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\S 1. Introduction.

Let $P$ be a Gaussian measure on the function space $(R^{T}, \mathscr{D})$ , where $T$ is
an interval and $\mathscr{Q}$ is the $\sigma$ -algebra generated by all cylinder sets. Then the
family of w-functions:

$X(t, w)=the$ t-coordinate of $w,$ $w\in R^{T},$ $t\in T$ ,

defines a Gaussian process on the probability measure space $(R^{T}, B, P)$ . Con-
versely, every Gaussian process on an arbitrary probability measure space has
a representation of such type (coordinate representation). In this paper we
shall use only the coordinate representation, unless stated otherwise. Thus
we have a one-to-one correspondence between Gaussian processes with the
time parameter $t$ in $T$ and Gaussian measures on the function space $R^{T}$ . Two
Gaussian processes are said to be equivalent, if their corresponding Gaussian
measures are equivalent, $i$ . $e$ . mutually absolutely continuous.

J. Hajek [1] and J. Feldman [2] found independently that two Gaussian
measures are either equivalent or singular, and Yu. Rozanov [3] established a
criterion for the equivalence in terms of the linear operator on $L^{2}(X)$ , Hilbert
space spanned by $\{X(t, w)\}$ (the precise definition is given in section 2).

D. Varberg [7] has established a necessary and sufficient condition for a
class of Gaussian processes to be equivalent to the Brownian motion. He
treats the ‘ factorable ‘ Gaussian processes, the covariance function of which
can be written in the form

$r(t, s)=\int_{T}R(t, u)R(s, u)du$ ,

where $T$ is a finite interval $[0, b]$ . Further he gives conditions on the kernel
function of the linear transformation acting on the Brownian path.

Lately L. Shepp [10] has solved many problems concerning the B-equiva-
lence (the equivalence to the Brownian motion $\{B(t,$ $w)\}$ ) of a Gaussian process.
He has given a simple necessary and sufficient condition on the mean and
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covariance function for the $B- equivalence^{1)}$ , and has obtained explicit expres-
sions of Radon-Nicodym derivative. Further he has shown that any B-equi-
valent Gaussian process can be realized by a linear transformation of $\{B(t, w)\}$

such that

(1.1) $B(t, w)+\int_{T}\int_{0^{t}}g(v, u)dvdB(u, w)+\int_{0^{t}}m^{\prime}(u)du$ .

In the present paper, it is shown that any Gaussian process equivalent to
a Gaussian process $\{X(t, w)\}$ can be realized by a linear transformation of
$\{X(t, w)\}$ such that

(1.2) $\mathfrak{F}X(t, w)=FX(t, w)+\mathfrak{s}[X(t, w)]$ ,

where $F$ is an invertible linear operator on $L^{2}(X),$ $F-I$ is of Hilbert-Schmidt
type and $T$ is a bounded linear functional on $L^{2}(X)$ (Theorem 2). In case of
the Brownian motion, we obtain the same expression of the linear transfor-
mation (1.2) with (1.1) of L. Shepp using a different method from his (Theo-
rem 3). Our method is based on the works of Yu. Rozanov [3]. We extend
this result in case of a certain class of Gaussian processes including purely
non-deterministic stationary Gaussian processes (Theorem 4). Section 5 is
devoted to some remarks, one of which enables us to extend the Skorokhod’s
results on the equivalence of two Gaussian additive processes.

The author wishes to express his hearty thanks to those who helped him
in the course of this paper. Professor T. Hida always encouraged him and
gave him many valuable suggestions. Professor S. Ito gave him some remarks
on the theory of Hilbert space. Mr. I. Kubo and other members of the Pro-
bability Seminar helped him with valuable discussions.

\S 2. General theory.

Let $\{X(t, w)\}$ be a Gaussian process defined on a probability space $(R^{T},$ $\mathscr{Q}$ ,
$P)$ , where $T$ is a finite or infinite interval. We may assume that

(2.1) $EX(t, w)=\int_{R^{T}}X(t, w)dP(w)=0$ , $t\in T$ ,

without loss of generality.
Let $X(t)$ denote the P-equivalent class containing the random variable

$X(t, w)$ and let $L^{2}(X)$ be a Hilbert space spanned by $\{X(t);t\in T\}$ with the
inner product

(2.2) $\langle X(t), X(s)\rangle=EX(t, w)X(s, w)$ , $t,$ $s\in T$ ,

1) Dr. H. Oodaira informed to the author that he had obtained the analogous
result on the mean and covariance function.
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and the norm

(2.3) $\Vert X(t)\Vert^{2}=EX(t, w)^{2}$ , $t\in T$ .
Every element $X$ in $L^{2}(X)$ is therefore a P-equivalent class of w-functions and
we denote a representative w-function belonging to $X$ by $X(w)$ .

We assume, in this paper, that $L^{2}(X)$ is separable.
If $\{X(t, w)\}$ is continuous in the mean, then this assumption is satisfied.
Let $\{X_{1}(t, w)\}$ be another Gaussian process defined on $(R^{T}, \mathscr{D}, P_{1})$ with the

mean function $m(t)$ and the covariance function $r_{1}(t, s)$ .
DEFINITION. Two Gaussian processes are said to be equivalent if their

corresponding measures $P$ and $P_{1}$ are equivalent.
We shall first restate Rozanov’s theorem using Feldman’s terminology.
DEFINITION (according to J. Feldman [2]). An invertible bounded linear

transformation $F$ from a Hilbert space onto itself is called an equivalence
operator, if $F^{*}F-I$ ($I=identity$ operator) is of Hilbert-Schmidt type (or equi-
valently if $\sqrt{F^{*}F}-I$ is of Hilbert-Schmidt type).

THEOREM 1 (Yu. Rozanov [3]). $\{X_{1}(t, w\}$ is equivalent to $\{X(t, w)\}$ if and
only if there exists an equivalence operator $F$ and a bounded linear functional
$f$ on $L^{2}(X)$ such that

(A) $\langle FX(t), FX(s)\rangle=r_{1}(t, s)$ , $t,$ $s\in T$ ,

(B) $f[X(t)]=m(t)$ , $t\in T$ .
REMARK. The equivalence operator $F$ can be replaced by $\sqrt{F^{*}F}$, so that

$F$ can be assumed to be a positive definite self-adjoint operator.
Given a C. O. N. S. $\{f_{k}\}$ , we shall define the Hilbert-Schmidt norm of a

bounded linear operator $F$ by

(2.4) $\Vert F\Vert_{H.S}.=\sqrt{\Sigma\Vert Ff_{k}\Vert^{2}}$ ;
$k$

it is well-known that the right side is independent of the choice of $\{f_{k}\}$ , and
so $\Vert F\Vert_{H.S}$. is well defined. It is evident that $F$ is of Hilbert-Schmidt type if
and only if $\Vert F\Vert_{H.S}.<+\infty$ . The following lemma will be useful later.

LEMMA 1.
(i) If $F$ is of Hilbert-Schmidt type, then

(2.5) $\sum_{k}\Vert Ff_{k}\Vert^{2}\leqq\Vert F\Vert_{H.S}^{2}$.

for any O. N. S. $\{f_{k}\}$ .
(ii) Suppose that $Yt_{n},$ $n=1,2,3,$ $\cdots$ be an increasing sequence of finite

dimensional subspaces of a Hilbert space Yt such that $\ovalbox{\tt\small REJECT}$ is the least closed
linear manifold containing all $\ovalbox{\tt\small REJECT}_{n}s$ . Let $\{f_{i}^{n} ; i=1,2, \cdots , N_{n}\}$ be a C. O. N. $S$ .
in $\ovalbox{\tt\small REJECT}_{n}$ for each $n=1,2,3,$ $\cdots$ Then
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(2.6) $\Vert F\Vert_{H.S}^{2}$. $=\sup_{n}\sum_{\iota=1}^{y}\wedge\backslash n\Vert Ff_{i}^{n}\Vert^{2}$ .

PROOF. (i) is clear by the definition of $\Vert F\Vert_{H.S}.\cdot$ To prove (ii), let $\{f_{i}\}$ be
a C. O. N. S. in $\ovalbox{\tt\small REJECT}$ such that $\{f_{i}, i=1,2, \cdot , N_{n}\}$ spans $\ovalbox{\tt\small REJECT}_{n}$ for each $n$ . Writing

$f_{i}$ as $f_{i}=\sum a_{ij}^{n}f_{j}^{n}$ , then $(a_{ij}^{n})_{i.j\Rightarrow 1}^{Nn}$ will be an orthogonal $N_{n}\times N_{n}$ matrix.

$\Vert F\Vert_{H.S}^{2}.=\sup_{ni}\sum_{=1}^{N_{n}}\Vert Ff_{i}\Vert^{2}$

$=\sup_{n}\sum_{i=1j=1k=1}^{n}NN\Sigma^{n}N_{n,\Sigma a_{tj}^{n}a_{\iota k}^{n}\langle Ff_{j}^{n},Ff_{k}^{n}\rangle}$

(2.7)
$=\sup_{n}\sum_{j=1k=1i=1}^{n}NN\Sigma^{n}N_{n,\Sigma a_{ij}^{n}a_{ik}^{n}\langle Ff_{j}^{n},Ff_{k}^{n}\rangle}$

$=\sup_{nj}\sum_{=1}^{N_{n}}\Vert Ff_{j}^{n}\Vert^{2}$ .

Noting the fact that the Gaussian measure on $(R^{T}, \mathscr{D})$ is completely deter-
mined by its mean function and its covariance function, we can derive the
following theorem immediately from Theorem 1.

THEOREM 2. $\{X_{1}(t, w)\}$ is equivalent to $\{X(t, w)\}$ if and only if $\{X_{1}(t, w)\}$

has a representation

(2.8) $X_{1}(t, w)=FX(t, w)+\mathfrak{s}[X(t, w)](L)$

with an equivalence operator $F$ and a bounded linear functional $f$ on $L^{2}(X)$ .
REMARK 1. $ii=(L)$

” means the two stochastic processes yield the same pro-
bability measure on $(R^{T}, 9)$ .

REMARK 2. $F$ can be assumed to be positive definite selfadjoint (see the
remark after Theorem 1).

\S 3. Gaussian processes equivalent to the Brownian motion.

We call a Gaussian process B-equivalent, if it is equivalent to the Brownian
motion $\{B(t, w);t\in T\},$ $O\in T$. Let $L^{2}(B)$ be the Hilbert space spanned by
$\{B(t)\}$ with the inner product $\langle\cdot, \cdot\rangle$ and the norm $\Vert\cdot\Vert$ as in Section 2. Then
every element $Z$ of $L^{2}(B)$ is expressed in the form

(3.1) $Z=\int_{T}F(u)dB(u)$ ,

where $F(u)$ is a real function defined on $T$ satisfying

(3.2) $\int_{T}|F(u)|^{2}du<+\infty$ .
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From Theorem 2, we can prove that every B-equivalent process has a
representation

(3.3) $X_{1}(t, w)=FB(t, w)+\mathfrak{s}[B(t, w)](L)$ , $t\in T$ ,

where $FB(t, w)$ should be of the form

$\int_{T}F(t, u)dB(u, w)$ ,

and we have $\mathfrak{f}[B(t, w)]=m(t),$ $t\in T$.
In this section, we shall determine a condition for the B-equivalence of

$\{X_{1}(t, w)\}$ in terms of kernel function $F(t, u)$ and $m(t)$ .
First we prove two lemmas.
DEFINITION. Let $\ovalbox{\tt\small REJECT}$ be a Hilbert space and $Z(t)$ be a $\ovalbox{\tt\small REJECT}$ -valued function

defined on an interval $T$. Then $Z(t)$ is called $S$ -absolutely continuous, if there
exists a $\ovalbox{\tt\small REJECT}$ -valued function $Z^{\prime}(s)$ defined for almost all $s\in T$ such that

(3.4) $Z(t)-Z(u)=\int_{u^{t}}Z^{\prime}(s)ds$ , for every $t,$ $u\in T$ ,

in sense of Bochner integral and

(3.5) $\int_{T}\Vert Z^{\prime}(s)\Vert^{2}ds<+\infty$ .

LEMMA 2. Let $K$ be a linear operator on $L^{2}(B)$ and put

(3.6) $Z(t)=KB(t)$ , $t\in T$ .

Then $K$ is of Hilbert-Schmidt type if and only if $Z(t)$ is $S$ -absolutely continuous.
PROOF. For simplicity, we prove the lemma in case of $ T=[0, +\infty$), since

the other cases can be treated in the same way.
Suppose that $Z(t)$ is 8-absolutely continuous and let

$B_{k}^{n}=\sqrt{2^{n}}[B(t_{k}^{n})-B(t_{k-1}^{n})]$ ,
\langle 3.7)

$Z_{k}^{n}=\sqrt{2^{n}}[Z(t_{k}^{n})-Z(t_{k-1}^{n})]$ ,

where $t_{k}^{n}=2^{-n}k,$ $k=0,1,2,$ $\cdots$ , $2^{n}n,$ $n=1,2,3,$ $\cdots$ , and let $Y1_{n}$ be the closed linear
subspace spanned by $\{B_{k}^{n} ; k=1,2, \cdots , 2^{n}n\}$ . Then $\ovalbox{\tt\small REJECT}_{n}s$ and $L^{2}(B)$ satisfies the
hypothesis of (ii) of Lemma 1 and { $B_{k}^{n}$ ; le $=1,2$ , $\cdot$

., , $2^{n}n$ } is a C. $0$ . N. S. in $\ovalbox{\tt\small REJECT}_{n}$

for each $n$ . From (3.4) and (3.5) and noting that $KB(O)=0$ ,

$\sum_{k=1}^{2^{n}n}\Vert KB_{i}^{n}\Vert^{2}=\sum_{k=1}^{2^{n}n}\Vert Z_{k}^{n}\Vert^{2}$

$=2^{n}\sum_{k}\Vert\int_{t_{k-1}^{n}}^{t_{k}^{n}}Z^{\prime}(s)ds\Vert^{2}$
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(3.8) $\leqq 2^{n}\sum_{k}|\int_{t_{k-1}^{n}}^{\iota_{k}^{n}}\Vert Z^{\prime}(s)\Vert ds|^{2}$

$\leqq\int_{0^{n}}\Vert Z^{\prime}(s)||^{2}ds$

$\leqq\int_{T}\Vert Z^{\prime}(s)\Vert^{2}ds<+\infty$ .

Hence, by Lemma 1, we see that

$\Vert K\Vert_{H.S}^{2}.=\sup_{nk}\sum_{=1}^{2^{n_{n}}}\Vert KB_{k}^{n}\Vert^{2}\leqq\int_{T}\Vert Z^{\prime}(s)\Vert^{2}ds<+\infty$ ,

and therefore $K$ is of Hilbert-Schmidt type.
Conversely, suppose that $K$ is of Hilbert-Schmidt type. For every sequence

of disjoint intervals $(a_{k}, b_{k})$ in $T$, define

(3.9) $B_{k}=(b_{k}-a_{k})^{\frac{1}{2}}[B(b_{k})-B(a_{k})]$ , $k=1,2,$ $\cdots$

Then $\{B_{k}\}$ is an O. N. S. in $L^{2}(B)$ . By (i) of Lemma 1,

(3.10) $\sum_{k}\Vert KB_{k}\Vert^{2}=\sum_{k}(b_{k}-a_{k})^{-1}\Vert Z(b_{k})-Z(a_{k})\Vert^{2}\leqq M$ ,

where $ M=\Vert K\Vert_{IiS}^{2}.\cdot$

Hence, for every choice of disjoint intervals, we have

$\sum_{k}\Vert Z(b_{k})-Z(a_{k})\Vert=\sum_{k}(b_{k}-a_{k})^{\frac{1}{2}}(b_{k}-a_{k})^{\frac{1}{2}}\Vert Z(b_{k})-Z(a_{k})\Vert$

(3.11) $\leqq[\{\sum_{k}(b_{k}-a_{k})\}\{\sum_{k}(b_{k}-a_{k})^{-1}\Vert Z(b_{k})-Z(a_{k})\Vert^{2}\}]^{\frac{1}{2}}$

$\leqq\sqrt{M}[\sum_{k}(b_{k}-a_{k})]^{2}1$

Let $\{\varphi_{j}\}$ be a C. O. N. S., and let

(3.12) $ z_{j}(t)=\langle Z(t), \varphi_{j}\rangle$ , $j=1,2,:3,$ $\cdots$

Then by (3.11), for every choice of disjoint intervals, we have

(3.13) $\sum_{k}|z_{j}(b_{k})-z_{j}(a_{k})|=\sum_{k}|\langle Z(b_{k})-Z(a_{k}), \varphi_{j}\rangle|$

$\leqq\sum_{k}\Vert Z(b_{k})-Z(a_{k})\Vert\leqq\sqrt{M}[\sum_{k}(b_{k}-a_{k})]^{\frac{1}{2}}$,

so that $z_{j}(t)$ is absolutely continuous in $t$ . Noting that $Z(O)=KB(O)=0$ , we
have

(3.14) $z_{j}(t)=\int_{0^{t}}z_{j}^{\prime}(s)ds$ , $j=1,2,$ $\cdots$ ,

where $z_{j}^{\prime}(s)$ is the density, which is defined for almost all $s\in T$.
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Let $n$ be any positive integer and put

(3.15) $z_{j}^{n}(t)=\{0^{n}2\int_{\frac{k}{2}\frac{-1}{n}}^{\frac{k}{2^{n}}}z_{j}^{\prime}(s)ds,$ $(_{k=1,2,\cdot,2^{n}n},$$)t^{\frac{k-1}{2^{n}}\leqq.t.<\frac{k}{2^{n}}}\geqq n,j=1,2\cdots$

.
Then, by Lebesgue’s theorem we have

(3.16) $\lim_{n}z_{j}^{n}(t)=z_{j}^{\prime}(t)$ , for every $t\in T-N_{j}$ ,

where $N_{j}$ is a null set; $N_{j}$ can be taken independently of $j$ , since $\bigcup_{j}N_{j}$ is also
a null set. Hence, by Fatou’s lemma and (3.10), we have

$\int_{T}\sum_{J=1}^{+\infty}z_{j}^{\prime}(s)^{2}ds\leqq\lim_{n}$ $inf\int_{T}\sum_{j}z_{j}^{n}(s)^{2}ds$

(3.17) $=\lim\inf\sum_{k=1}^{2^{n}n}\sum_{j=1}^{+\infty}2^{n}[z_{j}(\frac{k}{2^{n}})-z_{j}(\frac{k-1}{2^{n}})]^{2}$

$=\lim\inf\sum_{k}2^{n}\Vert Z(\frac{k}{2^{n}})-Z(\frac{k-1}{2^{n}})\Vert^{2}\leqq M<+\infty$ .

Put

(3.18) $Z^{\prime}(s)=\sum_{J=1}^{+\infty}z_{j}^{\prime}(s)\varphi_{j}$ .

Then, by (3.17), $Z^{\prime}(s)$ is a $L^{2}(B)$-valued function defined for almost all $s\in T$

and we have

(3.19) $\int_{T}\Vert Z^{\prime}(s)\Vert^{2}ds=\int\sum_{Tj}z_{j}^{\prime}(s)^{2}ds<+\infty$ .

Therefore the Bochner integral $\int_{0^{t}}Z^{\prime}(s)ds$ exists, and from (3.12) and (3.14), it
follows that

(3.20) $\langle Z(t)-\int_{0^{t}}Z^{\prime}(s)ds, \varphi_{j}\rangle=0$ ,

for each $j=1,2,3,$ $\cdots$ (3.19) and (3.20) imply (3.4) and (3.5) and therefore $Z(t)$

is S-absolutely continuous.
Thus we have proved the lemma.
LEMMA 3. In order that there exists a bounded linear functional $\mathfrak{s}$ in $L^{2}(B)$

with $f[B(t)]=m(t)$ , it is necessary and sufficient that $m(t)$ is absolutely con-
tinuous in $t$ and that

(3.21) $\int_{T}m^{\prime}(s)^{2}ds<+\infty$ ,

where $m^{\prime}(s)$ is its density.
PROOF. If such 7 exists, then $T$ can be written as $f(\cdot)=\langle\cdot, Y\rangle$ by Riesz-
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Fisher theorem. Let $(a_{k}, b_{k})=1,2,$ $\cdots$ , be any system of disjoint intervals in
$T$. Then

2 $|m(b_{k})-m(a_{k})|=\sum_{k}|\langle B(b_{k})-B(a_{k}), Y\rangle|$

$=\sum_{k}\sqrt{(b_{k}-a_{k})}|\langle B_{k}, Y\rangle|\leqq_{k}\sqrt{\Sigma(b_{k}-a_{k})}\sqrt{\sum_{k}\langle B_{k},Y\rangle^{2}}$

where $B_{k}’ s$ are defined in (3.9). Noting that $\{B_{k}\}$ is an O. N. S. in $L(B)$ , we
can see that

$\sum_{k}\langle B_{k}, Y\rangle^{2}\leqq\Vert Y\Vert^{2}$ .

Therefore $m(t)$ is absolutely continuous in $t$ . The rest of the proof is the
same as that of Lemma 2.

THEOREM 3. $\{X_{1}(t, w)\}$ is B-equivalent if and only if it has a representation

(3.22) $X_{1}(t, w)(=L)B(t, w)+\int_{\tau}\int_{0^{t}}g(v, u)dvdB(u, w)+\int_{0^{t}}m^{\prime}(u)du$ ,

where $g(v, u)$ and $m^{\prime}(u)$ are real functions which satisfy the following condi-
tions $(C.1)-(C.3)$ and (3.21).

(C.1) $\int_{T}\int_{T}g(v, u)^{2}dvdu<+\infty$ .

(C.2) The linear operator $F$ determined by

(3.23) $FB(t)=B(t)+\int_{T}\int_{0^{t}}g(v, u)dvdB(u)$ , $t\in T$ .

is invertible.

(C.3) $g(v, u)=g(u, v)$ , for almost all $(v, u)\in T\times T$ .

PROOF. If $\{X_{1}(t, w)\}$ is B-equivalent, then it has a representation (2.8) of
Theorem 2. By Remark 2 after Theorem 2, we may assume that $F$ is a self-
adjoint equivalence operator. Since $F-I$ is of Hilbert-Schmidt type, by Lemma
2, $Z(t)=(F-I)B(t)$ is S-absolutely continuous. Let

(3.24) $Z^{\prime}(s)=\int_{T}g(s, u)dB(u)$

be its density. Then from (3.5), we have

(3.25) $\int_{T}\Vert Z^{\prime}(s)\Vert^{2}ds=\int_{T}\int_{T}g(v, u)^{2}dvdu<+\infty$ .

Hence, we have

(3.26) $F[B(t)]=B(t)+\int_{T}\int_{0^{t}}g(v, u)dvdB(u)$ , $t\in T$ ,

and the invertibility of an equivalence operator implies (C.2). (C.3) immediately
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derives from the self-adjointness of $F$ .
From Lemma 3 and the fact that $B(O)=0$ , it follows that $m(t)=fB(t)$ has

the form

(3.27) $m(t)=\int_{0^{t}}m^{\prime}(u)du$ , $t\in T$ ,

with $m^{\prime}(u)$ satisfying (3.12).
Thus we have proved the necessity of the theorem. The sufficiency can

easily be proved in the same manner.
NOTE 1. As we mentioned in Remark 2 after Theorem 2, Theorem 3 is

valid even if (C.3) is omitted.
NOTE 2. (C.2) is not an elegant condition, but we have two different suf-

ficient conditions (3.28) and (3.29), each of which implies (C.2):

(3.28) $\int_{T}\int_{T}g(v, u)^{2}dvdu<1$ .

(3.29) The representation appeared in the right side of (3.23) is proper
canonical (T. Hida [4]).

In the considerations above, we viewed the Wiener measure on $(R^{T}, \mathscr{D})$ .
However, the Wiener measure is also a measure on the space of continuous
functions $(C, 9_{C})$ , where $\mathscr{D}_{C}$ is the $\sigma$ -algebra generated by the cylinder sets.
Using Kolmogorov-Prokhorov’s theorem [5], the process $\{X_{1}(t, w)\}$ in (3.22) has
a continuous version, because we have

(3.30) $E_{1}|X_{1}(t)-X_{1}(s)|^{4}\leqq cE|B(t)-B(s)|^{2}=3c|t-s|^{2}$

with some constant $c$ by virtue of the boundedness of $F$ and $\mathfrak{s}$ Therefore $P$

can be considered as a measure on $(C, \mathscr{D}_{C})$ and $\mathfrak{F}=F+t$ will give a linear
transformation from $(C, \mathscr{D}_{C})$ into itself which transforms the Wiener measure
$P$ on $(C, \mathscr{D}_{C})$ to the measure $P_{1}$ on $(C, \mathscr{D}_{C})$ .

EXAMPLE 1. Let $\{U(t, w)\}$ be the Ornstein-Uhlenbeck’s Brownian motion
on $(C, B_{t^{\backslash ,}})$ where $T$ is the interval $[0,1]$ . Then a process $\{U(t, w)-\exp(-t)$

$U(O, w)\}$ is B-equivalent.
In fact, this process has the proper canonical representation

$U(t, w)-\exp(-t)U(O, w)$

(3.31) $=\int_{0^{t}}\exp(-t+u)dB(u, w)$

$=B(t, w)-\int_{0^{t}}\int_{u^{t}}\exp(-v+u)dvdB(u, w)$ , $t\in T$ .

This is the case where $g(v, u)$ and $m^{\prime}(u)$ in (3.22) have the form:
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$g(v, u)=\dagger\exp(-v+u)0$

,

if $1\geqq v\geqq u\geqq 0$ ,

otherwise ,

$m^{\prime}(u)=0$ , $u\in T$ .
This example shows that the path of the Ornstein-Uhlenbeck’s Brownian

motion and that of the Brownian motion (Wiener process) have the same local
continuity.

\S 4. Processes equivalent to $C$-processes.

A process with zero mean is called a C-process, if it has a proper canonical
representation with respect to the Brownian motion $\{B(t, w)\}$ , that is, $X(t)$ can
be expressed in the form

(4.1) $X(t)=\int^{t}c(t, u)dB(u)$ , $t\in T$ ,

where $c(t, u)$ is the proper canonical kernel (T. Hida [4]) satisfying

(4.2) $\int_{T}|c(t, u)|^{2}du<+\infty$ , $t\in T$ ,

and $\{B(t, w)\}$ is the Brownian motion such that

(4.3) $L^{2}(X)=L^{2}(B)$ .
It is well-known that a purely non-deterministic stationary Gaussian pro-

cess is a C-process.
In this section, we investigate a necessary and sufficient condition imposed

on the linear transformation $F$ and functional $\mathfrak{s}$ on $L^{2}(X)$ for which a Gaussian
process is equivalent to a given C-process, when $T=[0, T_{1}]$ or $(-\infty, +\infty)$ .

THEOREM 4. A Gaussian process $\{X_{1}(t, w)\}$ is equivalent to the C-process
which has a proper canonical representation (4.1) if and only if there exists a
B-equivalent process $\{Y(t, w)\}$ which has the representation (3.22) and $\{X_{1}(t, w)\}$

has the representation

(4.4) $X_{1}(t, w)(L)$

$=\int^{t}c(t, u)dB(u, w)+\int_{T}\int^{\iota}c(t, z)g(z, u)dzdB(u, w)$

$+\int^{t}c(t, u)m^{\prime}(u)du$ , $t\in T$ .

PROOF. If $\{X_{1}(t, w)\}$ is equivalent to the C-process represented as (4.1),

then by Theorem 2, $\{X_{1}(t, w)\}$ has a representation (2.8) with the equivalence
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operator $F$ and the bounded linear functional $\mathfrak{f}$ . By (4.3), Lemma 2 and Lemma
3, there exist real functions $g(v, u)$ and $m^{\prime}(u)$ satisfying the conditions of
Theorem 3 such that

$FB(t, w)=B(t, w)+\int_{T}\int_{0^{t}}g(v, u)dvdB(u, w)$ ,

$f[B(t, w)]=\int_{0^{t}}m^{\prime}(u)du$ , $t\in T$ .
Put

$Y(t, w)=FB(t, w)+f[B(t, w)]$ , $t\in T$ .

Then by Theorem 3, $\{Y(t, w)\}$ is B-equivalent. By the boundedness of $F$ and
$f$ we get

(4.5) $FX(t, w)=F[\int^{t}c(t, u)dB(u, w)]$

$=\int^{t}c(t, u)\{dB(u, w)+\int_{T}g(u, z)dB(z, w)du\}$ , $t\in T$ ,

(4.6) $f[X(t, w)]=\mathfrak{s}[\int^{t}c(t, u)dB(u, w)]$

$=\int^{t}c(t, u)m^{\prime}(u)du$ , $t\in T$ .

Therefore, $\{X_{1}(t, w)\}$ has the representation (4.4).
Similarly we can prove the converse.
EXAMPLE 2. (See Example 1 in Section 3.) The Brownian motion $\{B(t, w)\}$

is equivalent to a C-process the proper canonical representation of which is
given by (3.31) for $T=[0,1]$ .

In fact, $\{B(t, w)\}$ has a representation

(4.7) $B(t, w)=\int_{0^{t}}\exp(-t+u)dB(u, w)+\int_{T}\int_{u^{t}}\exp(-i+z)dzdB(u, w)$ .

This is the case where

$g(v, u)=\{01$
, if $1\geqq v\geqq u\geqq 0$ ,

otherwise,
and $m^{\prime}(u)\equiv 0$ .

\S 5. Concluding remarks.

(1) Equivalence of two additive processes.
A Gaussian additive process with mean zero and $T=[0, T_{1}],$ ( $T_{1}$ may be

infinite), has a representation
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(5.1) $X=(t, w)=X(0, w)+\int_{0^{t}}c(u)dB(u, w)+\sum_{\iota_{j\leqq C}}a_{j}Y_{r_{j}}(w)$ .

(See Corollary of Theorem 1.6 of T. Hida [4].) Here $L^{2}(X)$ can be decomposed
as

(5.2)
$L^{2}(X)=L^{2}(B)\oplus[\sum_{r_{J}\in\tau}\oplus M(Y_{t_{j}})]\oplus M(X(0))$ ,

where $Y_{\iota_{j}’}s$ are O. N. S. of $L^{2}(X),$ $a_{j}’ s$ are real constants, $c(u)$ is a real function
such that

$\sum_{tj\leqq t}a_{j}^{2}+\int_{0^{t}}c(u)^{2}du<+\infty$ , for every $t\in T$ ,

and $M(Y),$ $Y\in L^{2}(X)$ , denotes the closed linear subspace of $L^{2}(X)$ spanned by $Y$.
Let $L_{t}^{2}(X)$ be the closed linear subspace of $L^{2}(X)$ spanned by $\{X(s);s\leqq t\}$ .
Now suppose that a Gaussian process $\{X_{1}(t, w)\}$ is equivalent to an addi-

tive process expressed in the form (5.1). Then by Theorem 2, it has a repre-
sentation (2.8) where the equivalence operator $F$ can be assumed to be a self-
adjoint operator. This equivalence operator $F$ is reduced by $L_{t}^{2}(X)$ for every
$t\in T$ if and only if $\{X_{1}(t, w)\}$ is also an additive process, in fact,

(5.3) $\langle F[X(t)-X(s)], FX(u)\rangle$

$=Covariance[X_{1}(t, w)-X_{1}(s, w), X_{1}(u, w)],$ $t\geqq s\geqq u$ ,

and $F^{*}F=F^{2}$ and $F$ are reduced by $L_{t}^{2}(X)$ at the same time. If $F$ is reduced
by $L_{\iota}^{2}(X)$ for every $t\in T$, then it is reduced by $L^{2}(B),$ $M(X(O))$ and all $M(Y_{t_{j}})s$

by their definition (see T. Hida [4]). Determine real constants $\alpha,$ $\alpha_{j}’ s,$ $m,$ $m_{j}’ s$

and functions $g(v, u),$ $m^{\prime}(u)$ by the equalities

$FX(O)=\alpha X(0)$ , $FY_{t_{j}}=\alpha_{j}Y_{\iota_{j}}$ ,

$f[X(0)]=m$ , $f[Y_{tj}]=m_{j}$ ,
(5.4)

$FB(t, w)=B(t, w)+\int_{T}\int_{0^{t}}g(v, u)dvdB(u, w)$ ,

$T[B(t, w)]=\int_{0^{f}}m^{\prime}(u)du$ .

Since $\{FB(t, w)\}$ is also an additive process, $g(v, u)\equiv 0$ . Noting that $F-I$ is of
Hilbert-Schmidt type and $\mathfrak{j}$ is a bounded linear functional, we have the follow-
ing proposition.

PROROSITION 1. A Gaussian additive process $\{X_{1}(t, w)\}$ is equivalent to the
Gaussion additive process $\{X(t, w)\}$ expressed in the form (5.1) if and only if it
has the following representation
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(5.5) $X_{1}(t, w)(=L)\alpha X(0, w)+\int_{0^{\ell}}c(u)dB(u, w)+\sum_{\iota_{j\leqq t}}\alpha_{j}a_{j}Y_{t_{j}}(w)$

$+m+\int_{0^{t}}c(u)m^{\prime}(u)du+\sum_{t_{j\leqq\iota}}a_{j}m_{j}$ , $t\in T$ ,

where $\alpha,$ $\alpha_{j}’ s,$ $m,$ $m_{j}’ s$ are real constants such that

(5.6) $\sum_{t_{j}\in T}(\alpha_{j}-1)^{2}<+\infty$
,

(5.7) $\sum_{t_{j}\in T}m_{j}^{2}<+\infty$
,

$\alpha$ and $\alpha_{j}’ s$ are non-vanishing, and $m^{\prime}(u)$ is a real function satisfying (3.21).

This proposition enables us to extend the Skorokhod [6] $s$ results on the
equivalence of two Gaussian additive processes.

(2) On the general case.
Let $\{X(t, w)\}$ be a process with mean zero and $ T=[0, +\infty$) and put

(5.8) $N(X)=\bigcap_{\ell\in T}L_{t}^{2}(X)$ .

Then $\{X(t, w)\}$ has a representation

(5.9) $X(t, w)=\sum_{t}\int_{0^{t}}c_{i}(t, u)dB_{i}(u, w)+\sum_{\ell_{j}\leqq c}\S\sum_{q=1}^{Nj}b_{j}^{q}(t)Y_{t}^{q_{j}}(w)$

$+\sum_{k}a_{k}(t)h_{k}(w)$ , $t\in T$ ,

where $\{B_{i}(t, w)\}s$ are mutually independent Brownian motions and $Y_{t}^{q_{j}}(w)s$ are
O. N. S. of $L^{2}(X)$ such that

(5.10) $L^{2}(X)=N(X)\oplus\{\sum_{i}^{N_{j}}\oplus L^{2}(B_{i})\}\oplus\{\sum_{t_{j}\in\tau}\sum_{q=\iota}^{N_{j}}\oplus M(Y_{t}^{q_{j}})\}$ ,

$h_{k}(w)s$ are C. O. N. S. of $N(X)$ , and $c_{i}(t, u)s,$ $b_{j}^{q}(t)s$ and $a_{k}(t)s$ are real functions
such that

(5.11) $\sum_{i}\int_{0^{t}}c_{i}(t, u)^{2}du+\sum_{\iota_{j}\leqq\iota}\sum_{q=1}^{Nj}b_{j}^{q}(t)^{2}+\sum_{k}a_{k}(t)^{2}<+\infty$ ,

for every $t\in T$ (T. Hida [4]).

If we define an equivalence operator $F$ and a bounded linear functional $f$

on $L^{2}(X)$ in the same manner as in (5.4), then we have the following proposi-
tion.

PROPOSITION 2. A Gaussian process $\{X_{1}(t, w)\}$ is equivalent to the Gaussian
process $\{X(t, w)\}$ expressed in the form (5.9) if it has a representation
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(5.12) $X_{1}(t, w)_{(L)}=\sum_{t}\int_{0^{t}}c_{i}(t, u)\{dB_{i}(u, w)+\int_{T}g_{i}(u, z)dB_{i}(z, w)du\}$

$+\Sigma N\Sigma^{j}\beta_{j}^{q}b_{j}^{q}(t)Y_{tj}^{q}(w)+\sum_{k}\alpha_{k}a_{k}(t)h_{k}(w)$

$t_{j}\leqq tq=1$

$+\sum_{i}\int_{0^{t}}c_{i}(t, u)m_{i}^{\prime}(u)du+\Sigma N\Sigma^{j}b_{j}^{q}(t)m_{j}^{b}+\sum_{k}a_{k}(t)n_{k}$ , $t\in T$ ,
$tj\leqq tq=1$

where $\beta_{j}^{q}’ s$ and $\alpha_{k}’ s$ are non-vanishing real constants and $g_{i}(v, u)s$ are real
functions such that

(5.13) $\sum_{i}\int_{T}\int_{T}g_{i}(v, u)^{2}dvdu+\sum_{j}\sum_{q}(\beta_{j}^{q}-1)^{2}+\sum_{k}(\alpha_{k}-1)^{2}<+\infty$ ,

and $m_{j}^{q}’ s$ and $n_{k}’ s$ are real constants, and $m_{i}^{\prime}(u)s$ are real functions such that

(5.14) $\sum_{i}\int_{T}m^{\prime}(u)^{2}du+\sum_{j}\sum_{q}(m_{j}^{q})^{2}+\sum_{k}(n_{k})^{2}<+\infty$ ,

and the linear operators $F_{i}$ ; $i=1,2,$ $\cdots$ , on $L^{2}(B_{i})$ determined by

(5.15) $F_{i}B_{t}(t, w)=B_{i}(t, w)+\int_{T}\int_{0^{t}}g_{t}(v, u)dvdB_{i}(u, w)$ , $t\in T$ ,

are invertible.

Tokyo Metropolitan University
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