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Introduction.

In this paper, we denote by %2 a fixed algebraically closed field of charac-
teristic p> 0. All algebraic varieties, algebraic groups and homomorphisms
etc., are those defined over k, unless the contrary is explicitly mentioned. We
denote by .1 the category of commutative algebraic groups. If we consider
the case over a field of the characteristic zero, then such category is an abelian
category, but in our case, since the characteristic p is positive, .1 is not
abelian category. However 1 can be mapped into the abelian category
Q of quasi-algebraic groups, Q being embedded into the abelian category
P = Pro(Q) of proalgebraic groups. Gonsidering the completions of algebraic
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groups at their neutral elements, .1 also can be mapped into the category of
reduced formal groups & which is not abelian, and ¥ can be embedded into
the abelian category & formed by formal groups whose coordinate rings may
have nilpotent elements.

The purpose of this paper is to study the groups of isomorphism classes
of extensions of a linear group by an abelian variety A in 4, @, F, es-
pecially the groups, Ext ; (G, A), Ext ; (G4, A), Exte (G, A), Exte (G4, A) and
Exts (@a, A), where i, ¢ or & shows the category in which above groups
are considered.

The results which we obtain are as follows:

Q) Ext, (Gm A= @ Apy=the torsion subgroup of A (somorphism of

: prime

4
abelian groups), where Ay, means the group formed by elements a of A such

that [Ya=0 for some integer N =0, and | runs over all prime numbers > 0.
n

(2) Ext (G, A)= Pk (tsomorphism of k-vector spaces), that is, Ext (G,, A)

is endowed with the st;z_tlcture of k-vector space of dimension n=dim A.

B) Exte (G, A)= S&DD Apy, Gsomorphism of abelian groups), where p is
the characteristic of k, Lézrgim; runs over all positive prime numbers except p.

1) Exte (G, A);ék, (isomorphism of k-vector spdces), where [ is the
integer =0 such that 11;11'3 the ovder of the kernel of po,.

(B5) Extg (éa, A)giélfk, (tsomorphism of k-vector spaces).

For these descriptions, we use the theories of pro-algebraic groups and of
formal groups, and above all, the theory of Dieudonné modules. We prove
that any Dieudonné module M is of (projective) dimension <2, and the dimen-
sion is equal to 1 if M is reduced. These results are interesting if we recall
the groups, Ext (A, G,) and Ext_ (A4, G,), which are given the definite de-
scriptions by [. Barsotti, [1], P. Cartier, [6], M. Rosenlicht, and J.P.
Serre, [17] etc.. Moreover, there exists a duality between Ext (4, G,) and
Ext ;(Gq A). (See the forthcoming paper by H. Matsumura and M. Miyanishi.)
To complete the description, we shall recall some results without proof by
Serre’s book, [19] Now, the author would like to express his gratitude to
Professor H. Matsumura for his advices and valuable conversations. (Added
in August 1966.) F. Oort has obtained the same result on Ext_;(G,, A) which
has been published with many other results on commutative group schemes
as n°l15 in Springer Lecture Note series.
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Chapter I. Preliminaries.

§ 1. Definitions and some fundamental results.

1. For all the definitions and the results which appear here without
definite descriptions, the readers will be sent to Serre’s book, [197

Let A, B, C be elements of 1. A strictly exact sequence 0—-B—C—A—0
is also exact in .1 in the sense of the category and is called an extension of
A by B. We shall denote by Ext_; (A4, B) the set of isomorphism classes of
extensions of 4 by B in the category .

In the following, for the abbreviation of notation, when we write Ce
Ext_; (A, B), we mean that the isomorphism class of the extension C of A by
B belongs to Ext ; (A4, B).

Then Ext_; (A4, B) can be endowed with a structure of abelian group and
Ext ; (x, B) (resp. Ext (4, %)) is a contravariant (resp. covariant) functor from
A to the category of abelian groups. For the details, see Serre’s book [19].

We shall mention some results for the convenience of later applications.

PropoSITION 1.1. For a strictly exact sequence 0— A’—A—A"—0 in A
and for B & J, we have the following exact sequence of abelian groups;

0——Hom_, (A”, B)——Hom_, (4, B)—— Hom_, (A’, B)
— . Ext_, (A", By—> Ext_; (4, B)——Ext_, (4, B).

PROPOSITION 1.2. For a sirictly exact sequence 0—B’'—B—B"—0 in JA
and for A& J, we have the following exact sequence of abelian groups;

0—— Hom,_, (A, B’)—— Hom_, (4, B)—— Hom_, (A, B")
— Ext_ (4, B)——Ext_, (A, B)——Ext_, (A, B").

2. When £k is of characteristic p>0, the class of purely inseparable
isogeny of height 1, A’ of A corresponds bijectively to the restricted sub-
p-Lie algebra N of #(A), where #(4A) means the tangent space of A at the
neutral element. If %t is a sub p-Lie algebra of {(A), we denote by A/M the
group which is associated to %t and defined as follows. We have A/M—=A in
the set-theoretic sense, and the rational functions of A/ are those of A
which are annihilated by the derivations of . If ¢: A— A’ is a purely in-
separable isogeny of height 1, there is a mapping #(¢): t(4A)—t(A’), which is
a homomorphism of restricted p-Lie algebras. We associate to ¢ the kernel
of #(¢), which is a sub p-Lie algebra of {(4). Especially, if R=1t(A), A/t(A)
=~ A?, the image of Frobenius endomorphism of A, and if :t=0, A/ = A.
Then we have the following.

PRrOPOSITION 1.3. For a sub p-Lie algebra Mt of t(A) and for B A, we
have the following exact sequence,
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0— Hom,; (A /N, B)— Hom_, (4, B)— Hom (R, ¢(B))
—Ext_, (A/R, B)——Ext_ (A, B)— Ext (%, (B)),

where Hom (R, 1(B)), Ext (%, t(B)) are taken in the category of restricted abelian
b-Lie algebras defined over k. In particular, we have the exact sequence,

0— Hom_; (A?, B)— Hom_; (4, B)—— Hom (t(A), #(B))
—Ext_; (A%, B)—— Ext_; (A4, B)—— Ext (1(4), T(B)).

§2. On Ext (A, G, and Ext (4, G,).

Letting A be an abelian variety in 4, we cite the results on Ext_; (4, G,)
and Ext_; (A4, G,) which are well known and which we do not use in our sub-
sequent theory. These are inserted here for comparison.

1. The case of Ext_; (A, Gyp).

PROPOSITION 2.1. If A is an abelian variety, the group Ext, (A4, G,) 1is
isomorphic onto H'W(A, ©4), the group of isomorphism classes of locally trivial
fibre spaces of the base A and of the structure group G,.

ProposiTION 2.2. (Cf. P. Cartier [5].) Let A be an abelian variety defined
over k and let A* be its Picard variety. Then there exists a linear isomorphism
from the tangent space t(A*) at the neutral element of A¥* to the cohomology
group HY(A, 0.

For the proof of this result, we use the following fact:
the dimension of k-vector space H'(A, ©,) is equal to the dimension of A.

2. The case of Ext (4, G,).

We only mention a principal result, and for the proof of the result and
other detailed results, the readers will be sent to P. Cartier [6], J. P. Serre
[17] and 1. Barsotti [1].

PROPOSITION 2.3. Let A be an abelian variety defined over k. Then the
group Ext, (A, G,) is isomorphic to the additive group of the Picard variety
A* of A.

§3. The concept of the extensions of groups in &.

1. Let G, H be two commutative formal Lie groups of finite dimension.

We say that a formal group G’ and a pair of homomorphisms H—u—> G’——v——>G
constitute an extension of G by H if u is a monomorphism and v is an
epimorphism, and if the kernel of v is equal to the image of u.

We say, as usual, that two extensions (G/, u, v), (G,, u;, v;) are equivalent
if there exists an isomorphism f:G’— G, such that the diagram,
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u v
H—G —G
jid. 1 f Jid.
H— G — G
U, V3
is commutative. The set of all isomorphism classes of extensions of G by H
is denoted by Extg (G, H).

2. Let (G, ¢) and (H, ¢) be formal groups of dimension n and m with
formal group laws ¢=(¢h=zi=n and ¢=(Y)isj=m. We call a system of in-
determinates x =(x,, ---, x,) a generic point of G.

Let x®, ..., x® be independent generic points of G. We define k-cochain
g on G with values in H as a system of formal power series g=(g,(x®,
v, X)), <jem with respect to x®, ..., x®, The sum of k-cochains g and g’ is
defined by

(g_}_g/)j<x(l)’ e, x(k)>: Sbj(g(x(l),- e, X(k)>, g/(X(D, e, x(k)))) 1 §] é m.

By this sum (4), the k-cochains on G with values in H form an abelian group
CHG, H). We next define the coboundary operator dy.,:C*G, H)—C* (G, H)
k
by (dlc-i-lg)(x(l): e, x"””):g(x@), e, )C(}H-l))—i" E (_1>ig(x(l)’ e, x(i—l)’ x(i)+x(i+l),
i=1
XD xEDY P (=DM 1g(x®@, -e  x®), Tt is easy to see dyy, - diy; =0. We can
define as usual the subgroup Z¥G, H)C C¥G, H) of k-cocycles for k=1 and
the subgroup B¥G, H)C Z¥G, H) of k-coboundaries for k=2. Hence the
definition of k-cohomology group,
H¥G, H)=Z¥G, H)/B¥G, H) for k=2,
and
HYG, H)=Z2ZYG, H).
1f 2-cochain g=(g,)i=;=mn satisfies,
gj(-x(l): X(Z)) :gj(x@): x(l)) ’ 1 é] _S_ m,

we call g symmetric and denote the set of symmetric 2-cochains (resp. 2-cocycles,
2-coboundaries) by C*G, H); (resp. Z¥G, H);, B¥G, H);). And we define
H%(G, H), as the quotient Z*G, H),/B¥G, H),. 1t is proved in J. Dieudonné
that H*G, H), corresponds bijectively to the set Extg (G, H) of the
isomorphism classes of extensions of G by H. In the following, Extg (G, H)
are considered with the structure of abelian group induced from H*G, H);.
3. Let A be an algebraic group of dimension »n defined over k2 with the
neutral element ¢,. Then we can associate to A a formal group A of dimen-
sion n defined over k, by the process of completing the local ring ©, of A at
the point e, with respect to its topology defined by its maximal ideal ,.
For the details, see J. Dieudonné [10]. A is sometimes called the completion
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of A.

Let A, B be algebraic groups and let u: A—B be a homomorphism.
Suppose that A, B and u are defined over 2. Then we can associate to u a
homomorphism 4: A— B of the formal groups defined over k. See also [107.

4. Let A, B be commutative group varieties and let C be an extension
of B by A,

0 A C B 0. @O
a B
Let k(A) (resp. k(B), k(C)) be the k-rational functions field of A (resp. B, O)
and let 2{A} (resp. 2{B}, B{C}) be the quotient field of the completion of @,
(resp. Op, Og) with respect to its M, (resp. My, My)-adic topology. As easily
shown, B*: k(B)—k(C) is injective and a*: &(C)— k(A) is surjective. Therefore
B*:k{B}—Fk{C} is injective and a*:k{C}—k{A} is surjective. Then by the
homomorphism theorem of J. Dieudonné [8], we have the next exact sequence
of formal groups,
0—A—C—B—0,
a B

which defines an extension C of B by A in the category &. If we fix group

laws of A and B, the isomorphism class of C is defined depending only on
the sequence (1). Thus we obtained a map o : Ext (B, A)—Exts (B, 4). From
the definition, ¢ is evidently a homomorphism of abelian groups.

5. For the concept of extensions of proalgebraic groups, we shall send
the readers to Serre’s book, [20]

Let A, B be elements of .1, and G be an extension of B by A. If we
consider A, B as elements of @, then G is an extension of B by A in .
Hence the definition of a homomorphism of abelian groups p: Ext (B, A)
—Exte (B, A).

§4. Some remarks.

1. Let A, B be elements of .4, and G be an extension of B by A. For
a generic point x of B over k, the set of elements of G which are mapped
to x is an algebraic variety defined over k(x) and is endowed with the struc-
ture of principal homogeneous space with respect to A. We will quote the
result concerning the principal homogeneous space from A. Weil, [21]

LEMMA 4.1. Let G be a commutative group defined over a field K. Let H;
for 1 =<1=n, be principal homogeneous spaces with respect to G, defined over K.
Then there is a principal homogeneous space H with respect to G defined over
K, and an everywhere defined mapping f of H,XH,X - XH, into H, defined
over K, such that
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J(81815 o+ 5 $Sp0) =Sy o Suf(@n -+ 5 @),
Sfor all s;,eG and a,= H;. Moreover H and f are uniquely determined up to
an isomorphism of H.

Let G and G’ be extensions of B by A. Then we shall recall the sum
{G}+{G’} of the classes {G} and {G’} which are determined by G and G’
respectively. First GX G’ is considered as an extension of BXB by AXxA.
Then, we consider the transfered extension d*(GXG’) by the diagonal map
d:B—BXxB. If x is a generic point of B over k, G,XG}, where G, (resp.
G,) is the inverse image of x, is considered as a principal homogeneous space
with respect to AXA, defined over k(x). Next we transfer d*(GxG’) to
$4d¥(GXG") by the composition law s of A. Then we have the following
commutative diagram,

0 — AXA — d¥GXG) — B—0

| 54 | | id

0— A —— s d¥(GXG)—> B ——0.

For points g,, g, of G, and G, and points a,, a, of A, ¢(a,g,, a,8,) = a,a,0(g,, &),
and ¢(g,, g,) is contained in the set G of elements of s,d*(GXG’) which are
mapped onto x. As G7 is also considered as a principal homogeneous space
with respect to A defined over k(x), from the birational equivalence
class [GZ] is the sum of the birational equivalence classes [G,] and [G,].
If y is another generic point of B over k, the classes [G,] and [G,] are
identical, therefore we denote this class by [G]. For G, G’ such that {G}
={G’}, we have [G]=[G’]. Therefore we can associate to every class {G}
of Ext; (B, A) the element [G] of the commutative group P4 (A) composed
by the birational equivalence classes of principal homogeneous spaces with
respect to A (we denote this map by =z).
PROPOSITION 4.1. m is a homomorphism of which kernel is HE, (B, A).
(For the notation of HZ. (B, A)s;, see Serre’s book, [197.)
. Proor. Let x be a generic point of B over k, and G be an extension of
B by A such that z({G})=0. Then G, has a k(x)-rational point g=¢(x).
Then ¢ is a rational section of B to G. Conversely if G has a k-rational
section, G, is k(x)-trivial.
COROLLARY.
() If B is a linear group, and A is an abelian variety, then HL, (B, A
=0, that is, w is injective.
(2) If A is linear, then w is trivial.
The demonstration is easy, so we omit it.
2. Let A, B, C be abelian varieties defined over k. If 0—-B—-C—A—0
i¢ a strictly exact sequence, the transposed sequence 0— A* —(C¥— B¥*—0 is
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also strictly exact. This fact is proved in S. Lang, [13], Theorem 10, p. 216.
Thence we have,

0 — t(A*) — H{C*) — t(B*) — 0.
By virtue of the results of §2,
0— Ext (4, G,) — Ext; (C, G,) — Ext (B, G,) — 0,

or
0— HY (A, 00 — HYC, 05) — HY(B, 0p) >0.
3. As (A®*= A (biregular isomorphism), we get bijective maps
(),: Hom_ (A, B)— Hom, (B*, A%),
(), Ext, (A, B)— Ext_; (B¥, A%).
Both (%), and (%), are isomorphisms.

4. Let G be a commutative algebraic group, and t be a sub p-Lie
algebra of ¢(G). Then for any commutative algebraic group H, Hom_ (H, G)
—Hom _; (H, G/T) is injective. If G, H are abelian varieties 4, B respectively,
we define M* corresponding to N as follows. Since A/N is a purely inseparable
isogeny of A, A* is also a purely inseparable isogeny of (A/M)*. We define
N* as the kernel of the homomorphism,

H((A/R)*) — 1(AF).
Then we have the following exact sequence,
0 —— Hom; (B, A) — Hom_ (B, A/N) — Hom (N*, {(B*))

— Ext_; (B, A) — Ext (B, A/M) — Ext (N*, {(B*)).

Chapter II. On Ext (G, A).
§ 1. On E)(tgD (Gm,’ A).
1.

Let A be an abelian variety defined over an algebraically closed field

k of characteristic p >0 and G, be the multiplicative group. We can consider
A and G, objects of the category @ of proalgebraic groups. With the notations
of Serre’s book, [20], we can consider the universal covering G, of G,, where
7(G) = 70o(G) = 7o(G,) =0. Moreover, G,, is a projective object in .

LemMMA 1.1. (1) The l-primary component of w(G,) is isomorphic to Z,
the ring of l-adic integers, when [ is a prime number different from p, and is
zero, when = p.

(2) We have the following exact sequence in @,

0— 7[1<Gm) am Gm 0. (1)

2. r,(G,) belongs to the category @, of profinite groups, which is a sub-
category of ¢. Using the exact sequence (1), we have,
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0 — Homg (G, A) - — Homg (G,, A) — Homg (7,(G,), A)
— Exte (G, A) — Exte (G, A) .

LEMmMmA 1.2.

(1) Homg (G, A)=Homg (G, A) =0,

2) Extge (G, A)=0.

Proor. The category of quasi-algebraic groups Q is a full subcategory
of ¢. Therefore Homge (G, A)=Hom, (G,, A)=0, for G, is linear and A is
an abelian variety. As for Homg (G,, 4), at first, G, is represented as a
projective limit lim G®™, where G™ is a quasi-algebraic group and satisfies the

«—
n

following sequences,
(n)

@
O N(n) G(n) Gm 0’
N®™ being a finite group, and satisfying lim N =r,(G,). These G really

n

exist from the definition of the proalgebraic group G,. Then, with some
algebraic group structure of G™ and a morphism ¢™, G™ are isogenous to
Gn, hence linear, because the isogeny preserves the linearity. Consequently
Homg (G A)=1lim Homg (G®, A)=0, by virtue of Proposition 14 of [20]. As

for (2), the proof is trivial, because G,, is a projective object in 2.
3. Therefore we have the isomorphism of abelian groups,

Homg (#,(G,), A) = Exte (G, A).
Taking Lemma 1.1 into consideration, 7,(G,) = g lim (Z/["Z). Hence,
l#Fp <«—

l:prime =

Home (:(Gy), A)= @ Home (lim2/1'Z, A= @ lim Hom (Z/I'Z, A).

{: prime n l: prime n

We shall denote by a symbol Ay, [: prime number, the set of elements a of
A such that ["a==0 for some positive integer n. Then we have:
THEOREM 1.1.
Home (7,(Gn), A) = [__#@p Ay
L: prime

where | runs over all positive prime number except p.

Homg (7,(Gy), A) = Exte (G, A) .

§2. On Ext(G,, A).

1. We use [Proposition 1.3 of §1, Chapter I. #G,) has an element

Y:t-—aaT as a base, where ¢ is a generic point of G, over k, and Y satisfies
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Y?=Y. Then we have,
0 — Hom (#(G), {(A)) — Ext; (GE, A) — Ext (G, 4)
—— Ext (t(G,), t(A)). €))

2. Let A be an abelian variety. First we have the next Lemma.

LEMMA 2.1. The restricted p-Lie algebra t(A) is the direct sum of the sub
p-Lie algebras $ and §, where $ is the subalgebra with a basis X,, -+, X; such
that X?=2X,, -, X2=X, and § is pseudo-nilpotent, i.e. F*¥ =0, for some
integer N=0.

REMARK. The above integer f is associated to A as follows:

(a) The order of the kernel of pd, is p”.

(b) By J. Dieudonné, [9]. Let A be the completion of A, {(A) its Lie
algebra,  the core and § the p-radical of t(A). Then $ has dimension f and
A is isomorphic to the direct product of f groups isomorphic to Gm and of a
group having § as its Lie algebra. Here @m is the completion of G,, and has
the composition law, (x, y) —x+y+xy.

LEMMA 2.2. Let W be a restricted abelian p-Lie algebra of one of the
following types.

(1) W: pseudo-nilpotent, that is, there exists a positive integer N such that
NV = 0.

2) W: restricted abelian p-Lie algebra generated by a basis X, -, Xy such
that X?=X,, -+, X2=X,.

Let B be a restricted p-Lie algebra generated by only one element such that
Y?=Y. Then we have Ext (B, W)=0.

Proor.

Case (1): Let € be an element of Ext (B, %A), then a sequence 0 — N ——
6—2->B——0 is exact in the category of restricted p-Lie algebras. Take an
element Z in €, such that ¢(Z)=Y. As oZ)=(pZL)Y=Y?=Y =¢(Z),
7ZP—Z =N, Then Z¢V"'—7°V=(. If we put Z/=27?", we have Z'?=27/, and
o(ZN)=¢(Z)" =Y. Then a map ¢:B—06, determined by H(Y)=2 is a
morphism and satisfies ¢ - ¢ =idy. Hence, Ext (B, A)=0.

Case (2): Choose also an element Z in € such that ¢(Z)=Y. We can
write

2=7Z+a, X+ - +a;Xp ap o, arsk.

Put 2/ =748, X,+ --- +BsX,. Here B,, ---, B; are indeterminates. If Z'?=2"
is satisfied, then

27 = 7P+ PR XE+ o +PEX2=Z4-(B5+a) X+ -+ +(BRtan) X,
=2'=Z+B X+ - +BrX;.

Hence, we have equations f2+a;=p;, 1<i<f. Since k is algebraically closed,
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the above equations can be solved in k2 Therefore we can find an element
Z' in € such that Z’?=27’. We can define a morphism ¢:8—6 by ¢(Y)=2".
Hence, Ext (8B, 2A)=0. q.e.d.
Taking account of the sequence (1) and [Lemma 2.1, we have the following.
PROPOSITION 2.1. For an abelian variety A and for the multiplicative group
G, we have the following exact sequence of abelian groups,

4
0 — Hom (#(Gn), t(A)) — Ext; (GF, A) — Ext;(Gp, A)— 0,

) s
Hom (t(G,), t(A)) being isomorphic to & Z/pZ.
i=1
Proor. The proof of the last assertion is left, but it is easily verified
that Hom (#(G,), #(A)) = Hom (t(G,,), 9) = (D Z/pZ, because
=1

P(YP)y=(p(Y)? for ¢ < Hom (t(G,), t(A)). q.e.d.

Now we shall consider the homomorphism ¢:Ext; (G, A)—Ext (G, A).
Since G2, the image of the Frobenius endomorphism of G,, is identical with
G,, we can identify the Frobenius endomorphism with the multiplication of
an element of G, by itself p-times. Then we can assume ¢ the multiplication
by p to elements of Ext ;(GB, A). We can apply the analogous argument for
G2" which is the image of n-iterated Frobenius endomorphism of G, for a
positive integer n. We have the following exact sequence,

I ®
0 — P Z/PZ — Ext ; (GL™, A) — Ext ; (GE", A) — 0.
i=1

f

It is easy to show that the kernel of ¢” is isomorphic to @Z/p"Z. Therefore
=1

we have an exact sequence,

0 —— D Z/p"Z — Ext_; (G2", A)— Ext_; (G, A) —— 0.
i=1
Substituting G,, by G27", we have an exact sequence,
S
0— P Z/P"L — Ext ;4 (G, A) — Ext 1 (GE™, A) — 0.
=1

As the inductive limit is the exact functor in the category of abelian groups,
finally we have an exact sequence,

0 — lim &) Z/p"Z — Ext_ (G A) —— lim Ext 4 (G2, A) —— 0 .

—> i{=1
n n

LEMMA 2.3.
Q) It is verified in J. P. Serre, [20], Proposition 13, that Exte (G, A)
=~ lim Ext_, (G2™", A).

n
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(2) By the property of an abelian variety,
Aeyy =limDZ/$"Z..
—_— =1

Therefore we have an exact sequence,
0— A;py — Ext, (G,, A) — Exte (G, A) — 0.

However, as A, is a p-torsion group and Exte (G,, A) has no p-torsion, we
have, Ext ; (G, A) = Ay @ ExXte (G, A). By virtue of Thorem 1.1 of §1, we
have:

THEOREM 2.1. Ext;(Gn, A)= @ Aw, where | runs over all positive
prime numbers. prime

REMARK. (1) Any extension G of G, by A is isogenous to AXG,,.

(2) Let G be an extension of A by G,. If G has the maximal abelian
subvariety isogenous to A, G is isogenous to the direct product AXG,. Then
the isomorphism class to which G belongs is a torsion element in Ext_, (4, G,).
Conversely any extension G € Ext (4, G,) of which class is a torsion element
has the maximal abelian subvariety isogenous to A.

Chapter III. On Ext_; (G,, A).
§1. On Exte (G, A).

1. Let A be an abelian variety. For any A<k, we denote by A the
multiplication x— Ax, for x< k. We know that the Frobenius endomorphism
p of G, is identified with the endomorphism of G,:x—x?. Then if we as-
sociate to any extension G = ..t (G, A) (resp. Exte (G,, A)) the extensions
A*G, p*G € Ext 1(G,, A) (resp. Exts (G,, A)), with these operations, Ext_;(G,, A)
(resp. Exte (G4, A)) is considered an abelian p~'-Lie algebra over k. And the
map p: Ext; (G, A)—Exte (G,, A) defined in Chapter I, §3, 5, is a homomor-
phism of p~!-Lie algebras.

2. We shall use the notations of §3, Chapter I. Let g be k-cochain on
@a with values in A and let x®, ..., x®, be independent indeterminates. If
we associate to g a system of formal power series g’ =(g/i=j<n such that

gHx®, o x®) = g, (Ax®, e, 2xP), 1<j<n, ek,
then g’ is also k-cochain C’“(@a, A3 which we denote by Ag. Itis trivial that
if g is k-cocycle (resp. k-coboundary), then g’ is k-cocycle (resp. k-coboundary).

Hence the definition of the scalar multiplication on Extg (G,, A). If we as-
sociate to g a system of formal power series g7 =(g/)isjsn defined by

gi(x®, e, x®) =g (xP)P, oo, (@),  1=j=mn,
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g” is also k-cochain Ck(@a, A), which we denote by g®. And if g Zk(@a, A)
(resp. BYG,, A)), then g® e Z¥G,, A) (resp. B¥(G,, A)). Therefore, there exists
the mapping p*:Extg (Gor A)—Extg (G,, A). This mapping p* is p~l-semi-
linear with respect to the above-defined structure of k-vector space on
Exty (éa, A). Therefore we can consider Extg (G, A) an abelian p'-Lie

algebra. Then the map o:Ext,;(G,, A)— Extqe (@a, /T) is a homomorphism of
p~1-Lie algebras.

3. First, we recall the next results.

LEMMA 1.1. (J.P. Serre, [20].) Let G, and W be the universal coverings
of Go and W, the Witt group of infinite length. Then we have the following
results.

(1) There is an exact sequence in 2,

_ P _ ~
0 w W Ga 0, M

where p is the morphism induced by the multiplication by p on W.
(2) W is projective in @. Moreover, we have the exact sequence in P,

0 — 7,(G,) G, G 0. 2
By virtue of the sequences (1), (2), for an abelian variety A, we have,
0 — Homg (G,, A) — Homg (7,(Gy), A) — ExXte (G4, A) — Exte (Ga, A),
0 — Homg (G,, A) — Homg (W, A) — Homg (W, A) — Exte (G,, A)
— Exte (W, A).
Here we have used the fact that Hom ,(G,, A)=0, and that
Homg (G,, A) = 1_131, Hom , (GZ™", A).

n

As G, and W are linear and A is complete, we have Homg (G, A)=
Homg (W, A)=0, by the same argument in Chapter II, §1. Moreover
Extge (W, A)=0, by virtue of Lemma 1.1, (2). Therefore we have:

ProposiTION 1.1.

Homg (7,(G,), A) = Exte (G4, A)(=lim Ext_; (GE™", A)).

4. Let @, be the subcategory of & formed by groups of dimension
zero, i.e. profinite groups. If to Ge 2, we associate G = Homg (G, Q/Z)
(=1im Homg (G, Z/nZ)), then G——G is a contravariant functor from P, to

n

the category & of abelian groups of torsion.

LemMA 1.2. (]J. P. Serre, [20].) The above functor G—~—G determines an
equivalence between the dual category of P, and 9.
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LEMMA 1.3. (J. P. Serre, [20].) The group =n(G,) is isomorphic to the
group Homg (B, Z/pZ) with the simple convergence topology, (k is endowed with
the discrete topology).

THEOREM 1.1. Let A be an abelian variety defined over the ground field k.

! . . :
Then Exte (Gq, A)= Dk, that is, k-vector space of dimension f where f is charac-
i=1

terized in Chapter II.
Proor. By Lemma 1.1, Exte (G,, A) = Homge (7,(G,), A). By Lemma 1.3,

Homg (7,(G,), A) = Homg (Hom (&, Z/pZ), A) = Homg (Hom (&, Z/pZ), A,)
~ Homg (Hom (k, Z/pZ), &b Z/pZ) = Dk ,
=1 i=1

where A, means the set of elements a of A such that pa=0.

§2. Some results.

1. Now we shall apply the exact sequence of [Proposition 1.3]in Chapter I.
Then we have,

0—— Hom (#(Gy), #(A)) — Ext_, (G2, A)— Ext_; (Ga, A)—— Ext ((G,), 1(A)).

Here #(G,) is the restricted abelian p-Lie algebra generated by X(z *387 over

k such that X?=0. As there is p-operation (we denote it simply by p) in
t(A) (.e. Xet(A)— X?=1t(A)), we shall denote by P((A)) (resp. Q({(A))) the
kernel (resp. the cokernel) of p-operation. We have considered in Chapter II
the decomposition #(A)=HPF, $ being generated by elements Y, ---, Y,
such that Y?=Y, -, Y2=Y, and § being pseudo-nilpotent (i.e. for some
integer N=0, §*"=0). Thence, P({(A)) (resp. Q(t(A))) is the kernel (resp. the
cokernel) of the restriction of p-operation on .

2. LeEMMmA 2.1.

(1) Hom (H(G.), t(A)) = P((A)),

@) Ext((Ga), H(A) = QUA)).

Proor. (1) is trivial. (2) As t(A)=HPF, and Ext({(G), )=0, (the
proof is easy), we have Ext((G,), t(A) = Ext (#(G,), ¥). Let A represent an
element of Ext(#(G,), ¥). Then

4
0 % N t(Ga) —0 ’

hence A= t(G,) DT as k-vector spaces. If U is not trivial, for Z< A such that
o(Z2)=X(e(Gy), ZP & FP. If so, there exists Y F and Y?=_Z7 Putting
Z2'=7Z-Y, Z?=0and ¢(Z)=X. Hence the triviality of . This contradicts
the assumption. The class Z? modulo ¥? depends only on the isomorphism
class of %A, and the map N — Z? determines an injective homomorphism from
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Ext (#(Go), F) to Q@) (=F/F?). Conversely this homomorphism is surjective.
Let Y % represent a class of Q(). Putting A=F+k-Z, Z2°=Y, o(Z)=X,
% is an extension of #G,) by ¥ Therefore we have obtained the exact
sequence,
p* g
0 —- P(t(A)) — Ext_; (G2, A) — Exts (G4, A) — QI(A)).

3. REMARK. Later, we shall see that the dimension of k-vector space
Ext ; (G4, A) is equal to the dimension of A. If we know the finiteness of
the dimension of k-vector space Ext (G, 4), we can conclude that 6 is surjec-
tive. Ext,(G,, A) is considered as the p~'-Lie algebra with p~l-semi-linear
operation p*. The above exact sequence shows that the k-dimension of the
cokernel of p* of Ext,(G,, A) is equal to the k-dimension of P((A4)). On the
other hand, the k-dimension of P(#(4)) is equal to the k-dimension of Q({(A)),
because the k-dimension of #(A) is finite. Therefore the homomorphism
0: Ext (G, A)— Q((A)) is surjective.

§3. The decomposition.

Ext_; (Ga, A) = Exte (Go, AP Exts (G,, A).

1. Let B, C be group-varieties isogenous to a group-variety A and let
¢:B—A, ¢:C— A be their isogenies. We denote by D the connected compo-
nent (BXx,C),, where the fibre product is taken in the category .7, and by =
the composition D—B% A (or D—C% A),

D—C
|\ |
B— A.

1%
Then we have the following:

LEMMA 3.1. If ¢ and ¢ are separable (resp. purely inseparable) then = is
also separable (resp. purely inseparable).

We omit the proof.

LEMMA 3.2. (By L Barsotti, [1].) Let A be a group-variety, and let o be
a homomorphism of positive degree. Then «a is a lowest common wmultiple of
two homomorphisms «s; and a; which are respectively separable and purely
inseparable. A highest common divisor of a, and «; is the identity d, of A.
The equivalence classes to which a; and a; belong are uniquely determined by
the class to which a belongs. In addition, if we write a= B;as= Bsa; B; is
purely inseparable and (s is separable.

We omit the proof.

2. Let a be an isogeny of G,. Then, taking a generic point x of G,
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over k, a can be written in the form, a(x)= ax? +a;.x?*" -+ .- +a,x?, for
some integers s, t=0 and for a,, ---, a, =k such that a;#0. Then writing
as= (bs)ps: Qg1 = (bs+1)ps: o at:(bt)ps: bs, =+, b E R, alx)= as(xps)‘["asﬂ(xps)p"}“ o
+a,(xP = (hyx + -+ +b,x?75°. From the above equations, we know that «
is decomposed to a = a;- a;, where a;(x)=x", a,(x)=ax+ -+ +a,x?""°, or to
a=f;- Bs, where By(x)=bx+ - +bx7"°, B(x)==x?°. There a;, B; are purely
inseparable, and «, (3, are separable. Therefore we see that as a purely

inseparable isogeny of G,, we can take no homomorphism but iteration of
the Frobenius endomorphism p.

3. Let A, B be connected commutative algebraic groups, and G be an
extension of A by B. Let ¢: A’— A be an isogeny. Putting G’ = ¢*(G), it is
evident that G’ is an isogeny of G. More precisely, we have the following
results.

LEMMA 3.3.

Q) If ¢ is separable, then the induced homomorphism ¢:G' —G by ¢ is
also separable.

(@) If ¢ is purely inseparable and of height 1,then ¢:G'—G is also purely
inseparable and of height 1.

PROOF.

(1) We have the following commutative diagram,

0 — #(B) —> t(G") —— (A — 0

lie.  |up |ue
0—1(B) HG) t(A) 0.

As ¢ is separable, #(¢):t(A")—1t(A) is an isomorphism. Therefore #(¢): H{G’)
—1(G) is also an isomorphism. Hence, ¢ is separable.

(2) Since ¢ is a purely inseparable isogeny of height 1, A is characterised
by a sub p-Lie algebra % of #(A’). We have the following commutative
diagram,

m — N

| |
0 —- {(B) — H(G) (A — 0
lie. |up |ue
0 H(B) HG) t(A) 0,

where I is the kernel of ¢(¢). From this diagram, M=N. We can construct
a purely inseparable isogeny of height 1 G//M of G’ by the sub p-Lie algebra
M of #(G’). Then from the commutative diagram,
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0—B— G — A —0

lia’. lgl)’ lgo
0—sB—G//M— A —0

jid. jgw Jid.
0—B— G — A —0.

where ¢”.¢’=¢, we obtain that G'/M=G. Therefore G is a purely in-
separable isogeny of height 1. q.e.d.

4. Let G be an extension of G, by A, where A is an abelian variety,
and let [ be the maximal connected linear subgroup of G. Then L =G,
A L=finite group, and G=A-L. Therefore there exists an isogeny
¢: AXG,—G. We have the following commutative diagram,

0~—>A»——>A><Ga-———+ca—>0

NIt

0—A—> G —G,—0

where ¢ is the isogeny induced by ¢. From this diagram, we know that
e*G =0, for ¢*:Ext (G, A)—Ext (G, A).

DEFINITION?. We call G an extension of separable type (resp. purely
inseparable type) if there exists a separable (resp. purely inseparable) isogeny
¢ such that ¢*G= AXG, We shall denote by E; (resp. E;) the set of classes
of extensions of separable type (resp. purely inseparable type). Then by
E, and E; are k-vector spaces of Ext,(G,, A), and by
p¥(Ey) C E; and p*(E;)C E; It is easily shown that the restriction of p* on
E; is injective, that is, E,\ E;=(0). Hence E,@®E; is the vector subspace of
Ext_; (G4, A) closed with respect to p*. On the other hand, p* is a p~*-semi-
linear map on Ext;(G., A) and Exte (G, A), where pl:lck—r" ek, It
is evident from the definition that p* is p~!-semi-linear automorphism on
Exte (Gqoy A). We have already remarked that the map p:Ext,; (G, A)—
Exte (G, A) is the homomorphism of p-!-Lie algebras, i.e. p-p*=p*- p.

LEMMA 3.4. The restriction of p* on E; is a p~i-semi-linear automorphism.

ProOOF. See the Appendix.

THEOREM 3.1.

Q) Ext (G, A= EDE;.

2) E;=Exte (Gg, A).

Proor. If ¢*G=0, by Lemma 3.2, we can write ¢=p": ¢, for some
integer v = 0 and some separable isogeny ¢;,. Putting G'=(p*)”-G and G" =G
—((p*|Ey)~ - (p¥)’G), G’ is an extension of separable type and G” is an ex-

1) This definition is due to H. Matsumura.
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tension of purely inseparable type. Hence Ext (G, A) = E,®E,;. Since the
kernel of the homomorphism p: Ext (G, A)— Exte (G, A) is E; (the proof is
easy), and since p(E,)=EXte (G4, A), we know that p|E; is the isomorphism
onto Exte (G,, A). q.e.d.

5. Let u:B— A be an isogeny. Then we can assume ©,C ©Op as pre-
scribed by u* and k(B) is a finite algebraic extension of k(A4). With this
situation, we have the following lemma.

LeEMMA 3.5.

(D) If u is separable, then k{A}=k{B}. Therefore the completions A and
B are isomorphic.

(2) If u is purely inseparable, then [k(B): k(A)];=L[k{B}: k{A}],.

We omit the proof.

The next lemma is proved in the paper of Ju. I. Manin, [14].

LEMMA 3.6. Let B be the completion of an algebraic group B and let
Q: B—G be anisogeny of formal groups. Then there exists an 1sogeny f:B— A
of algebraic groups such that G is isomorphic to the completion A of A and ©
is 1somorphic to the completion of f.

Let A be an abelian variety. We have defined the p~'-semi-linear homo-
morphism o : Ext_; (Gq» A)— Extg (G,, A) which commutes with p*, i.e. o-p*
:p* + 0.

Then we have the following results.

THEOREM 3.2.

Q) o(E)=0.

(2) The restriction of ¢ on E; is the isomorphism onto Extg(@a, /f).

Proor. (1) follows from the definition of E, and Lemma 3.5, (1). As for
(2), first, we prove the injectivity. Let G be an extension of which class
belongs to E,; and of which completion G is trivial,

a
0 A‘BG Ga 0.

Let L be the maximal connected linear subgroup of G. Then L =G, and the
restriction a«’ of « on L is a purely inseparable isogeny of order p”, for some

integer vy =0. From the assumption, the completion is isomorphic to Ax @a,
and G,= L G. However, as there is no subgroup isogenous to @a in 4, L
is embedded into AxG, in the form, x—(0, x). Since the completion & is
given by (y, x)—x, the order of inseparability p” is equal to 1 by Lemma 3.5,
(2). Therefore a’ is isomorphism, hence the triviality of G.

Next, we prove the surjectivity. Let G* be an extension in & of @a by

A. Then from the theory of Dieudonné modules, we know G* is isogenous
to the direct product AxG,. Hence the existence of an isogeny ¢: /AleAa—eG*.
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As go(@)z@, there exists the maximal unipotent subgroup H* of G¥, H*
being isomorphic to G,. It is easy to see that H*\v A= G* and H* AN A=(0),
following the notation of J. Dieudonné, [10]. Therefore we have the com-
mutative diagram,

0— A— AxG, — G, —— 0

lid. | ¢ l
0— A—s G* —G,—0.
‘B* a*

By there exist an algebraic group G and an isogeny f: AXG,—G
such that G*=G, and gb:f. If we write f=f,-f;, where f, is separable and
f; is purely inseparable, then fzﬂzgﬁ. Therefore, we can suppose that f is
purely inseparable. If we define 8 by the composition A—»AxGa-f—» G, then
,B*:B. Denoting by #(G*) (t(4) etc.) the Lie algebra of derivations on G*
(A etc.), the homomorphism

1(B*¥): t(A)—1(G*) is injective.
As t(A) = t(A) and t(G*) = t(G), the induced homomorphism

t(B): t(A)—1t(G) is injective.
Hence f$ is separable. If we define a as the canonical projection from G to

G/A=G,, then &= a*. Hence the surjectivity of o. g.e.d.
COROLLARY.

Ext_, (G, A) = Exte (G,, A@Exte (G,, A).

§4. On Ext_ (G, A).

1. In the following, we shall use the terminology of Ju. I. Manin, [14]
He defines a formal k-scheme as a formal spectrum Spf(A), where A is
non-zero local ring with the residue field 2 and admits nilpotent elements,
and defines a formal k-group as a group object in the category of formal
k-schemes. Here we will consider only commutative formal groups, so we
omit the adjective ‘commutative”. All formal k-groups form an abelian
category &. In &, all reduced formal k-groups form a full subcategory, which
is identified with the category & of formal Lie groups defined over k2 which
was first given by J. Dieudonné [8] & is not abelian. F is equivalent to
the product of the category of torus groups and the category 9 of Dieudonné
groups. And each torus group defined over an algebraically closed field % is
isomorphic to the subgroup of the direct product of a finite number of mul-
tiplicative groups. Especially, any reduced torus group is isomorphic to the:
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direct product of a finite number of multiplicative groups. On the other hand,
the dual category 9° is equivalent to the category @D of Dieudonné modules,
where the equivalence is given by the functor G € 9 —~—— Homg (G, I) for the
injective envelope I of the simple object of F,

S = Spec (k[ x]/(x?)), Ax=xR1+1Rx.

It is easy to see, for any G, He ¥, Extz (G, H) = Exts (G, H). We denote by
M(G) the Dieudonné module corresponding to Ge &. It is proved that a
group G & is reduced if and only if for x = M(G), the equality Fx=0 means
x=0. Then we have the following:

ProOPOSITION 4.1.

1) Extg (G,, G)=0.

(2) For G,He &, Extz (G, H) = Extgq (MH), M(G)).

Let A be an abelian variety defined over k. A can be written A:(@m)f-G
where G is a Dieudonné group (or corveless group by J. Dieudonné). Then
Extgs (@a, A):Extg (@a, G). Therefore we can assume that A is a coreless
group. With this assumption Exta (G, A)=Extgq (M(A), E/EV), where
E/EV = M(Gy).

2. We shall determine the dimension of the k-vector space Extg (@a, Gu,m)
where nm >0. G, nm>0 is a formal group of dimension n characterized
by the Dieudonné module E/E(V*—F™). If (n, m)=1, then G,, is a simple
formal group. As we have shown, Extg (G, Gum) = Extos (E/E(V*—F™),
E/EV). Let M be a Dieudonné module of which isomorphism class belongs
to Extyq (E/E(V*—F™), E/EV),

@
0—— E/EV — M —— E/E(V*—F™ —0. o))

As left E-module, E/E(V*—F™) is generated by an element x over E. Let z
be an element of M such that ¢(z)==x. Then o((V*—F™)-2)=(V"—F™) - ¢(2)
=(V*—F™.x=0. Hence, (V*—F™.zc E/EV. E/EV is also generated by
an element y over E such that V-y=0. If (V*—F™).z=F™.y, for yy €E/EV,
tnen (V*—F™) . z=(V*"—F™)(—y’). Hence (V*—F™)(z+y)=0. If we define a
homomorphism ¢: E/E(V*—F™)— M by ¢(x)=z-+y’, then ¢ - ¢ =1. Therefore
the sequence (1) splits. If (1) does not split, (V*—F™) .z modulo F™E/EV)
is not zero. Conversely, let 3’ be an element of E/EV such that 3’ modulo
F™E/EV) is not zero. Then if we define M= E-z+E -y and ¢(2) =x, where
z satisfies (V*—F™).z=y’, M defines an extension of E/E(V*—F™) by E/EV.
As E/(EVA+EF™ = k+kF+ --- +kF™ 1, we have the isomorphism of k-vector
spaces,

Extg (Goy Gpum) = Extoy (E/E(V*—F™), EJEV) = k+kF+ - +EF71,
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Hence
dim Extg (Gg, G =1m .
k

Thus we have proved:
PROPOSITION 4.2. For a formal group G, ,, nm >0,

dim Extg (G4, Gum)=m .
k

3. We shall apply this result for one-dimensional formal groups, digressing
from our main subject. We know by J. Dieudonné that any one-dimensional
formal group is isomorphic to one of G,,, 0=m=co. Here Gl,o';_@m and
G,..=G, The Dieudonné module corresponding to G,, (0<m<co) is
E/E(V—F™), and the Dieudonné module corresponding to G,,,, = G, is E/EV.
From the above consequence, we know that dikm Exts (éa, Giy,m)=m, above all,

that dim Extq (G,, G,)= o and dim Exts (G,, G,,) = 0.
k k
COROLLARY. For any one-dimensional abelian variety A,
dim Ext; (G,, A)=1.
k

Proor. From Ju. I. Manin, [14], p. 71, Corollary, we know that all equi-
dimensional formal groups of the form %G, ,, where nm > 1, are not algebraiz-
able. As for G,,, itis representable as szX, where X is an elliptic curve
with vanishing Hasse invariant. If the Hasse invariant is different from zero,
then X=G,,=G,. Hence the requirement. q.e.d.

We can give more precise description of Extg (@a, @a). We shall use the
results by M. Lazard, [22]. For all integer ¢=2, we denote by B, (x, y) the
polynomial

By(x, y) = (x+y)?—x?—»".
And for all integer ¢ = 2, we denote by C,(x, y) the polynomial : Cy(x,y) =B(x, y),
if ¢ can not be written in the form ¢=p" for any prime number p>0 and

any positive integer i, and Cy(x, y):%Bq(x, y), if g=p* for some prime

number p and some integer i > 0.

LEMMA 4.1. (M. Lazard.) For all integer q=2, let P(x, y)< k[x,y] be a
homogeneous polynomial of total degree q satisfying,

(1) oP(x, y, z)=P(y, £)—P(x+y, 2)+P(x, y+2)—P(x, y) =0,

2 Px, »)—P(y, 0=0.
Then P(x,y) is the polynomial of the form a-Cyx, ) for a< k.

As Extg (Go, G)=H¥Gu, Go)s = ZHGo, G/ BAGay Gy, let g(x,3) € L%, ¥]]
be an element of Z2(@a, @a)s. Then it is easy to see that for ¢=2, the g-
homogeneous part g,(x, ) of g(x, y) satisfies the conditions (1), (2) of
4.1, and that g(x, y) has no l-homogeneous term. Therefore g(x, y) can be
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written in the form,
g(x, y) qu a,C/x,y)  for a,ek.

If ¢ can not be written in the form ¢= p”, for some integer A >0, where p is
the characteristic of &,

CQ(X! y) = Bz(éa) éa)s .
Therefore

P(X, y) Ehé ahcph (.?C, y) (mOd' B2<éa: éa)s) .

PROPOSITION 4.3. The k-vector space Extqe (éa, @a) has a k-base formed by
isomorphism classes of groups which are determined corresponding to Cyn(x, y)
where h=1, 2, ---.

4. In the category of Dieudonné modules 9., E is a projective object.
We shall consider the projective resolutions of E/E(V*—F™) and of E/(EV+EF)
in 9. We have the following results.

LEMMA 4.2. The following sequences are exact,

(Vr—F™
o 0—E — E—E/E(V*—F™ —(,

V, F) (V, —F)
@ 0—FE— E®EF — E—E/(EV+EF)—.

Here (V*—F™) means the multiplication of V*—F™ on E from the right, and
(V, F) (resp. (V, —F)) means the operation on E (resp. EOE) (V,F):x€E
—(xV, xF) (resp. (V, —F):(x, We EQE—»xV—yF& E).

Proor. We denote by W(k) the Witt ring with coefficients in 2 and by ¢
the homomorphism of W<(k), o: (a,, a,, a, ---)— (a3, a3, a8, ---). Then E is
isomorphic to the ring W(k),[[F, V11 of non-commutative formal power series
of the form,

U=w+ % a,F"+ i bs Ve, w, a,, b € W(k) ’
r=1 s=1

with multiplication formulas VF=FV =p, Fw=w’F, wV =Vw’. Let I' be a
set of representants of the classes of W(k)/pW(k)=k. Then we can write
uniquely

o0
u= X 6, ,F'V,a.,l.
0

7,82

With this remark, it is evident that if uV*=uF™ for u< E, then u=0. Hence
the verification of (1). As for (2), we have only to show that if for (a, b)
e EQE, aV=>F, there exists an element ¢ of E such that b=cV, a=cF.
From the above remark, we know that a =cF for some element ¢ of E. Then
from the equality ¢FV=cVF=0bF, b=cF. q.e.d.

Lemma 4.2. can be said that the projective dimension of E/(EV+EF)
(resp. E/E(V*—F™) is 2 (resp. 1).
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5. Let G, H be equidimensional Dieudonné groups in & and let ¢:G—H
be an isogeny. Then ¢ can be written as ¢=¢,-¢@,_; --- ¢, where each ¢,
1<i<r, is an isogeny of height 1 from (¢;—, - ¢)G to (@; @i -+ ©)G.
We assume that ¢ is an isogeny of height 1. If we consider that G, H are
elements of &, we have the following exact sequence in g,

4
0 —— Spec(R) G H 0,

where Spec (R) is the kernel of ¢ and R is finite dimensional over k. In the
category 9.M, we have the exact sequence,

0 —— M(H) — M(G) — Homg (Spec (R), I) — 0.

Hence, Homgz (Spec (R), I) = M(G)/M(H) (which we denote by M). From the
assumption on ¢, FM=0. Moreover ¢ is defined by the sub p-Lie algebra
R of #(G). Since G is the equidimensional Dieudonné module, for some integer
N>0, (t(G)*™ =0. Therefore we can find a series of sub p-Lie algebras
of M| 0=N,EN, & -+ SWH=N such that NECN;_,, 1<=<!. Hence the
decomposition of ¢, ¢=¢;,-¢;—, --- ¢,. Considering ¢, instead of ¢, we can
assume that R?=0, that is, VM=0. Then M is the direct sum, M=
E/(EV+EF)® - ®E/(EV+EF), where t is the integer >0 such that p* is

the order of ¢. ‘
6. Now we shall prove the next Proposition.
PROPOSITION 4.4. Let M be a Dieudonné module. Then the projective

dimension of M is =2. In particular, the projective dimension of M is 1 if M
is reduced.

PROOF.
(1) Any Dieudonné module M is isogenous to M' = NE/E(V™i—Fm)
1
@ E/EV7"i of which projective dimension is 1. Then we have a sequence
J
of Dieudonné modules,

M/:Ml MZ b Mt—l M;:M,

such that
0 M, M, E/(EVA4EF)—0, 1<:1<t,

is exact. Therefore it is sufficient to prove [Proposition 4.4l in the case where
M satisfies the following exact sequence,

0 M’ M E/(EVAEF)—0,
M’ being a Dieudonné module of projective dimension <2. Then with the
usual method, the projective dimension of M is < 2.

(2) Let M’ be a reduced Dieudonné module with the projective dimension
1, and let M be a reduced Dieudonné module such that the following exact
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sequence is satisfied,

0 M M E/(EV+EF)—0.
Then for any N € 9%, we have the next exact sequence,
Ext? o, (M, N) — Ext} 4 (M, N) — Ext} 5 (E/(EV+EF), N).
From the assumption,
Ext} 4 (M, N)=Ext}, (E/(EV+EF), N)=0.

Hence Ext% 4 (M, N)=0 for any N 9. Hence the projective dimension of

M is equal to 1. If M is isogenous to M" = E/E(V"—F"™) QX E/EV'i, we
‘ i j

can construct a sequence of Dieudonné modules,

M:Mt—-_)Ml;—l fee ]\4'1 M():M//’

such that
0 — M; — M, — E/(EV+EF)—0, 1=Zj=t,

is exact. As the projective dimension of M” is equal to 1, we know that the
projective dimension of M is equal to 1. g.e.d.
7. LEMMA 4.3. We have the following results.
@) dikm Extow (E/(EV+EF), E/JEV)=1.

@ dim Exthy (E/(EV+EF), E/EV)=1.
@) dim Extox (E/E(V"—F"), E/[EV)=m.

ProoOF.
(1) Let M be an extension of E/(EV-+EF) by E/EV,

®
0—E/EV—M— E/(EV+EF)—0.

Let x be a generator of E/(EV+EF) and y be an element of M such that
o(»)=x. Then Vy=a<c E/EV, Fy=be E/EV, and Fa= Vb=0. Since E/EV
is the reduced module, the equation Fa=0 means a=0. If b=Fb/, for
b’e E/EV, then F(y—b")=0. Replacing y with y—b'=y, o(y)=x, Fy' =0
and Vy’ =0 because FVy = VFy =0. Therefore if M is not trivial, Fy=0=0
modulo F(E/EV). Conversely let b be an element of E/EV such that b0
modulo F(E/EV). Then putting M=E/EV+E-y where F-y=b, Vy=0
and ¢(y)=x, M is a non-trivial extension of E/(EV+EF) by E/EV. The
above correspondence determines a k-vector space isomorphism between
Extgog (E/(EV+EF), E/JEV) and E/EV/F(E/EV)= E/(EV+EF)=%k. Hence
the requirement.

(2) We use the projective resolution of (2). Then we have
the complex,
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0 —— Homg gy (E, E/EV) — Homgy (E@E, E/EV)

d
—"’Homg)ju (E, E/EV)_‘)O,

or
d
0— E/EV— E/EV®E/EV — E/EV —0,

where d is given by the formula,
feHomgy (EDE, E/EV)~——(df Y1) =7V, )+, F)).
Or if f is given by the formula,
fa, b)=am+bn for a,besE and m,ne E/EV,
d is given by (m, n)— Vm+Fn. Hence,
Ext% o (E/(EV+EF), E/EV)
=~ Homgyg4 (E, E/EV)/d(Homys (EDE, E/EV))
~(E/EV)/F(E/EV)= E/(EV+EF)=k.

Hence the requirement.
(3) is already proved. q.e.d.
8. Let M, M’ be reduced equidimensional Dieudonné modules such that
the following exact sequence is satisfied,

0 M M E/(EV+EF)—0.
Then we have the exact sequence by virtue of Proposition 4.4]
0— Extog (E/(EV+EF), E/JEV)— Extgoq (M, E/EV)
— Extgq (M, E/JEV) — Ext% 4 (E/(EV+EF), E/JEV) —0.
By 1), (2), we have,
di}1cn Extgoa (M, E/EV)= dikm Extoq (M, E/EV).

If a reduced equidimensional Dieudonné module M is isogenous to M/=
S E/E(V™—F™), then we can construct a sequence of Dieudonné modules,
(3

M =M, M., M, M,=M,

such that

is exact.
Therefore we have,

dim Extoq (M, E/EV)=dim Extoy (M, E/EV)=S\m,.
k k %

Let A be an abelian variety of dimension n such that A=(G,) - H, where H
is isogenous to G =3 Gp;my N >0, Zn;= X m;=n—f by Ju. I. Manin, [147].
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Then
dim Extg (Go, H) = dim Extg (G,, G)= Sm;=n—f .
k k i

Therefore
dim Ext; (G4, A)=n.
k

Thus we have proved Main Theorem.
THEOREM 4.1.
) Let A be an abelian variety of dimension n. Then dim Ext ;(G,, A)=n.
k

(2) Let G, G’ be reduced isogenous equidimensional Dieudonné groups.
Then we have,

dim Extg (G,, G) = dim Extg (G,, G').
k . k

(3 When for s=1, we denote by W, the Witt group of length s, we have
length Extg (W,, G) = s - (dim Extg (G,, G)).
w(k) k

Proor. We have only to prove (3). W, is endowed with the following
operations :

(1) The homomorphism V:W,— W,,, which maps
Koy Xqp Xgy =+ 5 Xsy) 0 (0, Xy, g, oo+, Xs—y) s
(2) The homomorphism R: W, — W, which maps
(gy Xy o+ 5 X)) tO (Xgy Xpp oo 5 Xsep) -
Then we have the following exact sequence,

ViR
0 Ga Ws Ws—l 0 .

Then we have the exact sequence,

0 — Extg (W,_,, ) — Extg (W,, G) —> Extg (G4, G) — 0,

because the projective dimension of M(G) is 1.
Hence,

length Extg (W,, G) = length Exte (W,_,, G)-+-dim Extq (G,, G).
w(k) Ww(k) k
Using the induction on s, we have,

length Exta (W, &) =s - (dim Extg (G, G)), q.ed.
Wk k

Appendix.

We shall generalize the results of Chapter III, § 3.
1. Let L be a connected linear group, A an abelian variety and G an
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extension of L by A. We put the next definitions.

DEFINITION. We call G an extension of separable type (resp. purely
inseparable type) if there exists a separable (resp. purely inseparable) isogeny
¢: H— L such that ¢*G = AXH. We denote by Ext_; (L, A); (resp. Ext_ (L, A):)
the set of classes of extensions of separable type (resp. purely inseparable
type). Then by Lemma 3.1, Chapter III, § 3, Ext; (L, A); and Ext_, (L, A); are
subgroups of Ext, (L, A). 1If GeExt,(L, A), (resp. Ext; (L, A);), then the
isogeny ¢:H’— L is separable (resp. purely inseparable) for the maximal
connected linear subgroup H’ of G. Then it is easy to see that Ext (L, A),
NExt (L, A);=(0). Considering the Frobenius endomorphism p: L®™ [,
we have

PHEXt, (L, A),) C Ext, (L®™, A),
and
PEEXt, (L, A)) C Ext, (L&, A),.

LEMMA 1. The restriction of p* on Ext, (L, A); is an isomorphism onto
Ext ; (L®™D, A),.

Proor. Let G be an extension of L by A such that for a separable
isogeny ¢: H— L, ¢*G= AXH,

0—A— AXH—H—0

w. l lgp

0O—rnA4d— G — L—0.

By Lemma 3.3, Chapter III, § 3, G is the quotient of AXH by its finite sub-
group N, i.e. G= AXH/N. Then taking the inverse image N’ of N by the
homomorphism AXH®™—AXH, p*G=AxH® »/N’. Conversely, let G’ be
an extension of L®™» by A such that ¢*G’=0, for some separable isogeny
H'% @5 Then G’ is also written as the quotient AXH'/N’ of AXH' by
its finite subgroup N’. Taking the image N of N’ by the homomorphism

AXH —AXH'?, G’ =p*(AXH'?/N).

Therefore we have constructed the bijective correspondence from which
follows the requirement. q.e.d.

2. Let G be an extension of L by A, H be the maximal connected linear
subgroup of G. Then AN H=finite group, G=A-H and H is isogenous to
L (the isogeny ¢:H—L). Itiseasy tosee p*G=AxXH. We write ¢ =¢;- ¢,
where ¢, is separable and ¢; is purely inseparable. ¢; is a divisor of an
iteration of the Frobenius map p”, for some integer N >0, that is, ¢, ¢ = p?,
for some purely inseparable isogeny ¢. Then from ¢*{G} =0, (p*)?¥ - (¢, *{G}
=0. We can write ¢,-p"=p"-¢’, where ¢’ is a separable isogeny. Then
(V¥ (PHM{G}=0. If we put G’'=((p*)V|Ext, (L¥™™, A))((p*)"G) and G =
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G—G’, then G’ € Ext (L, A), and G € Ext; (L, A);. Moreover we know that
Exte (L, A) =1lim Ext_, (L?™", A). Therefore we have proved:

n

THEOREM 1.

A1) Ext (L, A =Ext, (L, AsDExt (L, A);,

(2) Ext, (L, A), = Exte (L, A).

4. Let U be a connected unipotent group, A an abelian variety. Then
we have the following :

THEOREM 2. The homomorphism o :Ext_, (U, A)—Exte (U, A) is surjective,
and has Ext (U, A); as its kernel. Here o means the homomorphism G &
Ext_, (U, A)— G < Extg (U, A).

PrRoor. The last assertion is proved by repeating the argument of the
proof of Theorem 3.2 of Chapter III, § 3.

We shall prove the surjectivity. Let G* be an extension of U by A in
&, and H* the maximal unipotent subgroup of G*. Then G¥=H*\ A, H* A A
=(0) and H* is isogenous to U (the isogeny ¢*: H*— ). Considering U, H*
and A in &, we denote by B (resp. %) the kernel of go*:H*—»ﬁ (resp.
¢: AxH*—G*) in the category & (cf. Chapter III, §4),

A — B

Lo

0—s A—— AxH* — H* —(

o ||

0—A— G* — U —0.

Then A =*B. Since B is artinian, we can find a unipotent group H and a
purely inseparable isogeny ¢:H— U such that H=H* ¢ =~ ¢* and B= the
kernel of ¢. As % is also artinian, % can be considered a sub-group scheme
of AxH. Then, for our purpose, it is enough to take G=AXH/N. qg.e.d.

Kyoto University
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