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Introduction.

It seems to be natural in differential geometry to conjecture that many
theorems proved under the condition that the underlying manifolds are com-
pact can be extended to manifolds with complete Riemannian metric under
some suitable additional conditions.

Now, it is clear that for any smooth function $f$ on a compact manifold
there is a point $p$ such that $\nabla_{i}f(p)=0$ and $\nabla_{i}\nabla_{j}f(p)$ is negative semi-definite.
It is also clear that if a smooth function $f(x)$ on a real line $R$ has an upper
bound, then for any $\epsilon>0$ there is $x\in R$ such that $f^{\prime}(x)$ and $f^{\prime\prime}(x)$ are $<\epsilon$ .
This simple fact, however, can not be extended in general to a complete Rie-
mannian manifold. That is, there is a complete Riemannian manifold $M$ and
a bounded function $f$ on $M$ such that $m(p)=\{X^{i}X^{j}\nabla_{i}\nabla_{j}f(p);\Vert X\Vert=1\}$ is always
larger than $a>0$ . This example can easily be constructed on $R^{2}$ with metric
$dr^{2}+g(r)d\theta^{2}$ (in the polar coordinate expression). Let $f(r, \theta)=f(r)=\frac{\gamma^{2}}{1+r^{2}}$ .
Since

$\nabla\nabla f(=\nabla_{i}\nabla_{j}fdx^{t}dx^{j})=f^{\prime\prime}(r)dr^{2}+\frac{1}{2}f^{\prime}(r)g^{\prime}(r)d\theta^{2}$ ,

one can choose a suitable function $g(r)$ so that it satisfies (a) $g(r)$ is smooth
and $g(r)=r$ for $0\leqq r<1/2$ , (b) $g(r)$ is a solution of $g^{\prime}(r)/g(r)=2c/f^{\prime}(r)$ (for

example $g(r)=\exp\int_{1^{\gamma}}c(1-r)^{2}/rdr)$ for $r\geqq 1$ . In this example, one can see easily

that the sectional curvature has no lower bound.
In this paper, there will be proved first of all a generalization of this ex-

ample, that is:
THEOREM A. Let $M$ be a connected and complete Riemannian manifold

whose sectional curvature $K(X, Y)$ has a lower bound $i$ . $e$ . $K(X, Y)\geqq-K_{0}$ . If
a smooth function $f$ on $M$ has an upper bound, then for any $\epsilon>0$ , there is a
point $p\in M$ such that $\Vert gradf(p)\Vert<\epsilon$ and $m(p)=\max\{X^{i}X^{j}\nabla_{i}\nabla_{j}f(p);\Vert X\Vert=1\}$

$<\epsilon$ .
For an application of this theorem, an isometric immersion of $M$ into the

Euclidean N-space $R^{N}$ will be considered. It is clear that if $M$ is compact,
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then for any isometric immersion $\varphi$ of $M$ into $R^{N}$ , there are a point $p$ and a
unit normal $\xi$ at $\varphi(p)$ such that the second fundamental form at $\varphi(p)$ with
respect to $\xi$ is positive definite.

In our case, we have the following theorem:
THEOREM B. Let $\varphi$ be an isometric immersion of a connected and complete

Riemannian manifold $M$ into $R^{N}$ . Assume that the sectional curvature of $M$

has a lower bound. If there is a unit vector $n$ at the origin of $R^{N}$ such that

$\langle\varphi(p), n\rangle/\Vert\varphi(p)\Vert\geqq\delta>0$

for all $p\in M$, then there exist a point $p_{0}$ and a unit normal vector $\xi$ at $\varphi(p_{0})$

such that the second fundamental form at $\varphi(p_{0})$ with respect to $\xi$ is positive
definite.

From this theorem, we can see immediately the following:
COROLLARY C. Let $\varphi$ be an isometric immersion of a connected and com-

plete Riemannian manifold $M$ into $R^{N}$ . If $\varphi(M)$ is a minimal submanifold in
$R^{N}$, then for any unit vector $n$ at the origin of $R^{N}$ and for any positive $\delta$ ,

there exists a point $p$ such that $\langle\varphi(p), n\rangle/\Vert\varphi(p)\Vert<\delta$ .
The author would like to acknowledge the kind advice of Professors M.

Obata, T. Nagano and T. Takahashi.

1. Geodesic spheres and their second fundamental forms.

Let $M$ be a connected and complete Riemannian $C^{\infty}$-manifold of dimension
$n$ and $g(t)$ be a geodesic going from $g(O)=p$ to $g(h)=q$. The parameter $t$

represents the arc length. Assume that $g(t)$ is not a conjugate point of $p$

with respect to the geodesic $g$ for any $0<t\leqq h$ and that $g(t);0\leqq t\leqq h$ does
not intersect itself. Let $S_{p}(a)=\{X\in T_{p}(M);\Vert X\Vert=a\}$ and $T_{t}=dg(t)/dt$ . Then,
$T_{0}\in S_{p}(1)$ .

Since $g(t)$ is not a conjugate point for any $0<t\leqq h$ and $g(t),$ $0\leqq t\leqq h$ does
not self-intersect, there exists a neighborhood $V$ of $T_{0}$ in $S_{p}(1)$ such that
$Exp_{p}$ : $(0, h+\epsilon)\times V\rightarrow M$ is a diffeomorphism for sufficiently small $\epsilon>0$ , where
$Exp_{p}(t, X)=Exp_{p}tX$ .

Putting $S_{p}(a)=Exp_{p}\{S_{p}(a)\cap(0, h+\epsilon)\times V\},$ $S_{p}(a)$ is an $(n-1)$-dimensional
submanifold of $M$ for every $0<a\leqq h$ . Let $W=Exp_{p}\{(0, h+\epsilon)\times V\}$ .

The following lemma is well-known.
LEMMA 1. Let $x\in S_{p}(a),$ $0<a\leqq h$ . For any curve $C$ joining $p$ and $x$ in

$W$ , the length of $C$ is no less than $a$ .
The following lemma is an immediate consequence of Lemma 1.
LEMMA 2. For any points $x\in S_{p}(a)$ and $y\in S_{p}(h)$ and for any arc $C$ join-

ing $x$ and $y$ in $W$ , the length of the arc $C$ is no less than $h-a$ .
Let $X_{t}$ be a unit vector field that is displaced parallel along $g$ and is tan-
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gent to $S_{p}(a)$ and $S_{p}(h)$ at $g(a)$ and $g(h)$ respectively. We consider the varia-
tion of the geodesic $g$ by the vector field $X$ in the same way as in \S 1 of [1].

The following Lemma is clear from the Lemma in \S 1 of [1] and Lemma
2 above.

LEMMA 3. The first and second variations of arc length are

$L_{X}^{\prime}(0)=0,$ $L_{\acute{X}}^{\prime}(0)=H_{q}(X, X)-H_{g(a)}(X, X)-\int_{a^{h}}K(T, X)dt\geqq 0$ ,

where $K(T, X)$ is the Riemannian sectional curvature corresponding to the 2-
plane $T\wedge X$ and $H_{g^{(}a)}(X, X)$ is the second fundamental form for $S_{p}(a)$ at $g(a)$

corresponding to the unit normal $T$, evaluated at the tangent vector $X$.

Let $ds^{2}=dt^{2}+g_{\alpha\beta}d\theta^{\alpha}d\theta^{\beta}$ be the metric of $M$ in the polar coordinate expres-
sion with radius $t$ and with center $p$ . Since $(t, \theta^{1}, \cdots , \theta^{n-1})$ can be considered
as a coordinate of $W$ , one can see by an elementary calculation that

$\frac{1}{2}\frac{\partial g_{a\beta}}{\partial t}(q)d\theta^{\alpha}(X)d\theta^{\beta}(X)=-H_{q}(X, X)$ ,

for every $X\in T_{q}(S_{p}(h))$ . Since $H_{q}(X, Y)=H_{\alpha\beta}d\theta^{\alpha}(X)d\theta^{\beta}(Y),$ $H(X, Y)$ can be
considered as a 2-tensor field around $q$ in $M$. That is, for any $X,$ $Y\in T_{q}(M)$ ,
$H_{q}(X, Y)$ is defined by $H_{\alpha\beta}(q)d\theta^{\alpha}(X)d\theta^{\beta}(Y)$ .

On the other hand,

$(\nabla\nabla t)(x)=\frac{1}{2}\underline{\partial}g_{\frac{\alpha l3}{t}(x)d\theta^{a}d\theta^{\beta}}\partial$

Thus,
$(\nabla\nabla t^{2})(q)(X, X)(=X^{i}X^{j}(\nabla_{i}\nabla_{j}t^{2})(q))=2\{dt(X)\}^{2}-2hH_{q}(X, X)$ ,

for every $X\in T_{q}(M)$ .
LEMMA 4. Notations being as above, if the sectional curvature $K(X, Y)$ of

$M$ has a lower bound, $i$ . $e$ . $K(X, Y)\geqq-K_{0},$ $K_{0}>0$ , then

$(\nabla\nabla t^{2})(q)(X, X)\leqq 2\{1+h[K_{0}(h-a)-H_{e^{(a)}}(X, X)]\}$ ,

where $X=X_{t}$ is the vector field that is displaced parallel along the geodesic $g$.
This Lemma is an immediate result of Lemma 3.

2. Bounded functions of $M$.
Let $M$ be a connected and complete Riemannian manifold of dimension $n$

and $f$ a $C^{2}$ -function on $M$ with an upper bound. Let $b=\sup f$ . For a fixed
point $p$ , we assume without loss of generality that $f(p)=0$ .

Considering the graph $\Gamma=\{(f(x), x);X\in M\},$ $\Gamma$ is a closed submanifold of
$R\times M$, where $R$ is the real line with natural Riemannian metric and $R\times M$ is
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the product manifold with product metric.
Though many relations exist between $M$ and $R\times M$, we shall use only the

following in the remainder of this paper;
LEMMA 5. Let $\pi$ be the projection from $R\times M$ onto M. (i) If $g^{\gamma}$ is a geo-

desic in $R\times M$, then so is $g=\pi g^{\prime}$ in M. (ii) Let $y,$ $x$ be two points of a geo-
desic $g^{\prime}$ in $R\times M$. $x$ is a conjugate point of $y$ with respect to $g^{\prime}$ if and only if
$\pi(x)$ is a conjugate point of $\pi(y)$ with respect to the geodesic $\pi g^{\prime}$ . (iii) Let
$(k, y)$ and $(a, x)$ be two points of $R\times M$ and $g^{\prime}$ a geodesic segment from $(k, y)$

to $(a, x)$ ; then $L(g^{\prime})^{2}=L(\pi g^{\prime})^{2}+(k-a)^{2}$ , where $L(g^{\prime})$ and $L(\pi g^{\prime})$ are length of $g^{\prime}$

and $\pi g^{\prime}$ respectively.
PROOF. Let $(l, x^{1}, \cdots , x^{n})$ be a local coordinate of $R\times M$ which is a product

of local coordinates of $R$ and $M$. Thus, the equations of a geodesic are

$\frac{d^{2}l}{ds^{2}}=0$ . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

$\frac{d^{2}x^{i}}{ds^{2}}+\{j^{i}k\}\frac{dx^{j}}{ds’}\frac{dx^{k}}{ds’}=0\ldots\ldots\ldots\ldots\ldots\ldots..(2)$

$(1\leqq i\leqq n)$

where $\{_{j^{i}k}\}$ is the Christoffel’s symbol of $M$ and $s^{\prime}$ is the arc length. Thus,

(i) follows from the equality (2).

Let $s^{\prime},$ $s$ and 1 be arc length from $(k, y),$ $y$ and $k$ along $g^{\prime},$ $\pi g^{\prime}$ and $R$

respectively. Then, $l=As^{\prime}$ and $s=as^{\prime}$ from the equalities (1) and (2). It fol-
lows that $s^{\prime 2}=l^{2}+s^{2}$ because of the fact that $A^{2}+a^{2}=1$ (obtained from $ds^{\prime 2}$

$=ds^{2}+dl^{2})$ .
As for (ii), one can see this easily by the Jacobi equation.

For each positive integer $k$ and a fixed point $p$ in $M$, consider a point
$\hat{p}_{k}=(kb, p)$ and a geodesic segment $\hat{g}_{k}$ from $\hat{p}_{k}$ to $\Gamma$ which attains the distance
between $\hat{p}_{k}$ and $\Gamma$ . Let $(f(q_{k}), q_{k})$ be another end point of $\hat{g}_{k}$ .

LEMMA 6. Notations being as above, there is no conjugate point of $\hat{p}_{k}$ on
$\hat{g}_{k}$ with respect to $\hat{g}_{k}$ .

PROOF. Let $\hat{g}_{k}(t)$ be the geodesic parametrized by the arc length and set

$0<t\hat{g}_{k}(0)<l_{k^{k}}isno^{\prime}taconjugatep^{k}ointof\hat{p}w^{k}ith=\hat{p,},\hat{g}_{k}(l_{k})=(f(q_{k}),q_{k}),\hat{g}([0,l_{k}^{\prime}])=_{k}\hat{g}$

respect to $\hat{g}_{k}$ .
It is easy to show that $\hat{g}_{k}(t)j$

Assume $\hat{g}_{k}(l_{k}^{\prime})$ is a conjugate point of $\hat{p}_{k}$ with respect to $\hat{g}_{k}$ . Take a point
$\hat{g}_{k}(l_{k}^{\prime}+\epsilon)$ on the line obtained by extension of $\hat{g}_{k}$ . Since $\Gamma$ is a differentiable
submanifold of $R\times M$, there exists a sufficiently small $\epsilon>0$ such that the $\epsilon-$

sphere of center $\hat{g}_{k}(l_{k}^{\prime}+\epsilon)$ is in contact with $\Gamma$ at one point $\hat{g}_{k}(l_{k}^{\prime})$ . Since $\hat{g}_{k}(l_{k}^{\prime})$

is a conjugate point, there is a geodesic segment $\hat{g}^{\prime}$ from $\hat{p}_{k}$ to $\hat{g}_{k}(l_{k}^{\prime}+\epsilon)$ such
that $ L(\hat{g}_{k})\leqq l_{k}^{\prime}+\epsilon$ . Let $\hat{q}^{\prime}$ be a point of intersection of $\Gamma$ and $\hat{g}^{\prime}$ . Since
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Fig. 1.

dist. $(\hat{q}^{\prime},\hat{g}_{k}(l_{k}^{\prime}+\epsilon))>\epsilon$ we have dist. $(\hat{p}_{k},\hat{q}^{\prime})<l_{k}^{\prime}$ . This is a contradiction.

Now, notations being as above, $\pi(\hat{g}_{k}(t))$ is not a conjugate point of $p$ with
respect to $g_{k}=\pi\hat{g}_{k}$ for any $0<t\leqq l_{k}^{\prime}$ , and $g_{k}$ does not intersect itself. Let $T_{\zeta}$

be the unit tangent vector of $g_{k}$ at $p$ . There is a neighborhood $W_{k}$ of $T_{k}$

such that $Exp_{p}$ is a diffeomorphism from $(0, h_{k}+\delta_{k})\times W_{k}$ into $M$, where $h_{k}=$

$L(\pi\hat{g}_{k})$ . Set $\psi(x)=Exp_{p}^{-1}(x)$ for $x\in Exp_{p}\{(0, h_{k}+\delta_{k})\times W_{k}\}$ and define the func-
tion $F_{k}(x)$ by

$F_{k}(x)=kb-\sqrt{l_{k}^{\prime 2}-\Vert\psi(x)\Vert^{2}}$ .
There is no difficulty in verifying the following:
LEMMA 7. (i) $f(x)\leqq F_{k}(x)$ and $f(q_{k})=F_{k}(q_{k})$ for every $k\geqq 1$ .

(ii) $(\nabla\nabla F_{k})(q_{k})=\frac{1}{2}\frac{(\nabla\nabla||\psi\Vert^{2})(q_{k})}{kb-f(q_{k})}+\frac{1}{4}\frac{(\nabla\Vert\psi\Vert^{2})(q_{k})(\nabla\Vert\psi\Vert^{2})(q_{k})}{(kb-f(q_{k}))^{a}}$ .

PROOF. From (iii) of Lemma 5, we see that $l_{k^{2}}^{\prime}\leqq(kb-f(x))^{2}+\Vert\psi(x)||^{2}$ . Thus,
$f(x)\leqq kb-\sqrt{l_{k^{2}}^{\prime}-\Vert\psi(x)\Vert^{2}}$. (i) follows from this. (ii) is a direct calculation.

Assume $K(X, Y)\geqq-K_{0}$ ; then, combining with Lemma 4, we see that

$(\nabla\nabla f)(q_{k})(X, X)\leqq(\nabla\nabla F_{k})(q_{k})(X, X)$

$\leqq\frac{1}{kb-f(q_{k})}\{1+h_{k}[K_{0}(h_{k}-a)-H_{g_{k}(a)}(X, X)]\}$

$+\frac{1}{(k-1)^{8}b^{3}}h_{k}^{2}\Vert X\Vert^{2}$ , $k\geqq 2$ .

Since all $g_{k}$ are geodesic segments from $p$ to $q_{k}$ in $M$, all $g_{k}(a)$ are points

of $\tilde{S}_{p}(a)=\{Exp_{p}X;\Vert X\Vert=a\}$ . For sufficiently small a $,\tilde{S}_{p}(a)$ is a differentiable
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submanifold of $M$. Let $m=\min\{H_{q}(X, X);q\in\tilde{S}_{p}(a), \Vert X\Vert=1\}$ . Then,

$(\nabla\nabla f)(q_{k})(X, X)\leqq\frac{1}{kb-f(q_{k})}\{K_{0}h_{k}^{2}-(aK_{0}+m)h_{k}+1\}+\frac{h_{k}^{2}}{(k-1)^{3}b^{3}}$ . . . . (3)

for all $\Vert X\Vert=1$ .
LEMMA 8. Notations being as above, if $h_{k}$ is bounded for $ k\rightarrow\infty$ , then there

exists a point $q_{\infty}$ in $M$ such that $(gradf)(q_{\infty})=0$ and $(\nabla\nabla f)(q_{\infty})$ is negative semi-
definite.

PROOF. Since $gradf(q_{k})=gradF_{k}(q_{k})$ , we see that

$\Vert gradf(q_{k})\Vert=\frac{h_{k}}{kb-f(q_{k})}$ . . . . . . . . . . . . . . . . . . . . . (4)

Since $\{h_{k}\}$ is bounded, there exists a subsequence $\{q_{k^{\prime}}\}$ which converges to $q_{\infty}$ .
Thus, from the equality (4) and the inequality (3), we have that $(gradf)(q_{\infty})$

$=0$ and $(\nabla\nabla f)(q_{\infty})$ is negative semi-definite.
Thus, in the remainder of this section, assume that $ h_{k}\rightarrow\infty$ for $ k\rightarrow\infty$ .
Since $K_{0}>0$ , we see that $K_{0}h_{k}^{2}-(aK_{0}+m)h_{k}+1\geqq 0$ for sufficiently large $k$ .

It follows

$(\nabla\nabla f)(q_{k})(X, X)\leqq\frac{1}{(k-1)b}\{K_{0}h_{k}^{2}-(aK_{0}+m)h_{k}+1\}+\frac{h_{k}^{2}}{(k-1)^{3}b^{s}}$ . . . . . . (3)

By the assumption $f(p)=0$ and the definition of $l_{k}^{\prime}$ we see that $l_{k}^{\prime}\leqq kb$ and
thus we can show easily that $f(q_{k})\geqq 0$ for all $k\geqq 1$ .

Since $l_{k}^{\prime}\leqq dist$ . $(\hat{p}_{k}, (f(q_{j}), q_{j}))$ , one obtains

$(kb-f(q_{k}))^{2}+h_{k}^{2}\leqq(kb-f(q_{j}))^{2}+h_{j}^{2}$ .
Thus, $h_{k}^{2}-h_{j}^{2}\leqq 2kb(f(q_{k})-f(q_{j}))-(f(q_{k})^{2}-f(q_{j})^{2})$ .

Since $ h_{k}\rightarrow\infty$ , for $ k\rightarrow\infty$ , there exists $k^{\prime}$ for every $k$ such that $k^{\prime}>k$ ,
$h_{k},$ $\geqq h_{k}$ and $h_{k},,$ $<h_{k}$ for every $k^{\prime\prime},$ $k<k^{\prime\prime}<k^{\prime}$ . If $f(q_{k})>f(q_{k},)$ , then by the
above inequality, we see that $h_{k}>h_{k},$ . Thus, one can choose a subsequence
$\{k_{i}\}$ such that (i) $k_{i}<k_{i+1}$ , (ii) $h_{k_{i+1}}\geqq h_{k_{i}}$ , (iii) $h_{k},$ $<h_{k_{i}}$ for any $k_{i}<k^{\prime}<k_{i+1}$

and (iv) $f(q_{k_{i+1}})\geqq f(q_{k_{i}})$ .
Since

$(k_{i+1}b-f(q_{k_{i+1}}))^{2}+h_{k_{i+1}}^{2}\leqq(k_{i+1}b-f(q_{k_{i}}))^{2}+h_{k_{i}}^{2}$

we see easily that
$h_{k_{i+1}}^{2}-h_{k_{i}}^{2}\leqq 2k_{i+1}b(f(q_{k_{i+1}})-f(q_{k_{i}}))$ .

It follows that

$\sum_{i=I}^{\infty}\frac{h_{k_{i+1}}^{2}-h_{k_{i}}^{2}}{k_{i+1}}\leqq 2b\sum_{r=1}^{\infty}(f(q_{k_{i41}})-f(q_{k_{i}}))\leqq 2b^{2}$ .
Thus,
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$\sum_{i=1}^{\infty}\frac{1}{k_{i+1}}(h_{k_{i+1}}^{2}-h_{k_{i}}^{2})$

is absolutely convergent.

LEMMA 9. Notations being as above, $\sum_{k=1}^{\infty}\frac{1}{k(k+1)}h_{k}^{2}$ is absolutely convergent.

PROOF. Since $h_{k}^{2},$ $\leqq h_{k_{i}}^{2}$ for any $k_{i}\leqq k^{\prime}<k_{i+1}$ , one obtains that

$\sum_{z=1}^{\infty}\frac{1}{k_{\iota+1}}(h_{k_{i+1}}^{2}-h_{k_{i}}^{2,})-\frac{1}{k_{1}}h_{k_{1}}=\sum_{i=1}^{\infty}(\frac{11}{k_{i}k_{i+1}})h_{k_{i}}^{2}$

$=\sum_{\tau=1}^{\infty}(\sum_{k=k_{i}}^{k_{i+1}-1}\frac{1}{k(k+1)})h_{k_{i}}^{2}\geqq\sum_{k=1}^{\infty}\frac{1}{k(k+1)}h_{k}^{2}$ .

It follows that $\sum_{k=1}^{\infty}\frac{1}{k(k+1)}h_{k}^{2}$ is absolutely convergent.

LEMMA 10. For any $k>1$ , there is $k^{\prime}>k$ such that $h_{k}^{2},$ $\leqq\frac{k^{\prime}+1}{\log k’}$ .

PROOF. Assume there is $k_{0}$ such that $h_{k}^{2}>\frac{k+1}{\log k}$ for any $k\geqq k_{0}$ . Then,

$\sum_{k=1}^{\infty}\frac{h}{k(k}k>\sum_{k=k_{0}}^{\infty}\frac{l}{k\log k}+\overline{1)}2=\infty$ .

PROOF OF THEOREM A. It is easy to show that $\Vert gradf(q_{k})\Vert\leqq\frac{h_{k}}{(k-1)b}$.
From inequality (3),

$(\nabla\nabla f)(q_{k})(X, X)\leqq\frac{1}{(k-1)b}\{K_{0}h_{k}^{2}-(aK_{0}+m)h_{k}+1\}+\frac{h_{k}^{2}}{(k-1)^{3}b^{8}}$ ,

for sufficiently large $k$ .
From Lemma 10 above, there exists a subsequence $\{k_{j}\}$ such that $ h_{kj}^{2}\leqq$

$(k_{j}+1)/\log k_{j}$ . It follows that

$\lim_{j\rightarrow\infty}\frac{h_{kj}}{(k_{j}-1)b}\leqq\lim_{j\rightarrow\infty}\frac{k_{j}+l}{(k_{j}-1)b\log k_{j}}=0$

$\varlimsup_{j\rightarrow\infty}(\nabla\nabla f)(q_{k_{j}})(X, X)\leqq\lim_{j\rightarrow\infty}\frac{(k_{j}+1)K_{0}}{(k_{j}-1)b\log k_{j}}+\lim_{j\rightarrow\infty}\frac{k_{j}+1}{(k_{j}-1)^{3}b^{3}\log k_{j}}=0$

This completes the proof of Theorem A.
From this proof, one can see more precisely the following:
THEOREM $A^{\prime}$ . Let $f$ be a $C^{2}$-function on a complete and connected Rieman-

nian manifold having an upper bound. Assume that the sectional curvature
has a lower bound. Then, for an arbitrarily fixed point $p$ and for any $\epsilon>0$ ,

there exists a point $q$ depending on $p$ such that (i) $\Vert gradf(q)\Vert<\epsilon$ , (ii) $(\nabla\nabla f)(q)$

(X, $X$ ) $<\epsilon$ for $\Vert X||=1$ and (iii) $f(q)\geqq f(p)$ .
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3. Isometric immersions of a complete and connected Riemannian
manifold.

As an application of Theorem A or $A^{\prime}$ , one considers an isometric immer-
sion $\varphi$ of a complete and connected Riemannian manifold $M$ into Euclidean
space $R^{N}$ with natural Euclidean metric. In this section, Theorem $B$ will be
proved.

Assume there exists a unit vector $n$ at the origin of $R^{N}$ such that
$\langle\varphi(x), n\rangle/\Vert\varphi(x)\Vert\geqq a^{\prime}$ for a fixed $a^{\prime}>0$ . Let $R^{N-1}$ be the subspace of $R^{N}$ which
is orthogonal to $n$ . Set $p=p(x)=\varphi(x)$ and denote by $p^{\gamma}$ the $R^{N-1}$-component
of $p$ .

Assume without loss of generality that $\langle p, n\rangle^{2}-a^{\prime 2}\langle p^{\prime}, p^{\prime}\rangle\geqq 1$ for every
$p=p(x),$ $x\in M$ . For a positive $a,$ $a^{\prime}>a>0$ , set

$f_{a}(x)=-\langle p(x), n\rangle+\sqrt{a^{2}\langle p^{\prime}(x),p^{\prime}(x)\rangle+1}$ .

The meaning of this function is clear, if one changes the equality of the
definition to $(\langle p, n\rangle+f_{a}(x))^{2}-a^{2}\langle p^{\prime}, p^{\prime}\rangle=1$ . Let $p_{0}=p(x_{0})$ for some fixed point
$x_{0}\in M$. It is easy to see that $\{p(x);f_{a}(x)\geqq f_{a}(x_{0})\}$ is contained in a compact

Fig. 2.

subset $K$ for any $a,$ $0<a<a^{\prime}-\delta^{\prime}$ . Thus, there is a real number $a$ such that
$a^{2}\langle p(x), p(x)\rangle\leqq\frac{1}{2}$ for any $x$ satisfying $f_{a}(x)\geqq f_{a}(x_{0})$ . Choose such a number
$a$ and fix it throughout the remainder of this paper. Put $f(x)=f_{a}(x)-f_{a}(x_{0})$ .
Clearly, $f(x)$ has an upper bound and $f(x_{0})=0$ .

By the definition of $f(x)$ , one has directly that
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$\nabla_{i}\nabla_{j}f=-\langle p_{i,j}, n\rangle+\frac{a^{2}(\langle p_{i,j},p\rangle-\langle p,n\rangle\langle p_{i,j},n\rangle)}{\sqrt{a^{2}(\langle p,p\rangle-\langle p,n\rangle^{2})+1}}$

$+\frac{a^{4}}{\sqrt{a^{2}(\langle p,p\rangle-\langle p,n\rangle^{2})+1}}\{(\langle p_{i}, p_{j}\rangle-\langle p_{i}, n\rangle\langle p_{j}, n\rangle)(\langle p, p\rangle-\langle p, n\rangle^{2}+\frac{1}{a^{2}})$

$-(\langle p_{i}, p\rangle-\langle p, n\rangle\langle p_{i}, n\rangle)(\langle p_{j}, p\rangle-\langle p, n\rangle\langle p_{j}, n\rangle)\}$

where $p_{i}=\nabla_{i}p,$ $p_{i,j}=\nabla_{j}\nabla_{i}p$ for some coordinate neighborhood of $M$. Let $\hat{H}_{ij}$

be the first and second terms of $\nabla_{i}\nabla_{j}f$ and $R_{ij}$ the third term. Let $ N\xi$ be the
normal vectors of $M$ in $R^{N}$ , where $\xi=1,2$ , $\cdot$ , $N-n$ .

Since $ p_{i,j}=\sum_{\xi}H_{ij}N\xi\xi$ we see easily that $\hat{H}(X, X)=\hat{H}_{ij}X^{i}X^{j}=\sum_{\xi}H(X, X)\langle N\xi\xi\hat{m}\rangle$ ,

where

$\hat{m}=\frac{a^{2}p+a^{2}\langle p,n\rangle n}{\sqrt{a^{2}\langle p’,p’\rangle+1}}-n$ .

For $X,$ $\Vert X\Vert=1$ , we have that

$R(X, X)=\frac{a^{4}}{\sqrt{a^{2}\Vert p’\Vert^{2}+1}}(1-\langle X, n\rangle^{2})(\langle p, p\rangle-\langle p, n\rangle^{2}+\frac{1}{a^{2}})$

$-(\langle X, p\rangle-\langle p, n\rangle\langle X, n\rangle)^{2}$ ,

where $R(X, X)=R_{ij}X^{i}X^{j}$ .
By the definition of $f(x)$ and Theorem $A^{\prime}$ , there exists a sequence $\{x_{n}\}$ in

$M$ such that $f(x.)\geqq 0$ and

$\lim_{n\rightarrow\infty}\Vert gradf(x_{n})\Vert=\lim_{n\rightarrow\infty,1}\max_{|X||=1}\{-\langle X, n\rangle+\frac{a^{2}\langle X,p\rangle-\langle p,n\rangle\langle X}{\sqrt{a^{2}\Vert p’(x_{n})||^{2}+1}}$

, $ n\rangle$

$\}=0$ . . (5)

$\lim_{n\rightarrow\infty}(\nabla\nabla f)(x_{n})(X, X)=\lim_{n\rightarrow\infty}\sum_{\xi}H_{x_{n}}(X, X)\langle N,\hat{m}\rangle+\lim_{n\xi\xi\rightarrow\infty}R_{x_{n}}(X, X)=0$ , . . . . (6)

for $X\in T_{x_{n}}(M)$ and $\Vert X\Vert=1$ , where the tangent space $T_{x_{n}}(M)$ at $x_{n}$ is identified
with the subspace of $R^{N}$ by the immersion $\varphi$ .

Thus, we have only to show that $R_{x_{n}}(X, X)\geqq\partial^{\prime}>0$ for sufficiently large $n$ .
Let $\hat{X}$ be the $R^{N-1}$ -component of $X$ . Thus, $X=\lambda n+\hat{X},$ $\lambda=\langle X, n\rangle$ and then

\langle X, $ p\rangle$
$-\langle p, n\rangle\langle X, n\rangle=\langle\hat{X}, p\rangle$ . It follows that

$\frac{1}{\Vert p\Vert^{2}}(1-\langle X, n\rangle^{2})(\langle p, p\rangle-\langle p, n\rangle^{2}+\frac{1}{a^{2}})-(\langle X, p\rangle-\langle p, n\rangle\langle X, n\rangle)^{2}$

$=(1-\lambda^{2})(1-\mu^{2}+\frac{1}{a^{2}\Vert p\Vert^{2}})-\langle\hat{X}, p_{0}\rangle^{2}$ ,

where $\mu=\langle p, n\rangle/\Vert p||$ and $ p_{0}=p/\Vert p\Vert$ . Since $\langle\hat{X}, p_{0}\rangle\leqq\Vert\hat{X}\Vert^{2}=1-\mu^{2}$ , one obtains
that

$R(x, x)\geqq^{\underline{\underline{a^{4}\Vert}\underline{p||_{2}^{2}}}}\sqrt a^{2}||p’||+1^{(1-\lambda^{2})(\frac{1}{a^{2}\Vert p\Vert^{2}}\mu^{2})}$
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for all $x\in M$. Since $f(x_{n})\geqq 0$ , we see that $a^{2}\Vert p(x_{n})\Vert^{2}<1/2$ . It follows that
$1/a^{2}\Vert p\Vert^{2}-\mu^{2}\geqq\partial>0$ for all $x_{n}$ .

Assume that $1-\lambda^{2}$ is not larger than $\delta^{\prime\prime}>0$ for every $x_{n}$ and for every
element of $T_{x_{n}}(M)$ satisfying $\Vert X\Vert=1$ . Then, there is a subsequence $\{x_{n},\}$ of
$\{x_{n}\}$ such that, for every $x_{n},$ , there exists $X_{n},$ $\in T_{x_{n}},(M)$ and $1-\langle X_{n},, n\rangle^{2}$ con-
verges to $0$ for $ n^{\prime}\rightarrow\infty$ . Put $\lambda_{n},$ $=\langle X_{n},, n\rangle$ . Without loss of generality, we as-
sume $\lambda_{n},$ $\leqq 0$ . Since $X_{n}$ , converges to $n$ , one obtains that $\lim\Vert gradf(x_{n},)\Vert=1$ ,
contradicting the equality (5). Thus, there exists an $\epsilon>0$ such that $1-\lambda^{2}\geqq a>0$

for sufficiently large $n$ and for all $X\in T_{x_{n}}(M)$ satisfying $\Vert X\Vert=1$ . It follows
that

$R_{x_{n}}(X, X)\geqq\frac{a^{4}||p_{n}||^{2}\delta\epsilon}{\sqrt{a^{2}||p(x_{n})\Vert^{2}+1}}$ for a sufficiently large $n$ .

Since $\Vert p_{n}\Vert$ is bounded, $\ovalbox{\tt\small REJECT} a^{4}|p_{n}\Vert^{2}\geqq C$ for some positive constant. Thus,
$\sqrt{a^{2}\Vert p(x_{n})\Vert^{2}-1}$

we see that

$\lim_{n\rightarrow\infty}(\nabla\nabla f)(x_{n})(X, X)\geqq\lim_{n\rightarrow\infty}\sum_{\xi}H_{xn}(X, X)\langle N,\hat{m}\rangle+C\delta\epsilon\xi\xi$

It follows that $\sum_{\xi}H_{x_{n}}(X, X)\langle N\xi\xi\hat{m}\rangle$ is negative definite for sufficiently large $n$ ,

since $\sum_{\xi}\langle N_{\xi},\hat{m}\rangle H_{x_{n}}\xi$ is the second fundamental form with respect to the normal

vector $\hat{N}$ at $x_{n}$ with the coefficient $\langle\hat{N}, N_{\xi}\rangle=\langle N\xi\hat{m}\rangle$ . This completes the proof

of Theorem B.
Tokyo Metropolitan University
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