrt{-1}^{-1} H_{\alpha}\right.$ : $\left.\alpha \in \Delta_{2}\right\}$ respectively; both of them are contained in $\mathfrak{h}$. Then $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ are ( $k$ )-conjugate, since $k\left(\mathfrak{h}_{1}\right)$ is, as well as $\mathfrak{h}_{2}$, a Cartan subalgebra of $g\left(\Delta_{2}\right)$ contained in $\mathfrak{f}\left(\Delta_{2}\right)$. Hence, by Lemma 2, there is an element $k_{0}$ of $N_{K}(\mathfrak{h})$ such that $\mathfrak{h}_{2}$ $=k_{0}\left(\mathfrak{h}_{1}\right)$. Taking $w_{0}$ in $W_{K}$ which corresponds to $k_{0}$ modulo $Z_{R}(\mathfrak{G})$, we have $k_{0}\left(H_{\alpha}\right)=H_{w_{0}(\alpha)}$ for all $\alpha \in \mathfrak{r}$; in particular,

$$
\begin{equation*}
w_{0}\left(\mathfrak{r}\left(\Delta_{1}\right)\right)=\mathfrak{r}\left(\Delta_{2}\right) \tag{33}
\end{equation*}
$$

Therefore we have another fundamental system $w_{0}\left(\Delta_{1}\right)$ of $\mathfrak{r}\left(\Delta_{2}\right)$ besides $\Delta_{2}$. Using Lemma 3, it is easy to see that there is an element $w$ in the subgroup of $W_{K}$ generated by $w_{\beta}$ where $\beta$ runs over all compact roots in $\Delta_{2}$, such that $w w_{0}\left(\Delta_{1}\right)=\Delta_{2}$, q. e. d.
2.5. The following theorem corresponds to the Proposition 1 in [4], when the Lie algebra $g^{\prime}$ in our problem is (III) $p_{p}$. It will give a reduction of our problem.

THEOREM 2. Let $\mathfrak{g}$ and $\mathrm{g}^{\prime}$ be Lie algebras of hermitian type, $\mathfrak{f}^{\neq}$and $\mathfrak{f}^{\prime \prime}$ maximal compact subalgebras of g and $\mathrm{g}^{\prime}$, and let $H_{0}$ and $H_{0}^{\prime}$ be complex structures of $(\mathfrak{g}, \mathfrak{f})$ and $\left(\mathfrak{g}^{\prime}, \mathfrak{l}^{\prime}\right)$ respectively. Let further $\rho$ be a homomorphism of $\mathfrak{g}$ into $\mathrm{g}^{\prime}$ satisfying $\left(H_{1}\right)$ w.r.t. $H_{0}$ and $H_{0}^{\prime}$. Then there is a regular subalgebra $\mathfrak{g}^{\prime \prime}$ of $\mathfrak{g}^{\prime}$ such that the image $\rho(\mathfrak{g})$ is contained in $\mathfrak{g}^{\prime \prime}$ and that $\rho: \mathfrak{g} \rightarrow \mathfrak{g}^{\prime \prime}$ satis fies $\left(H_{2}\right)$ with respect to $H_{0}$ and the natural complex structure of $\left(g^{\prime \prime}, \mathfrak{l}^{\prime \prime}\right)$ defined by $H_{0}^{\prime}$. In particular, $\mathfrak{g}^{\prime \prime}$ can be taken as a proper subalgebra if $\rho: \mathfrak{g} \rightarrow \mathfrak{g}^{\prime}$ does not satisfies $\left(H_{2}\right)$.

Proof. The condition $\left(H_{1}\right)$ implies that the image $\rho(\mathrm{g})$ is contained in the
centralizer $\mathfrak{g}_{1}$ of $H_{0}^{\prime}-\rho\left(H_{0}\right)$ in $\mathfrak{g}^{\prime}$. Clearly $\mathfrak{g}_{1}=\mathfrak{g}^{\prime}$, if and only if $\rho$ satisfies $\left(H_{2}\right)$. Let $\mathfrak{r}^{\prime}$ be the root system of $\mathfrak{g}_{c}^{\prime}$ relative to $\mathfrak{g}_{c}^{\prime}$, and $\mathfrak{r}^{\prime \prime}$ the subset of $\mathfrak{r}^{\prime}$ consisting of roots such as

$$
\begin{equation*}
\alpha^{\prime}\left(H_{0}^{\prime}-\rho\left(H_{0}\right)\right)=0 . \tag{34}
\end{equation*}
$$

It is easily seen that $\mathfrak{r}^{\prime \prime}$ is a subsystem of $\mathfrak{r}^{\prime}$, and

$$
\mathfrak{g}_{1 c}=\mathfrak{h}_{c}^{\prime}+\sum_{\alpha^{\prime} \in \mathfrak{x}^{\prime \prime}} \mathfrak{g}_{\alpha^{\prime}}^{\prime}, \quad \mathfrak{g}_{1}=\mathfrak{g}_{1 C} \cap \mathfrak{g}
$$

where $\mathfrak{g}_{\alpha}^{\prime}$, is the eigen space of the adjoint representation of $\mathfrak{H}_{c}^{\prime}$ belonging to $\alpha^{\prime} \in \mathfrak{r}^{\prime}$. Let $\mathfrak{g}^{\prime \prime}$ denote the semi-simple part of $\mathfrak{g}_{1}$, and put $H_{0}^{\prime \prime}=\rho\left(H_{0}^{\prime}\right)$. The image $\rho(\mathrm{g})$ is semi-simple, so that $\rho(\mathfrak{g}) \subset \mathfrak{g}^{\prime \prime}$. Since $\mathfrak{r}^{\prime \prime}$ can be considered as the root system of $\mathfrak{g}_{c}^{\prime \prime}$ relative to the Cartan subalgebra $\mathfrak{G}_{c}^{\prime \prime}=\mathfrak{g}_{c}^{\prime \prime}=\cap \mathfrak{h}_{c}^{\prime}$, the subalgebra $g_{u}^{\prime \prime}=g_{c}^{\prime \prime} \cap g_{u}^{\prime}$ is a compact real form of $g_{c}^{\prime \prime}$. The equation (34) implies that $H_{0}^{\prime \prime}$ is an element of the center of $\mathfrak{l}^{\prime \prime}=\mathrm{g}_{o}^{\prime \prime} \cap \mathfrak{f}^{\prime}=\mathrm{g}^{\prime \prime} \cap \mathfrak{g}_{u}^{\prime \prime}$, and that the inner automorphism $\tau^{\prime \prime}$ of $\mathrm{g}^{\prime \prime}$ defined by

$$
\tau^{\prime \prime}=\exp \pi a d\left(H_{0}^{\prime \prime}\right)
$$

is the restriction of the Cartan involution $\tau^{\prime}$ of ( $g^{\prime}, \mathfrak{f}^{\prime}$ ) to $\mathrm{g}^{\prime \prime}$. Hence $\tau^{\prime \prime}$ is a Cartan involution of $\mathfrak{g}^{\prime \prime}$, and $\mathfrak{q}^{\prime \prime}$ is the maximal compact subalgebra of $\mathfrak{g}^{\prime \prime}$ defined by $\tau^{\prime \prime}$ which contains $\mathfrak{h}^{\prime \prime}=\mathfrak{h}_{c}^{\prime \prime} \cap \mathfrak{g}^{\prime \prime}$. Therefore the subalgebra $\mathfrak{g}^{\prime \prime}$ is of hermitian type, and $H_{0}^{\prime \prime}$ is the complex structure of ( $\left.g^{\prime \prime}, \mathfrak{f}^{\prime \prime}\right)$ by which the homomorphism $\rho: \mathfrak{g} \rightarrow \mathfrak{g}^{\prime \prime}$ and the injection: $\mathfrak{g}^{\prime \prime} \rightarrow \mathfrak{g}^{\prime}$ satisfy $\left(H_{2}\right)$ and ( $H_{1}$ ) respectively. Moreover the equation (34) also implies that a compact (resp. non-compact) root of $g_{c}^{\prime \prime}$ relative to $\mathfrak{h}_{c}^{\prime \prime}$ is (the restriction to $\mathfrak{h}_{c}^{\prime \prime}$ of) a compact (resp. noncompact) root in $\mathfrak{r}^{\prime}$. Hence a simple root system of $\mathfrak{r}^{\prime \prime}$ w.r.t. a suitable order (by which a root $\alpha^{\prime} \in \mathfrak{r}^{\prime \prime}$ satisfying $\alpha^{\prime}\left(H_{0}^{\prime \prime}\right)=\sqrt{-1}$ is positive) is a $\Pi$-system, q. e. d.
2.6. In virtue of Theorem 2, our study of the problem can be divided generally into two steps: the first is to determine all ( $k$ )-equivalence classes of regular subalgebras of a given Lie algebra $g^{\prime}$ of hermitian type; the second is to find out, for a fixed regular subalgebra $g^{\prime \prime}$ of $g^{\prime}$, all equivalence classes of pairs ( $\mathfrak{g}, \rho$ ) of a Lie algebra of hermitian type and a homomorphism of $\mathfrak{g}$ into $\mathrm{g}^{\prime \prime}$ satisfying $\left(H_{2}\right)$.

Now, we make here a little more reductions. When we say that $\rho$ is a homomorphism of $\mathfrak{g}$ into $\mathfrak{g}^{\prime}$ satisfying ( $H_{1}$ ), we always assume that $H_{0}$ and $H_{0}^{\prime}$, complex structures of ( $\mathfrak{g}, \mathfrak{f}$ ) and ( $\mathfrak{g}^{\prime}, \mathfrak{f}^{\prime}$ ) respectively, are given, where ${ }^{f}$ (resp. $\mathfrak{f}^{\prime}$ ) is a maximal compact subalgebra of $g$ (resp. $g^{\prime}$ ). In the first place,

We may consider only the case $\mathrm{g}^{\prime}$ is simple.
In fact, if $\mathrm{g}^{\prime}$ is a direct sum

$$
\mathrm{g}^{\prime}=\sum_{i=1}^{d^{\prime}} \mathrm{g}_{i}^{\prime}
$$

of simple ideals $g_{i}^{\prime}$, we have a projection $\rho_{i}$ of $\rho$ and $H_{0 i}^{\prime}$ of $H_{0}^{\prime}$ on $g_{i}^{\prime}$; it is clear that $H_{0 i}^{\prime}$ is a complex structure of ( $\mathfrak{g}_{i}, \mathfrak{f}_{i}^{\prime}$ ) $\left(\mathfrak{f}_{i}^{\prime}=\mathfrak{f}^{\prime} \cap \mathfrak{g}_{i}^{\prime}\right)$, and that the homomorphism $\rho_{i}$ of $\mathfrak{g}$ into $g^{\prime}$ satisfies $\left(H_{1}\right)$. If $\rho$ satisfies $\left(H_{2}\right)$, each $\rho_{i}$ satisfies also $\left(H_{2}\right)$. It is easy to see that two homomorphisms $\rho^{(1)}$ and $\rho^{(2)}$ of $g$ into $g^{\prime}$ satisfying $\left(H_{1}\right)$ are ( $k$ )-equivalent, if and only if the projections $\rho_{i}^{(1)}$ and $\rho_{i}^{(2)}$ of them on $g_{i}^{\prime}$ are ( $k$ )-equivalent in $g_{i}^{\prime}$ for all $i$.

Secondly, suppose that $\rho: \mathfrak{g} \rightarrow \mathfrak{g}^{\prime}$ satisfies the stronger condition ( $H_{2}$ ), and that g is a direct sum of simple ideals $g_{i}(1 \leqq i \leqq d)$. By the above remark, we may assume again that $g^{\prime}$ is simple. Let $\rho_{(i)}$ be the restriction of $\rho$ to $g_{i}$, and $H_{0 i}$ the projection of $H_{0}$ on $g_{i}$. The restriction $\rho_{(i)}$ is a homomorphism of $\mathfrak{g}_{i}$ into $\mathfrak{g}^{\prime}$ satisfying ( $H_{1}$ ) w. r.t. $H_{0 i}$ and $H_{0}^{\prime}$. Since $g_{i}$ 's are simple, some of $\rho_{(i)}$ 's are injective and others are trivial. Let $\rho_{(1)}, \cdots, \rho_{(e)}(e \leqq d)$ be injective. Then

$$
\rho_{(1)} \oplus \cdots \oplus \rho_{(e)}: \quad \mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{e} \rightarrow \mathfrak{g}^{\prime}
$$

is a homomorphism satisfying $\left(H_{2}\right)$. If one of $\rho_{(i)}$ 's satisfies $\left(H_{2}\right)$, say $\rho_{(1)}\left(H_{01}\right)$ $=H_{0}^{\prime}$, it is easy to see by injectivity that $H_{02}, \cdots, H_{0 e}$ are equal to zero, i. e. $\mathfrak{g}_{2}, \cdots, \mathfrak{g}_{e}$ are compact. On the other hand, if non of $\rho_{(i)}$ 's satisfies $\left(H_{2}\right)$, we see from Theorem 2 that each $\rho_{(i)}$ maps $g_{i}$ into a proper regular subalgebra $\boldsymbol{g}_{i}^{\prime}$ of $\mathrm{g}^{\prime}$ satisfying $\left(H_{2}\right)$. We can see that $\left[\mathrm{g}_{i}^{\prime}, \mathrm{g}_{j}^{\prime}\right]=0$ if $i \neq j^{11}$. Even if $\mathrm{g}_{i}^{\prime}$ is not simple, we can again apply the above consideration. If $g$ is compact and if $\rho$ satisfies ( $H_{2}$ ), $g^{\prime}$ must obviously be compact.

Thus our problem has been reduced to the following three:
a) Determine all ( $k$ )-equivalence classes of regular subalgebras of each non-compact simple Lie algebra of hermitian type.
b) Find out, for each non-compact simple Lie algebra $\mathfrak{g}^{\prime}$ of hermitian type, all $(k)$-equivalence classes of pairs $(g, \rho)$ of a simple Lie algebra of hermitian type and a homomorphism of $\mathfrak{g}$ into $\mathfrak{g}^{\prime}$ satisfying $\left(H_{2}\right)$.
c) Let $\mathfrak{g}_{1}^{\prime}$ and $\mathfrak{g}_{2}^{\prime}$ be non-compact simple regular subalgebras of simple $\mathfrak{g}^{\prime}, \rho_{1}$ and $\rho_{2}$ representatives of ( $k$ )-equivalence classes of homomorphisms of a simple Lie algebra $g$ of hermitian type into $g_{1}^{\prime}$ and $g_{2}^{\prime}$ satisfying ( $H_{2}$ ) respectively. Examine whether $\iota_{1} \circ \rho_{1}$ and $\iota_{2} \circ \rho_{2}$ are $(k)$-equivalent in $g^{\prime}$, where $c_{i}$ is the injection of $\mathfrak{g}_{i}^{\prime}$ into $\mathrm{g}^{\prime}(i=1,2)$.

The solutions to the problem a) will be given in §4. The problem b) is already solved by Satake in [4] (if the results in it and our certain solutions for a) are combined) when $\mathfrak{g}^{\prime}$ is (I) $)_{p, q}$ (II) $)_{p}$, or (III) $)_{p}$; while for the remaining cases that $g^{\prime}$ is (IV) $)_{p}$, (EIII), or (EVII), it will be done in $\S 5$ of this paper. We shall never describe in this paper the solutions to $c$ ), because they would depend too much on the respective circumstances. But, for each case specified, it will be not difficult to carry it out by applying Theorem 3 in $\S 3$.

1) Proof of this property will be given elsewhere.

Example. There is a regular subalgebra $\mathrm{g}^{\prime \prime}$ of type (IV) $)_{2 l-2}$ in $\mathrm{g}^{\prime}=(\mathrm{IV})_{2 l-1}$. Take this $\mathfrak{g}^{\prime \prime}$ for both of $g_{1}^{\prime}$ and $g_{2}^{\prime}$ in $c$ ). If $g=(I V)_{2 l-2}$, there are two ( $k$ )equivalence classes of homomorphisms of $\mathfrak{g}$ into $\mathfrak{g}^{\prime \prime}$ satisfying $\left(H_{2}\right)$ (see 5.1). Let $\rho_{1}$ and $\rho_{2}$ be their representatives. Then we can see that $\iota \circ \rho_{1}$ and $\iota 0 \rho_{2}$ are equivalent in $\mathfrak{g}^{\prime}$. On the other hand, there is also a regular subalgebra $\mathfrak{g}^{\prime \prime}$ of type $(\mathrm{IV})_{8}(l=5)$ in $\mathrm{g}^{\prime}=(\mathrm{EIII})$. But, in this case, we can see that $1 \circ \rho_{1}$ and ८o $\rho_{2}$ are not equivalent in $g^{\prime}$. Hence we have two classes of homomorphisms of (IV) $)_{8}$ into (EIII) satisfying ( $H_{1}$ ).

## § 3. Some properties of homomorphisms of Lie algebras.

In this section, we prove some propositions which will be needed in $\S 5$. Throughout this section, $\rho$ denotes always (the complexification of) a monomorphism of $\mathfrak{g}$ into $\mathfrak{g}^{\prime}$ satisfying ( $H_{1}$ ), where both $\mathfrak{g}$ and $\mathfrak{g}^{\prime}$ are non-compact simple Lie algebras of hermitian types; hence we may assume moreover the property (15). Other notations are the same as those used before. Especially,

$$
H_{\alpha}=\frac{2 \alpha}{\langle\alpha, \alpha\rangle} \in \sqrt{-1} \mathfrak{h}(\alpha \in \mathfrak{r}), \quad H_{i}=H_{\alpha_{i}} ;
$$

the root $\alpha_{1}$ means always the non-compact simple root. All these notations are used with prime for $g^{\prime}$.

Recall that there are at most two sorts of the length of roots for each simple Lie algebra $g_{c}$. A root of the maximal (resp. minimal) length will be called simply a longer (resp. shorter) root. Let $\alpha$ (resp. $\beta$ ) be a longer (resp. shorter) root. Then, if a non-compact real form $g$ of $g_{c}$ is of hermitian type, one knows that

$$
\frac{\langle\alpha, \alpha\rangle}{\langle\beta, \beta\rangle}=\frac{\left\langle H_{\beta}, H_{\beta}\right\rangle}{\left\langle H_{\alpha}, H_{\alpha}\right\rangle}=\left\{\begin{array}{l}
2\left(\mathrm{~g}=(\mathrm{III})_{p},(\mathrm{IV})_{2 n+1}\right), \\
1 \text { (others). }
\end{array}\right.
$$

3.1. Let $\phi$ and $\phi^{\prime}$ be the Killing forms of $g_{C}$ and $g_{C}^{\prime}$ respectively. Since $\phi^{\prime}(\rho(X), \rho(Y))\left(X, Y \in g_{C}\right)$ is again an invariant non-degenerate bilinear form of simple Lie algebra $g_{c}$, there is a constant $c_{\rho}$ depending only on $\rho$ such that

$$
\phi^{\prime}(\rho(X), \rho(Y))=c_{\rho} \phi(X, Y) .
$$

Therefore we have

$$
\begin{equation*}
\langle\rho(X), \rho(Y)\rangle^{\prime}=c_{\rho}\langle X, Y\rangle \quad(X, Y \in \sqrt{-1 \mathfrak{h}}) . \tag{35}
\end{equation*}
$$

Now, since $H_{1}^{\prime}, \cdots, H_{l^{\prime}}^{\prime}$ forms a basis of $\sqrt{-1} \mathfrak{h}^{\prime}$, we can put

$$
\begin{equation*}
\rho\left(H_{i}\right)=\sum_{j=1}^{l^{\prime}} \mu_{j}^{(i)} H_{j}^{\prime} . \tag{36}
\end{equation*}
$$

Proposition 4. All the coefficients $\mu_{j}^{(i)}$ of the equation (36) are rational integers. In particular, if $\rho$ satisfies $\left(H_{2}\right)$,

$$
\mu_{1}^{(i)}=0 \quad \text { for } \quad i \geqq 2 .
$$

Proof. Let $\lambda_{j}^{\prime}$ be the dominant weight defined by $\lambda_{j}^{\prime}\left(H_{k}^{\prime}\right)=\delta_{j k}$, the usual Kronecker's delta. Then we have

$$
\begin{equation*}
\lambda_{j}^{\prime} \circ \rho\left(H_{i}\right)=\mu_{j}^{(j)} . \tag{37}
\end{equation*}
$$

If $\Lambda_{j}$ is the irreducible representation of $g_{c}^{\prime}$ defined by $\lambda_{j}^{\prime}$, the linear form $\lambda_{j}^{\prime} \circ \rho$ on $\mathfrak{K}_{c}$ is a weight of the representation $\Lambda_{j} \circ \rho$ of $\mathfrak{g}_{c}$ relative to $\mathfrak{h}_{c}$. Therefore the equation (37) implies that $\mu_{j}^{(i)}$ 's must be rational integers. If $i \geqq 2$ (resp. $j \geqq 2$ ), $\alpha_{i}$ (resp. $\alpha_{j}^{\prime}$ ) is a compact root ; hence we have $\alpha_{i}\left(H_{0}\right)=0$ (resp. $\alpha_{j}^{\prime}\left(H_{0}^{\prime}\right)=0$ ), or equivalent to saying $\left\langle H_{i}, \sqrt{-1} H_{0}\right\rangle=0$ (resp. $\left\langle H_{j}^{\prime}, \sqrt{ }-1 H_{0}^{\prime}\right\rangle^{\prime}=0$ ). If $\rho$ satisfies $\left(H_{2}\right)$, we have therefore

$$
\begin{aligned}
\mu_{1}^{(i)} & =\left\langle\rho\left(H_{i}\right), \sqrt{-1} H_{0}^{\prime}\right\rangle^{\prime}=\left\langle\rho\left(H_{i}\right), \sqrt{-1} \rho\left(H_{0}\right)\right\rangle^{\prime} \\
& =c_{\rho}\left\langle H_{i}, \sqrt{-1} H_{0}\right\rangle=0,
\end{aligned} \quad \text { q.e.d. } \quad \text {. }
$$

3.2. A root $\alpha$ is said to be strongly orthogonal to another root $\beta$, if $\alpha \pm \beta$ are not roots. A subset $S$ of the root system $\mathfrak{r}$ of $g_{c}$ relative to $\mathfrak{H}_{c}$ is called a strongly orthogonal system of roots, if any root in $S$ is strongly orthogonal to all the other roots in $S$. Each connected component of a strongly orthogonal system contains only one root, so it is a $\Pi$-system (in our sense). One knows that there is a strongly orthogonal system $\Delta_{0}$ consisting of positive non-compact roots $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{r}$, where $r$ is the dimension of a maximal abelian subalgebra contained in $\mathfrak{p}$ of $\mathfrak{g}$. The dimension $r$ is called the rank of the pair ( $\mathfrak{g}, \mathfrak{f}$ ). The regular subalgebra $\mathfrak{g}\left(\Delta_{0}\right)$ is isomorphic to a direct sum of $r$-copies of 3dimensional Lie algebras of type ( $\mathrm{I}_{1,1}$; hence, in view of Proposition 3, we have a monomorphism

$$
\kappa:(\underbrace{\left(\mathrm{I}_{1,1}+\cdots+(\mathrm{I})_{1,1}\right.}_{r \text {-copies }} \longrightarrow \mathrm{g}
$$

satisfying ( $H_{1}$ ), called a Hermann map (see [5]).
One knows that all the roots in $\Delta_{0}$ are longer roots; $\gamma_{1}$ may be considered as the non-compact simple root $\alpha_{1}$, and $\gamma_{r}$ the highest root $\gamma$. We denote by $\gamma_{j}^{\prime}, r^{\prime}, \Delta_{0}^{\prime}, \cdots$ the similar things belonging to $g^{\prime}$.

In the rest of this paper, we shall denote by $E_{\alpha}$ a basis of $\mathfrak{g}_{\alpha}$ for each root $\alpha$ of $g_{c}$ (and similarly by $E_{\alpha^{\prime}}^{\prime}$ for $\alpha^{\prime}$ of $g_{c}^{\prime}$ ) such that

$$
\begin{equation*}
\bar{E}_{\alpha}=-E_{-\alpha}, \quad\left[E_{\alpha}, E_{-\alpha}\right]=H_{\alpha}, \tag{38}
\end{equation*}
$$

where - denotes the conjugation of $g_{c}$ w.r.t. the compact dual $g_{u}$ of $\mathfrak{g}$ (see e.g. [2], pp. 219-221). Then we get a basis of $\mathrm{g}_{u}$ :

$$
\sqrt{-1} H_{i}(1 \leqq i \leqq l), \quad E_{\alpha}-E_{-\alpha}, \sqrt{-1}\left(E_{\alpha}+E_{-\alpha}\right) \quad(\alpha \in \mathfrak{r}) .
$$

Since $\mathfrak{g}_{u}$ is the compact dual of $\mathfrak{g}$, a basis of $\mathfrak{p}$ is given by $\sqrt{-1}\left(E_{r}-E_{-r}\right)$, $E_{\gamma}+E_{-r}$, where $\gamma$ runs over all positive non-compact roots.

Proposition 5. The homomorphism $\rho$ satisfying $\left(H_{1}\right)$ can be modified by an element of $K^{\prime}$ preserving the condition (15) in such a way that there is a subset $S(\gamma)$ of $\Delta_{0}^{\prime}$ for every $\gamma \in \Delta_{0}$ such that

$$
\begin{equation*}
\rho\left(H_{r}\right)=\sum_{r^{\prime} \in S(\gamma)} H_{r^{\prime}}^{\prime}, \quad \rho\left(E_{r}\right)=\sum_{r^{\prime} \in S(r)} E_{r^{\prime}}^{\prime}, \quad \rho\left(E_{-r}\right)=\sum_{r^{\prime} \in S(\gamma)} E_{-r^{\prime}}^{\prime} \tag{39}
\end{equation*}
$$

Proof. (Cf. Satake [5], Proposition 3.) Put $X_{r}=E_{\gamma}+E_{-r}, X_{\gamma^{\prime}}^{\prime}=E_{\gamma^{\prime}}^{\prime}+E_{-r \prime}$. Then one knows that $\left\{X_{\gamma}: \gamma \in \Delta_{0}\right\}$ (resp. $\left\{X_{\gamma^{\prime}}^{\prime}: \gamma^{\prime} \in \Delta_{0}^{\prime}\right\}$ ) spans a maximal abelian subalgebra $\mathfrak{a}$ (resp. $\mathfrak{a}^{\prime}$ ) in $\mathfrak{p}$ (resp. $\mathfrak{p}^{\prime}$ ). Let $\mathfrak{b}$ (resp. $\mathfrak{b}^{\prime}$ ) be the centralizer of $\mathfrak{a}$ (resp. $\mathfrak{a}^{\prime}$ ) in $\mathfrak{h}$ (resp. $\mathfrak{h}^{\prime}$ ). Then we get Cartan subalgebras $\mathfrak{H}_{0}=\mathfrak{b}+\mathfrak{a}$ and $\mathfrak{H}_{0}^{\prime}=\mathfrak{b}^{\prime}$ $+\mathfrak{a}^{\prime}$ of $\mathfrak{g}$ and $\mathfrak{g}^{\prime}$ respectively, and direct sum decompositions

$$
\begin{aligned}
& \mathfrak{h}=\mathfrak{b}+\left[a d\left(H_{0}\right) \mathfrak{a}, \mathfrak{a}\right]=\mathfrak{b}+\mathfrak{a}_{1}, \\
& \mathfrak{h}^{\prime}=\mathfrak{b}^{\prime}+\left[a d\left(H_{0}\right) \mathfrak{a}^{\prime}, \mathfrak{a}^{\prime}\right]=\mathfrak{b}^{\prime}+\mathfrak{a}_{1}^{\prime},
\end{aligned}
$$

to the mutually orthogonal subspaces of $\mathfrak{h}$ and $\mathfrak{h}^{\prime}$ respectively w.r.t. the Killing form. Since all the maximal abelian subalgebras in $\mathfrak{p}^{\prime}$ are ( $k$ )-conjugate to $a^{\prime}$, there is an element $k_{1}$ of $K^{\prime}$ such that $k_{1} \circ \rho(a) \subset a^{\prime}$. As $\rho$ satisfies $\left(H_{1}\right)$, it is easy to see that $k_{1} \circ \rho\left(\mathfrak{a}_{1}\right) \subset \mathfrak{a}_{1}^{\prime}$. Let $\mathfrak{h}_{0}^{\prime \prime}=\mathfrak{b}^{\prime \prime}+\mathfrak{a}^{\prime}$ be another Cartan subalgebra of $g^{\prime}$ which is conjugate to $\mathfrak{h}_{0}^{\prime}$ and contains $k_{1} \circ \rho\left(\mathfrak{h}_{0}\right)$; hence clearly $k_{1} \circ \rho(\mathfrak{b}) \subset \mathfrak{b}^{\prime \prime}$. One knows ([6], §1, Proposition 5) that there is an element $k_{2}$ of $K^{\prime}$ such that

$$
k_{2}(X)=X \quad \text { for all } \quad X \in \mathfrak{a},
$$

and

$$
k_{2}\left(\mathfrak{b}^{\prime \prime}\right)=\mathfrak{b}^{\prime}
$$

Clearly $\left(k_{2} k_{1}\right) \circ \rho(\mathfrak{h}) \subset \mathfrak{h}^{\prime}$ and $\left(k_{2} k_{1}\right) \circ \rho(\mathfrak{a}) \subset \mathfrak{a}^{\prime}$. Therefore we may assume that $\rho(\mathfrak{h}) \subset \mathfrak{h}^{\prime}$ and $\rho(\mathfrak{a}) \subset \mathfrak{a}^{\prime}$. Now, let $\gamma$ be a root in $\Delta_{0}$. Then we can write

$$
\rho\left(X_{r}\right)=\sum_{r^{\prime} \in \Delta_{d_{0}^{\prime}}} \kappa_{r^{\prime}} X_{\gamma^{\prime}}^{\prime}, \quad \kappa_{r^{\prime}} \in \boldsymbol{R}
$$

Since $\rho$ satisfies $\left(H_{1}\right), \sqrt{-1}$-eigenspace of $a d\left(H_{0}\right) \mid \mathfrak{p}_{C}$ is carried by $\rho$ to $\sqrt{-1}$ -eigenspace of $\operatorname{ad}\left(H_{0}^{\prime}\right) \mid \mathfrak{p}_{C}^{\prime}$; hence we have

$$
\rho\left(E_{\gamma}\right)=\sum_{r^{\prime} \in \Delta_{0^{\prime}}} \kappa_{r^{\prime}} E_{r^{\prime}}^{\prime}, \quad \rho\left(E_{-r}\right)=\sum_{r^{\prime} \in \Delta_{0^{\prime}}} \kappa_{\gamma^{\prime}} E_{-\gamma^{\prime}}^{\prime}
$$

The relation $\left[E_{r}, E_{-r}\right]=H_{r}$ implies that $\rho\left(H_{r}\right)=\Sigma\left|\kappa_{r^{\prime}}\right|^{2} H_{r}^{\prime}$, and hence the relation $\left[H_{r}, E_{r}\right]=2 E_{\gamma}$ implies $\left|\kappa_{\gamma^{\prime}}\right|^{2}=1$ if $\kappa_{\gamma^{\prime}} \neq 0$. Putting $S(\gamma)=\left\{\gamma^{\prime} \in \Delta_{0}^{\prime} \mid \kappa_{\gamma,}\right.$ $\neq 0\}$, we have therefore

$$
\rho\left(H_{r}\right)=\sum_{r^{\prime} \in S(\gamma)} H_{r^{\prime}}^{\prime}, \quad \rho\left(E_{ \pm r}\right)=\sum_{r^{\prime} \in S(\gamma)} \kappa_{r^{\prime}} E_{ \pm \gamma^{\prime}}^{\prime}, \quad \kappa_{r^{\prime}}= \pm 1
$$

Since $S(\gamma)$ forms a linearly independent system in $\sqrt{-1} \mathfrak{h}^{\prime}$, we can find an element $H^{\prime}$ of $\sqrt{-1} \mathfrak{h}^{\prime}$ such that $\gamma^{\prime}\left(H^{\prime}\right)=\pi\left(\left|\kappa_{\gamma^{\prime}}\right|-\kappa_{\gamma^{\prime}}\right) / 2$ for all $\gamma^{\prime} \in S(\gamma)$. Then the inner automorphism $h=\exp a d\left(\sqrt{-1} H^{\prime}\right)$ of $g^{\prime}$ is contained in $K^{\prime}$ and keeps
every element of $\mathfrak{h}^{\prime}$ invariant; the homomorphism $h \circ \rho$ is what we are looking for, q.e.d.

Hence, in the following, we assume that $\rho$ satisfies also (39) for all $\gamma \in \Delta_{0}$.
3.3. For the non-compact simple root $\gamma_{1}=\alpha_{1}$, we shall denote in the following by $S(1)$ the subset $S\left(\gamma_{1}\right)$ of $\Delta_{0}^{\prime}$ given in Proposition 5. By the equation (35), $S\left(\gamma_{i}\right)$ and $S\left(\gamma_{j}\right)$ are disjoint if $i \neq j$. On the other hand, every element $\gamma$ in $\Delta_{0}$ is transposed to $\alpha_{1}$ by a suitable element of $W_{R}$, hence it is easy to see that the number of elements of $S(\gamma)$ is equal to that of $S(1)$ which will be denoted in the following by $m_{\rho}$. The number $m_{\rho}$ depends only on the $(k)$ equivalence class containing $\rho$. Clearly,

$$
\begin{equation*}
m_{\rho} r \leqq r^{\prime} \tag{40}
\end{equation*}
$$

Proposition 6. i) The positive integer $m_{\rho}$ is equal to the coefficient $\mu_{1}^{(1)}$ in the equation (36).
ii) Put

$$
\begin{equation*}
\delta=\left\langle H_{1}, H_{1}\right\rangle, \quad \delta^{\prime}=\left\langle H_{1}^{\prime}, H_{1}^{\prime}\right\rangle^{\prime} \tag{41}
\end{equation*}
$$

Then $c_{\rho}=m_{\rho} \delta^{\prime} / \delta$, or in other words,

$$
\begin{equation*}
\left(1 / \delta^{\prime}\right)\langle\rho(X), \rho(Y)\rangle^{\prime}=\left(m_{\rho} / \delta\right)\langle X, Y\rangle \quad(X, Y \in \sqrt{-1} \mathfrak{h}) \tag{42}
\end{equation*}
$$

iii) Let $H_{0}=\sqrt{-1} \sum a_{i} H_{i}$ and $H_{0}^{\prime}=\sqrt{-1} \sum a_{j}^{\prime} H_{j}^{\prime}$ be the expression as in 1.4 of the given complex structures. Suppose $\rho$ satisfies the stronger condition ( $H_{2}$ ). Then $m_{\rho}=a_{1}^{\prime} / a_{1}$.

Proof. Every positive non-compact root $\gamma^{\prime}$ is of the form

$$
\gamma^{\prime}=\alpha_{1}^{\prime}+\sum_{j=2}^{u} c_{j} \alpha_{j}^{\prime}
$$

If $\gamma^{\prime}$ is in $\Delta_{0}^{\prime}$, it is a longer root ; accordingly, we see that

$$
H_{\gamma^{\prime}}^{\prime}=H_{1}^{\prime}+\sum_{j=2}^{l^{\prime}} d_{j} H_{j}^{\prime}
$$

Therefore the property i) follows from Proposition 5. The property iii) follows from i) easily. For ii), we see from (35) and (39) that

$$
\begin{aligned}
\left\langle\rho\left(H_{1}\right), \rho\left(H_{1}\right)\right\rangle^{\prime} & =c_{\rho}\left\langle H_{1}, H_{1}\right\rangle \\
& =\sum_{\gamma^{\prime} \in S(1)}\left\langle H_{\gamma^{\prime}}^{\prime}, H_{\gamma^{\prime}}^{\prime}\right\rangle^{\prime}=m_{\rho}\left\langle H_{1}^{\prime}, H_{1}^{\prime}\right\rangle^{\prime}
\end{aligned}
$$

hence if follows that $c_{\rho}=m_{\rho} \delta^{\prime} / \delta$, q. e. d.
3.4. PROPOSITION 7. Suppose $m_{\rho}$ is equal to 1 , and let $\alpha$ be a longer root of $g_{c}$. Then there is a root $\alpha^{\prime}$ of $g_{C}^{\prime}$ such that $\rho\left(H_{\alpha}\right)=H_{\alpha^{\prime}}^{\prime}, \rho\left(E_{\alpha}\right)=\kappa_{\alpha^{\prime}} E_{\alpha^{\prime}}^{\prime}$, $\rho\left(E_{-\alpha}\right)=\bar{\kappa}_{\alpha^{\prime}} E_{-\alpha^{\prime}}^{\prime},\left|\kappa_{\alpha^{\prime}}\right|=1$. The root $\alpha^{\prime}$ is compact or positive non-compact according as the root $\alpha$ is.

Proof. Put $\rho\left(E_{\alpha}\right)=\sum \kappa_{\alpha^{\prime}} E_{\alpha^{\prime}}^{\prime}$. Since $\left[H_{\alpha}, E_{\alpha}\right]=2 E_{\alpha}$, we have $\alpha^{\prime}\left(\rho\left(H_{\alpha}\right)\right)=2$
if $\kappa_{\alpha^{\prime}} \neq 0$, and so

$$
\begin{equation*}
\left\langle H^{\prime}, \rho\left(H_{\alpha}\right)\right\rangle^{\prime}=\left\langle H^{\prime}, H^{\prime}\right\rangle^{\prime} \quad \text { where } \quad H^{\prime}=H_{\alpha^{\prime}}^{\prime} . \tag{43}
\end{equation*}
$$

On the other hand, from the Schwartz inequality, it follows that

$$
\begin{equation*}
\left\langle H^{\prime}, \rho\left(H_{\alpha}\right)\right\rangle^{\prime 2} \leqq\left\langle H^{\prime}, H^{\prime}\right\rangle^{\prime} \cdot\left\langle\rho\left(H_{\alpha}\right), \rho\left(H_{\alpha}\right)\right\rangle^{\prime} \tag{44}
\end{equation*}
$$

where the equality holds if and only if $\rho\left(H_{\alpha}\right)$ is a scalar multiple of $H^{\prime}$. If $m_{\rho}=1$ and $\alpha$ is a longer root, it follows from (43), (44), and (42) that $\left(1 / \delta^{\prime}\right)\left\langle H^{\prime}, H^{\prime}\right\rangle^{\prime} \leqq(1 / \delta)\left\langle H_{\alpha}, H_{\alpha}\right\rangle=1$. As $\alpha_{1}^{\prime}$ is a longer root,

$$
\frac{1}{\delta^{\prime}}\left\langle H^{\prime}, H^{\prime}\right\rangle^{\prime}=\frac{\left\langle\alpha_{1}^{\prime}, \alpha_{1}^{\prime}\right\rangle^{\prime}}{\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle^{\prime}}=1
$$

Therefore the equality should be hold. Hence, again by (43), we have $\rho\left(H_{\alpha}\right)$ $=H_{\alpha^{\prime}}^{\prime}$, and so $\rho\left(E_{\alpha}\right)=\kappa_{\alpha^{\prime}} E_{\alpha^{\prime}}^{\prime}$. Now that $\rho$ satisfies $\left(H_{1}\right)$, it must also satisfy $\rho\left(g_{u}\right) \subset g_{u}^{\prime}$, i. e. $\rho(\bar{X})=\overline{\rho(X)}\left(X \in g_{c}\right)$, where - denotes both of the conjugations of $g_{c}$ and $g_{c}^{\prime}$ w.r.t. $g_{u}$ and $g_{u}^{\prime}$ respectively. Thus, from (38), we see that

$$
\rho\left(E_{-\alpha}\right)=\bar{\kappa}_{\alpha^{\prime}} E_{-\alpha^{\prime}}^{\prime}, \quad\left|\kappa_{\alpha^{\prime}}\right|=1
$$

The remaining part of the proposition is clear, q.e.d.
Corollary. If g is not of type (III) $)_{p}$ or (IV) $2_{2 l^{\prime}-1}$ and if $m_{\rho}=1$, then the image $\rho(\mathrm{g})$ is a regular subalgebra of $\mathfrak{g}^{\prime}$. Let $\beta_{i}^{\prime}$ be the root corresponding to the simple root $\alpha_{i}$. Then $\rho$ is ( $k$ )-equivalent to $\rho_{0}$ defined by

$$
\begin{equation*}
\rho_{0}\left(H_{i}\right)=H_{\beta i^{\prime}}^{\prime}, \quad \rho_{0}\left(E_{ \pm \alpha_{i}}\right)=E_{ \pm \beta_{i^{\prime}}}^{\prime} \tag{45}
\end{equation*}
$$

Proof. The first part is a direct consequence from Proposition 7. In view of the proof of the proposition, we may put

$$
\rho\left(E_{\alpha_{i}}\right)=e^{\sqrt{-1}} \theta_{i} E_{\beta_{i^{\prime}}}^{\prime}, \quad 0 \leqq \theta_{i}<2 \pi(1 \leqq i \leqq l) .
$$

Since $\beta_{1}^{\prime}, \cdots, \beta_{l}^{\prime}$ are linealy independent, there is an element $H^{\prime}$ of $\sqrt{-1} h^{\prime}$ such that $\beta_{i}^{\prime}\left(H^{\prime}\right)=-\theta_{i}$. Then we have

$$
\rho_{0}=\exp a d\left(\sqrt{-1} H^{\prime}\right) \circ \rho,
$$

3.5. Two homomorphisms $\rho_{1}$ and $\rho_{2}$ of a complex semi-simple Lie algebra $g_{c}$ into another $g_{C}^{\prime}$ are said to be L-equivalent, if $\Lambda \circ \rho_{1}$ and $\Lambda \circ \rho_{2}$ are equivalent representations of $g_{c}$ for any representation $\Lambda$ of $g_{c}^{\prime}$. It is known that, if $g_{c}^{\prime}$ is of type (A), (B), or (C), two $L$-equivalent homomorphisms of $\mathfrak{g}_{C}$ into $g_{C}^{\prime}$ are equivalent in $g_{c}^{\prime}$ (Dynkin [1], Chap. I).

Proposition 8. Let $\mathrm{g}^{\prime}$ be of type (I) $)_{p, q}$, (II) $)_{p}$, (III) $)_{p}$, or (IV) $)_{2 l-1}$. Let $\rho_{1}$ and $\rho_{2}$ be two homomorphisms of a non-compact simple Lie algebra g of hermitian type into $g^{\prime}$ satisfying $\left(H_{2}\right)$. Then, if $\rho_{1}$ and $\rho_{2}$ coincide on the fixed Cartan subalgebra of $\mathfrak{g}$; $\rho_{1}$ and $\rho_{2}$ are ( $k$ )-equivalent.

Proof. We denote the complexifications of $\rho_{1}$ and $\rho_{2}$ by the same notations respectively. By the assumption, we have $\rho_{1}\left|\mathfrak{h}_{c}=\rho_{2}\right| \mathfrak{h}_{c}$. Then $\rho_{1}$ and $\rho_{2}$ are
$L$-equivalent homomorphisms of $\mathfrak{g}_{C}$ into $g_{C}^{\prime}([1]$, Chap. I, Theorem 1.1), so they are equivalent if $g_{c}^{\prime} \neq(\mathrm{II})_{p}$. Suppose $\mathrm{g}^{\prime} \neq(\mathrm{II})_{p}$. Then there is an inner automorphism $s \in \operatorname{Int}\left(g_{c}^{\prime}\right)$ such that $\rho_{2}=s \circ \rho_{1}$. Since $\rho_{i}\left(\mathrm{~g}_{u}\right) \subset \mathrm{g}_{u}^{\prime}(i=1,2)$, we may assume that $s$ is in $\operatorname{Int}\left(\mathrm{g}_{u}\right)$ (cf. Lemma $1 ; \mathrm{g}_{u}$ and $\mathrm{g}_{u}^{\prime}$ are maximal compact subalgebras of semi-simple Lie algebras $g_{C}$ and $g_{C}^{\prime}$ considered over $R$ ). As $\rho_{1}$ and $\rho_{2}$ satisfy $\left(H_{2}\right)$, it follows that $s\left(H_{0}^{\prime}\right)=H_{0}^{\prime}$. In fact,

$$
H_{0}^{\prime}=\rho_{2}\left(H_{0}\right)=s \circ \rho_{1}\left(H_{0}\right)=s\left(H_{0}^{\prime}\right)
$$

Therefore it follows from Proposition 2 that $s\left(\mathfrak{g}^{\prime}\right)=\mathfrak{g}^{\prime}$; so the restriction of $s$ to $\mathrm{g}^{\prime}$ gives an inner automorphism of $\mathrm{g}^{\prime}$. Hence it follows from Proposition 1 that $\rho_{1}$ and $\rho_{2}$ are ( $k$ )-equivalent in $\mathfrak{g}^{\prime}$. Now, let $\mathfrak{g}^{\prime}$ be of type (II) $)_{p}$. It is known that there is an automorphism $a$ of $\mathfrak{g}_{c}^{\prime}$ such as $\rho_{2}=a \circ \rho_{1}$ ([1], Chap. I, $\S 1$, NO. 5). As above, it is easy to see that $a$ can be taken as an automorphism of $g_{u}^{\prime}$, and that $a\left(H_{0}^{\prime}\right)=H_{0}^{\prime}$. Therefore $a$ induces an automorphism on $\mathfrak{g}$. On the other hand, it is well known that $a \bmod \operatorname{Int}\left(\mathrm{~g}_{c}^{\prime}\right)$ corresponds to an automorphism $\omega$ of the Dynkin diagram. Now that $a\left(H_{0}^{\prime}\right)=H_{0}^{\prime}, \omega$ must keep $\alpha_{1}^{\prime}$ invariant. Hence $\omega$ is the identity : in fact, an automorphism of the Dynkin diagram of $g_{c}^{\prime}$ is either the identity or that giving the permutation between $\alpha_{1}^{\prime}$ and $\alpha_{p}^{\prime}$. Therefore $a$ must be inner, q.e.d.

REMARK. This proposition is also proved in [4] for the case $\mathrm{g}^{\prime}=(\mathrm{I})_{p, q}$, (II) $)_{p}$, and (III) $)_{p}$ (p. 439 Lemma 2).

The following proposition seems to hold good more generally, but the author does not know a general proof (for the case $m_{\rho}=1$, see the corollary to Proposition 7).

Proposition 9. Let $\mathrm{g}^{\prime}$ be of type (IV) $)_{p}$, (EIII), or (EVII), and $\rho$ a homomorphism of $\mathfrak{g}$ into $\mathfrak{g}^{\prime}$ satisfying $\left(H_{2}\right)$, where $\mathfrak{g}$ is a non-compact simple Lie algebra of hermitian type. Then, modifying by ( $k$ )-equivalence, $\rho$ can be determined by the following equations:

$$
\begin{equation*}
\rho\left(H_{i}\right)=\sum_{\alpha^{\prime} \in S(i)} H_{\alpha^{\prime}}^{\prime}, \quad \rho\left(E_{ \pm \alpha_{i}}\right)=\sum_{\alpha^{\prime} \in S(i)} E_{ \pm \alpha^{\prime}}^{\prime} \tag{46}
\end{equation*}
$$

where $S(1)$ is a subset of $\Delta_{0}^{\prime}, S(i)(i \geqq 2)$ a strongly orthogonal system of compact roots, which is uniquely determined up to $W_{K^{\prime}}$-equivalence for each fixed $S(1)$.

Proof (Verifications of some properties in it are reserved to $\S 5$ ). In view of Proposition 5, we can modify $\rho$ so as to satisfy

$$
\rho\left(H_{1}\right)=\sum_{\alpha^{\prime} \in S(1)} H_{\alpha^{\prime}}^{\prime}, \quad \rho\left(E_{ \pm \alpha_{1}}\right)=\sum_{\alpha^{\prime} \in S(1)} E_{ \pm \alpha^{\prime}}^{\prime} .
$$

For a fixed $S(1)$ in every case, we shall get in $\S 5$ uniquely determined $W_{K^{\prime}}$ class of strongly orthogonal system $S(i)$ of compact roots for each index $i$ such that $\rho\left(H_{i}\right)=\sum_{\alpha^{\prime} \in \mathcal{S}(i)} H_{\alpha^{\prime}}^{\prime}$. Put $\rho\left(E_{\alpha_{i}}\right)=\Sigma \kappa_{\alpha^{\prime}}^{(i)} E_{\alpha^{\prime}}^{\prime}$. Then, in view of (38), it is easy to see that $\rho\left(E_{-\alpha_{i}}\right)=\Sigma \overline{\kappa_{\alpha^{\prime}}^{(i)}} E_{-\alpha^{\prime}}^{\prime}$. From the equation

$$
\alpha_{i}\left(H_{j}\right) \rho\left(E_{\alpha_{i}}\right)=\left[\rho\left(H_{j}\right), \rho\left(E_{\alpha_{i}}\right)\right]=\sum \kappa_{\alpha^{\prime}}^{(i)} \alpha^{\prime}\left(\rho\left(H_{j}\right)\right) E_{\alpha^{\prime}}^{\prime},
$$

it follows that, if $\kappa_{\alpha^{\prime}}^{(i)} \neq 0$,

$$
\begin{equation*}
\alpha^{\prime}\left(\rho\left(H_{i}\right)\right)=2, \quad \alpha^{\prime}\left(\rho\left(H_{j}\right)\right)=\alpha_{i}\left(H_{j}\right) \tag{47}
\end{equation*}
$$

We shall see in $\S 5$ for every case that the set of compact roots satisfying (47) coincides with $S(i)$. Then, from the relation $\left[E_{\alpha_{i}}, E_{-\alpha_{i}}\right]=H_{i}$, we have

$$
\begin{gathered}
\rho\left(E_{\alpha_{i}}\right)={\underset{\alpha^{\prime} \in S(i)}{ } \sum_{\alpha^{\prime}} E_{\alpha^{\prime}}^{\prime}, \quad \rho\left(E_{-\alpha_{i}}\right)=\sum_{\alpha^{\prime} \leq S S(i)} \overline{\kappa_{\alpha^{\prime}}} E_{-\alpha^{\prime}}^{\prime},}_{\kappa_{\alpha^{\prime}}=e^{\sqrt{ }-1} \theta_{\alpha^{\prime}},}, \quad 0 \leqq \theta_{\alpha^{\prime}}<2 \pi .
\end{gathered}
$$

It will be easily seen (in §5) that the union of $S(i)(1 \leqq i \leqq l)$ forms a linearly independent system in $\sqrt{-1} \mathfrak{h}^{\prime}$. Therefore there is an element $H^{\prime}$ of $\sqrt{-1} \mathfrak{h}^{\prime}$ such as $\alpha^{\prime}\left(H^{\prime}\right)=-\theta_{\alpha^{\prime}}\left(\alpha^{\prime} \in S(i), 1 \leqq i \leqq l\right)$. The inner automorphism $h=$ $\exp a d\left(\sqrt{-1} H^{\prime}\right)$ of $\mathrm{g}^{\prime}$ is contained in $K^{\prime}$; if it is extended linearly to the automorphism of $g_{c}^{\prime}$, it keeps every element of $\sqrt{-1} \mathfrak{h}$ invariant, and $h\left(E_{\alpha^{\prime}}^{\prime}\right)$ $=e^{-\sqrt{-1} \theta \alpha^{\prime}} E_{\alpha^{\prime}}^{\prime}$. Therefore the homomorphism $h \circ \rho$, instead of $\rho$, satisfies clearly all the relations in (46), q. e. d.

Theorem 3. Let $\mathfrak{g}$ and $\mathfrak{g}^{\prime}$ be non-compact simple Lie algebras of hermitian types. Let $\rho_{1}$ and $\rho_{2}$ be homomorphisms of g into $\mathrm{g}^{\prime}$ satisfying $\left(H_{2}\right)$ and (15), Let further $\Theta_{i}$ be the restriction of $\rho_{i}$ onto the fixed Cartan subalgebra $\mathfrak{h}$ of g. Then $\rho_{1}$ and $\rho_{2}$ are ( $k$ )-equivalent if and only if there is an element $k$ of $N_{K^{\prime}}\left(\mathfrak{G}^{\prime}\right)$ such as $\Theta_{2}=k \circ \Theta_{1}$.

Proof. Firstly, suppose there is $k \in N_{K^{\prime}}\left(\mathfrak{h}^{\prime}\right)$ such that $\Theta_{2}=k \circ \Theta_{1}$. Then, from Proposition 8 and 9 , it follows easily that $\rho_{2}$ and $k \circ \rho_{1}$ are ( $k$ )-equivalent, so that $\rho_{1}$ and $\rho_{2}$ are. Conversely, let $\rho_{1}$ and $\rho_{2}$ be (k)-equivalent: $\rho_{2}=k_{1} \circ \rho_{1}$, $k_{1} \in K^{\prime}$. Putting $\mathfrak{h}^{*}=k_{1}\left(\mathfrak{h}^{\prime}\right)$, we can find an element $k_{2}$ of $K^{\prime}$, by the same way as the proof of Lemma 2 , such that the restriction of it to $\rho_{2}(\mathfrak{h})=k_{1} \circ \rho_{1}(\mathfrak{h})$ is the identity and that $k_{2}\left(\mathfrak{h}^{*}\right)=\mathfrak{h}^{\prime}$. Clearly the element $k=k_{2} k_{1}$ of $K^{\prime}$ normalizes the Cartan subalgebra $\mathfrak{h}^{\prime}$, and we have $\Theta_{2}=k \circ \Theta_{1}$, q. e.d.

## § 4. Determination of regular subalgebras.

In this section, we shall determine all regular subalgebras of each noncompact simple Lie algebra $\mathfrak{g}$ of hermitian type. But actually, it is sufficient to find all proper maximal regular subalgebras (i.e. proper subalgebras which are maximal among regular subalgebras) of all simple $\mathfrak{g}$, because others are determined automatically. In fact, if a regular subalgebra $g_{1}$ of $g$ is contained in another regular subalgebra $g_{2}$ of $g$, we may consider by definition $g_{1}$ to be a regular subalgebra of $\mathfrak{g}_{2}$. Especially, the injection $\ell_{1}$ of $g_{1}$ into $g$ satisfies $\left(H_{2}\right)$ if and only if both $c_{1}: g_{1} \rightarrow g_{2}$ and $c_{2}: g_{2} \rightarrow \mathfrak{g}$ satisfy $\left(H_{2}\right)$.

Moreover, we have only to determine all $W_{K}$-equivalence classes of maxima! $\Pi$-systems because of Proposition 3 and Theorem 1.

We shall refer freely the following known facts:
i) All positive non-compact roots of a same length are mutually permutable by translations of $W_{K}$.
ii) The highest root $\gamma$ is a positive non-compact root, and has the maximal length.
iii) Let $\Delta_{i}$ be a system obtained from the extended fundamental system $\{\Pi,-\gamma\}$ (i. e. the union of the simple root system $\Pi$ and the lowest root $-\gamma$ ) by omitting a compact simple root $\alpha_{i}$, and by replacing all elements $\alpha$ in $\langle-\gamma\rangle$ by $-\alpha$, where $\langle-\gamma\rangle$ denotes the connected component which contains. $-\gamma$. Then, except for the case $\mathrm{g}=(\mathrm{I})_{p, q}, \Delta_{i}$ is a proper maximal $\Pi$-system in our sense (cf. [1], Chap. II, Theorem 5.5).

We shall say that $\Delta_{i}$ in iii) is obtained from the simple root system by an elementary transformation. A regular subalgebra $g_{1}$ of $g$ will be called of class: $\left(H_{2}\right)$ if the injection of $g_{1}$ into $g$ satisfies $\left(H_{2}\right)$.
4.1. The case $\mathrm{g}=(\mathrm{I})_{p, q}(1 \leqq p \leqq q)$. In this case, the extended Dynkin diagram is given as follows:


All positive non-compact roots are in the $W_{K}$-orbit of $\alpha_{1}$. If $p \geqq 2$, all compact roots are divided into two $W_{K}$-classes : one is the $W_{K}$-orbit of $\alpha_{2}$, the other of $\alpha_{l}$. If $p=1$, all compact roots are in the $W_{K}$-orbit of $\alpha_{2}$. Let $\beta=\sum_{i=2}^{i} c_{i} \alpha_{i}$ be a compact root. If $\beta\left(H_{1}\right)$ is equal to -1 , it is easily seen that $c_{2}=1$ or, when $p \geqq 2, c_{l}=1$. Hence $\beta$ is really of the form

$$
\begin{aligned}
\beta & =\alpha_{2}+\sum_{i=3}^{t} \alpha_{i}(t \leqq q) \quad \text { or, if } \quad p \geqq 2 \\
& =\alpha_{l}+\sum_{i=s}^{l-1} \alpha_{i}(s \geqq q+1) .
\end{aligned}
$$

All such compact roots $\beta$ are transposed to $\alpha_{2}$ or $\alpha_{l}$ by the subgroup of $W_{K}$ generated by $\left\{w_{3}, \cdots, w_{q}\right\}$ or $\left\{w_{q+1}, \cdots, w_{l}\right\}$ respectively, where $w_{i}$ denotes the reflection $w_{\alpha_{i}}$ (defined by (27)); this subgroup keeps $\alpha_{1}$ invariant. If

$$
\beta\left(H_{1}\right)=\beta\left(H_{2}\right)=\cdots=\beta\left(H_{t-1}\right)=0 \quad \text { and } \quad \beta\left(H_{t}\right)=-1,
$$

it is easy to see by a similar argument that $\beta$ is transposed to $\alpha_{t}$ by the
subgroup of $W_{K}$ generated by $\left\{w_{t+1}, \cdots, w_{q}\right\}$ which keeps $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{t-1}$ invariant. Similarly, when $p \geqq 2$, a connected Dynkin diagram $\left\{\beta, \alpha_{s}, \alpha_{s+1}, \cdots\right.$, $\left.\alpha_{l}, \alpha_{1}\right\}$ of type (A) with a compact root $\beta$ is equivalent under $W_{K}$ to $\left\{\alpha_{s-1}, \alpha_{s}\right.$, $\left.\cdots, \alpha_{l}, \alpha_{1}\right\}$. Moreover, we can find an element of $W_{K}$ which gives the following permutations:

$$
\alpha_{1} \longleftrightarrow \gamma, \quad \alpha_{2} \longleftrightarrow-\alpha_{q}, \quad \alpha_{l} \longleftrightarrow-\alpha_{q+1} .
$$

Under these considerations, we see that every proper maximal $\Pi$-system is equivalent to one of the following, those obtained by omitting two roots from the above diagram:

$$
\begin{aligned}
(\mathrm{I})_{r, q}+\left(A_{p-r-1}\right)(1 \leqq r<p): & \left\{\alpha_{l-r+1}, \cdots, \alpha_{l-1}, \alpha_{l}, \alpha_{1}, \cdots, \alpha_{q}\right\} \\
& \cup\left\{\alpha_{q+1}, \alpha_{q+2}, \cdots, \alpha_{l-r-1}\right\} . \\
(\mathrm{I})_{p, s}+\left(A_{q-s-1}\right)(p \leqq s<q): & \left\{\alpha_{q+1}, \cdots, \alpha_{l-1}, \alpha_{l}, \alpha_{1}, \cdots, \alpha_{s}\right\} \\
& \cup\left\{\alpha_{s+2}, \alpha_{s+3}, \cdots, \alpha_{q}\right\} \\
(\mathrm{I})_{s, p}^{\prime}+\left(A_{q-s-1}\right)(1 \leqq s<p): & \left\{\alpha_{s}, \cdots, \alpha_{2}, \alpha_{1}, \alpha_{l}, \alpha_{l-1}, \cdots, \alpha_{q+1}\right\} \\
& \cup\left\{\alpha_{s+2}, \alpha_{s+3}, \cdots, \alpha_{q}\right\} \\
(\mathrm{I})_{r, s}+(\mathrm{I})_{p-r, q-s}\binom{1 \leqq r \leqq s}{s-r \leqq q-p}: & \left\{\alpha_{l-r+1}, \cdots, \alpha_{l}, \alpha_{1}, \cdots, \alpha_{s}\right\} \\
& \cup\left\{-\alpha_{l-r-1}, \cdots,-\alpha_{q+1}, \gamma,-\alpha_{q}, \cdots,-\alpha_{s+2}\right\} . \\
(\mathrm{I})_{s, r}^{\prime}+(\mathrm{I})_{p-r, q-s}(1 \leqq s<r<p): & \left\{\alpha_{s}, \cdots, \alpha_{1}, \alpha_{l}, \cdots, \alpha_{l-r+1}\right\} \\
& \cup\left\{-\alpha_{l-r-1}, \cdots,-\alpha_{q+1}, \gamma,-\alpha_{q}, \cdots,-\alpha_{s+2}\right\} . \\
\left(A_{p-1}\right)+\left(A_{q-1}\right): & \left\{\alpha_{q+1}, \cdots, \alpha_{l-1}, \alpha_{l}\right\} \cup\left\{\alpha_{2}, \alpha_{3}, \cdots, \alpha_{q}\right\} .
\end{aligned}
$$

In this table, the following notations are used:
The elements in a pair of brace $\}$ form a connected component of a $\Pi$ system of roots;
( $A_{0}$ ) denotes the empty set;
(I) $)_{s, r}^{\prime}$ means the regular subalgebra of type $\left(\mathrm{I}_{r, s}\right.$, but not conjugate to that corresponding to the $\Pi$-system

$$
\left\{\alpha_{l-s+1}, \cdots, \alpha_{l-1}, \alpha_{l}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}\right\}
$$

This will be denoted also by ( $\mathrm{I}_{r, s}(r>s)$.
Using the expressions of the complex structures as described in 1.4, we can find regular subalgebras of class $\left(H_{2}\right)$ in the above table; we see at once that they must be of a form $\mathrm{g}_{1}=(\mathrm{I})_{r, s}+(\mathrm{I})_{p-r, q-s}$. The complex structures of $\left(\mathrm{I}_{r, s}\right.$ and $(\mathrm{I})_{p-r, q-s}$ are

$$
\frac{\sqrt{-1}}{r+s}\left[s H_{l-r+1}+2 s H_{l-r+2}+\cdots+r s H_{1}+r(s-1) H_{2}+\cdots+r H_{s}\right],
$$

$$
\begin{aligned}
& \frac{\sqrt{-1}}{(p+q)-(r+s)}\left[-(q-s) H_{l-r-1}-2(q-s) H_{l-r-2}-\cdots+\right. \\
& \left.\quad+(p-r)(q-s)\left(H_{1}+H_{2}+\cdots+H_{l}\right)-\cdots-(p-r) H_{s+2}\right] .
\end{aligned}
$$

As $\mathfrak{g}_{1}$ is of class $\left(H_{2}\right)$, we have

$$
\frac{r s}{r+s}+\frac{(p-r)(q-s)}{(p+q)-(r+s)}=\frac{p q}{p+q},
$$

and hence

$$
(p-a r)(q-a s)=0, \quad a=\frac{p+q}{r+s} .
$$

Thus we have

$$
\begin{equation*}
r: s=p: q . \tag{48}
\end{equation*}
$$

Conversely, it is easy to see that $g_{1}$ is of class $\left(H_{2}\right)$, if $(r, s)$ satisfies the relation (48). We have seen that

$$
(\mathrm{I})_{r, s}+(\mathrm{I})_{p-r, q-s}: \quad r: s=p: q
$$

are maximal regular subalgebras of class $\left(H_{2}\right)$ of $\left(\mathrm{I}_{p, q}\right.$.
Maximal regular subalgebras without compact factors not being of class $\left(H_{2}\right)$ (i. e. non-compact regular subalgebras not of class $\left(H_{2}\right)$ which is maximal w.r.t. this property) are ( $k$ )-equivalent to one of the following:

$$
(\mathrm{I})_{p, q-1}, \quad(\mathrm{I})_{p-1, q}, \quad(\mathrm{I})_{r, s}+(\mathrm{I})_{p-r, q-s}(r: s \neq p: q) .
$$

4.2. The case $\mathrm{g}=(\mathrm{II})_{p}$. In this case, the extended Dynkin diagram is given as follows:


All positive non-compact roots are in the $W_{K}$-orbit of $\alpha_{1}$, all compact roots in that of $\alpha_{2}$. By elementary transformations, we get some $\Pi$-systems representing ( $k$ )-equivalence classes of maximal regular subalgebras. Omitting $-\gamma$ and $\alpha_{p-1}$ from the above diagram, we get a $\Pi$-system corresponding to (II) $p_{p-1}$, which is also proper maximal. If we omit $\alpha_{1}$ and $-\gamma$ from the diagram, we get also a $\Pi$-system corresponding to ( $A_{p-1}$ ) which is a maximal compact subalgebra, so we can see at once that there is no compact root $\alpha$ such that

$$
\alpha\left(H_{1}\right)=\cdots=\alpha\left(H_{s-1}\right)=\alpha\left(H_{s+1}\right)=0, \quad \alpha\left(H_{s}\right)=-1
$$

Hence, by arguments similar to those in 4.1, we get all maximal $\Pi$-systems such that positive non-compact roots in them have extreme positions in con-
nected components of their Dynkin diagrams; it is easy to see that there is no regular subalgebra of type (III) $r$, (IV) $r_{r}(r \geqq 7$ ), (EIII), or (EVII). The remaining cases to examine are those that some simple factors of regular subalgebras are of type ( I$)_{r, s}$. Let $\beta=\sum_{2 \leqq i \leqq p} c_{i} \alpha_{i}$ be a compact root such that

$$
\begin{equation*}
\beta\left(H_{i}\right)=-1, \quad \beta\left(H_{2}\right)=0, \cdots, \beta\left(H_{t}\right)=0, \tag{49}
\end{equation*}
$$

where $t$ is a positive integer smaller than $p-1$. The equations (49) are equivalent to the relation

$$
c_{p}=c_{2}=\cdots=c_{t+1}=1
$$

Such a root $\beta$ is transposed to $\alpha_{2}+\alpha_{3}+\cdots+\alpha_{p}$ by an element of the subgroup of $W_{K}$ generated by $\left\{w_{t+2}, \cdots, w_{p-1}\right\}$; this subgroup keeps $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{t}$ invariant. In the rest of this paragraph, we put

$$
\beta=\alpha_{2}+\alpha_{3}+\cdots+\alpha_{p} .
$$

Clearly $\beta\left(H_{p-1}\right) \neq 0$. Let $\beta_{1}=\Sigma d_{i} \alpha_{i}$ be another compact root such that

$$
\beta_{1}\left(H_{1}\right)=\cdots=\beta_{1}\left(H_{p-3}\right)=0, \quad \beta\left(H_{\beta_{1}}\right)=-1 .
$$

Then we see at once that $\beta_{1}=-\alpha_{p-1}$. By a same manner, we have finally a maximal $\Pi$-system for each positive integer $r \leqq\left[\begin{array}{c}p \\ 2\end{array}\right]$ :

$$
\left\{-\alpha_{p-r+2}, \cdots,-\alpha_{p-2},-\alpha_{p-1}, \beta, \alpha_{1}, \cdots, \alpha_{p-r}\right\}
$$

which corresponds to a regular subalgebra of type $\left(\mathrm{I}_{r, p-r}\right.$. There is no root orthogonal to it.

Thus we have got all ( $k$ )-equivalence classes of maximal regular subalgebras; they are represented by the following $\Pi$-systems:

$$
\begin{aligned}
& (\mathrm{I})_{r, p-r}\left(1 \leqq r \leqq\left[\frac{p}{2}\right]\right):\left\{-\alpha_{p-r+2}, \cdots,-\alpha_{p-2},-\alpha_{p-1}, \beta, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{p-r}\right\} . \\
& \begin{aligned}
&(\mathrm{II})_{r}+(\mathrm{II})_{p-r}\left(\left[\frac{p}{2}\right] \leqq r \leqq p-2\right):\left\{\begin{array}{l}
\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots, \alpha_{r-1} \\
\alpha_{p}
\end{array}\right\} \\
& \cup\left\{\begin{array}{l}
\gamma,-\alpha_{p-2},-\alpha_{p-3}, \cdots,-\alpha_{r+1} \\
-\alpha_{p-1}
\end{array}\right\}, \\
&(\mathrm{II})_{p-1}:\left\{\begin{array}{c}
\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots, \alpha_{p-2} \\
\alpha_{p}
\end{array}\right\}, \\
&\left(A_{p-1}\right):\left\{\alpha_{p}, \alpha_{2}, \alpha_{3}, \cdots, \alpha_{p-1}\right\}, \\
& \quad\left((\mathrm{II})_{2}=(\mathrm{I})_{1,1}+\left(A_{1}\right),(\mathrm{II})_{3}=(\mathrm{I})_{1,3},(\mathrm{II})_{4}=(\mathrm{IV})_{6}\right)
\end{aligned}
\end{aligned}
$$

Since $H_{r}=H_{1}+2\left(H_{2}+\cdots+H_{p-2}\right)+H_{p-1}+H_{p}$, we see at once that the regular subalgebras $(\mathrm{II})_{r}+(\mathrm{II})_{p-r}\left(\left[\begin{array}{c}p \\ -2\end{array}\right] \leqq r \leqq p-2\right)$ are of class $\left(H_{2}\right)$. Clearly, the regular subalgebra (II) $)_{p-1}$ is not of class $\left(H_{2}\right)$. The complex structure of a regular subalgebra ( $\mathrm{I}_{r, p-r}$ is

$$
\begin{aligned}
\frac{1}{p}[- & (p-r) H_{p-r+2}-2(p-r) H_{p-r+3}-\cdots+ \\
& \left.+(r-1)(p-r)\left(H_{2}+\cdots+H_{p}\right)+r(p-r) H_{1}+\cdots+r H_{p-r}\right] .
\end{aligned}
$$

Hence, if $\left(\mathrm{I}_{r, p-r}\right.$ is of class $\left(H_{2}\right)$, we see that

$$
\frac{r(p-r)}{p}=\frac{p}{4}, \text { so that } p=2 r
$$

Conversely, if $p=2 r$, the regular subalgebra ( $\mathrm{I}_{r, r}$ is of class $\left(H_{2}\right)$. Thus all (k)-equivalence classes of maximal regular subalgebras of class $\left(H_{2}\right)$ are represented by

$$
\left.(\mathrm{I})_{r, r} \text { (if } p=2 r\right), \quad(\mathrm{II})_{r}+(\mathrm{II})_{p-r} \text {; }
$$

maximal non-compact regular subalgebras not of class $\left(H_{2}\right)$ are $(k)$-equivalent to one of

$$
(\mathrm{I})_{r, p-r}\left(r \neq \frac{p}{2}\right), \quad(\mathrm{II})_{r}+(\mathrm{I})_{s, p-r-s}\left(s \neq \frac{p-r}{2}\right), \quad(\mathrm{II})_{p-1} .
$$

4.3. The case $g=(\mathrm{III})_{p}$. The extended Dynkin diagram of $g_{c}$ is


In this case, there are two sorts of the length of roots; all longer roots are non-compact. Hence there are two $W_{K}$-classes of positive non-compact roots represented by the longer root $\alpha_{1}$ and by the shorter root $\gamma_{1}=\alpha_{1}+\alpha_{2}$ respectively. The orbit $W_{K}\left(\alpha_{1}\right)$ contains $p$ elements and forms a strongly orthogonal system. On the other hand, all compact roots are mutually permutable by elements of $W_{K}$. Every compact root $\beta$ satisfying $\alpha_{1}\left(H_{\beta}\right)=-2$ is equivalent to $\alpha_{2}$ under an element of $W_{K}$ which preserves $\alpha_{1}$ fixed. Moreover, if a compact root $\beta$ satisfies

$$
\beta\left(H_{1}\right)=\beta\left(H_{2}\right)=\cdots=\beta\left(H_{t-1}\right)=0, \quad \beta\left(H_{t}\right)=-1,
$$

it is transposed to $\alpha_{t+1}$ by an element of the subgroup of $W_{K}$ generated by $\left\{w_{t+2}, \cdots, w_{p}\right\}$; this subgroup preserves $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{t}$ fixed. Thus we have seen that all maximal $\Pi$-systems containing longer roots are equivalent under $W_{K}$ to one of those given by elementary transformations. Now, let $\alpha=\sum_{2 \leqq i \leqq p} c_{i} \alpha_{i}$ be a compact root such as $\alpha\left(H_{r_{1}}\right)=-1$, where $\gamma_{1}$ is the positive non-compact root $\alpha_{1}+\alpha_{2}$. Since $H_{r_{1}}=2 H_{1}+H_{2}$, we can see at once that $c_{3}=1$. Hence $\alpha$ is of the form $\alpha_{2}+\sum_{3 \leq i \leq t} \alpha_{i}$ or $\alpha_{3}+\sum_{4 \leq i \leq t} \alpha_{i}$. Thus, by the same considerations as for the case of (II) ${ }_{p}$, we have a representative

$$
\left\{-\alpha_{p-r+3}, \cdots,-\alpha_{p-1},-\alpha_{p}, \beta, \gamma_{1}, \alpha_{3}, \alpha_{4}, \cdots, \alpha_{p-r+1}\right\}
$$

of an equivalence class of $\Pi$-systems which corresponds to a regular subalgebra
of type $(\mathrm{I})_{r, p-r}$, where

$$
\beta=\alpha_{2}+\alpha_{3}+\cdots+\alpha_{p}
$$

It is easy to see that there is no compact root $\alpha$ such as

$$
\alpha\left(H_{r_{1}}\right)=0, \quad \alpha\left(H_{2}\right)=\cdots=\alpha\left(H_{t-1}\right)=\alpha\left(H_{t+1}\right)=0, \quad \alpha\left(H_{t}\right)=-1
$$

Hence there is no regular subalgebra of type (II) $)_{r}$ (IV) $)_{r}$, (EIII) or (EVIII).
We have seen that all $(k)$-equivalence classes of maximal regular subalgebras of $\mathfrak{g}$ are represented by the following:

$$
\begin{aligned}
& (\mathrm{I})_{r, p-r}\left(1 \leqq r \leqq\left[\frac{p}{2}\right]\right):\left\{-\alpha_{p-r+3}, \cdots,-\alpha_{p-1},-\alpha_{p}, \beta, \gamma_{1}, \alpha_{3}, \alpha_{4}, \cdots, \alpha_{p-r+1}\right\} . \\
& (\mathrm{III})_{r}+(\mathrm{III})_{p-r}\left(\left[\frac{p}{2}\right] \leqq r \leqq p-1\right):\left\{\alpha_{1}, \cdots, \alpha_{r}\right\} \cup\left\{\gamma,-\alpha_{p},-\alpha_{p-1},-\alpha_{r+2}\right\} . \\
& \left(A_{p-1}\right): \quad\left\{\alpha_{2}, \alpha_{3}, \cdots, \alpha_{p}\right\} . \\
& \quad\left((\mathrm{III})_{1}=(\mathrm{I})_{1,1}\right)
\end{aligned}
$$

A maximal regular subalgebra of class $\left(H_{2}\right)$ is $(k)$-equivalent to one of

$$
(\mathrm{I})_{r, r}(\text { if } p=2 r), \quad(\mathrm{III})_{r}+(\mathrm{III})_{p-r} ;
$$

a maximal non-compact regular subalgebra not of class $\left(H_{2}\right)$ to one of

$$
(\mathrm{I})_{r, p-r}\left(r \neq \frac{p}{2}\right), \quad(\mathrm{III})_{p-1}, \quad(\mathrm{III})_{r}+(\mathrm{I})_{s, p-r-s}\left(s \neq \frac{p-r}{2}\right) .
$$

4.4. The case $\mathrm{g}=(\mathrm{IV})_{p}$.
4.4.1. The case $p=2 l-2$. The extended Dynkin diagram is as follows:


All positive non-compact roots (resp. all compact roots) are in the $W_{K}$-orbit of $\alpha_{1}$ (resp. $\alpha_{2}$ ). Let $\alpha$ be a compact root. If $\alpha$ satisfies

$$
\alpha\left(H_{1}\right)=\alpha\left(H_{2}\right)=\cdots=\alpha\left(H_{t-1}\right)=0, \quad \alpha\left(H_{t}\right)=-1
$$

where $t$ is a positive integer smaller than $l-3$, then $\alpha$ is transposed to $\alpha_{t+1}$ by an element $w$ of the subgroup of $W_{K}$ generated by $w_{t+2}, \cdots, w_{l}$, keeping $\alpha_{1}, \cdots, \alpha_{t}$ invariant. On the other hand, if $\alpha$ satisfies

$$
\alpha\left(H_{1}\right)=\cdots=\alpha\left(H_{l-2}\right)=0, \quad \alpha\left(H_{l-1}\right)=1
$$

then $\alpha$ is either $\alpha_{l-1}$ or $\alpha_{l}$; there is no element of $W_{K}$ that causes a permutation between $\alpha_{l-1}$ and $\alpha_{l}$ keeping $\alpha_{1}, \cdots, \alpha_{l-2}$ invariant. The root

$$
\beta_{1}=\alpha_{2}+2\left(\alpha_{3}+\cdots+\alpha_{l-2}\right)+\alpha_{l-1}+\alpha_{l}
$$

is the only one compact root which satisfies

$$
\beta_{1}\left(H_{1}\right)=-1, \quad \beta_{1}\left(H_{2}\right)=0 ;
$$

the root

$$
\beta_{2}=\alpha_{l-2}+\alpha_{l-1}+\alpha_{l}
$$

is the unique compact root such as

$$
\beta_{2}\left(H_{1}\right)=\cdots=\beta_{2}\left(H_{l-4}\right)=\beta_{2}\left(H_{l-2}\right)=0, \quad \beta_{2}\left(H_{l-3}\right)=-1 .
$$

Thus we have the following table of $(k)$-equivalence classes of maximal regular subalgebras:

$$
\begin{aligned}
& (\mathrm{I})_{1,1}+(\mathrm{I})_{1,1}+\left(D_{l-2}\right):\left\{\alpha_{1}\right\} \cup\{r\} \cup\left\{\begin{array}{c}
\alpha_{3}, \cdots, \alpha_{l-2}, \alpha_{l-1} \\
\alpha_{l}
\end{array}\right\} . \\
& (\mathrm{I})_{1, r}+\left(D_{l-r-1}\right)(2 \leqq r \leqq l-2):\left\{\alpha_{1}, \cdots, \alpha_{r}\right\} \cup\left\{\begin{array}{c}
\alpha_{r+2}, \cdots, \alpha_{l-2}, \alpha_{l-1} \\
\alpha_{l}
\end{array}\right\} . \\
& (\mathrm{I})_{1, l-1}:\left\{\alpha_{1}, \cdots, \alpha_{l-2}, \alpha_{l-1}\right\} \\
& (\mathrm{I})_{1, l-1}^{\prime}:\left\{\alpha_{1}, \cdots, \alpha_{l-2}, \alpha_{l}\right\} \\
& (\mathrm{I})_{2,2}+\left(A_{l-6}\right):\left\{\beta_{1}, \alpha_{1}, \alpha_{2}\right\} \cup\left\{\alpha_{4}, \alpha_{5}, \cdots, \alpha_{l-3}\right\} . \\
& (\mathrm{IV})_{p-2}:\left\{\begin{array}{c}
\left.\alpha_{1}, \alpha_{2}, \cdots, \alpha_{l-3}, \alpha_{l-2}\right\} . \\
\beta_{2}
\end{array}\right\} . \\
& \begin{array}{c}
\left(D_{l-1}\right):\left\{\begin{array}{c}
\left.\alpha_{2}, \alpha_{3}, \cdots, \alpha_{l-2}, \alpha_{l-1}\right\} . \\
\alpha_{l}
\end{array}\right. \\
\left.\quad \begin{array}{r}
(\mathrm{IV})_{4}=(\mathrm{I})_{1,1},\left(D_{1}\right)=\left(A_{1}\right),\left(D_{2}\right)=\left(A_{1}\right)+\left(A_{1}\right) \\
\left(D_{3}\right)=\left(A_{3}\right) ;\left(A_{t}\right)=\emptyset \text { if } t \leqq 0
\end{array}\right)
\end{array}
\end{aligned}
$$

Among them, the regular subalgebras

$$
(\mathrm{I})_{1,1}+(\mathrm{I})_{1,1}+\left(D_{l-2}\right),(\mathrm{I})_{2,2}+\left(A_{l-6}\right),(\mathrm{IV})_{p-2}
$$

are of class $\left(H_{2}\right)$; a maximal non-compact regular subalgebra not of class $\left(H_{2}\right)$ is ( $k$ )-equivalent to one of

$$
(\mathrm{I})_{1, l-1}, \quad(\mathrm{I})_{1, l-1}^{\prime} .
$$

4.4.2. The case $p=2 l-1$. In this case, the diagram is


There is only one positive non-compact shorter root $\gamma_{1}$ :

$$
\gamma_{1}=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{l-1}+\alpha_{l} .
$$

The root $\gamma_{1}$ is orthogonal to every compact root; hence it is stable under the action of $W_{B}$. All the other positive non-compact roots are in the orbit $W_{K}\left(\alpha_{1}\right)$, and have the maximal length. All the compact roots are divided into two orbits under $W_{R}$; one is $W_{K}\left(\alpha_{2}\right)$ and another $W_{K}\left(\alpha_{l}\right)$. Putting

$$
\begin{aligned}
& \beta_{1}=\alpha_{2}+2\left(\alpha_{3}+\cdots+\alpha_{l}\right), \\
& \beta_{2}=\alpha_{l-1}+2 \alpha_{l}, \\
& \beta_{3}=\alpha_{l-1}+\alpha_{l},
\end{aligned}
$$

we get easily the following table of $(k)$-equivalence classes of maximal regular subalgebras:

$$
\begin{aligned}
& (\mathrm{I})_{1,1}+(\mathrm{I})_{1,1}+\left(B_{l-2}\right): \quad\left\{\alpha_{1}\right\} \cup\{\gamma\} \cup\left\{\alpha_{3}, \alpha_{4}, \cdots, \alpha_{l}\right\} . \\
& (\mathrm{I})_{1, r}+\left(B_{l-r-1}\right)(2 \leqq r \leqq l-2): \quad\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}\right\} \cup\left\{\alpha_{r+2}, \alpha_{r+3}, \cdots, \alpha_{l}\right\} . \\
& (\mathrm{I})_{2,2}+\left(B_{l-3}\right): \quad\left\{\beta_{1}, \alpha_{1}, \alpha_{2}\right\} \cup\left\{\alpha_{4}, \alpha_{5}, \cdots, \alpha_{l}\right\} . \\
& (\mathrm{I})_{1,1}^{\prime}+\left(B_{l-1}\right):\left\{\gamma_{1}\right\} \cup\left\{\alpha_{2}, \alpha_{3}, \cdots, \alpha_{l}\right\} . \\
& (\mathrm{IV})_{p-1}:\left\{\begin{array}{c}
\left.\alpha_{1}, \alpha_{2}, \cdots, \alpha_{l-2}, \alpha_{l-1}\right\} . \\
\beta_{2}
\end{array}\right. \\
& (\mathrm{IV})_{p-2}+\left(A_{1}\right):\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{l-2}, \beta_{3}\right\} \cup\left\{\alpha_{l}\right\} . \\
& \quad\left((\mathrm{IV})_{4}=(\mathrm{I})_{2,2},(\mathrm{IV})_{3}=(\mathrm{III})_{2}\right)
\end{aligned}
$$

In them, the regular subalgebras

$$
\begin{aligned}
(\mathrm{I})_{1,1}+(\mathrm{I})_{1,1}+ & \left(B_{l-2}\right), \quad(\mathrm{I})_{1,1}^{\prime}+\left(B_{l-1}\right),(\mathrm{I})_{2,2}+\left(B_{l-3}\right), \\
& (\mathrm{IV})_{p-1},(\mathrm{IV})_{p-2}+\left(A_{1}\right)
\end{aligned}
$$

are of class $\left(H_{2}\right)$. (Observe that $H_{r_{1}}=H_{1}+H_{r}=2 \sqrt{-1} H_{0}$.) Every maximal non-compact regular subalgebra not of class $\left(H_{2}\right)$ are $(k)$-equivalent to ( $\mathrm{I}_{1, l-1}$.
4.4.3. Remarks. i) Let $p=2 l-2$. There is a monomorphism $\rho$, unique up to within ( $k$ )-equivalence, of (IV) $p_{p-1}$ into (IV) $)_{p}$ satisfying ( $H_{2}$ ) (see §5, Theorem 4). It will be easily seen that the maximal regular subalgebra (IV) $)_{p-2}$ of (IV) $)_{p}$ is ( $k$-equivalent in (IV) $)_{p}$ to the image $\rho\left((\mathrm{IV})_{p-2}\right)$ of the maximal regular subalgebra (IV) $)_{p-2}$ of (IV) $)_{p-1}$. Hence the maximal regular subalgebra (IV) $)_{p-2}$ of (IV) $)_{p}$ is not a maximal subalgebra.
ii) $p=2 l-1$. The regular subalgebras ( $)_{1, p-2}$ and (I) $)_{1, p-2}^{\prime}$ of (IV) $)_{p-1}$ are ( $k$ )-equivalent in (IV) , if we consider (IV) $)_{p-1}$ as the regular subalgebra of $(\mathrm{IV})_{p}$ corresponding to the $\Pi$-system given in the table in 4.4.2. In fact, $\beta_{2}=\alpha_{l-1}+2 \alpha_{l}$ is transposed to $\alpha_{l-1}$ by $w_{l}$ keeping $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{l-2}$ invariant.
iii) In view of Proposition 5, we can see at once that the regular subalgebra (I) $)_{1,1}^{\prime}$ of (IV) $2_{2 l-1}$ is $(k)$-conjugate to the diagonal subalgebra (in a natural sense) of the regular subalgebra ( $\mathrm{I}_{1,1}+\left(\mathrm{I}_{1,1}\right.$ corresponding to the $\Pi$-system
$\left\{\alpha_{1}\right\} \cup\{\gamma\}$. In fact, $H_{r_{1}}=H_{1}+H_{\gamma}$.
4.5. The case $\mathrm{g}=(\mathrm{EIII})$. The extended Dynkin diagram of $\mathrm{g}_{c}$ is as follows :


All positive non-compact roots (resp. all compact roots) are transposed to $\alpha_{1}$ (resp. $\alpha_{2}$ ) by elements of $W_{K}$. Putting

$$
\beta_{1}=\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}+\alpha_{6}, \quad \beta_{2}=\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6},
$$

we have the following table of ( $k$ )-equivalence classes of maximal regular subalgebras by the same considerations as above:
$(\mathrm{I})_{1,5}+(\mathrm{I})_{1,1}: \quad\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\} \cup\{\gamma\}$; of class $\left(H_{2}\right)$.
$\left(\mathrm{I}_{1,2}+\left(\mathrm{I}_{1,2}+\left(A_{2}\right):\left\{\alpha_{1}, \alpha_{2}\right\} \cup\left\{\gamma,-\alpha_{6}\right\} \cup\left\{\alpha_{4}, \alpha_{5}\right\}:\right.\right.$ of class $\left(H_{2}\right)$.
$(\mathrm{I})_{2,4}+\left(A_{1}\right):\left\{\beta_{1}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{6}\right\} \cup\left\{\alpha_{5}\right\} ;$ of class $\left(H_{2}\right)$.
(II) $:\left\{\begin{array}{c}\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \\ \beta_{2}\end{array}\right\}$.
(IV) $)_{8}:\left\{\begin{array}{c}\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \\ \alpha_{6}\end{array}\right\}$.
$\left(D_{5}\right):\left\{\begin{array}{c}\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} \\ \alpha_{6}\end{array}\right\}$.
Maximal non-compact regular subalgebras not of class $\left(H_{2}\right)$ are ( $k$ )-equivalent to

$$
(\mathrm{I})_{1,5}, \quad(\mathrm{I})_{1,4}+(\mathrm{I})_{1,1}, \quad(\mathrm{II})_{5}, \quad(\mathrm{IV})_{8}
$$

REmark. There are two ( $k$ )-equivalence classes of regular subalgebras of type $\left(\mathrm{I}_{1,4}\right.$ : one is

$$
\begin{aligned}
& (\mathrm{I})_{1,4}:\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}, \text { and the other } \\
& (\mathrm{I})_{1,4}^{\prime}:\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{6}\right\} .
\end{aligned}
$$

Both of them are contained in the regular subalgebra (IV) ${ }_{8}$.
4.6. The case $\mathrm{g}=(\mathrm{EVII})^{2)}$. The extended Dynkin diagram is as follows:

[^0]

By the same considerations as above, we get the following list of ( $k$ )equivalence classes of maximal regular subalgebras; here $\beta_{1}, \beta_{2}$, and $\beta_{3}$ denote the compact roots as follows:

$$
\begin{aligned}
& \beta_{1}=\alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}+2 \alpha_{7}, \\
& \beta_{2}=\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+\alpha_{6}+\alpha_{7}, \\
& \beta_{3}=\alpha_{4}+\alpha_{5}+\alpha_{6}+\alpha_{7} .
\end{aligned}
$$

$(\mathrm{I})_{1,5}+(\mathrm{I})_{1,2}: \quad\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{7}\right\} \cup\left\{\gamma,-\alpha_{6}\right\} ;$ of class $\left(H_{2}\right)$.
$(\mathrm{I})_{1,3}+(\mathrm{I})_{1,3}+\left(A_{1}\right):\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} \cup\left\{\gamma,-\alpha_{6},-\alpha_{5}\right\}$; of class $\left(H_{2}\right)$.
$(\mathrm{I})_{2,6}:\left\{\beta_{1}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right\}$; of class ( $H_{2}$ ).
$(\mathrm{I})_{3,3}+\left(A_{2}\right):\left\{-\alpha_{7}, \beta_{1}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\} \cup\left\{\alpha_{5}, \alpha_{6}\right\} ;$ of class $\left(H_{2}\right)$.
$(\text { II })_{6}+\left(A_{1}\right):\left\{\begin{array}{c}\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{7} \\ \beta_{2}\end{array}\right\} ;$ of class $\left(H_{2}\right)$.
$(\mathrm{IV})_{10}+(\mathrm{I})_{1,1}:\left\{\begin{array}{c}\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} \\ \alpha_{7}\end{array}\right\} ;$ of class $\left(H_{2}\right)$.
(EIII): $\left\{\begin{array}{c}\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} \\ \beta_{3}\end{array}\right\}$.
$\left(\mathrm{E}_{6}\right):\left\{\begin{array}{c}\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6} \\ \alpha_{7}\end{array}\right\}$.
Maximal non-compact regular subalgebras not of class $\left(H_{2}\right)$ are (k)-equivalent to one of the following:

$$
\begin{gathered}
(\mathrm{I})_{1,4}+(\mathrm{I})_{1,2},(\mathrm{I})_{1,5}+(\mathrm{I})_{1,1},(\mathrm{I})_{1,5}^{\prime}+(\mathrm{I})_{1,1}, \\
\quad(\mathrm{I})_{1,6},(\mathrm{I})_{2,5},(\mathrm{IV})_{10},(\mathrm{EIII}),
\end{gathered}
$$

where $\left(\mathrm{I}_{1,5} \text { and (I) }\right)_{1,5}^{\prime}$ are not $(k)$-equivalent to each other :

$$
\begin{aligned}
& \left(\mathrm{I}_{1,5}:\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{7}\right\},\right. \\
& (\mathrm{I})_{1,5}^{\prime}:\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\} .
\end{aligned}
$$

Both $\left(I_{1,5} \text { and (I) }\right)_{1,5}^{\prime}$ are contained in the regular subalgebra (IV) ${ }_{10}$ in the above table.

## § 5. Determination of homomorphisms satisfying $\left(\boldsymbol{H}_{2}\right)$.

In this section, we determine all pairs ( $\mathfrak{g}, \rho$ ) of a simple Lie algebra $\mathfrak{g}$ of hermitian type and a monomorphism $\rho$ of $g$ into a simple Lie algebra $g^{\prime}$ of type (IV) $)_{p}$, (EIII), and (EVII) satisfying the condition $\left(H_{2}\right)$.
5.1. In the first place, we consider generally the case $g$ is isomorphic to $g^{\prime}$. Identifying $g^{\prime}$ with $g$ by the isomorphism, our problem becomes to determine all automorphisms $\rho$ of g such as $\rho\left(H_{0}\right)=H_{0}^{\prime}$, where $H_{0}$ and $H_{0}^{\prime}$ are complex structures of ( $\mathfrak{g}, \mathfrak{f}$ ) and ( $\mathfrak{g}, \mathfrak{f}^{\prime}$ ) respectively. Modyfying $\mathfrak{f}^{\prime}$ by an inner automorphism of g , we may assume that $\rho\left(\mathcal{f}^{*}\right)=\mathcal{f}^{\prime}=$; then $H_{0}^{\prime}$ becomes $H_{0}$ or $-H_{0}$ since $\mathfrak{g}$ is simple. Furthermore, we may also assume that $\rho(\mathfrak{h})=\mathfrak{h}$, i. e. that $\rho$ induces an automorphism of $\mathfrak{h}$. Under these assumptions, it is easy to see the following facts (cf. Corollary to Proposition 7):
i) If $H_{0}=H_{0}^{\prime}, \rho$ is ( $k$ )-equivalent to an automorphism $a$ of $g$ caused by an automorphism of the Dynkin diagram of $g_{C}$ keeping the non-compact simple root invariant;
ii) If $H_{0}^{\prime}=-H_{0}, \rho$ is ( $k$ )-equivalent to an automorphism $\bar{a}$ gvien by a composition of an automorphism of $g$, associated with the permutation of roots such as $\alpha \rightarrow-\alpha$ for any root $\alpha$, and an automorphism $a$ got in i) for the case $H_{0}=H_{0}^{\prime}$.

Hence we have got the following trivial solutions:
A) $\mathfrak{g}=\mathrm{g}^{\prime}=(\mathrm{I})_{p, q}(p=q),(\mathrm{II})_{p},(\mathrm{III})_{p},(\mathrm{IV})_{p}(p=\mathrm{odd})$, (EIII), (EVII).

$$
\rho \sim i d ., \overline{i d} .\left(\text { according as } H_{0}^{\prime} \sim H_{0} \text { or }-H_{0}\right)
$$

B) $\mathrm{g}=\mathrm{g}^{\prime}=(\mathrm{I})_{p, q},(\mathrm{IV})_{p}(p=\mathrm{even})$.

$$
\rho \sim\left\{\begin{array}{l}
i d ., \overline{i d} .\left(\text { according as } H_{0}^{\prime} \sim H_{0} \text { or }-H_{0}\right) \\
\rho_{0}, \bar{\rho}_{0}(\quad,
\end{array}\right.
$$

In this table, $\rho_{0}$ denotes the outer automorphism caused by the automorphism of the Dynkin diagram different from the identity : in view of Theorem 3, it can be said that $\rho_{0}$ is determined (up to ( $k$ )-equivalence) by the automorphism $\Theta$ of $\mathfrak{h}_{C}$ such as

$$
\begin{aligned}
& \Theta\left(H_{1}\right)=H_{1}, \Theta\left(H_{p \pm i}\right)=H_{p \pm i+1}(0 \leqq i \leqq p-2) \text { for }(\mathrm{I})_{p, p} \\
& \Theta\left(H_{i}\right)=H_{i}(1 \leqq i \leqq l-2), \Theta\left(H_{l-1}\right)=H_{l}, \Theta\left(H_{l}\right)=H_{l-1} \text { for (IV) } p_{p}
\end{aligned}
$$

In the following, we shall consider only the case $g$ is not isomorphic to $g^{\prime}$.
5.2. The case $g^{\prime}=(\mathrm{IV})_{p^{\prime}}$. Let $(g, \rho)$ be a pair satisfying the above conditions, and $H_{0}=\sqrt{-1} \sum_{1 \leqq i \leqq l} a_{i} H_{i}$ the fixed complex structure of (g, $)$. The complex structure of ( $\mathfrak{g}^{\prime}, \mathfrak{f}^{\prime}$ ) are expressed as

$$
H_{0}^{\prime}=\frac{\sqrt{-1}}{2}\left(2 H_{1}^{\prime}+\cdots+2 H_{l^{\prime}-2}^{\prime}+(2) H_{l^{\prime}-1}^{\prime}+H_{l^{\prime}}^{\prime}\right),(2)=\left\{\begin{array}{l}
2\left(p^{\prime}=2 l^{\prime}-1\right) \\
1\left(p^{\prime}=2 l^{\prime}-2\right)
\end{array}\right.
$$

Hence, from Proposition 6 iii), we have $a_{1} m_{\rho}=1$. Since the number of elements of $\Delta_{0}^{\prime}$ (see 3.2) is 2 , $m_{\rho}$ is equal to 1 or 2 . Now that $\rho$ is in jective, the dimension of $\mathfrak{h}$ can not be larger than that of $\mathfrak{h}^{\prime}$, and neither the number of elements of $\Delta_{0}$ (i.e. the rank of $(\mathrm{g}, \mathrm{f})$ ) than that of $\Delta_{0}^{\prime}$.

In the first place, we treat the case $g=(\mathrm{IV})_{p}$. For convenience, $p$ is admitted to be $1,2,3$, or 4 , and $p^{\prime}$ to be 2,3 , or 4 by the following identifications:

$$
\begin{aligned}
& (\mathrm{IV})_{1}=(\mathrm{I})_{1,1},(\mathrm{IV})_{2}=(\mathrm{I})_{1,1}+(\mathrm{I})_{1,1}, \\
& (\mathrm{IV})_{3}=(\mathrm{III})_{2},(\mathrm{IV})_{4}=(\mathrm{I})_{2,2}
\end{aligned}
$$

(though (IV) $)_{2}$ is not simple). If $\mathfrak{g} \neq$ (IV) $)_{1}$, we have $a_{1}=a_{1}^{\prime}=1$, and hence $m_{\rho}=1$. For $\mathrm{g}=(\mathrm{IV})_{1}, a_{1}=\frac{1}{2}$, so $m_{\rho}=2$.
i) Let $p^{\prime}=2 l^{\prime}-2, p=p^{\prime}-1$, and suppose that we have a monomorphism $\rho$ satisfying $\left(H_{2}\right)$. Clearly, $l=l^{\prime}-1$. By Proposition 7 (and Proposition 5 for the case $p^{\prime}=2$ ), we can modify $\rho$ by ( $k$ )-equivalence so as to make it to satisfy the following relations:

$$
\rho\left(H_{i}\right)=H_{i}^{\prime}\left(1 \leqq i \leqq l-1=l^{\prime}-2\right), \rho\left(H_{l}\right)=\sum_{j=1}^{l^{\prime}} \mu_{j} H_{j}^{\prime},
$$

where $\mu_{j}$ 's are integers and $\mu_{1}=0$ if $l \neq 1$. Proposition 6 ii) implies

$$
\begin{aligned}
& \frac{1}{\delta^{\prime}}\left\langle H_{i}^{\prime}, \rho\left(H_{l}\right)\right\rangle^{\prime}= \begin{cases}0 & \left(1 \leqq i \leqq l^{\prime}-3\right) \\
-1 & \left(i=l-1=l^{\prime}-2\right), \\
\frac{1}{\delta^{\prime}}\left\langle\rho\left(H_{l}\right), \rho\left(H_{l}\right)\right\rangle^{\prime}=2 .\end{cases}
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \mu_{2}=\mu_{3}=\cdots=\mu_{l^{\prime}-2}=0, \\
& \frac{1}{2}\left(\mu_{l^{\prime}-1}+\mu_{l^{\prime}}\right)=1, \mu_{l^{\prime}-1}^{2}+\mu_{l^{\prime}}^{2}=2,
\end{aligned}
$$

and so $\rho\left(H_{l}\right)=H_{\ell^{\prime}-1}^{\prime}+H_{\nu^{\prime}}^{\prime}$. Now we determine all compact roots satisfying the relation (47) in §3. If $i \leqq l-1$, it is easy to see by induction that the root $\alpha^{\prime}=\alpha_{i}^{\prime}$ is the unique compact root such as

$$
\begin{aligned}
& \alpha^{\prime}\left(\rho\left(H_{1}\right)\right)=\cdots=\alpha^{\prime}\left(\rho\left(H_{i-2}\right)\right)=0, \\
& \alpha^{\prime}\left(\rho\left(H_{i-1}\right)\right)=-1, \alpha^{\prime}\left(\rho\left(H_{i}\right)\right)=2 .
\end{aligned}
$$

Let $\alpha^{\prime}=\Sigma c_{j} \alpha_{j}$ be again a compact root satisfying now $\alpha^{\prime}\left(\rho\left(H_{i}\right)\right)=0(i \leqq l-2)$. Then we can see at once that $c_{j}=0\left(j \leqq l^{\prime}-2\right)$; hence $\alpha^{\prime}$ must be equal to $\pm \alpha_{l^{\prime}-1}^{\prime}$ or $\pm \alpha_{l^{\prime}}^{\prime}$. If $\alpha^{\prime}$ satisfies moreover

$$
\alpha^{\prime}\left(\rho\left(H_{l-1}\right)\right)=-1, \quad \alpha^{\prime}\left(\rho\left(H_{l-1}\right)\right)=2,
$$

then we have $\alpha^{\prime}=\alpha_{l^{\prime}-1}^{\prime}$ or $\alpha_{l^{\prime}}^{\prime}$. Thus, for the present case, we have proved Proposition 9 completely:

$$
\begin{align*}
& \rho\left(H_{i}^{\prime}\right)=H_{i}^{\prime}, \quad \rho\left(E_{ \pm \alpha_{i}}\right)=E_{ \pm \alpha^{\prime} i}^{\prime}\left(1 \leqq i \leqq l-1=l^{\prime}-2\right),  \tag{50}\\
& \rho\left(H_{l}\right)=H_{l^{\prime}-1}^{\prime}+H_{l^{\prime}}^{\prime}, \quad \rho\left(E_{ \pm \alpha_{l}}\right)=E_{ \pm \alpha_{l^{\prime}-1}^{\prime}}^{\prime}+E_{ \pm \alpha^{\prime} l^{\prime}}^{\prime} .
\end{align*}
$$

and all the other homomorphisms satisfying $\left(H_{2}\right)$ are equivalent to $\rho$. (Observe that $\rho$ is invariant under the automorphism $\rho_{0}$ of $g^{\prime}$ given in 5.1.)
ii) Let $p^{\prime}=2 l^{\prime}-1, p=p^{\prime}-1$ (hence $l=l^{\prime}$ ), and suppose that we have a monomorphism $\rho$ satisfying ( $H_{2}$ ). From Corollary to Proposition 7, it is easy to see that $\rho$ can be modified by ( $k$ )-equivalence to satisfy

$$
\begin{align*}
& \rho\left(H_{i}\right)=H_{i}^{\prime}, \quad \rho\left(E_{ \pm \alpha_{i}}\right)=E_{ \pm \alpha^{\prime} i}^{\prime}\left(1 \leqq i \leqq l-1=l^{\prime}-1\right), \\
& \rho\left(H_{l}\right)=H_{\beta^{\prime}}^{\prime}=H_{l^{\prime}-1}^{\prime}+H_{l^{\prime}}^{\prime}, \quad \rho\left(E_{ \pm \alpha_{l}}\right)=E_{ \pm \beta^{\prime}}^{\prime}, \tag{51}
\end{align*}
$$

where $\beta^{\prime}=\alpha_{l^{\prime}-1}^{\prime}+2 \alpha_{l^{\prime}}^{\prime}$ is a compact root of the maximal length. Hence there is one and only one ( $k$ )-equivalence class of homomorphisms of $\mathfrak{g}=(\text { IV })_{2 l^{\prime}-2}$ into $\mathfrak{g}^{\prime}=(\mathrm{IV})_{2 l^{\prime-1}}$ satisfying $\left(H_{2}\right)$. The image of $g$ under the homomorphism $\rho$ defined by (51) is the regular subalgebra (IV) $p_{p^{\prime-1}}$ of (IV) $p_{p^{\prime}}$.

Combining the results of i) and ii), it can be easily seen that there is a unique ( $k$ )-equivalence class of homomorphism of $\mathfrak{g}=(\mathrm{IV})_{p}\left(1 \leqq p \leqq p^{\prime}-1\right)$ into $\mathfrak{g}^{\prime}=(\mathrm{IV})_{p^{\prime}}\left(p^{\prime} \geqq 2\right)$ satisfying $\left(H_{2}\right)$. Particularly, $\mathfrak{g}=(\mathrm{I})_{1,1}$ is imbedded in $\mathfrak{g}^{\prime}=(\mathrm{IV})_{p^{\prime}}$ by the monomorphism defined by

$$
\rho\left(H_{1}\right)=H_{1}^{\prime}+H_{r^{\prime}}^{\prime}, \quad \rho\left(E_{ \pm \alpha_{1}}\right)=E_{ \pm \alpha_{1}^{\prime}}^{\prime}+E_{ \pm r^{\prime}}^{\prime},
$$

where $\gamma^{\prime}$ is the highest root of $g^{\prime}$; the image $\rho\left(\left(\mathrm{I}_{1,1}\right)\right.$ is the diagonal subalgebra of the regular subalgebra $\left(\mathrm{I}_{1,1}+(\mathrm{I})_{1,1}\right.$ of $\mathrm{g}^{\prime}$; if $p^{\prime}=2 l^{\prime}-1$, there is a homomorphism $\rho_{1}$, $(k)$-equivalent to $\rho$, of ( $\mathrm{I}_{1,1}$ into (IV) $p_{p^{\prime}}$ such that the image is the regular subalgebra ( $\mathrm{I}_{1,1}^{\prime}$ given in the table in 4.4.2:

$$
\rho_{1}\left(H_{1}\right)=H_{1}^{\prime}+H_{r^{\prime}}^{\prime}=H_{r^{\prime},}^{\prime}, \quad \rho_{1}\left(E_{ \pm \alpha_{1}}\right)=E_{ \pm r_{1}^{\prime}{ }_{1}}^{\prime} .
$$

Now, let g be of type ( I$)_{p, q}(p \leqq q)$, and suppose that we get a $\rho$. Clearly, $p$ is at most 2 and $p+q \leqq l^{\prime}+1$. By the expression of $H_{0}$, we have

$$
m_{\rho} \frac{p q}{p+q}=1, \text { i. e. } \quad\left(m_{\rho} p-1\right)\left(m_{\rho} q-1\right)=1
$$

For this equation, we get only two solutions of positive integers:

$$
m_{\rho}=1, p=q=2 ; \quad m_{\rho}=2, p=q=1 .
$$

But these two cases are already examined above as the cases $g=(\text { IV })_{4}$ and $\mathrm{g}=(\mathrm{IV})_{1}$ respectively.

In the second place, let $\mathfrak{g}$ be of type (III) $)_{p}(p \geqq 2)$. Since the rank of ( $g$, $\mathfrak{f}$ )
is $p$, the only possible case for the existence of $\rho$ is that $p=2$. But that is already examined above as the case $g=(\mathrm{IV})_{3}$.

For the remaining cases $g=(\mathrm{II})_{p}(p \geqq 5)$, (EIII), and (EVII), it is easy to see from the relation $a_{1} m_{\rho}=1$ that there is no homomorphism satisfying $\left(H_{2}\right)$.

Thus we have proved the following
Theorem 4. Let $(\mathrm{g}, \rho)$ be a pair of a simple Lie algebra of hermitian type and a homomorphism into $\mathfrak{g}^{\prime}=(\mathrm{IV})_{p^{\prime}}$ satisfying $\left(H_{2}\right)$ w.r.t. a fixed complex structures of $\mathfrak{g}$ and $\mathfrak{g}^{\prime}$ respectively. Then $\mathfrak{g}$ is of type (IV) $\left(1 \leqq p \leqq p^{\prime}-1\right)$ and $\rho$ is equivalent to that derived inductively from (50) and (51). For the case $p=1$, $m_{\rho}$ is equal to 2 , and for others, $m_{\rho}=1$.
5.3. The case $\mathfrak{g}^{\prime}=$ (EIII). In this case, the rank of $\left(\mathfrak{g}^{\prime}, \mathrm{f}^{\prime}\right)$ is equal to 2 . Let $(\mathfrak{g}, \rho)$ be a pair what we are looking for and $H_{0}=\sqrt{-1} \sum_{1 \leq i \leq l} a_{i} H_{i}$ the fixed complex structure of ( $\mathfrak{g}, \mathfrak{f}$ ). Then Proposition 6 iii) implies $a_{1} m_{\rho}=\frac{4}{3}$, where $m_{\rho}$ is at most 2. Hence it is easy to see that $g$ can not be other than of type (I) $)_{p, q}$. Firstly, let $m_{\rho}$ be equal to 1 . Then the image $\rho(\mathrm{g})$ must be a regular subalgebra of $g^{\prime}$. On the other hand, we have

$$
\frac{p q}{p+q}=\frac{4}{3}, \quad \text { and so }(3 p-4)(3 q-4)=16
$$

This equation has a unique solution of positive integers: $p=2, q=4$. We have seen in 4.5 that there is certainly a regular subalgebra $\left(\mathrm{I}_{2,4}\right.$ of class $\left(H_{2}\right)$ represented by the $\Pi$-system $\left\{\beta_{1}^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}, \alpha_{6}^{\prime}\right\}$, where $\beta_{1}^{\prime}=\alpha_{2}^{\prime}+2 \alpha_{3}^{\prime}+2 \alpha_{4}^{\prime}+\alpha_{5}^{\prime}+\alpha_{6}^{\prime}$. Therefore we can see that there is a monomorphism of (I) $)_{2,4}$ into (EIII), unique up to ( $k$ )-equivalence: for instance, a representative $\rho$ is defined by

$$
\begin{array}{ll}
\rho\left(H_{i}\right)=H_{i}^{\prime}, & \rho\left(E_{ \pm \alpha_{i}}\right)=E_{ \pm \alpha^{\prime} i}^{\prime}(1 \leqq i<5), \\
\rho\left(H_{5}\right)=H_{\beta^{\prime}}^{\prime}, & \rho\left(E_{ \pm \alpha_{5}}\right)=E_{ \pm \beta^{\prime}}^{\prime} . \tag{52}
\end{array}
$$

Secondly, let $m_{\rho}$ be equal to 2 . Then we have

$$
\frac{2 p q}{p+q}=\frac{4}{3}, \quad \text { and so }(3 p-2)(3 q-2)=4
$$

Hence we can see at once that $\mathfrak{g}$ must be of type ( $\mathrm{I}_{1,2}$. By Proposition 5, the homomorphism $\rho$ can be modified by ( $k$ )-equivalence so as to satisfy

$$
\rho\left(H_{1}\right)=H_{1}^{\prime}+H_{r^{\prime}}^{\prime}, \quad \rho\left(H_{2}\right)=\sum_{2 \leq j \leq 6} \mu_{j} H_{j}^{\prime},
$$

where $\gamma^{\prime}$ denotes the highest root of $g_{c}^{\prime}$. By Proposition 6 ii), we have

$$
\begin{align*}
& \mu_{2}-\mu_{6}=2  \tag{53}\\
& \mu_{2}^{2}+\cdots+\mu_{6}^{2}-\left(\mu_{2} \mu_{3}+\mu_{3} \mu_{4}+\mu_{3} \mu_{6}+\mu_{4} \mu_{5}\right)=2
\end{align*}
$$

Since $\mu_{j}$ 's are rational integers, it follows easily from (53) that

$$
\mu_{2}=1, \quad \mu_{3}=\mu_{4}=\mu_{5}=0, \quad \mu_{6}=-1
$$

Thus we have got a homomorphism $\rho$ defined by

$$
\begin{align*}
& \rho\left(H_{1}\right)=H_{1}^{\prime}+H_{\gamma^{\prime}}^{\prime}, \quad \rho\left(E_{ \pm \alpha_{1}}\right)=E_{ \pm \alpha_{1}^{\prime}}^{\prime}+E_{ \pm \gamma^{\prime}}^{\prime},  \tag{54}\\
& \rho\left(H_{2}\right)=H_{2}^{\prime}-H_{6}^{\prime}=H_{2}^{\prime}+H_{-\alpha_{6}}^{\prime}, \quad \rho\left(E_{ \pm \alpha_{2}}^{\prime}\right)=E_{ \pm \alpha_{2}}^{\prime}+E_{\mp \alpha_{6}}^{\prime},
\end{align*}
$$

It can be easily seen that $\rho$ satisfies $\left(H_{2}\right)$. Now, let $\alpha^{\prime}=\sum c_{j} \alpha_{j}^{\prime}$ be a compact root satisfying

$$
\begin{equation*}
\alpha^{\prime}\left(\rho\left(H_{1}\right)\right)=-1, \quad \alpha^{\prime}\left(\rho\left(H_{2}\right)\right)=2 \tag{55}
\end{equation*}
$$

The first condition in (55) implies
or

$$
\alpha^{\prime}\left(H_{1}^{\prime}\right)=-1, \quad \alpha^{\prime}\left(H_{r^{\prime}}^{\prime}\right)=0,
$$

$$
\alpha^{\prime}\left(H_{1}^{\prime}\right)=0, \quad \alpha^{\prime}\left(H_{\gamma^{\prime}}^{\prime}\right)=-1
$$

and hence $\left(c_{2}, c_{6}\right)=(1,0)$ or $(0,-1)$. Then, from the second condition of (55), it follows that $\alpha^{\prime}=\alpha_{2}$ or $-\alpha_{6}$. Thus, for the present case, we have proved Proposition 9 completely: all homomorphisms of (I) 1,2 into (EIII) satisfying $\left(H_{2}\right)$ are equivalent to $\rho$ defined by (54).

We have proved the following
THEOREM 5. Let $\mathfrak{g}^{\prime}$ be of type (EIII). Then every pair ( $\mathrm{g}, \rho$ ) of a simple Lie algebra of hermitian type and a homomorphism into $\mathrm{g}^{\prime}$ satisfying $\left(H_{2}\right)$ is equivalent to one of the following:
i) $g$ is of type ( $)_{2,4}, \rho$ is determined by (52);

$$
m_{\rho}=1, \rho(\mathrm{~g})=\text { the regular subalgebra }(\mathrm{I})_{2,4} \text { of }(\mathrm{EIII}) .
$$

ii) $g$ is of type ( $)_{1,2}, \rho$ is determined by (54);

$$
\begin{aligned}
m_{\rho}=2, \rho(g)= & \text { the diagonal subalgebra of the regular subalgebra } \\
& (\mathrm{I})_{1,2}+(\mathrm{I})_{1,2}
\end{aligned}
$$

5.4. The caes $g^{\prime}=(E V I I)$. Since the rank of ( $\left.g^{\prime}, f^{\prime}\right)$ is 3 , the integer $m_{\rho}$ defined as before is at most 3 ; the coefficient $a_{1}^{\prime}$ in the expression of $\frac{1}{\sqrt{-1}} H_{0}^{\prime}$ is equal to $\frac{3}{2}$.

Firstly, let $g$ be of type $\left(\mathrm{I}_{p, q}\right.$. We have the following four solutions of the equation $m_{\rho} \frac{p q}{p+q}=\frac{3}{2}$ :
i) $m_{\rho}=1, p=2, q=6$.
ii) $m_{\rho}=1, p=q=3$.
iii) $\quad m_{\rho}=2, p=1, q=3$.
iv) $m_{\rho}=3, p=q=1$.

If $m_{\rho}=1$, it follows from Corollary to Proposition 7 that the image $\rho(\mathrm{g})$ must be ( $k$ )-conjugate to a regular subalgebra of $g^{\prime}$ given in the table in 4.6. There are really regular subalgebras $(\mathrm{I})_{2,6}$ and $(\mathrm{I})_{3,3}$, of class $\left(H_{2}\right)$, in it. Hence we
get a homomorphism $\rho$ of $g$ into $\mathfrak{g}^{\prime}$ defined uniquely up to ( $k$ ) -equivalence by
and

$$
\rho\left(H_{i}\right)=H_{i}^{\prime}(1 \leqq i \leqq 6), \quad \rho\left(H_{7}\right)=H_{\beta^{\prime}}^{\prime} \text { for } \mathrm{g}=\left(\mathrm{I}_{2,6},\right.
$$

$$
\rho\left(H_{i}\right)=H_{i}^{\prime}(1 \leqq i \leqq 3), \quad \rho\left(H_{4}\right)=-H_{7}^{\prime}, \quad \rho\left(H_{5}\right)=H_{\beta^{\prime}}^{\prime} \text { for } g=(\mathrm{I})_{3,3},
$$

where $\beta^{\prime}$ denotes the compact root $\alpha_{2}^{\prime}+2 \alpha_{3}^{\prime}+3 \alpha_{4}^{\prime}+2 \alpha_{5}^{\prime}+\alpha_{6}^{\prime}+2 \alpha_{7}^{\prime}$. The automorphism $\rho_{0}$ of the regular subalgebra ( I$)_{3,3}$ defined in 5.1 is induced by an inner automorphism of $\mathfrak{g}^{\prime}$ corresponding to an element $w$ of $W_{K^{\prime}}$ such as

$$
w: \alpha_{1}^{\prime} \longleftrightarrow \alpha_{1}^{\prime}, \quad \alpha_{2}^{\prime} \longleftrightarrow \beta^{\prime}, \quad \alpha_{3}^{\prime} \longleftrightarrow-\alpha_{7}^{\prime} ;
$$

for instance, $w=w_{7}\left(w_{0}\right)^{2} w_{3} w_{4} w_{5} w_{7} w_{4} w_{3} w_{0}^{-1}$, where $w_{i}(i \neq 0)$ denotes the reflection associated with $\alpha_{1}^{\prime}$ (cf. (27)) and $w_{0}=w_{7} w_{4} w_{5} w_{6}$. Hence $\rho_{0} \circ \rho$ is (k)-equivalent to $\rho$. For other homomorphisms satisfying $\left(H_{2}\right)$, it is easy to see that they are ( $k$ )-equivalent to $\rho$. Now, for iv), it follows from Proposition 5 that all homomorphisms of $\mathfrak{g}=\left(\mathrm{I}_{1,1}\right.$ into $\mathrm{g}^{\prime}$ satisfying $\left(H_{2}\right)$ are $(k)$-equivalent to $\rho$ determined by

$$
\rho\left(H_{1}\right)=H_{1}^{\prime}+H_{r^{\prime} 1}^{\prime}+H_{r}^{\prime}, \quad \rho\left(E_{ \pm \alpha_{1}}\right)=E_{ \pm \alpha^{\prime}{ }_{1}}^{\prime}+E_{ \pm r^{\prime} 1_{1}}^{\prime}+E_{ \pm r^{\prime}}^{\prime},
$$

where $\gamma^{\prime}$ is the highest root, and $\gamma_{1}^{\prime}$ is a positive non-compact root strongly orthogonal to both $\alpha_{1}^{\prime}$ and $\gamma^{\prime}$. The image $\rho(\mathrm{g})$ is the diagonal subalgebra of the regular subalgebra whose $\Pi$-system is $\Delta_{0}^{\prime}=\left\{\alpha_{1}^{\prime}, \gamma_{1}^{\prime}, \gamma^{\prime}\right\}$. Now, let $g$ be of type ( $\mathrm{I}_{1,3}$ (the case iii)), and suppose we get a homomorphism of it into $\mathrm{g}^{\prime}$ satisfying ( $H_{2}$ ). Modifying $\rho$ by ( $k$ )-equivalence, we may put

$$
\rho\left(H_{1}\right)=H_{1}^{\prime}+H_{r^{\prime}}^{\prime}, \quad \rho\left(H_{2}\right)=\sum_{j=2}^{\eta} \mu_{j} H_{j}^{\prime}, \quad \rho\left(H_{3}\right)=\sum_{j=2}^{\eta} \nu_{j} H_{j}^{\prime} .
$$

On the other hand, we have from Proposition 6 ii) the following relations:

$$
\begin{align*}
& \frac{1}{\delta^{\prime}}\left\langle\rho\left(H_{2}\right), \rho\left(H_{2}\right)\right\rangle^{\prime}=\frac{1}{\delta^{\prime}}\left\langle\rho\left(H_{3}\right), \rho\left(H_{3}\right)\right\rangle^{\prime}=2,  \tag{56}\\
& \frac{1}{\delta^{\prime}}\left\langle\rho\left(H_{1}\right), \rho\left(H_{2}\right)\right\rangle^{\prime}=\frac{1}{\delta^{\prime}}\left\langle\rho\left(H_{2}\right), \rho\left(H_{3}\right)\right\rangle^{\prime}=-1,  \tag{57}\\
& \frac{1}{\delta^{\prime}}\left\langle\rho\left(H_{1}\right), \rho\left(H_{3}\right)\right\rangle^{\prime}=0 . \tag{58}
\end{align*}
$$

By (56), we see that the rational integers $\mu_{j}(2 \leqq j \leqq 7)$ and $\nu_{j}(2 \leqq j \leqq 7)$ are solutions of

$$
\begin{equation*}
x_{2}^{2}+x_{3}^{2}+\cdots+x_{7}^{2}-\left(x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{5}+x_{5} x_{6}+x_{4} x_{7}\right)=2 . \tag{59}
\end{equation*}
$$

If $\left\{x_{2}, x_{3}, \cdots, x_{7}\right\}$ is an integral solution of (59), we put

$$
N=\sum_{j=2}^{7} x_{j} H_{j}^{\prime}=\left(x_{2}, x_{3}, \cdots, x_{7}\right) ;
$$

the vector $N$ of $\sqrt{-1} \mathfrak{h}^{\prime}$ will be called a (integral) solution of (59). The rela-
tion (57) implies $\mu_{2}-\mu_{6}=2$. Putting $x_{2}-x_{6}=2$. we get the following 9 integral solutions of (59):

$$
\begin{aligned}
& N_{1}=(1,0,0,0,-1,0), N_{2}=(1,1,0,0,-1,0), N_{3}=(1,1,1,0,-1,0), \\
& N_{4}=(1,1,1,0,-1,1), N_{5}=(1,0,0,-1,-1,0), N_{6}=(1,0,-1,-1,-1,0), \\
& N_{7}=(1,0,-1,-1,-1,-1), N_{8}=(1,1,0,-1,-1,0), N_{9}=(2,2,2,1,0,1) .
\end{aligned}
$$

All $N_{i}$ but $N_{9}$ are transposed to $N_{1}$ by elements of $N_{K^{\prime}}\left(\mathfrak{G}^{\prime}\right)$ keeping $H_{1}$ invariant. In fact, denoting by $k_{i}$ an element of the class in $N_{K^{\prime}}\left(\mathfrak{G}^{\prime}\right)$ modulo $Z_{K^{\prime}}\left(\mathfrak{G}^{\prime}\right)$ corresponding to the reflection $w_{i} \in W_{K^{\prime}}$, we have the following diagram.


Therefore we may assume that $\rho\left(H_{2}\right)$ is equal to $N_{1}=H_{2}^{\prime}-H_{6}^{\prime}$ or $N_{9}$. By (57), we have $\nu_{2}=\nu_{6}$. On the other hand, the relation (58) implies that $\nu_{3}-\nu_{5}=2$ if $\rho\left(H_{2}\right)=N_{1}$, or that $-2 \nu_{2}+\nu_{6}=2$ if $\rho\left(H_{2}\right)=N_{9}$. Under the relations $x_{2}=x_{6}$ and $x_{3}-x_{5}=2$, we have only one integral solution ( $0,1,0,-1,0,0$ ) of (59). On the other hand, there is no solution of (59) satisfying $x_{2}=x_{6}$ and $-2 x_{2}+x_{6}=2$. Hence we get a ( $k$ )-equivalence class of homomorphisms of $\mathfrak{g}=(\mathrm{I})_{1,3}$ inte $\mathfrak{g}^{\prime}=$ (EVII) satisfying ( $H_{2}$ ) represented by that defined by

$$
\begin{array}{lc}
\rho\left(H_{1}\right)=H_{1}^{\prime}+H_{r^{\prime}}^{\prime}, & \rho\left(E_{ \pm \alpha_{1}}\right)=E_{ \pm \alpha_{1}^{\prime}}^{\prime}+E_{ \pm r^{\prime}}^{\prime} \\
\rho\left(H_{2}\right)=H_{2}^{\prime}+H_{-\alpha_{6}}^{\prime}, & \rho\left(E_{ \pm \alpha_{2}}^{\prime}\right)=E_{ \pm \alpha^{\prime} 2}^{\prime}+E_{ \pm \alpha_{6}^{\prime}}^{\prime},  \tag{60}\\
\rho\left(H_{3}\right)=H_{3}^{\prime}+H_{-\alpha_{5^{\prime}}}^{\prime}, & \rho\left(E_{ \pm \alpha_{3}}\right)=E_{ \pm \alpha_{3}^{\prime}}^{\prime}+E_{\mp \alpha_{5}^{\prime}}^{\prime} ;
\end{array}
$$

the sets $S(1)=\left\{\alpha_{1}^{\prime}, \gamma^{\prime}\right\}, S(2)=\left\{\alpha_{2}^{\prime},-\alpha_{6}^{\prime}\right\}, S(3)=\left\{\alpha_{3}^{\prime},-\alpha_{5}^{\prime}\right\}$ are strongly orthogonal systems. Let $\alpha^{\prime}$ be a compact root satisfying

$$
\alpha^{\prime}\left(\rho\left(H_{1}\right)\right)=-1, \quad \alpha^{\prime}\left(\rho\left(H_{2}\right)\right)=2
$$

Then, by the same way as before, we can see that $\alpha^{\prime}$ is equal to $\alpha_{2}^{\prime}$ or $-\alpha_{6}^{\prime}$ and hence an element of $S(2)$. Let further $\beta^{\prime}=\Sigma c_{j} \alpha_{j}^{\prime}$ be a compact root satisfying

$$
\begin{equation*}
\beta^{\prime}\left(\rho\left(H_{1}\right)\right)=0, \quad \beta^{\prime}\left(\rho\left(H_{2}\right)\right)=-1, \quad \beta^{\prime}\left(\rho\left(H_{3}\right)\right)=2 . \tag{61}
\end{equation*}
$$

The first condition in (61) implies

$$
\left(c_{2}, c_{6}\right)=(0,0), \quad(1,1), \quad \text { or } \quad(-1,-1),
$$

and the second is equivalent to say

$$
\begin{equation*}
\beta^{\prime}\left(H_{3}^{\prime}\right)=-1(\text { resp. } 0), \quad \beta^{\prime}\left(H_{5}^{\prime}\right)=0(\text { resp. }-1) . \tag{62}
\end{equation*}
$$

Hence, if $\left(c_{2}, c_{6}\right)=(0,0)$, we see from the last condition that $\beta^{\prime}$ is equal to $\alpha_{3}^{\prime}$ or $-\alpha_{5}^{\prime}$, i. e. an element of $S(3)$; for other cases (62) implies $2\left(c_{3}-c_{5}\right)=-1$, which can not happen. Therefore, by Proposition 9, we conclude that there is no other ( $k$ )-equivalence class than that represented by $\rho$. The image $\rho(\mathrm{g})$ is clearly the diagonal subalgebra of the regular subalgebra $\left(\mathrm{I}_{1,3}+(\mathrm{I})_{1,8}\right.$ of $\mathrm{g}^{\prime}$.

For the case $g$ is of type (II) $)_{p}(p \geqq 5)$, it is easy to see that $p$ must be equal to $6, m_{\rho}$ to 1 . Hence we get a unique ( $k$ )-equivalence class represented by a homomorphism $\rho$ such that the image $\rho(\mathrm{g})$ is the regular subalgebra (II) ${ }_{6}$ of (EVII).

Now, let $\mathfrak{g}$ be of type (III) ${ }_{p}$. The possible case is only that $m_{\rho}=1$ and $p=3$. Suppose we get a homomorphism $\rho$ of $\mathfrak{g}=(\mathrm{III})_{3}$ into $\mathfrak{g}^{\prime}=$ (EVII) satisfying $\left(H_{2}\right)$. We may put

$$
\rho\left(H_{1}\right)=H_{1}^{\prime}, \quad \rho\left(H_{2}\right)=\sum_{j=2}^{7} \mu_{j} H_{j}^{\prime}, \quad \rho\left(H_{3}\right)=\sum_{j=2}^{7} \nu_{j} H_{j}^{\prime} .
$$

From Proposition 6 ii), we have the following relations:

$$
\begin{align*}
& \frac{1}{\delta^{\prime}}\left\langle\rho\left(H_{2}\right), \rho\left(H_{2}\right)\right\rangle^{\prime}=\frac{1}{\delta^{\prime}}\left\langle\rho\left(H_{3}\right), \rho\left(H_{3}\right)\right\rangle^{\prime}=2,  \tag{63}\\
& \frac{i 1}{\delta^{\prime}}\left\langle H_{1}^{\prime}, \rho\left(H_{2}\right)\right\rangle^{\prime}=\frac{1}{\delta^{\prime}}\left\langle\rho\left(H_{2}\right), \rho\left(H_{3}\right)\right\rangle^{\prime}=-1,  \tag{64}\\
& \frac{1}{\delta^{\prime}}\left\langle H_{1}^{\prime}, \rho\left(H_{3}\right)\right\rangle^{\prime}=0 . \tag{65}
\end{align*}
$$

The relation (63) implies that the rational integers $\mu_{j}(2 \leqq j \leqq 7)$ and $\nu_{j}(2 \leqq j$ $\leqq 7$ ) are solutions of (59). Then we can see that $\rho\left(H_{2}\right)$ should be equal to one of $N_{i}(1 \leqq i \leqq 10)$ defined as follows:

$$
\begin{array}{lll}
N_{1}=(2,2,3,2,1,2), & N_{2}=(2,2,3,2,1,1), & N_{3}=(2,2,2,2,1,1), \\
N_{4}=(2,2,2,1,1,1), & N_{5}=(2,2,2,1,0,1), & N_{6}=(2,3,3,2,1,2), \\
N_{7}=(2,3,4,2,1,2), & N_{8}=(2,3,4,3,1,2), & N_{9}=(2,3,4,3,2,2), \\
N_{10}=(2,3,3,2,1,1) . &
\end{array}
$$

Taking $k_{i} \in N_{K^{\prime}}\left(G^{\prime}\right)$ as above, we get easily the following diagram:


Hence in any case, we can modify $\rho$ by ( $k$ )-equivalence keeping $H_{1}^{\prime}$ invariant so as to satisfy

$$
\begin{equation*}
\rho\left(H_{2}\right)=N_{1}=2 H_{2}^{\prime}+2 H_{3}^{\prime}+3 H_{4}^{\prime}+2 H_{5}^{\prime}+H_{6}^{\prime}+2 H_{7}^{\prime}=H_{2}^{\prime}+H_{\beta^{\prime}}^{\prime}, \tag{66}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta^{\prime}=\alpha_{2}^{\prime}+2 \alpha_{3}^{\prime}+3 \alpha_{4}^{\prime}+2 \alpha_{5}^{\prime}+2 \alpha_{6}^{\prime}+2 \alpha_{7}^{\prime} \tag{67}
\end{equation*}
$$

is a compact root of $\mathfrak{g}^{\prime}=(\mathrm{EVII})$. Then the relations (64) and (65) with (66) implies

$$
\begin{equation*}
\nu_{2}=0, \quad \nu_{2}-\left(\nu_{3} / 2\right)+\left(\nu_{7} / 2\right)=-1 . \tag{68}
\end{equation*}
$$

There is only one solution $H_{3}^{\prime}-H_{7}^{\prime}$ of (59) satisfying (68). Thus we have a homomorphism satisfying ( $H_{2}$ ) defined by

$$
\begin{array}{ll}
\rho\left(H_{1}\right)=H_{1}^{\prime}, & \rho\left(E_{ \pm \alpha_{1}}\right)=E_{ \pm \alpha_{1}^{\prime}}^{\prime}, \\
\rho\left(H_{2}\right)=H_{2}^{\prime}+H_{\beta^{\prime}}^{\prime}, & \rho\left(E_{ \pm \alpha_{2}}^{\prime}\right)=E_{ \pm \alpha_{2}^{\prime}}^{\prime}+E_{ \pm \beta^{\prime}}^{\prime},  \tag{69}\\
\rho\left(H_{3}\right)=H_{3}^{\prime}-H_{7}^{\prime}, & \rho\left(E_{ \pm \alpha_{3}}^{3}\right)=E_{ \pm \alpha_{3}^{\prime}}^{\prime}+E_{ \pm \alpha_{7}^{\prime} 7}^{\prime} ;
\end{array}
$$

the sets $S(1)=\left\{\alpha_{1}^{\prime}\right\}, S(2)=\left\{\alpha_{2}^{\prime}, \beta^{\prime}\right\}, S(3)=\left\{\alpha_{3}^{\prime},-\alpha_{7}^{\prime}\right\}$ are strongly orthogonal systems. Let $\alpha^{\prime}=\Sigma c_{j} \alpha_{j}^{\prime}$ be a compact root satisfying

$$
\begin{equation*}
\alpha^{\prime}\left(\rho\left(H_{1}\right)\right)=-1, \quad \alpha^{\prime}\left(\rho\left(H_{2}\right)\right)=2, \tag{70}
\end{equation*}
$$

Recall that $\beta^{\prime}$ given by (67), is contained in the $\Pi$-system corresponding to the regular subalgebra ( I$)_{2,6}$ of $\boldsymbol{g}^{\prime}$ given in the table in 4.6. Then we see that $\beta^{\prime}$ is strongly orthogonal to all simple roots but $\alpha_{1}^{\prime}$ and $\alpha_{7}^{\prime}$, and that $\beta^{\prime}\left(H_{1}\right)$ $=-1, \beta^{\prime}\left(H_{7}\right)=1$. Then it follows from the condition (70) that $\alpha^{\prime}$ is equal to $\alpha_{2}^{\prime}$ or $\beta^{\prime}$. By the same way, we can easily see that a compact root $\alpha^{\prime}$ satisfying

$$
\alpha^{\prime}\left(\rho\left(H_{1}\right)\right)=0, \quad \alpha^{\prime}\left(\rho\left(H_{2}\right)\right)=-1, \quad \alpha^{\prime}\left(\rho\left(H_{3}\right)\right)=0
$$

is an element of $S(3)$. Therefore, for the present case, we have proved Proposition 9 completely, and so we see that there is a unique equivalence class of homomorphisms of $\mathfrak{g}=(\mathrm{III})_{3}$ into $\mathfrak{g}^{\prime}$ satisfying $\left(H_{2}\right)$ whose representative is given by the above $\rho$. The image of $g$ by $\rho$ is clearly contained in the regular subalgebra ( I$)_{3,3}$ of $\mathrm{g}^{\prime}$; we see at once that $\rho$ is invariant by the automorphism $\rho_{0}$, defined in 5.1, of the regular subalgebra $(\mathrm{I})_{3,3}$.

There is no solution such that $g=(\mathrm{IV})_{p}(p \geqq 5)$ or (EIII).
Thus we have proved the following
Theorem 6. Let $\mathfrak{g}^{\prime}$ be of type (EVII). Then every pair ( $\mathfrak{g}, \rho$ ) of a simple Lie algebra of hermitian type and a homomorphism into $\mathfrak{g}^{\prime}$ satisfying $\left(H_{2}\right)$ is equivalent to one of those given as follows:
i) $\mathrm{g}=(\mathrm{I})_{2,6}, \rho\left(H_{i}\right)=H_{i}^{\prime}(1 \leqq i \leqq 6), \rho\left(H_{7}\right)=H_{\beta^{\prime}}^{\prime}$;
$m_{\rho}=1, \rho(\mathrm{~g})=$ the regular subalgebra $\left(\mathrm{I}_{2,6}\right.$ of $\mathrm{g}^{\prime}$.
ii) $g=\left(\mathrm{I}_{3,3}, \rho\left(H_{i}\right)=H_{i}^{\prime}(1 \leqq i \leqq 3), \rho\left(H_{4}\right)=-H_{7}^{\prime}, \rho\left(H_{5}\right)=H_{\beta^{\prime}}^{\prime}\right.$;
$m_{\rho}=1, \rho(\mathrm{~g})=$ the regular subalgebra $\left(\mathrm{I}_{3,3}\right.$ of $\mathrm{g}^{\prime}$.
iii) $\mathrm{g}=(\mathrm{I})_{1,3}, \rho$ is determined by $(60)$;
$m_{\rho}=2, \rho(\mathrm{~g})=$ the diagonal subalgebra of the regular subalgebra

$$
(\mathrm{I})_{1,3}+(\mathrm{I})_{1,3} .
$$

iv) $\mathfrak{g}=\left(\mathrm{I}_{1,1}, \rho\left(H_{1}\right)=H_{1}^{\prime}+H_{\gamma_{1}^{\prime}}^{\prime}+H_{\gamma^{\prime}}^{\prime}\right.$;
$m_{\rho}=3, \rho(\mathrm{~g})=$ the diagonal subalgebra of the regular subalgebra

$$
(\mathrm{I})_{1,1}+(\mathrm{I})_{1,1}+(\mathrm{I})_{1,1} \cdot
$$

v) $\mathrm{g}=(\mathrm{II})_{6}, \rho$ is determined naturally;
$m_{\rho}=1, \rho(\mathrm{~g})=$ the regular subalgebra (II) ${ }_{6}$ of $\mathrm{g}^{\prime}$.
vi) $\mathrm{g}=(\mathrm{III})_{3}, \rho$ is determined by (69);
$m_{\rho}=1, \rho(\mathrm{~g}) \subset$ the regular subalgebra $(\mathrm{I})_{3,3}$ of g.

## Appendix

We give here some numerical results about correspondences of boundary components w.r.t. a holomorphic imbedding of a symmetric domain into another, supplementary to those given by Satake ([5]).

We recall at first the general theory given in [5]. Let $\varphi$ be a holomorphic imbedding of symmetric domain $D$ into another $D^{\prime}$ such as $\varphi(0)=o^{\prime}$, where $o$ and $o^{\prime}$ are fixed origin of $D$ and $D^{\prime}$ respectively. Let further $g$ (resp. $\mathfrak{g}^{\prime}$ ) be the Lie algebra of hermitian type corresponding to $D$ (resp. $D^{\prime}, \rho$ the homomorphism (and its complexification) of $\mathfrak{g}$ into $g^{\prime}$ satisfying ( $H_{1}$ ) which comes from $\varphi$. Suppose that $D$ (resp. $D^{\prime}$ ) is imbedded in $\mathfrak{p}_{+}$(resp. $\mathfrak{p}_{+}^{\prime}$ ) by the Harish-Chandra imbedding, where

$$
\mathfrak{p}_{+}=\sum_{\alpha \in v_{+}} g_{\alpha}\left(\text { resp. } \mathfrak{p}_{+}^{\prime}={ }_{\alpha^{\prime} \in \in v^{\prime}+} g_{\alpha^{\prime}}^{\prime}\right) .
$$

Then $\varphi$ is the restriction on $D$ of the $C$-linear map $\rho: \mathfrak{p}_{+} \rightarrow \mathfrak{p}_{+}^{\prime}$. For each boundary component $F$ of $D$, there is a uniquely determined boundary component $F^{\prime}$ of $D^{\prime}$ in which $\rho(F)$ is contained. If $\rho$ is injective and $F$ is proper boundary component (i.e. not $D$ itself), $F^{\prime}$ is also proper. We may consider only the case both $D$ and $D^{\prime}$ are irreducible; hence we assume so in the following. Let $\Delta_{0}=\left\{\gamma_{i}\right\}_{i \in R}$ be a maximal strongly orthogonal system of positive non-compact roots of $g_{C}$ ordered by $R=\{1, \cdots, r\}$, where $r$ is the rank of $(\mathfrak{g}, \mathfrak{f})$. For a number $i$ in $R, F_{i}$ denotes the $i$-th boundary component of $D$; that is defined as the boundary component of $D$ containing the image under the Hermann map $\kappa$ of the boundary component

$$
\{1\} \underbrace{\times \cdots \times}_{i \text {-copies }}\{1\} \times \underbrace{U \times \cdots \times U}_{(r-i) \text {-copies }}
$$

of $U^{r}$, where $U$ is the unit disc (symmetric domain of type ( I$)_{1,1}$ ) and hence $\{1\}$ is a boundary component of $U$. Every boundary component of $D$ is equivalent under $K$ to one of $F_{i}^{\prime}$ s. Similarly $\Delta_{0}^{\prime}, \gamma_{j}^{\prime}, r^{\prime}, R^{\prime}$, and $F_{j}^{\prime}$ are defined for
$D^{\prime}$. Modifying $\rho$ by ( $k$ )-equivalence, one can find $j \in R^{\prime}$ for each $i \in R$ such that

$$
\begin{equation*}
\rho\left(F_{i}\right) \subset F_{j}^{\prime} \tag{71}
\end{equation*}
$$

The number $j$ is really a multiple of $i$ :

$$
\begin{equation*}
j=m i \tag{72}
\end{equation*}
$$

Thus the correspondence of boundary components is considered to be determined by the multiplier $m$ in (72).

We may take the non-compact simple root $\alpha_{1}$ for $\gamma_{1}$. Then it can be seen that the properties (71) and (72) are equivalent to saying (modifying $\rho$ by ( $k$ )equivalence if necessary) that $\rho\left(H_{1}\right)=\sum_{1 \leqq t \leqq m} H_{r^{\prime} t}^{\prime}$. Therefore we see at once that the number $m_{\rho}$ defined in 3.3 is equal to $m$ of (72).

Let $\mathfrak{g}$ be a simple regular subalgebra of $g^{\prime}$ corresponding to a $\Pi$-system $\Delta^{\prime}$. The injection of $g$ into $g^{\prime}$ is denoted by $c$. Let further $\alpha$ be the positive non-compact root in $\Delta^{\prime}$. Then, by Proposition 6 ii), we have

$$
m_{\iota}=\frac{1}{\delta^{\prime}}\left\langle H_{\alpha}^{\prime}, H_{\alpha}^{\prime}\right\rangle^{\prime}=\frac{\left\langle\alpha_{1}^{\prime}, \alpha_{1}^{\prime}\right\rangle^{\prime}}{\langle\alpha, \alpha\rangle^{\prime}}
$$

Hence $m_{\iota}$ is equal to either 1 or 2 according as $\alpha$ is longer or shorter root of $g_{c}^{\prime}$.

## University of Tokyo

## References

[1] E. B. Dynkin, Semi-simple subalgebras of semi-simple Lie algebras (Russian, 1952), Amer. Math. Soc. Transl. Ser. 2, 6 (1957), 245-378.
[2] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York and London, 1962.
[3] S. Ihara, Holomorphic imbeddings of symmetric domains into a symmetric domain, Proc. Japan Acad., 42 (1966), 193-197.
[4] I. Satake, Holomorphic imbeddings of symmetric domains into a Siegel space, Amer. J. Math., 87 (1965), 425-461.
[5] I. Satake, A note on holomorphic imbeddings and compactifications of symmetric domains, forthcoming.
[6] M. Sugiura, Conjugate classes of Cartan subalgebras in real semi-simple Lie algebras, J. Math. Soc. Japan, 11 (1959), 374-434.


[^0]:    2) The table in [3] given for this case was wrong: some $\Pi$-systems in it are not maximal, which are omitted here.
