A study of transformation groups on manifolds

By Hideki Omori*

(Received June 25, 1966)

§ 0. Introduction.

It might be interesting to ask to what extent the topological and algebraic structures of the group $H(M)$ of the homeomorphisms of a manifold M reflect the topological structure of M. In spite of its importance, unfortunately, little has been known about it. Though it seems very difficult to determine the structures of $H(M)$, many conjectures or problems have been set up by several authors.

Among them, our main concern in this paper is a problem raised by A. M. Gleason and R.S. Palais [2], which is given as follows:
" Is the closure of a homomorphic image of a connected Lie group G into $H(M)$ locally compact?"

In this connection, the author in a previous paper [4] has shown the following:
i) If G is a connected Lie group with compact center and if the image of the adjoint representation $\operatorname{Ad}(G)$ of G is closed in the general linear group $G L(\mathrm{~g})$ of the Lie algebra g of G, then any monomorphic image of G into $H(M)$ is closed and locally compact.
ii) Let φ be a monomorphism from G into $H(M)$. If $\varphi(V)$ has the locally compact closure for any closed vector subgroup V of G, then so does $\varphi(G)$.
iii) If M is connected and one dimensional, then any monomorphic image of any vector group has the locally compact closure.

The manifolds treated in i)-iii) are all assumed to satisfy the second countability axiom and the topology for $H(M)$ is of course the compact open topology. Under the same assumptions, the present author has also shown in [6] the following:
iv) Let φ be a homomorphism from a vector group V into $H(M)$ of a connected manifold M. If every orbit $\varphi(V)(x), x \in M$, is homeomorphic to a circle or a point, then $\varphi(V)$ is closed in $H(M)$ and locally compact.

The object of this paper is to obtain the following theorem and example.
Theorem A. Let M be a two-dimensional, metric and connected manifold

[^0]which is not homeomorphic to a torus. Then any monomorphic image of any vector group into $H(M)$ is closed and locally compact.

Examrle. Let M be a two-dimensional torus. There is a monomorphism ψ of one-dimensional vector group R into $H(M)$ such that the closure of $\psi(R)$ in $H(M)$ is not locally compact.

Throughout this paper, the manifolds M are always assumed to be connected and to satisfy the 2nd countability axiom and the topology for $H(M)$ is the compact open topology.

The above example shows that the conjecture of Gleason and Palais does not hold in general. Moreover, by the construction of the monomorphism ψ, $\psi(R)(x)$ is dense in M for any $x \in M$ and $\psi(t)$ is a diffeomorphism of M (class C^{1}). Since $\psi(R)$ is not closed in $H(M)$, this example seems far from our intuition.

§ 1. One-parameter transformation groups on two-dimensional manifolds.

Let M be a connected and two-dimensional manifold with metric ρ. Let φ be a continuous monomorphism from R into $H(M)$ with compact open topology. In this section, we shall give some propositions which will be used in the next section.

Proposition 1. Notations being as above, if for any $N>0, \varepsilon>0$ and $x \in M$, there is a positive number $t=t(x)>N$ such that $\rho(\varphi(\pm t)(x), x)<\varepsilon$, then the subset $M^{\prime \prime}$ consisting of the points x such that the orbit $\varphi(R)(x)$ is homeomorphic to a circle is an open subset.

Proof. Assume $M^{\prime \prime} \neq \emptyset$. Put $M^{\prime}=\{x \in M ; \varphi(R)(x) \neq\{x\}\}$. Then we see that M^{\prime} is an open subset. Let x_{0} be an arbitrary point in M^{\prime}. Considering the family of curves $\{\varphi(R)(x)\}$ in M^{\prime}, there is a subset C containing x_{0} which is a local cross-section [8]. That is, on defining the mapping ψ^{\prime} from $R \times C$ into M^{\prime} by $\phi^{\prime}(t, x)=\varphi(t)(x)$, the restriction $\phi^{\prime} \mid(-\delta, \delta) \times C$ is a homeomorphism from ($-\delta, \delta) \times C$ onto $\psi^{\prime}((-\delta, \delta), C)$ for some δ. Since M is two dimensional and metric manifold, C contains a relatively open subset C^{\prime} containing x_{0} which is homeomorphic to R [9]. The homeomorphism from R onto C^{\prime} is denoted by ξ. Assume $\xi(0)=x_{0}$.

Now, assume that $\xi(0) \in M^{\prime \prime}$. Since the interval $(-1,1)$ is homeomorphic to R and there is $K>0$ such that $\psi^{\prime} \mid(-K, K) \times \xi((-1,1))$ is a homeomorphism from $(-K, K) \times \xi((-1,1))$ onto $\psi^{\prime}((-K, K), \xi((-1,1)))$ which is an open subset of M^{\prime}, we can assume without loss of generality that $\varphi(t)(\xi(R)) \cap \xi(R)=\emptyset$ for any t such that $0<|t|<K$. Now, under this assumption, since $\varphi(R)\left(x_{0}\right)$ is homeomorphic to a circle, there is $\kappa>0$ such that $\xi([-\kappa, \kappa]) \cap \varphi(t)(\xi(0))=\emptyset$ for $0<t<t_{0}$, where $t_{0}=\min \{t>0 ; \varphi(t)(\xi(0))=\xi(0)\}$.

On putting $\eta(u)=\min \{t>0 ; \varphi(t)(\xi(u)) \in \xi([-\kappa, \kappa])\}$, we have $\eta(0)=t_{0}$. η is continuous at 0 . In fact, let $\left\{u_{n}\right\}$ be a sequence converging to 0 . Since $\left[0, t_{0}\right]$ is compact and φ is continuous, we have $\eta\left(u_{n}\right) \leqq t_{0}+\frac{t_{0}}{2}$ for large n. There is a subsequence $\left\{u_{n^{\prime}}\right\}$ such that $\eta\left(u_{n^{\prime}}\right)$ converges to some η^{\prime}. Since $\varphi\left(\eta\left(u_{n^{\prime}}\right)\right)\left(\xi\left(u_{n^{\prime}}\right)\right) \in \xi([-\kappa, \kappa]), \varphi\left(\eta^{\prime}\right)(\xi(0)) \in \xi([-\kappa, \kappa])$. It follows that $t_{0} \leqq \eta^{\prime}$ $\leqq t_{0}+\frac{t_{0}}{2}$. Thus, $\varphi\left(\eta^{\prime}-t_{0}\right) \varphi\left(t_{0}\right)(\xi(0))=\varphi\left(\eta^{\prime}\right)(\xi(0)) \in \xi([-\kappa, \kappa])$. On the other hand, $\varphi\left(\eta^{\prime}-t_{0}\right) \varphi\left(t_{0}\right)(\xi(0))=\varphi\left(\eta^{\prime}-t_{0}\right)(\xi(0))$ and $0 \leqq \eta^{\prime}-t_{0} \leqq \frac{t_{0}}{2}$. This gives $\eta^{\prime}=t_{0}$. Thus, 0 is a point of continuity. Therefore for any $\varepsilon>0$, there is $\delta^{\prime}>0$ such that $\left|\eta(u)-t_{0}\right|<\varepsilon$ if $-\delta^{\prime}<u<\delta^{\prime}$. Assume $\varepsilon<\frac{K}{4}$. We show that η is continuous on ($-\delta^{\prime}, \delta^{\prime}$). For a sequence $\left\{u_{n}\right\} \subset\left(-\delta^{\prime}, \delta^{\prime}\right)$ converging to $u \in\left(-\delta^{\prime}, \delta^{\prime}\right)$, we have $\left|\eta\left(u_{n}\right)-\eta(u)\right|<2 \varepsilon<\frac{K}{2}$. Thus, there is a subsequence $\left\{u_{n^{\prime}}\right\}$ such that $\eta\left(u_{n^{\prime}}\right)$ converges to some η^{\prime}. It follows that $\varphi\left(\eta^{\prime}\right)(\xi(u)) \in \xi([-\kappa, \kappa])$. Since $\varphi(\eta(u))(\xi(u)) \in \xi([-\kappa, \kappa])$, we see that $\left.\varphi\left(\eta^{\prime}-\eta(u)\right)(\xi[-\kappa, \kappa])\right) \cap \xi([-\kappa, \kappa]) \neq \emptyset$. Since $\left|\eta^{\prime}-\eta(u)\right| \leqq \frac{K}{2}$, we have $\eta^{\prime}=\eta(u)$. Thus, η is continuous on $\left(-\delta^{\prime}, \delta^{\prime}\right)$. By the same argument as above, we see that $\hat{\psi}: \xi(u) \rightarrow \varphi(\eta(u))(\xi(u))$ is a one-to-one correspondence on $\xi\left(-\delta^{\prime}, \delta^{\prime}\right)$. Thus, by defining $\hat{\eta}=\hat{\xi}^{-1} \hat{\psi} \xi$, $\hat{\eta}$ is a homeomorphism from $\left(-\delta^{\prime}, \delta^{\prime}\right)$ onto $\hat{\eta}\left(\left(-\delta^{\prime}, \delta^{\prime}\right)\right)$. Clearly, the origin $0 \in\left(-\delta^{\prime}, \delta^{\prime}\right)$ is a fixed point of $\hat{\eta}$. If $\hat{\eta}\left(\left[0, \delta^{\prime}\right)\right) \subseteq\left[0, \delta^{\prime}\right)$, then $\hat{\eta}^{n}\left(\left[0, \delta^{\prime}\right)\right)$ converges to some [$0, \lambda$], $0 \leqq \lambda<\delta^{\prime}$ for $n \rightarrow \infty$. This means that $\varphi(t)(\xi(u)), \lambda<u<\delta$, converges to a limit cycle $\varphi(R)(\xi(\lambda))$ for $t \rightarrow \infty$. This contradicts the assumption. Thus, $\hat{\eta}\left(\left[0, \delta^{\prime}\right)\right)=\left[0, \delta^{\prime}\right)$ and $\hat{\eta}(u)=u$ for any $u \in\left[0, \delta^{\prime}\right)$. If $\hat{\eta}\left(\left[0, \delta^{\prime}\right)\right) \supseteq\left[0, \delta^{\prime}\right)$, then taking $\hat{\eta}^{-1}$ instead of $\hat{\eta}$, we have the same conclusion. If $\hat{\eta}\left(\left[0, \delta^{\prime}\right)\right) \leqq 0$, then $\hat{\eta} \cdot \hat{\eta}\left(\left[0, \delta^{\prime}\right)\right) \geqq 0$. From the same argument as above, we obtain the same result. Thus we conclude that $\hat{\eta}(u)=u$ for any $u \in\left(-\delta^{\prime}, \delta^{\prime}\right)$. It follows that every orbit $\varphi(R)(\xi(u))$ is homeomorphic to a circle if $u \in\left(-\delta^{\prime}, \delta^{\prime}\right)$. Thus, $M^{\prime \prime}$ is an open subset.
q. e.d.

Let x_{0} be an arbitrarily fixed point in M^{\prime}. Consider the family of curves $\left\{\varphi(R)(x) ; x \in M^{\prime}\right\}$. There is a continuous injection ξ from R into M^{\prime} such that $\xi(0)=x_{0}$ and $\xi(R)$ is a local cross-section of the family. That is, the mapping $\psi \mid(-K, K) \times R$ is a homeomorphism from ($-K, K$) $\times R$ onto $\varphi((-K, K))$ $(\xi(R))$ which is an open subset of M^{\prime}, where ψ is defined by $\psi(t, u)=\varphi(t)(\xi(u))$.

Now, assume, in addition to the assumption in Proposition 1, that there is a positive continuous function $t_{0}(u)$ on $[-L, L]$ such that (i) $t_{0}(u)>K$, (ii) putting $\tilde{\eta}(u)=\phi\left(t_{0}(u), u\right), \tilde{\eta}$ is a continuous injection from $[-L, L]$ into $\psi((-K / 2, K / 2), R)$ and (iii) $\eta([-L, L]) \cap \psi((-K / 2, K / 2),[-L, L]) \neq \emptyset$.

Proposition 2. Notations and assumptions being as above, if, moreover,
M is not a two-dimensional torus, then there is a point $x \in \xi([-L, L])$ such that the orbit $\varphi(R)(x)$ is homeomorphic to a circle.

Proof. Let $\alpha(u)$ denote $t \in\left(t_{0}(u)-K / 2, t_{0}(u)+K / 2\right)$ such that $\psi(t, u) \in \xi(R)$, where $u \in[-L, L]$. Since the curve $\psi\left(\left(t_{0}(u)-K / 2, t_{0}(u)+K / 2\right), u\right)$ intersects the curve $\xi(R)$ at one point, $\alpha(u)$ is well-defined and continuous on $[-L, L]$. Let $\beta(u)=\xi^{-1} \psi(\alpha(u), u)$. From the property (iii) above, $[-L, L] \cap \beta([-L, L]) \neq \emptyset$. Since $\tilde{\eta}$ and $\psi \mid(-K, K) \times R$ are injective, β is a homeomorphism from [$-L, L]$ onto $\beta([-L, L])$. Since $[-L, L] \cap \beta([-L, L]) \neq \emptyset$, if β is orientation reversing, then there is a point $u \in[-L, L]$ such that $\beta(u)=u$. This means that $\varphi(R)(\xi(u))$ is homeomorphic to a circle.

Assume that β is orientation preserving and there is no fixed point of β. Since $u \rightarrow-u$ is a homeomorphism from R onto R, we can assume without loss of generality that $\beta(u)>u$.

Let $\bar{t}_{0}=\min \{t>0 ; \psi(t,[-L, L]) \cap \xi([-L, L]) \neq \emptyset\}$ and let $x_{1} \in \xi([-L, L])$ $\cap \psi\left(\bar{t}_{0},[-L, L]\right)$ and $x_{1}=\xi\left(\bar{u}_{0}\right)=\varphi\left(\bar{t}_{0}\right)\left(\xi\left(u_{0}\right)\right)$. Obviously, $u_{0}, \bar{u}_{0} \in[-L, L]$. There is a positive number δ_{0} such that $\psi\left(\bar{t}_{0},\left[u_{0}-\delta_{0}, u_{0}+\delta_{0}\right]\right)$ is contained in $\psi((-K / 2, K / 2), R)$. Thus, the function α_{0} defined by $\alpha_{0}(u)=\left\{t ; t>0,\left|t-\bar{t}_{0}\right|\right.$ $<K / 2, \psi(t, u) \in \xi(R)\}$ is continuous on $[-L, L] \cap\left[u_{0}-\delta_{0}, u_{0}+\delta_{0}\right]$ and $\alpha_{0}\left(u_{0}\right)=\bar{t}_{0}$. Put $\beta_{0}(u)=\xi^{-1}(\psi(u), u)$ and we see β_{0} is a homeomorphism from $[-L, L]$ $\cap\left[u_{0}-\delta_{0}, u_{0}+\delta_{0}\right]$ into R.

Put $\left[u_{0}, \bar{u}_{0}\right] \cap\left[u_{0}-\delta_{0}, u_{0}+\delta_{0}\right]=I$. There are following two cases; (i) β_{0} is orientation preserving, (ii) β_{0} is orientation reversing.

Fig. 1.

Case i. Let $h(u)=\frac{\alpha_{0}\left(u_{0}\right)}{u_{0}-\bar{u}_{0}}\left(u-\bar{u}_{0}\right)$ and $\hat{\gamma}(u)=\psi(h(u), u)$ for $u \in\left[u_{0}, \bar{u}_{0}\right]$. Then, $\hat{\gamma}\left(u_{0}\right)=\xi\left(\bar{u}_{0}\right)=\hat{\gamma}\left(\bar{u}_{0}\right)$. It follows that $\hat{\gamma}\left(\left[u_{0}, \bar{u}_{0}\right]\right)$ is a closed curve. It will be shown below that $\hat{\gamma}\left(\left[u_{0}, \bar{u}_{0}\right]\right)$ is a simple closed curve and is a local. crosssection.

Let $\hat{\gamma}(u)=\hat{\gamma}\left(u^{\prime}\right)$. Then $\phi\left(\left|h(u)-h\left(u^{\prime}\right)\right|,\left[u_{0}, \bar{u}_{0}\right]\right) \cap \xi\left(\left[u_{0}, \bar{u}_{0}\right]\right) \neq \emptyset . \quad$ Since $\left|h(u)-h\left(u^{\prime}\right)\right| \leqq \bar{t}_{0},\left|h(u)-h\left(u^{\prime}\right)\right|=0$ or \bar{t}_{0}. If $h(u)=h\left(u^{\prime}\right)$, then $u=u^{\prime}$. If $h(u)$ $-h\left(u^{\prime}\right)=\bar{t}_{0}$, then $h(u)=\bar{t}_{0}$ and $h\left(u^{\prime}\right)=0$, then $\hat{\gamma}(u)=\hat{\gamma}\left(u^{\prime}\right)=\xi\left(\bar{u}_{0}\right)$. Thus $\hat{\gamma}\left(\left[u_{0}\right.\right.$, $\left.\left.\bar{u}_{0}\right]\right)$ is a simple closed curve. There is no difficulty to verify that $\hat{\gamma}\left(\left[u_{0}, \bar{u}_{0}\right]\right)$
is a local cross-section, since for any $x \in \hat{\gamma}\left(\left[u_{0}, \bar{u}_{0}\right]\right)$ there is a neighborhood V of x such that $V \cap \hat{\gamma}\left(\left[u_{0}, \bar{u}_{0}\right]\right)$ is a local cross-section.

Let $\hat{\alpha}(x)=\min \left\{t>0 ; \varphi(t)(x) \in \hat{\gamma}\left(\left[u_{0}, \bar{u}_{0}\right]\right)\right\}, x \in \hat{\gamma}\left(\left[u_{0}, \bar{u}_{0}\right]\right)$. From the assumption imposed in Proposition 1, $\hat{\alpha}(x)$ is a well-defined and continuous function. Let $\hat{\beta}(x)=\varphi(\hat{\alpha}(x))(x), x \in \hat{\gamma}\left(\left[u_{0}, \bar{u}_{0}\right]\right)$. Then $\hat{\beta}$ is continuous in jection from $\hat{\gamma}\left(\left[u_{0}, \bar{u}_{0}\right]\right)$ into itself. Since $\hat{\gamma}\left(\left[u_{0}, \bar{u}_{0}\right]\right)$ is homeomorphic to a circle, we see that $\hat{\gamma}$ is a homeomorphism. It follows that M is a two dimensional torus.

Fig. 3.
Case ii. To simplify the argument below, assume $\bar{u}_{0}<u_{0}$. If $u_{0}<\bar{u}_{0}$, the parallel argument leads to the same conclusion. Under this assumption, $I=\left[u_{0}-\delta_{0}, u_{0}\right]$ and $\beta_{0}(I) \geqq \bar{u}_{0}$. Assume, furthermore, that $\beta_{0}\left(u_{0}-\delta_{0}\right)<u_{0}$, since if not, there is a point $u \in I$ such that $\varphi(R)(\xi(u))$ is homeomorphic to a circle.

Now, it will be defined δ_{n}, α_{n}, inductively from δ_{0}, α_{0}. There is a positive number δ_{n} such that $\delta_{n}>\delta_{n-1}$ and $\psi\left(\alpha_{n-1}\left(u_{0}-\delta_{n-1}\right),\left[u_{0}-\delta_{n}, u_{0}-\delta_{n-1}\right]\right) \subset \varphi((-K / 2$, $K / 2)(\xi(R))$. Then there is a function α_{n} on $\left[u_{0}-\delta_{n}, u_{0}-\delta_{n-1}\right]$ defined by

$$
\alpha_{n}(u)=\left\{t ; t>0,\left|t-\alpha_{n-1}\left(u_{0}-\delta_{n-1}\right)\right|<K / 2, \psi(t, u) \in \xi(R)\right\} .
$$

Since $\alpha_{n}\left(u_{0}-\delta_{n-1}\right)=\alpha_{n-1}\left(u_{0}-\delta_{n-1}\right)$, there is a continuous function α_{∞} on ($u_{0}-\delta_{\infty}, u_{0}$], where $\delta_{\infty}=\sup \delta_{n}$.

On putting $\beta_{\infty}(u)=\xi^{-1}\left(\psi\left(\alpha_{\infty}(u), u\right)\right)$, if $u_{0}-\delta_{\infty}<\sup \beta_{\infty}\left(\left(u_{0}-\delta_{\infty}, u_{0}\right]\right)$, then there is $\hat{u} \in\left(u_{0}-\delta_{\infty}, u_{0}\right]$ such that $\beta_{\infty}(\hat{u})=\hat{u}$. It follows that $\varphi(R)(\xi(\hat{\xi}))$ is homeomorphic to a circle. Assume $u_{0}-\delta_{\infty} \geqq \sup \beta_{\infty}\left(\left(u_{0}-\delta_{\infty}, u_{0}\right]\right)$. If α_{∞} is bounded on ($u_{0}-\delta_{\infty}, u_{0}$], then there is t_{∞} such that $\left[\bar{u}_{0}, u_{0}\right] \ni \psi\left(t_{\infty}, u_{0}-\delta_{\infty}\right)$ and there is a sequence $\left\{v_{n}\right\} \subset\left(u_{0}-\delta_{\infty}, u_{0}\right]$ converging to $u_{0}-\delta_{\infty}$ and satisfying $\lim \alpha_{\infty}\left(v_{n}\right)=t_{\infty}$. Since there is a positive number $\bar{\delta}$ such that $\psi\left(t,\left[u_{0}-\delta_{\infty}-\bar{\delta}\right.\right.$, $\left.\left.u_{0}-\delta_{\infty}+\bar{\delta}\right]\right) \subset \psi((-K / 2, K / 2), R)$, there is a function $\bar{\alpha}$ on $\left[u_{0}-\delta_{\infty}-\bar{\delta}, u_{0}-\delta_{\infty}+\bar{\delta}\right]$ defined by $\bar{\alpha}(u)=\left\{t ; t>0,\left|t-t_{\infty}\right|<K / 2, \psi(t, u) \in \xi(R)\right\}$. It is easy to see that $\bar{\alpha}\left(v_{n}\right)=\alpha_{\infty}\left(v_{n}\right)$ for sufficiently large n. It follows $\bar{\alpha}(u)=\alpha_{\infty}(u)$ for $u \in\left[u_{0}-\delta_{\infty}-\bar{\delta}, u_{0}-\delta_{\infty}+\bar{\delta}\right] \cap\left(u_{0}-\delta_{\infty}, u_{0}\right]$. Thus, α_{∞} can be extended. Thus,

Fig. 4.
assume α_{∞} is not bounded. There is a point $\hat{u} \in\left(u_{0}-\delta_{\infty}, u_{0}\right]$ such that $\alpha_{\infty}(\hat{u})$ $=t_{0}(\hat{u})$, since $t_{0}(u)$ is bounded and continuous. Since $\tilde{\eta}(u)=\psi\left(t_{0}(u), u\right) \in$ $\psi((-K / 2, K / 2), R), \alpha_{\infty}(u)<t_{0}(u)+K / 2$, if $u \leqq 0$. This is contradiction. It follows that there is $u \in[-L, L]$ such that $\varphi(R)(\xi(u))$ is homeomorphic to a circle.

§ 2. Proof of Theorem A.

Let M be a two-dimensional manifold with metric ρ. Since M satisfies the second countability axiom, so does $H(M)$. Let φ be a monomorphism from a vector group V into $H(M)$. The relative topology for $\varphi(V)$ induces a topology \mathscr{I} for V such that (i) (V, \mathscr{I}) is a topological additive group, (ii) (V, \mathscr{T}) satisfies Hausdorff's separation axiom and the first countability axiom, (iii) \mathscr{I} is weaker than the underlying topology of V.

For a fixed underlying group V, by $T\left(V, \mathscr{I}_{0}\right)$ is meant the collection of all the pairs of the fixed abstract group V and a topology \mathscr{I} for V satistying (i)-(iii) above, where I_{0} is the ordinary topology for V. Under these notations, an element (V, \mathscr{I}) of $T\left(V, \mathscr{I}_{0}\right)$ is called irreducible, if $\mathscr{I} \neq \mathscr{I}_{0}$ and (V^{\prime}, \mathscr{I}) $=\left(V^{\prime}, \mathscr{I}_{0}\right)$ holds for any proper vector subgroup V^{\prime} of V, where the topology of $\left(V^{\prime}, \mathscr{I}\right)$ is the relative topology in (V, \mathscr{I}). It is easy to see that if (V, \mathscr{I}) $\in T\left(V, \mathscr{I}_{0}\right)$ and $\mathscr{I} \neq \mathscr{I}_{0}$, then there is a vector subgroup V^{\prime} of V such that (V^{\prime}, \mathscr{I}) is irreducible.

Lemma 1. Let $(V, \mathscr{T}) \in T\left(V, \mathscr{I}_{0}\right)$ be irreducible and φ be a continuous homomorphism from (V, \mathscr{I}) into $H(M)$. If M is a two-dimensional manifold with metric ρ and if M is not a torus, then every orbit is one-dimensional or a point.

Proof. Let \langle,$\rangle be an ordinary inner product and let |v|=\sqrt{\langle v, v\rangle}$. If there is a point $x \in M$ such that $\varphi(V)(x)$ is two-dimensional, then $\varphi(V)(x)$ is an open subset of M. Thus, $\varphi(V)(x)$ contains a neighborhood U of x which is homeomorphic to R^{2}. Since \mathscr{I} is weaker than \mathscr{I}_{0}, φ can be considered as
a continuous homomorphism from $\left(V, \mathscr{I}_{0}\right)$ into $H(M)$. Since $\left(V, \mathscr{I}_{0}\right)$ and U are sets of second category, there is $\varepsilon / 2$-neighborhood W of 0 in $\left(V, \mathscr{I}_{0}\right)$ such that $\varphi(W)(x)$ contains an open subset U^{\prime} of M. Thus, denoting by W^{\prime} the ε-neighborhood of $0, \varphi\left(W^{\prime}\right)(x)$ contains an open subset $U^{\prime \prime}$ of M which contains x. Since (V, \mathscr{I}) is irreducible, there are points $v_{1}, v_{2}, \cdots, v_{r}, r=\operatorname{dim} V$ such that $v_{1}, v_{2}, \cdots, v_{r}$ are linearly independent, $\left|v_{i}-v_{j}\right|>2 \varepsilon$ if $i \neq j,\left|v_{i}\right|>2 \varepsilon$ and $\varphi\left(v_{i}\right)(x) \in U^{\prime \prime}$ [6], Lemma 3). It follows that there is v_{i}^{\prime} for every i such that $v_{1}^{\prime} \in v_{i}+W^{\prime}$ and $\varphi\left(v_{i}^{\prime}\right)(x)=x$. Thus, $\varphi(V)(x)$ is homeomorphic to a torus. This means that M is a torus.

Now, assumptions being as in Lemma 1 above, assume furthermore that φ is a monomorphism. Let V_{x} be the isotropy subgroup at x and V_{x}^{0} be its connected component containing 0 under the topology \mathscr{I}_{0}.

Assume there is a point x such that $V_{x} \neq V_{x}^{0}$. Let V_{1} be a one-dimensional vector subgroup such that $V_{1} \nsubseteq V_{x}^{0}$. Since $\varphi\left(V_{1}\right)(x)$ is homeomorphic to S^{1}, from Lemma 3 in [6] and Proposition 1 above, we see that the subset $M\left(V_{1}\right)$ consisting of the points y such that $\varphi\left(V_{1}\right)(y)$ is homeomorphic to a circle is open and not vacuous. Since it is clear that if $\varphi\left(V_{1}\right)(y) \neq\{y\}$, then $\varphi(V)(y)$ $=\varphi\left(V_{1}\right)(y)$, we obtain that the subset $M^{\prime \prime}$ consisiting of the points y such that $\varphi(V)(y)$ is homeomorphic to S^{1} is an open subset of M. From Theorem B in [6], we see that V operates as a circle group on every connected component of $M^{\prime \prime}$. That is V_{x} is constant on every connected component of $M^{\prime \prime}$. It follows that for every boundary point x of $M^{\prime \prime}, \varphi(V)(x)$ is homeomorphic to a circle or a point. Thus, by Theorem B, C in [6], $\varphi(V)=S^{1}$, contradicting the assumption that φ is monomorphic. It follows that $V_{x}=V_{x}^{0}$ for any point.

Let x_{0} be a point of M such that $\varphi(V)\left(x_{0}\right) \neq\left\{x_{0}\right\}$. Since $\left(V_{x}, \mathscr{I}_{0}\right)$ is connected and $\left(V, \mathscr{I}_{0}\right) /\left(V_{x}, \mathscr{I}_{0}\right)$ is one-dimensional, V_{x} is continuous on $M^{\prime}=$ $\{x \in M ; \varphi(V)(x) \neq\{x\}\}$. That is $\lim _{x_{n} \rightarrow x} V_{x_{n}}=\left\{\lim _{n \rightarrow \infty} v_{n} ; v_{n} \in V_{x_{n}}\right\}=V_{x}$, where the topology under which lim. is considered is the topology \mathscr{I}_{0}. Thus, there is a (V, \Im_{0})-valued continuous function $n(x)$ on some neighborhood U of x_{0} such that $|n(x)|=1$ and $\langle n(x), v\rangle=0$ for any $v \in V_{x}$. Let $V_{1}=\left\{\lambda n\left(x_{0}\right) ; \lambda \in R\right\}$ and we see that $\varphi\left(V_{1}\right)\left(x_{0}\right) \neq\left\{x_{0}\right\}$. Assume $\varphi\left(V_{1}\right)(x) \neq\{x\}$ for every $x \in U$. Clearly $\varphi(V)(x)=\varphi\left(V_{1}\right)(x)$ for every $x \in U$. There is an injection ξ from R into M^{\prime} such that $\xi(0)=x_{0}$ and $\xi(R)$ is a local cross-section of the family of curves $\left\{\varphi\left(V_{1}\right)(x) ; x \in M^{\prime}\right\}$. That is, there is $K>0$ such that $\psi \mid(-K, K) \times R$ is homeomorphism from $(-K, K) \times R$ into M^{\prime}, where ψ is defined by $\psi(t, u)=$ $\varphi\left(\operatorname{tn}\left(x_{0}\right)\right)(\xi(u))$. Since $\varphi\left(V_{1}\right)(x) \neq\{x\}$ for every $x \in U$, we see $V=V_{1}+V_{x}$ (direct sum). Thus, $v=P(v, x) n\left(x_{0}\right)+v^{\prime}, v^{\prime} \in V_{x}$. Since $P(v, x)$ is uniquely determined with respect to v, x and V_{x} is continuous on $U, P(v, x)$ is continuous on $V \times U$.

Let L be a positive number such that $\xi^{-1}(U \cap \xi(R)) \supset[-L, L]$. Since
(V, \mathscr{I}) is irreducible, there is $v_{0} \in V$ such that $P\left(v_{0}, x_{0}\right)>K, \varphi\left(v_{0}\right)(\xi([-L, L]))$ $\subset \psi((-K / 2, K / 2), R)$ and $\left.\varphi\left(v_{0}\right)(\xi([-L, L])) \cap \psi((-K / 2, K / 2),[-L, L])\right) \neq \emptyset$. Put $\eta(u)=P\left(v_{0}, \xi(u)\right)$. Then $\eta(u)$ is continuous on [-L,L]. Thus, considering Proposition 2 above, we have only to show that $\eta(u)>K$. Since $\eta(0)>K$, if there is $u \in[-L, L]$ such that $\eta(u) \leqq K$, then there is $\hat{u} \in[-L, L]$ such that $\eta(\hat{u})=K$. Since $\varphi\left(v_{0}\right)(\xi(\hat{u}))=\varphi\left(P\left(v_{0}, \xi(\hat{u})\right) n\left(x_{0}\right)\right)(\xi(\hat{u}))$, this is contradiction. It follows $\eta(u)>K$ on $[-L, L]$.

§ 3. Homeomorphisms on a circle.

Let V be a one-dimensional vector group and φ a continuous monomorphism from V into $H(M)$ of a two-dimensional manifold M. From the proof of Proposition 2, we see that if there is a local cross-section C homeomorphic to a circle of the family of the curves $\left\{\varphi(V)(x) ; x \in M^{\prime}\right\}$, and if $\varphi(V)$ is not closed in $H(M)$, then M is a two-dimensional torus. Letting $\widehat{\alpha}(x)=\{t>0$, $\varphi(t)(x) \cap C \neq \phi ; x \in C\}$ and $\hat{\beta}(x)=\varphi(\alpha(x))(x)$, we see that $\hat{\beta}$ is a homeomorphism from C onto C. From the assumption that $\varphi(V)$ is not closed, we see easily that the group G generated by β is not closed in $H(C)$.

In this section, it will be proved that \bar{G} is a compact group in $H(C)$.
Let Z be an additive group of the integers and φ a monomorphism from Z into the set of all homeomorphisms $H\left(S^{1}\right)$ on a circle S^{1}. Assume that $\varphi(Z)$ is not closed in $H\left(S^{1}\right)$. Then there is a sequence $z_{n}, z_{n} \in Z$, such that $\varphi\left(z_{n}\right)$ converges to the identity in $H\left(S_{1}\right)$. The integers z_{n} can be so selected that $z_{n}>0$ for all n. This means that for any $\varepsilon>0$, there is an integer $m>0$ such that $\rho(\varphi(m)(x), x)<\varepsilon$ for every x in S^{1}, where ρ is the usual metric on S^{1}.

Suppose that $T=\varphi(1)$ is orientation preserving and has a fixed point x. $S^{1}-\{x\}$ can be identified with the interval (0,1). Then T is a monotone increasing function such that $T(0)=0$ and $T(1)=1$. Let A be a connected component of $\{x ; T(x) \geqq x\}$ and $a_{0}=\sup \{x ; x \in A\}$. Then a_{0} is a fixed point of T and $\lim T^{n}(x)=a_{0}$ for every $x \in A$. It follows that $\varphi(Z)$ is closed in $H\left(S^{1}\right)$.

Lemma 2. Notations being as above, if $\varphi(Z)$ is not closed in $H\left(S^{1}\right)$, then $\varphi(k)$ has no fixed point for every $k \in Z$.

Proof. If $\varphi(k)$ has a fixed point, then $\varphi(2 k)$ is orientation preserving and has a fixed point. Thus, $\varphi(2 k Z)$ is closed in $H\left(S^{1}\right)$. Since $H\left(S^{1}\right)$ is a set of second category, $\varphi(2 k Z)$ is discrete subgroup of $H\left(S^{1}\right)$. Thus, the closure of $\varphi(Z)$ is locally compact and not compact, because $C l(\varphi(Z)) / \varphi(2 k Z)$ is compact and $\varphi(2 k Z)$ is discrete, where $C l(A)$ is the closure of A. It follows that $\varphi(Z)$ is discrete under the relative topology in $H\left(S^{1}\right)$ from Lemma 2.3 in [5].

Lemma 3. Notations being as above, if $\varphi(Z)$ is not closed in $H\left(S^{1}\right)$
and $\varphi(1)$ is orientation preserving, then there are a homeomorphism h from S^{1} onto $\{\exp 2 \pi \sqrt{-1} \theta, \theta \in R\}$ and an irrational number α such that $h \varphi(1) h^{-1}(\exp 2 \pi \sqrt{-1} \theta)=\exp 2 \pi \sqrt{-1}(\theta+\alpha)$.

Proof. It suffices to prove that $C l(\varphi(Z))$ is compact and simply transitive on S^{1}. For an arbitrarily fixed $\varepsilon, \frac{1}{6}>\varepsilon>0$, there is $k \in Z$ such that $\rho\left(T^{k}(x)\right.$, $x)<\varepsilon$ for every $x \in S^{1}$. Put $\delta=\min \rho\left(T^{k}(x), x\right)$. Then, $\delta>0$ from Lemma 1 .

For two points x, y with $0<\rho(x, y)<\frac{1}{2},(x, y)$ denotes the connected component of $S^{1}-\{x, y\}$ whose diameter is smaller than the other. We shall show that $T^{j}\left(x, T^{k}(x)\right)=\left(T^{j}(x), T^{j+k}(x)\right)$ for every $j \in Z$. To do this, assume that $T^{j}\left(x, T^{k}(x)\right)=S^{1}-C l\left(\left(T^{j}(x), T^{j+k}(x)\right)\right.$. Then, $\left(x, T^{k}(x)\right) \cap\left(T^{j}(x), T^{j+k}(x)\right) \neq \emptyset$. In fact, if $\left(x, T^{k}(x)\right) \cap\left(T^{j}(x), T^{j+k}(x)\right)=\emptyset$ then $\left(x, T^{k}(x)\right) \subset S^{1}-C l\left(T^{j}(x), T^{j+k}(x)\right)$ $=T^{j}\left(x, T^{k}(x)\right)$. Thus, there is a fixed point of T^{j}. Since $\rho\left(z, T^{k}(z)\right)<\varepsilon$ for every $z \in S^{1}$ and $3 \varepsilon<\frac{1}{2}$, there is $y \in\left(x, T^{k}(x)\right)$ such that $\rho\left(y, T^{j}(y)\right)=\frac{1}{2}$. Since T^{k} preserves the orientation of $S^{1}, T^{k}(y) \in S^{1}-\left(x, T^{k}(x)\right)$. Thus, $T^{j+k}(y)$ $\in\left(T^{j}(x), T^{j+k}(x)\right)$ and then $\rho\left(y, T^{j+k}(y)\right) \leqq \rho(y, w)+\rho\left(w, T^{j+k}(y)\right)<2 \varepsilon$, where $w \in\left(x, T^{k}(x)\right) \cap\left(T^{j}(x), T^{j+k}(x)\right)$. It follows

$$
\varepsilon>\rho\left(T^{j}(y), T^{j+k}(y)\right) \geqq \rho\left(T^{j}(y), y\right)-\rho\left(y, T^{j+k}(y)\right) \geqq \frac{1}{2}-2 \varepsilon>\frac{1}{6} .
$$

This is a contradiction. Thus, $T^{j}\left(x, T^{k}(x)\right)=\left(T^{j}(x), T^{j+k}(x)\right)$ for all $j \in Z$.
Let x, y be points in S^{1} such that $\rho(x, y)<\delta$. Then, $(x, y) \subset\left(x, T^{k}(x)\right)$ or $\left(y, T^{k}(y)\right)$. Assume $(x, y) \subset\left(x, T^{k}(x)\right)$ and we have $T^{j}(x, y) \subset T^{j}\left(x, T^{k}(x)\right)=$ $\left(T^{j}(x), T^{j+k}(x)\right)$. It follows that $\rho\left(T^{j}(x), T^{j}(y)\right)<\varepsilon$. Thus, $\left\{T^{j}\right\}$ is equi-continuous. Since S^{1} is a compact set, $C l(\varphi(Z))$ is compact in $H\left(S^{1}\right)$.

If there is $T^{\prime} \in C l(\varphi(Z))$ and $x \in S^{1}$ such that $T^{\prime}(x)=x$, then from Lemma 2, $\bigcup_{k=-\infty}^{\infty} T^{\prime k}$ is discrete in $H\left(S^{1}\right)$, contradicting the fact that $C L(\varphi(Z))$ is compact. Thus, $T^{\prime}=$ identity. If $C l(\varphi(Z))(x) \subsetneq S^{1}$ for some $x \in S^{1}$ then the same argument of Lemma 2 leads to the conclusion that $\varphi(Z)$ is discrete in $H\left(S^{1}\right)$. Thus $C l(\varphi(Z))$ is simply transitive on S^{1} and then $C l(\varphi(Z)) \cong S^{1}$.

§4. One-parameter transformation groups on the torus.

In this section, one-parameter groups acting effectively on a two-dimensional torus T^{2} are mainly concerned. Considering the above one-dimensional case, it seems to be natural to conjecture that any one-parameter transformation group on T^{2} is closed in $H\left(T^{2}\right)$ or on its closure is compact. However, the fact is more complicated. Indeed, there is an example of one-parameter group which acts effectively on T^{2} and is not closed in $H\left(T^{2}\right)$ and, futhermore, its closure is not locally compact. This means that the conjecture of Gleason
and Palais does not hold in general. In this section, an example of such a one-parameter transformation group on T^{2} will be constructed.

Consider the graph Γ of a continuous, positive and periodic function $y=f(x)$ of period 1 on a real line R and take the relatively compact domain D whose boundary is $\Gamma \cup I_{0} \cup J_{0} \cup J_{1}$, where $I_{0}=\{(x, 0) ; 0 \leqq x \leqq 1\}, J_{0}=\{(0, y)$; $0 \leqq y \leqq f(0)\}$ and $J_{1}=\{(1, y) ; 0 \leqq y \leqq f(1)\}$.

Fig. 5.
Let $[z]$ be the number such that $0 \leqq z<1$ and $z=[z] \bmod .1$. By identifying ($0, y$) with ($1, y$) and $(x, f(x)$) with $([x+\alpha], 0)$ for an arbitrarily fixed irrational number such that $0<\alpha<1$, the domain D turns out into a twodimensional torus T^{2}.

A one-parameter transformation group $G=\left\{g_{t}\right\}$ is defined as follows: For every $(x, y) \in D$ and for every $t \in R$, there are an integer m and nonnegative number λ such that

$$
t=\left\{\begin{array}{lll}
-y+\sum_{k=0}^{m-1} f(x+k \alpha)+\lambda & \text { if } & t \geqq 0 \\
-y-\sum_{k=1}^{m} f(x-k \alpha)+\lambda & \text { if } & t<0
\end{array}\right.
$$

and $0 \leqq \lambda<f(x+\operatorname{sgn}(\mathrm{t}) m \alpha)$. Such m and λ are determined uniquely with respect to (x, y) and t. Define $g_{t}(x, y)=([x+\operatorname{sgn}(t) m \alpha], \lambda)$. There is no difficulty to verify the following Lemma.

Lemma 4. Notations being as above, G is a transformation group acting effectively and continuously on T^{2}. If $f(x)$ is differentiable, then g_{t} is a dif. feomorphism of T^{2} for every $t \in R$.

The following properties of G is clear.
a) Any orbit of G is dense in T^{2}.
b) g_{t} has no fixed point for every $t \neq 0$.

Now, assume that G is not closed in $H\left(T^{2}\right)$. Then, there is a sequence $\left\{t_{n}\right\}$ such that $t_{n} \rightarrow \infty$ and $g_{t_{n}} \rightarrow i d$. in $H\left(T^{2}\right)$ (Lemma 1.1, [4]). This means that for any $\varepsilon>0$ there is n_{0} such that $\rho\left(g_{t_{n}}(p), p\right)<\varepsilon$ for every $p \in T^{2}$ and $n \geqq n_{0}$, where ρ is the usual metric on T^{2}. Assume furthermore that $\varepsilon<\min f(x)$.

For every $x \in I_{0}, m(x)$ is the number of intersection of I_{0} with $\left\{g_{t}(x)\right.$; $\left.0 \leqq t \leqq t_{n}+\varepsilon\right\}$. Since $f(x)$ is continuous and $\left[0, t_{n}+\varepsilon\right]$ is compact, $m(x)$ is constant on a neighborhood of x. It follows that $m(x)$ is constant and equal to m on I_{0}.

This means that $0<t_{n}+\varepsilon-\sum_{k=0}^{m-1} f(x+k \alpha)<2 \varepsilon$ for every $x \in I_{0}$. Thus, $\left|t_{n}-m E_{0}\right|$ $<\varepsilon$, where $E_{0}=\int_{0}^{1} f(x) d x$.

Lemma 5. Notations being as above, G is not closed if and only if there is a sequence of integers $\left\{m_{n}\right\}, m_{n} \rightarrow \infty$ such that

$$
\left|\sum_{j=0}^{m_{n}-1} f(x+j \alpha)-m_{n} E_{0}\right| \rightarrow 0 \quad \text { and } \quad \inf \left\{\left|m_{n} \alpha-m\right| ; m \in Z\right\} \rightarrow 0 .
$$

Proof. Necessity is clear from the above argument. On putting $t_{n}=m_{n} E_{0}$. from the defintion of the operation of $\left\{g_{t}\right\}$, we see that $g_{t_{n}} \rightarrow i d$. in $H\left(T^{2}\right)$.

Lemma 6. Let $f_{0}(x)=f(x)-E_{0}$. If $C l(G)$ is compact in $H\left(T^{2}\right)$, then there is a continuous periodic function $g(x)$ of period 1 such that $f_{0}(x)=-g(x+\alpha)$ $+g(x)$.

Proof. Since every orbit of G is dense in $T^{2}, C l(G)$ is simply transitive on T^{2}. Thus, $C l(G)$ is homeomorphic to T^{2}, and there is a homeomorphism h from T^{2} onto $T=\left\{\left(e^{2 \pi i \theta}, e^{2 \pi i \eta}\right) ; \theta, \eta \in R\right\}$ $\cong C l(G)$ such that $h g_{t} h^{-1}\left(e^{2 \pi i \theta}, e^{2 \pi i v}\right)=$ ($\left.e^{2 \pi i\left(\theta+t \alpha_{1}\right)}, e^{2 \pi i\left(\eta+t \alpha_{2}\right)}\right)$, where $\alpha_{1} \cdot \alpha_{2} \neq 0$ and (α_{1}, α_{2}) is linearly independent with respect to integral coefficient. Of course the homeomorphism h is defined by $h^{-1}(g)=g\left(x_{0}\right)$ for some point x_{0} in T^{2}, where $g \in T$. Since I_{0} is considered as a simple closed curve in T^{2}, so also is $h\left(I_{0}\right)$ in T. Without loss of generality, assume that $h\left(I_{0}\right)$ contains $\{0\}$ in $T . R^{2}$ is a universal covering group of T and the natural projection π is defined by $\pi(\theta, \eta)=\left(e^{2 \pi i \theta}, e^{2 \pi i \eta}\right)$. Thus the connected component of $\pi^{-1}\left(h\left(I_{0}\right)\right)$ containing 0 is a curve C in R^{2}. Let (m_{0}, n_{0}) and (m_{1}, n_{1}) be the boundary point of a connected component C^{\prime} of $C-Z^{2}$. Without loss of generality we assume that $\left(m_{0}, n_{0}\right)=$ $(0,0)$. Let $f^{\prime}(\theta, \eta)=\min \left\{t>0 ;\left(\theta+t \alpha_{1}\right.\right.$, $\left.\left.\eta+t \alpha_{2}\right) \in \pi^{-1}\left(h\left(I_{0}\right)\right)\right\}$. Then $f(x)=f^{\prime}(\xi(h(x)))$, $x \in I_{0}$, where $\xi(h(x))=C^{\prime} \cap \pi^{-1}(h(x))$ if

Fig. 6.
$h(x) \neq 0$ and $=0$ if $h(x)=0$. Let $L=\left\{(\theta, \eta) \in R^{2} ; n_{1} \theta=m_{1} \eta\right\}$ and define the function $g^{\prime}(\theta, \eta)$ so that it may satisfy $\left(\theta+g^{\prime}(\theta, \eta) \alpha_{1}, \eta+g^{\prime}(\theta, \eta) \alpha_{2}\right) \in L$. On putting $g(x)=g^{\prime}(\xi(h(x)))$, it is easy to see that $f(x)-g(x)+g([x+\alpha])$ is constant (cf. fig. 6). Since

$$
\int_{0}^{1} f(x) d x-\int_{0}^{1} g(x) d x+\int_{0}^{1} g([x+\alpha]) d x=E_{0}
$$

we see that $f_{0}(x)-g(x)+g([x+\alpha])=0$. Since $\lim _{x \rightarrow 1} g(x)=g(0), g(x)$ can be extended to the whole line R as a periodical function of period 1 . This function is denoted by the same notation $g(x)$. We see easily that $g(x)$ is continuous. Thus $g(x)$ is a desired function.

From Lemmas 4-6, we see that if we can find a differentiable and periodic function f_{0} of period 1 and an irrational α such that (1) $\int_{0}^{1} f_{0}(x) d x=0$, (2) for any $\varepsilon>0$, there is an integer m such that $|m \alpha-n|<\varepsilon$ for some integer n, $\left|\sum_{j=0}^{m-1} f_{0}(x+j \alpha)\right|<\varepsilon$, (3) there is no continuous and periodic solution of $f_{0}(x)=g(x)$ $-g(x+\alpha)$, then there is a one-parameter transformation group with the properties stated in the "Example" in the Introduction.

Now, let $\left\{a_{n}\right\}$ be a series of positive numbers defined by

$$
a_{n}=\sum_{i=0}^{n-1} a_{i}+(n-1), \quad a_{0}=1 .
$$

Put $s_{n}=\sum_{i=0}^{n-1} a_{i}$. For a positive integer p (for instance $p=10$), take an irrational number $\alpha=\sum_{n=1}^{\infty} p^{-s_{n}}$ and put $f_{0}(x)=\sum_{n=1}^{\infty} p^{-a_{n}} \sin \left(2 \pi p^{s_{n} x}\right)$. Then $f_{0}(x)$ is a periodic function of period 1 , continuous and differentiable because $\sum_{n=1} p^{-a_{n}} p^{s_{n}}=$ $\sum_{n=1}^{\infty} p^{-(n-1)}$ is absolutely convergent. Moreover, we have $\int_{0}^{1} f_{0}(x) d x=0$. It will be shown below that f_{0} satisfies the conditions (2) and (3) above.

Since $2 \pi \theta \geqq\left|1-e^{2 \pi i \theta}\right|>\pi \theta$ for all $0<\theta<\frac{1}{2}$ and $p^{s_{k}} \alpha \equiv \sum_{n=k+1}^{\infty} p^{-s_{n}+s_{k}} \bmod 1$, we have $\left|1-e^{2 \pi i p^{s_{k \alpha}}}\right|>\pi \sum_{n=k+1}^{\infty} p^{-s_{n}+s_{k}}>\pi p^{-a_{k}}$. Thus,

$$
\begin{aligned}
\left|\sum_{j=0}^{m-1} f_{0}(x+j \alpha)\right| & =\left|\sum_{n=1}^{\infty} \sum_{j=0}^{m-1} p^{-a_{n}} \sin 2 \pi p^{s_{n}}(x+j \alpha)\right| \\
& \leqq \sum_{n=1}^{\infty}\left|\sum_{j=0}^{m-1} p^{-a_{n}} e^{2 \pi i p^{s_{n}}(x+j \alpha)}\right| \leqq \sum_{n=1}^{\infty} p^{-a_{n}}\left|\frac{1-e^{2 \pi i p^{s} n_{m \alpha}}}{1-e^{2 \pi i p^{s_{n}}}} \cdot e^{2 \pi i p^{s_{n}}}\right| \\
& \leqq \frac{1}{\pi} \sum_{n=1}^{\infty}\left|1-e^{2 \pi i s^{s_{n}}}\right|
\end{aligned}
$$

For the proof of the property (2), we have only to show that for any $\varepsilon>0$,
there is M such that $\sum_{n=1}^{\infty}\left|1-e^{2 \pi i p^{s_{M M}}}\right|<\varepsilon$ and there is n such that $|M \alpha-n|<\varepsilon$. Since there is an integer m such that $8 \pi \frac{p}{p-1} p^{-(m-1)}<\varepsilon$, on putting $M=p^{s m}$, we have $\left|p^{s_{m}} \alpha-n\right|<\varepsilon$ for some n and $p^{s_{n}+s_{m}} \alpha \equiv p^{s_{m}}\left(\sum_{k=n+1}^{\infty} p^{-s_{k}+s_{n}}\right) \equiv \sum_{k=n+1}^{\infty} p^{-s_{k}+s_{n}+s_{m}}$ $\bmod 1$, if $n \geqq m$, and $p^{s_{n}+s_{m}} \alpha \equiv p^{s_{n}}\left(\sum_{k=m+1}^{\infty} p^{-s_{k}+s_{m}}\right) \equiv \sum_{k=m+1}^{\infty} p^{-s_{k}+s_{n}+s_{m}} \bmod 1$, if $m>n$. Since $k>\max \{n, m\}$ in these terms, we have $s_{k}-s_{n}-s_{m}>0$. Thus, $\left|1-e^{2 \pi i p^{s_{n}: s_{m_{\alpha}}}}\right| \leqq 2 \pi \sum_{k=n+1}^{\infty} p^{-s_{k}+s_{n}+s_{m}} \leqq 4 \pi p^{-a_{n}+s_{m}} \quad$ if $n \geqq m$, and $\left|1-e^{2 \pi i p^{8 n+s m_{\alpha}}}\right| \leqq$ $2 \pi \sum_{k=m+1}^{\infty} p^{-s_{k}+s_{n}+s_{m}} \leqq 4 \pi p^{-a_{m}+s_{n}}$ if $m>n$. Since $a_{n}-s_{m} \geqq n-1$ for $n \geqq m$ and $a_{n}-s_{m} \neq a_{n^{\prime}}-s_{m}$ if $n \neq n^{\prime}$, we see that

$$
4 \pi \sum_{n=m}^{\infty} p^{-a_{n}+s_{m}} \leqq 4 \pi p^{-(m-1)} \sum_{k=0}^{\infty} p^{-k}=4 \pi p^{-(m-1)} \frac{p}{p-1},
$$

and by the same reason we see that

$$
4 \pi \sum_{n=1}^{m-1} p^{-a_{m}+s_{n}} \leqq 4 \pi p^{-(m-1)} \sum_{k=0}^{\infty} p^{-k}=4 \pi p^{-(m-1)} \frac{p}{p-1} .
$$

It follows

$$
\left|1-e^{2 \pi i p^{s_{n}+s_{m_{\alpha}}}}\right| \leqq 4 \pi \sum_{n=m}^{\infty} p^{-a_{n}+s_{m}}+4 \pi \sum_{n=1}^{m-1} p^{-a_{m}+s_{n}} \leqq 8 \pi \frac{p}{p-1} p^{-(m-1)} .
$$

Now, assume that there is a solution $g(x)$ of $f_{0}(x)=g(x)-g(x+\alpha)$ which is continuous and periodic. Without loss of generality, assume $\int_{0}^{1} g(x) d x=0$. Let $\sum_{k=1}^{\infty}\left(b_{k} \cos 2 \pi k x+c_{k} \sin 2 \pi k x\right)$ be the Fourier expansion of $g(x)$. Then the Fourier expansion of $g(x)-g(x+\alpha)$ is

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left\{\left(b_{k}(1-\cos 2 \pi k \alpha)-c_{k} \sin 2 \pi k \alpha\right) \cos 2 \pi k x\right. \\
& \left.\quad+\left(b_{k} \sin 2 \pi k \alpha-c_{k}(1-\cos 2 \pi k \alpha)\right) \sin 2 \pi k x\right\}
\end{aligned}
$$

Thus, the non vanishing terms are given by

$$
b_{p^{s_{n}}}=\frac{1}{2} \frac{\sin 2 \pi p^{s_{n}} \alpha}{1-\cos 2 \pi p^{s_{n}} \alpha} p^{-a_{n}}=\frac{1}{2} p^{-a_{n}} \cot \pi p^{s_{n}} \alpha, \quad c_{p^{s_{n}}}=\frac{1}{2} p^{-a_{n}} .
$$

Since $2 \theta \geqq \tan \theta$ if $\frac{\pi}{4} \geqq \theta \geqq-\frac{\pi}{4}$, and $p^{s_{n}} \alpha \equiv \sum_{k=n+1}^{\infty} p^{-s_{k}+s_{n}} \bmod 1$, we have that if $n \geqq 2$, then

$$
p^{-a_{n}} \cot \pi p^{s_{n}} \alpha \geqq \frac{p^{-a_{n}}}{2 \sum_{k=n+1}^{\infty} p^{-s_{k}+s_{n}}} \geqq \frac{p^{-a_{n}}}{4 p^{-a_{n}}}=\frac{1}{4} .
$$

Thus,

$$
\int_{0}^{1} g(x)^{2} d x=2 \sum_{n=1}^{\infty}\left(\frac{p^{-a_{n}}}{2}\right)^{2}+\sum_{n=1}^{\infty}\left(p^{-a_{n}} \cot \pi p^{s_{n}} \alpha\right)^{2} \geqq \sum_{n=1}^{\infty} \frac{1}{16}=\infty .
$$

This contradicts the assumption that $g(x)$ is continuous on [0, 1]. It follows that there is no continuous and periodic solution for $f_{0}(x)=g(x)-g(x+\alpha)$.

Thus, putting $f(x)=f_{0}(x)+E, E>\max f_{0}(x)$, we have a one-parameter transformation group $G=\left\{g_{t}\right\}$ whose closure in $H\left(T^{2}\right)$ is not locally compact.

Tokyo Metropolitan University

References

[1] R.F. Arens, Topology for homeomorphism groups, Amer. J. Math., 68 (1946), 593-610.
[2] A. M. Gleason and R.S. Palais, On a class of transformation groups, Amer. J. Math., 79 (1957), 631-648.
[3] D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955.
[4] H. Omori, Homomorphic images of Lie groups, J. Math. Soc. Japan, 18 (1966), 97-117.
[5] H. Omori, Some examples of topological groups, J. Math. Soc. Japan, 18 (1966), 147-153.
[6] H. Omori, A transformation group whose orbits are homeomorphic to a circle or a point, to appear.
[7] T. Saito, On measure-preserving flow on the torus, J. Math. Soc. Japan, 3 (1951), 279-284.
[8] H. Whitney, Regular families of curves, Ann. of Math., 34 (1933), 244-270.
[9] R.L. Wilder, Topology of manifolds, Amer. Math. Soc. Coll. Pub., No. 28, 1949.

[^0]: * The author would like to acknowledge a financial support given by the Sakko-kai Foundation during the preperation of this paper.

