Topological covering of $S L(2)$ over a local field

By Tomio Kubota

(Received Oct. 19, 1966)

The purpose of this paper is to show that, if F is a local field different from the field \boldsymbol{C} of complex numbers, and if F contains the m-th roots of unity, then the topological group $S L(2, F)$ has an m-fold, non-trivial, topological covering group which is of a fairly number-theoretical nature. In the sequel, a local field will always mean a completion, by a finite or infinite place, of an algebraic number field of finite degree, and $S L(2, F)$ will mean the topological group of all 2×2 matrices with determinant 1 over a local field F.

We shall obtain a topological covering of $S L(2, F)$ by proving in a elementary way that an expression containing Hilbert's symbols is actually a factor set of $S L(2, F)$.

Hilbert's symbol ${ }^{1 \text { 1 }}$ of degree m of a local field F containing the m-th roots of unity will be denoted by (α, β), where α, β are non-zero numbers of F. In addition to fundamental properties of Hilbert' symbol, the relation

$$
\begin{equation*}
(\alpha, \beta)\left(-\alpha^{-1} \beta, \alpha+\beta\right)=1 \tag{1}
\end{equation*}
$$

is useful in our arguments. This formula is valid whenever $\alpha \neq 0, \beta \neq 0$, and $\alpha+\beta \neq 0^{22}$.

Now, our result is the following
Theorem. Let $F \neq \boldsymbol{C}$ be a local field containing the m-th roots of unity, let $G=S L(2, F)$, and, for an element $\sigma=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in G$, put $x(\sigma)=\gamma$ or δ according to $\gamma \neq 0$ or $=0$. Furthermore, for $\sigma, \tau \in G$, put

$$
\begin{equation*}
a(\sigma, \tau)=(x(\sigma), x(\tau))\left(-x(\sigma)^{-1} x(\tau), x(\sigma \tau)\right) . \tag{2}
\end{equation*}
$$

Then, $a(\sigma, \tau)$ satisfies the factor set relation

$$
\begin{equation*}
a(\sigma, \tau) a(\sigma \tau, \rho)=a(\sigma, \tau \rho) a(\tau, \rho) \tag{3}
\end{equation*}
$$

for any $\sigma, \tau, \rho \in G$, and determines an m-fold topological covering group of G.
The proof will be performed in $\S 2$, and the non-triviality of the covering in the theorem will be treated in $\S 3$.

From the form of the factor set (2), it is understood that our theorem has

1) As for the definition of Hilbert's symbol, see [1].
2) [1], p. 55, formula (15).
a global meaning as well as local one. Namely, let F temporarily denote an algebraic number field containing the m-th roots of unity, let $F_{\mathfrak{y}}$ be the completion of F by a place \mathfrak{p} of F, and let $a(\sigma, \tau / \mathfrak{p})$ be the factor set (2) for $F_{\mathfrak{p}}$. Then, each $S L\left(2, F_{\mathfrak{p}}\right)$ is given a covering group by $a(\sigma, \tau / p)$, and moreover the product formula

$$
\begin{equation*}
\prod_{p} a(\sigma, \tau / \mathfrak{p})=1 \tag{4}
\end{equation*}
$$

holds, which means that the set of all $a(\sigma, \tau / \mathfrak{p})$ determines a global covering group of the adele group of $S L(2, F)$.

A global covering group of this kind was constructed in [4] for the case of $m=2$. For the multiplicative group of a number field, a related investigation was done also in [2]. On the other hand, the results in the present paper have some overlap with the work of Calvin Moore ${ }^{3}$. But, he and the author were working independently.

§ 1. Lemmas.

As before, we denote by F a local field containing the m-th roots of unity, and we write $G=S L(2, F)$. Furthermore, we use the notation $\gamma(\sigma)=\gamma$ for $\sigma=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in G$.

Lemma 1. If σ, τ are two elements of G with $\gamma(\sigma) \neq 0, \gamma(\tau)=0$, then

$$
\begin{equation*}
a(\sigma, \tau)=a(\tau, \sigma)=(x(\sigma), x(\tau)) \tag{5}
\end{equation*}
$$

holds for $a(\sigma, \tau)$ in (2). If $\gamma(\sigma)=\gamma(\tau)=0$, then

$$
\begin{equation*}
a(\sigma, \tau)=(x(\sigma), x(\tau))^{-1} . \tag{6}
\end{equation*}
$$

Proof. If $\gamma(\sigma) \neq 0, \gamma(\tau)=0$, then

$$
\begin{equation*}
x(\sigma \tau)=x(\sigma) x(\tau)^{-1}, \quad x(\tau \sigma)=x(\tau) x(\sigma) . \tag{7}
\end{equation*}
$$

So, by definition, we have

$$
\begin{aligned}
a(\sigma, \tau) & =(x(\sigma), x(\tau))\left(-x(\sigma)^{-1} x(\tau), x(\sigma)^{-1} x(\tau)\right)^{-1} \\
& =(x(\sigma), x(\tau)), \\
a(\tau, \sigma) & =(x(\tau), x(\sigma))\left(-x(\tau)^{-1} x(\sigma), x(\tau)\right)\left(-x(\tau)^{-1} x(\sigma), x(\sigma)\right) \\
& =(x(\sigma), x(\tau)),
\end{aligned}
$$

which proves (5). If $\gamma(\sigma)=\gamma(\tau)=0$, then $x(\sigma \tau)=x(\sigma) x(\tau)$. Therefore, (6) is. shown in the same way as the above equality for $a(\tau, \sigma)$.

Lemma 2. Fix an element $\sigma \in G$. Then,

[^0]\[

a(\varepsilon, \sigma)=a(\sigma, \varepsilon)= $$
\begin{cases}1, & \gamma(\sigma) \neq 0 \\ (x(\varepsilon), x(\sigma)), & \gamma(\sigma)=0\end{cases}
$$
\]

for $\varepsilon \in G$ which is sufficiently near to 1 .
Proof. We have

$$
a(\varepsilon, \sigma)=(x(\varepsilon), x(\sigma))\left(-x(\varepsilon)^{-1} x(\sigma), x(\varepsilon \sigma)\right)
$$

by definition. If $\gamma(\varepsilon)=0$ or $\gamma(\sigma) \neq 0$, then $x(\varepsilon \sigma) \rightarrow x(\sigma)$ as $\varepsilon \rightarrow 1$, and $a(\varepsilon, \sigma)$ $\rightarrow(-x(\sigma), x(\sigma))=1$ because of the continuity of Hilbert's symbol. So, we may assume $\gamma(\varepsilon) \neq 0$ and $\gamma(\sigma)=0$. This case reduces to Lemma 1.

Lemma 3. Let $\sigma, \tau \in G$ be given. Then, two special cases

$$
\begin{equation*}
a(\varepsilon, \sigma) a(\varepsilon \sigma, \tau)=a(\varepsilon, \sigma \tau) a(\sigma, \tau) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
a(\sigma, \tau) a(\sigma \tau, \varepsilon)=a(\sigma, \tau \varepsilon) a(\tau, \varepsilon) \tag{9}
\end{equation*}
$$

of (3) hold for $\varepsilon=\left(\begin{array}{ll}1 & \\ \mu & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ \mu & 1\end{array}\right) \in G$, provided that μ is sufficiently near to 0 .

Proof. To prove (8), it is enough to prove

$$
\begin{equation*}
a(\varepsilon, \sigma) a\left(\varepsilon \sigma, \sigma^{-1} \tau\right)=a(\varepsilon, \tau) a\left(\sigma, \sigma^{-1} \tau\right) \tag{10}
\end{equation*}
$$

Consider

$$
\begin{align*}
a(\varepsilon \sigma, & \left.\sigma^{-1} \tau\right) a\left(\sigma, \sigma^{-1} \tau\right)^{-1} \tag{11}\\
= & \left(x(\varepsilon \sigma), x\left(\sigma^{-1} \tau\right)\right)\left(x(\sigma), x\left(\sigma^{-1} \tau\right)\right)^{-1}\left(-x(\varepsilon \sigma)^{-1} x\left(\sigma^{-1} \tau\right), x(\varepsilon \tau)\right) \\
& \cdot\left(-x(\sigma)^{-1} x\left(\sigma^{-1} \tau\right), x(\tau)\right)^{-1},
\end{align*}
$$

and suppose $\gamma(\sigma) \neq 0, \gamma(\tau) \neq 0$. Then, $x(\varepsilon \sigma) \rightarrow x(\sigma), x(\varepsilon \tau) \rightarrow x(\tau)$, and therefore (11) tends to 1 , as $\mu \rightarrow 0$. Suppose next $\gamma(\sigma) \neq 0, \gamma(\tau)=0$. Then, it follows from (7) and $x\left(\sigma^{-1}\right)=-x(\sigma)$ that (11) is equal to

$$
\left(-x(\sigma)^{-1} x\left(\sigma^{-1} \tau\right), x(\varepsilon \tau) x(\tau)^{-1}\right)=\left(x(\tau)^{-1}, \mu x(\tau)^{-2}\right)=(\mu, x(\tau))
$$

for sufficiently small μ. If $\gamma(\sigma)=0, \gamma(\tau) \neq 0$, it is similarly seen that (11) tends to

$$
\left(\mu x(\sigma)^{-2}, x(\sigma)^{-1} x(\tau)\right)\left(\mu^{-1} x(\sigma)^{2}, x(\tau)\right)=(\mu, x(\sigma))^{-1}
$$

If finally $\gamma(\sigma)=\gamma(\tau)=0$, then (11) becomes

$$
\left(\mu x(\sigma)^{-2}, x(\sigma)^{-1} x(\tau)\right)\left(-\mu^{-1} x(\tau), \mu x(\tau)^{-1}\right)\left(-x(\sigma)^{-2} x(\tau), x(\tau)\right)^{-1}=\left(\mu, x(\sigma)^{-1} x(\tau)\right)
$$

when μ is sufficiently small. Since $\mu=\gamma(\varepsilon)$, (8) follows from Lemma 2 in every case.

To prove (9), it is enough to prove

$$
\begin{equation*}
a\left(\sigma \tau^{-1}, \tau\right) a(\sigma, \varepsilon)=a\left(\sigma \tau^{-1}, \tau \varepsilon\right) a(\tau, \varepsilon) \tag{12}
\end{equation*}
$$

The value of

$$
\begin{align*}
a\left(\sigma \tau^{-1},\right. & \tau \varepsilon) a\left(\sigma \tau^{-1}, \tau\right) \tag{13}\\
= & \left(x\left(\sigma \tau^{-1}\right), x(\tau \varepsilon)\right)\left(x\left(\sigma \tau^{-1}\right), x(\tau)\right)^{-1}\left(-x\left(\sigma \tau^{-1}\right)^{-1} x(\tau \varepsilon), x(\sigma \varepsilon)\right) \\
& \cdot\left(-x\left(\sigma \tau^{-1}\right)^{-1} x(\tau), x(\sigma)\right)^{-1}
\end{align*}
$$

as $\mu \rightarrow 0$ is 1 for $\gamma(\sigma) \neq 0, \gamma(\tau) \neq 0$,

$$
(x(\sigma) x(\tau), \mu)(\mu, x(\sigma))=(\mu, x(\tau))^{-1}
$$

for $\gamma(\sigma) \neq 0, \gamma(\tau)=0$,

$$
\left(-x(\sigma)^{-1} x\left(\tau^{-1}\right)^{-1} x(\tau), \mu\right)=(\mu, x(\sigma))
$$

for $\gamma(\sigma)=0, \gamma(\tau) \neq 0$, and

$$
\begin{aligned}
& \left(x(\sigma) x(\tau)^{-1}, \mu\right)\left(-\mu x(\sigma)^{-1} x(\tau)^{2}, \mu x(\sigma)\right)\left(-x(\sigma)^{-1} x(\tau)^{2}, x(\sigma)\right)^{-1} \\
& \left.\quad=(x(\sigma) x(\tau))^{-1}, \mu\right)\left(x(\sigma)^{-1} x(\tau)^{2}, \mu\right)(\mu, x(\sigma)) \\
& \quad=(\mu, x(\sigma))(\mu, x(\tau))^{-1}
\end{aligned}
$$

for $\gamma(\sigma)=0, \gamma(\tau)=0$. Hence, Lemma 2 implies (9).
Thus, the lemma is completely proved.
Lemma 4. Set

$$
b(\sigma, \tau, \rho)=a(\sigma, \tau) a(\sigma \tau, \rho) a(\sigma, \tau \rho)^{-1} a(\tau, \rho)^{-1}
$$

$(\sigma, \tau, \rho \in G)$. Then, for any fixed $\sigma, \tau, \rho \in G$, we have

$$
b(\varepsilon \sigma, \tau, \rho)=b(\sigma, \tau, \rho \varepsilon)=b(\sigma, \tau, \rho)
$$

where $\varepsilon=\left(\begin{array}{ll}1 & \\ \mu & 1\end{array}\right)$, and μ is sufficiently near to 0 .
Proof. If ε is close to 1 , then (8) of Lemma 3 yields

$$
\begin{aligned}
b(\varepsilon \sigma, \tau, \rho)= & a(\varepsilon \sigma, \tau) a(\varepsilon \sigma \tau, \rho) a(\varepsilon \sigma, \tau \rho)^{-1} a(\tau, \rho)^{-1} \\
= & a(\varepsilon, \sigma)^{-1} a(\varepsilon, \sigma \tau) a(\sigma, \tau) a(\varepsilon, \sigma \tau)^{-1} a(\varepsilon, \sigma \tau \rho) a(\sigma \tau, \rho) \\
& \cdot a(\varepsilon, \sigma) a(\varepsilon, \sigma \tau \rho)^{-1} a(\sigma, \tau \rho)^{-1} a(\tau, \rho)^{-1} \\
= & a(\sigma, \tau) a(\sigma \tau, \rho) a(\sigma, \tau \rho)^{-1} a(\tau, \rho)^{-1}=b(\sigma, \tau, \rho) .
\end{aligned}
$$

On the other hand, (9) of Lemma 3 yields

$$
\begin{aligned}
b(\sigma, \tau, \rho \varepsilon)= & a(\sigma, \tau) a(\sigma \tau, \rho \varepsilon) a(\sigma, \tau \rho \varepsilon)^{-1} a(\tau, \rho \varepsilon)^{-1} \\
= & a(\sigma, \tau) a(\sigma \tau, \rho) a(\sigma \tau \rho, \varepsilon) a(\rho, \varepsilon)^{-1} \\
& \cdot a(\sigma, \tau \rho)^{-1} a(\sigma \tau \rho, \varepsilon)^{-1} a(\tau \rho, \varepsilon) a(\tau, \rho)^{-1} a(\tau \rho, \varepsilon)^{-1} a(\rho, \varepsilon) \\
= & a(\sigma, \tau) a(\sigma \tau, \rho) a(\sigma, \tau \rho)^{-1} a(\tau, \rho)^{-1}=b(\sigma, \tau, \rho),
\end{aligned}
$$

which completes the proof.

§2. Proof of the theorem.

Using the notation of Lemma 4, the assertion of our theorem is that $b(\sigma, \tau, \rho)=1$ for every $\sigma, \tau, \rho \in G$. While $b(\sigma, \tau, \rho)=1$ means that G has an abstract, m-fold covering group, Lemma 2 entails $a(\sigma, \tau)=1$ whenever σ, τ are near to 1 ; therefore the covering group posesses a topology locally isomorphic to G, and is a topological covering group.

Let now $\sigma=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in G$ and $\varepsilon=\left(\begin{array}{cc}1 & \\ \mu & 1\end{array}\right) \in G$. Then, there is at most one μ with $\gamma(\varepsilon \sigma)=0$, because such μ is a solution of $\alpha \mu+\gamma=0$. Similarly, there is at most one μ with $\gamma(\sigma \varepsilon)=0$, such μ being a solution of $\delta \mu+\gamma=0$. From this and from Lemma 4, it follows that there exists $\varepsilon \in G$ with $b(\varepsilon \sigma, \tau, \rho)$ $=b(\sigma, \tau, \rho), \gamma(\varepsilon \sigma) \neq 0, \gamma(\varepsilon \sigma \tau) \neq 0$. Analogously, one can find $\varepsilon^{\prime} \in G$ such that $b\left(\varepsilon \sigma, \tau, \rho \varepsilon^{\prime}\right)=b(\varepsilon \sigma, \tau, \rho), \gamma\left(\rho \varepsilon^{\prime}\right) \neq 0, \gamma\left(\tau \rho \varepsilon^{\prime}\right) \neq 0, \gamma\left(\varepsilon \sigma \tau \rho \varepsilon^{\prime}\right) \neq 0$. Hence, our theorem may be proved under the assumptions $\gamma(\sigma) \neq 0, \gamma(\rho) \neq 0, \gamma(\sigma \tau) \neq 0, \gamma(\tau \rho) \neq 0$, $\gamma(\sigma \tau \rho) \neq 0$.

Denote by N the subgroup of G consisting of all elements of the form $\left(\begin{array}{ll}1 & \beta \\ & 1\end{array}\right)$. Then, since $\gamma\left(\nu \sigma \nu^{\prime}\right)=\gamma(\sigma),\left(\nu, \nu^{\prime} \in N, \sigma \in G\right)$, the definition of $a(\sigma, \tau)$ implies

$$
\begin{equation*}
a(\nu \sigma, \tau)=a(\sigma, \tau \nu)=a(\sigma, \tau), \quad a(\sigma \nu, \tau)=a(\sigma, \nu \tau) \tag{14}
\end{equation*}
$$

for every $\sigma, \tau \in G$, and $\nu \in N$. Consequently, we have

$$
\begin{equation*}
b(\sigma, \tau, \rho)=b\left(\nu_{1} \sigma \nu_{2}, \nu_{2}^{-1} \tau \nu_{3}, \nu_{3}^{-1} \rho \nu_{4}\right) \tag{15}
\end{equation*}
$$

for $\sigma, \tau, \rho \in G, \nu_{1}, \nu_{2}, \nu_{3}, \nu_{4} \in N$. On the other hand, $\sigma \in G$ being an arbitrary element, there are $\nu, \nu^{\prime} \in N$ such that $\nu \sigma \nu^{\prime}$ is in a canonical form ($\left.\begin{array}{ll}\alpha & \\ & \alpha^{-1}\end{array}\right)$ or $\left(\gamma_{\gamma}-\gamma^{-1}\right)$. Furthermore, since $\gamma(\sigma) \neq 0$, and $\gamma(\rho) \neq 0$, $\nu_{1} \sigma \nu_{2}$ resp. $\nu_{3}^{-1} \rho \nu_{4}$ can be brought into a triangular form $\binom{\beta}{\gamma}$ resp. $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \end{array}\right)$. Owing to these facts, it is enough to prove the theorem for

$$
\sigma=\left(\begin{array}{cc}
& -a^{-1} \\
a & d
\end{array}\right), \quad \tau=\left(\begin{array}{ll}
& -b^{-1} \\
b &
\end{array}\right), \quad \rho=\left(\begin{array}{ll}
e & -c^{-1} \\
c &
\end{array}\right)
$$

when $\gamma(\tau) \neq 0$, and for

$$
\sigma=\left(\begin{array}{cc}
& -a^{-1} \\
a & d
\end{array}\right), \quad \tau=\left(\begin{array}{ll}
b^{-1} & \\
& b
\end{array}\right), \quad \rho=\left(\begin{array}{ll}
e & -c^{-1} \\
c &
\end{array}\right)
$$

when $\gamma(\tau)=0$. In both cases, $x(\sigma)=a, x(\tau)=b, x(\rho)=c$.
In the case of $\gamma(\tau) \neq 0$, we have $x(\sigma \tau)=b d, x(\tau \rho)=b e, x(\sigma \tau \rho)=b d e-a b^{-1} c$ by the assumption $\gamma(\sigma \tau) \neq 0, \gamma(\tau \rho) \neq 0, \gamma(\sigma \tau \rho) \neq 0$. So,

$$
\begin{aligned}
b(\sigma, \tau, \rho)= & (a, b)\left(-a^{-1} b, b d\right)(b d, c)\left(-b^{-1} d^{-1} c, b d e-a b^{-1} c\right) \\
& \cdot(a, b e)^{-1}\left(-a^{-1} b e, b d e-a b^{-1} c\right)^{-1}(b, c)^{-1}\left(-b^{-1} c, b e\right)^{-1} \\
= & (a, e)^{-1}(d, c)(a, b)^{-1}\left(-a^{-1} b, d\right)(c, b)^{-1}\left(-b^{-1} c, e\right)^{-1} \\
& \cdot\left((b d e)^{-1} a b^{-1} c, b d e-a b^{-1} c\right) .
\end{aligned}
$$

Since here

$$
\begin{aligned}
& \left((b d e)^{-1} a b^{-1} c, b d e-a b^{-1} c\right)=\left(-a b^{-1} c, b d e\right) \\
& \quad=(a c, b)\left(-a b^{-1}, d\right)(c, d)(a, e)\left(-b^{-1} c, e\right)
\end{aligned}
$$

follows from (1), we obtain

$$
b(\sigma, \tau, \rho)=(a, b)^{-1}(c, b)^{-1}(a c, b)=1
$$

In the case of $\gamma(\tau)=0$, we have $x(\sigma \tau)=a b^{-1}, x(\tau \rho)=b c, x(\sigma \tau \rho)=a b^{-1} e+b c d$. So, from Lemma 1 follows

$$
\begin{aligned}
b(\sigma, \tau, \rho)= & (a, b)\left(a b^{-1}, c\right)\left(-a^{-1} b c, a b^{-1} e+b c d\right) \\
& \cdot(a, b c)^{-1}\left(-a^{-1} b c, a b^{-1} e+b c d\right)^{-1}(c, b)^{-1}=1
\end{aligned}
$$

This completes the proof.

§ 3. Non-triviality of the covering.

The aim of this § is to show that the covering given in the theorem is always non-trivial; we propose to show that there is no mapping s of G into the set of the m-th roots of unity such that

$$
\begin{equation*}
a(\sigma, \tau)=s(\sigma) s(\tau) s(\sigma \tau)^{-1} \tag{16}
\end{equation*}
$$

In the case of $m>2$, the impossibility of (16) is immediately to see, if we put $\sigma=\left(\begin{array}{cc}\alpha & \\ & \alpha^{-1}\end{array}\right), \tau=\left(\begin{array}{ll}\beta & \beta^{-1}\end{array}\right)$, and use (6) of Lemma 1] together with the antisymmetry of Hilbert's symbol. Since, however, this method is not effective for $m=2$, we state here from a different point of view a proof which is valid for arbitrary m^{4}. Assume (16), and set $\nu=\left(\begin{array}{cc}1 & \beta \\ & 1\end{array}\right)$. Then, (14) yields

$$
s(\nu \sigma) s(\tau) s(\nu \sigma \tau)^{-1}=s(\sigma) s(\tau) s(\sigma \tau)^{-1}
$$

for every $\sigma, \tau \in G$. Putting further $\tau=\sigma^{-1}$, we have $s(\nu \sigma)=s(\sigma)^{-1}=s(\nu) s(1)^{-1}$, while the mapping s becomes a homomorphism on the group N of the elements of the form $\left(\begin{array}{ll}1 & \beta \\ & 1\end{array}\right)$, and consequently is trivial. Therefore, $s(\nu \sigma)=s(\sigma)$ must hold. By a similar reason, $s(\sigma \nu)=s(\sigma)$ is also the case. Set $\sigma=\left(1^{-1}\right)$, $\tau=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right),(\gamma \neq 0, \alpha \neq 0), \sigma \tau=\left(\begin{array}{rr}-\gamma & -\delta \\ \alpha & \beta\end{array}\right)$, and denote by $s_{1}(\gamma)$ the value of

[^1]s at $\left(\gamma-\gamma^{-1}\right)$. Then, from the definition, from (16), and from the N invariance of s proved above, the equality
$$
a(\sigma, \tau)=(-\gamma, \alpha)=s_{1}(1) s_{1}(\gamma) s_{1}(\alpha)^{-1}
$$
is derived. This relation with $\alpha=1$ implies $s_{1}(\gamma)=1$ for any non-zero $\gamma \in F$. Accordingly, we have $(-\gamma, \alpha)=1$ identically, which is clearly a contradiction.

Let \tilde{G} be the covering group of G determined by the theorem. Then, \tilde{G} contains the group $z(m)$ of the m-th roots of unity, and the covering map $\tilde{G} \rightarrow G$ gives an isomorphism of G and $\tilde{G} / z(m)$. Let now $d \neq m$ be a natural number deviding m. Then, $\tilde{G} / \gamma(d)$ is also a covering group of G, and the corresponding factor set is given by the natural image of $a(\sigma, \tau)$ into $z(m) / \gamma(d)$. Since $z(m) / z(d) \cong z(m / d)$, we may regard $a(\sigma, \tau)^{d}$ as the factor set. The d-th power of Hilbert's symbol of degree m is Hilbert's symbol of degree m / d, which is not trivial in the present case. So, $a(\sigma, \tau)^{d}$ is also not trivial. Thus we have proved that all coverings $\tilde{G} / \gamma(d) \rightarrow G$ are non-trivial as well as $\tilde{G} \rightarrow G$. In this sense, $\tilde{G} \rightarrow G$ is a proper covering.

§4. Further remarks.

Hilbert's symbol is a bi-multiplicative function, and is by itself a factor set of the multiplicative group of a field. Therefore, our factor set (2) can be regarded as a generalization of Hilbert's symbol to a matric algebra. In fact, the product formula (4) holds for global cases, and $a(\sigma, \tau)$ coincides with Hilbert's symbol when σ, τ are diagonal matrices. Moreover, it is possible for any other property of Hilbert's symbol to find the corresponding property of $a(\sigma, \tau)$. On the other hand, using an order of a matric algebra, one can consider through $a(\sigma, \tau)$ power residue symbols of a matric algebra. The multiplicativity of symbols for commutative cases should, however, always be replaced by the factor set relation.

Hilbert's symbol as a factor set of the multiplicative group of a field was partly investigated in [2] for the quadratic case. The formula (17) of [2] means that the Gauss sum gives rise to a multiplicative function on the 2 -fold covering group, given by Hilbert's symbol, of the idele class group.

Something about a factor set is also mentioned at the very end of [3]. What the factor set determines is an ordinary, 2 -fold topological covering group of $G=S L(2, R)$, which appears in the theorem of this paper for the special case of $F=\boldsymbol{R}, m=2$.

References

[1] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, II, Leipzig-Berlin, 1930.
[2] T. Kubota, Local relation of Gauss sums, Acta Arith., 6 (1961), 285-294.
[3] T. Kubota, Ein arithmetischer Satz über eine Matrizengruppe, J. Reine Angew. Math., 222 (1966), 55-57.
[4] A. Weil, Sur certains groups d’opérateurs unitaires, Acta Math., 111 (1964), 143-211.

[^0]: 3) Unpublished at present.
[^1]: 4) The non-triviality of the covering for the case of $m=2$ is contained in [4], too.
