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In a series of papers [5, 6, 7] we have reorganized the theory of asyrl-

chronous circuits originated by the staffs of Digital Computer Laboratory,
Univ. of Illinois [1, 2, 3, 4]. The aim of our previous paper@ was not to ex-
amine appropriateness of the fundamental concepts of the theory but to settle
the theory on the security base by considering a mathematical system $CO_{1}^{\eta_{-}}-$

structed over relations.
In the theory of asynchronous circuits the synthesis is one of the funda-

mental problems. Using our new formulation of the theory, we supply in this
paper a synthesis procedure for binary, finite charts. Terminology of the
paper relies heavily on the aforementioned series of papers [5, 6, 7].

In \S 1 a congruence or equivalence relation, to be called a synthetic rela-
tion, is defined for given chart. There may be many synthetic relations for
given chart, so that the definition is made implicitly by specifying their oro-
perties rather than explicitly stating the relation itself. In fact, it turns out

in 1.6 Theorem that to define a synthetic relation for a chart is equivalent to
give a synthesis procedure for that chart. Let (V, h) be a finite chart with a
set $J$ of nodes. A synthetic relation for (V, h) may be obtained from tlne
synthetic relations for all (V, h) $|\{i, j\}$ and (V, h) $|\{i\}$ , where $i,$ $j$ are distinct
nodes. Therefore it is enough if we give a synthesis procedure for each
(V, h) having at most two nodes. We distinguish in 1.9 four possible situa-
tions $A,$ $B,$ $C$ and $D$ for charts with at most two nodes.

In \S 2 Lemmas are established for characterizing the situations. The
characterization is of the type that it makes possible to define some con-
gruences which turn out later in \S 3 to be synthetic relations.

The synthesis procedure described in \S 3 for each situation consists in
adding new nodes in such a way that a congruence thereby introduced into
the chart constitutes a synthetic relation for the chart. Except for the situa-
$tior_{t}D$ the synthesis procedures are rather trivial, although proofs for the
situations $B$ and $C$ are not so simple. In the last part \S 4 of the paper an
example is given.

For the further development of the theory the following problems would
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be important.
A. Find digital extensions for a binary finite chart which is minimal in

some sense.
B. Develop a synthesis procedure which covers semi-modular rather than

distributive state charts, or at least physical, finite state charts of the type.
C. Extend the theory so as to cover digital circuits whose signals are

not integers but real numbers.
We are grateful to the referee for his efforts to make the paper more

tangible.

\S 1. Synthetic relation

DEFINITION 1.1. A semi-modular state chart (V, h) is said to be realizable
if there is a semi-modular extension $(V^{e}, h^{e})$ of (V, $h$), which is digital. If
(V, h) is realizable, then $h^{e}(V^{e})$ is a digital graph which is semi-modular with
respect to $h^{e}(0^{J^{o}})$ , by 4.3 of [7]. Then, by 5.10 of [7], the atlas $A^{e}$ of the
semi-modular circuit $\mathfrak{C}^{e}$ containing $h^{e}(V^{e})$ subsumes the atlas $A$ of $\mathfrak{C}$ contain-
ing $h(V)$ .

In particular, if the digital extension $(V^{e}, h^{e})$ is finite, then (V, h) is said
to be finitely realizable. In this situation, (V, h) must be finite, by 5.12 of
[7]. Since $\mathfrak{C}^{e}$ is finite, $\mathfrak{C}^{e}$ is speed independent with respect to $h^{e}(0^{J^{e}})$ by 4.8
of [6]. Then, by 8.6 of [5], the atlas $A$ on $\mathfrak{C}$ is speed independent with
respect to $h(0^{J})$ .

A procedure for constructing a digital, finite state chart forming an ex-
tension of a given semi-modular state chart is, in general, called a synthesis
procedure. In this paper, however, we shall confine our attention to distribu-
tive states charts, and accordingly, as seen from 9.9 of [7], to charts.

DEFINITION 1.2. Let (V, h) be a finite chart with $J$ as nodes. By $\simeq$ we
shall denote a congruence or equivalence relation over $V$ satisfying;

(1) if $A\simeq B$ then $A\sim B$ , and
(2) the set of congruence classes $\{\pi, \cdots , \varphi\}$ , called $the\simeq$ classes, is finite.

If $A\simeq B$ then $h(A)=h(B)$ by (1). Therefore $h(\pi)$ is well-defined for each class
$\pi$ by taking $h(\pi)=h(A)$ , where $ A\in\pi$ . A class $\pi$ may be designated by $\pi(M)$

if $\pi$ has a minimum state $M$. By $K$, which may be empty, we shall denote
the set of unordered pairs $(\pi, \varphi)$ of distinct classes such that $h(\pi)=h(\varphi)$ . For
an element $k=(\pi, \varphi)$ of the set $K$ a finite extension $(V^{k}, h^{k})$ with $J^{k}$ as nodes
over (V, h) is said to be a k-extension with respect to $\simeq$ whenever

(3) if $A^{k},$ $B^{k}$ are states of $V^{k}$ such that $ A^{k}|J\in\pi$ and $ B^{k}|J\in\varphi$ , then $h^{k}(A^{k})$

$\neq h^{k}(B^{k})$ , and
(4) if $A^{k},$ $B^{k}$ are states of $V^{k}$ such that $A^{k}|J\simeq B^{k}|J$ and $h^{k}(A^{k})=h^{k}(B^{k})$ ,
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then $A^{k}\sim B^{k}$ .
We say that the congruence $\simeq$ is a synthetic relation for the chart (V, h)

if and only if either the set $K$ is empty or there is a k-extension for each le
of $K$. We refer to the $\simeq$ classes $\pi,$ $\varphi$ , as synthetic classes with respect to
$\simeq$ . Furthermore, if an extension $(V^{e}, h^{e})$ of (V, h) is a p-extension for each
$p$ running through $m,$ $\cdots$ , $n$ then we say that $(V^{e}, h^{e})$ is an ($m,$ $\cdots$ , n)-extension
of (V, $h$).

LEMMA 1.3. Let (V, h) be a finite chart with $J$ as nodes. If a synthetic
relation is defined for (V, h) such that $(V^{\iota}, h^{\iota})$ and $(V^{k}, h^{k})$ are ($m$ , $\cdot$ .. , n) and
k-extensions respectively of (V, h) for $m,$ $\cdots$ , $n$ , and $k$ of $K$, then the amalga-
mation (V’, $h^{\iota}$) $\otimes(V^{k}, h^{k})$ is an $(m, \cdot.. , n, k)$ -extension of (V, $h$).

PROOF. Let $(V^{e}, h^{e})$ mean the amalgamation $(V^{l}, h^{\iota})\otimes(V^{k}, h^{k})$ . Then
$(V^{e}, h^{e})$ is a finite extension of (V, h) by 6.7 of [7]. Let $A^{e}$ and $B^{e}$ be states
of $V^{e}$ . If $ A^{e}|J\in\pi$ and $ B^{e}|J\in\varphi$ where $(\pi, \varphi)=p\in\{m, \cdots , n, k\}$ , then $h^{q}(A^{q})$

$\neq h^{q}(B^{q})$ by (3) where $q$ is either 1 or $k$ according as $p\in\{m$ , $\cdot$ .. , $n\}$ or $p=k$ ,

and where $h^{q}=h^{e}|J^{q},$ $A^{q}=A^{e}|J^{q}$ and $B^{q}=B^{e}|J^{q}$ . Then $h^{e}(A^{e})\neq h^{e}(B^{e})$ , verifying
(3). Suppose that $A^{e}|J\simeq B^{e}|J$ and $h^{e}(A^{e})=h^{e}(B^{e})$ . It will be seen below that
$A^{e}\sim B^{e}$ . If so, the condition (4) is verified for $(V^{e}, h^{e})$ and $(V^{e}, h^{e})$ is an $(m$ ,

... , $n,$
$k$)-extension of (V, $h$).

Since $h^{e}(A^{e})=h^{e}(B^{e}),$ $h^{q}(A^{q})=h^{q}(B^{q})$ for $q=l,$ $k$ . Since $A^{e}|J\simeq B^{e}|J,$ $A^{q}|j$

$\simeq B^{q}|J$ and hence we have $A^{q}\sim B^{q}$ by (4). Let $L^{e}$ be a state of $V_{A}^{e_{e}}$ . Since
$A^{q}\sim B^{q},$ $L^{q}+A^{q}$ is in $V^{q}$ whenever $L^{q}+B^{q}$ is in $V^{q}$ . Therefore $L^{e}+B^{e}\in V^{r}$

$=V^{l}\otimes V^{k}$ , which means that $L^{e}\in V_{B^{e}}^{e}$ . Similarly we have that $L^{e}+B^{e}\in V^{e}$

implies $L^{e}+A^{e}\in V^{e}$ , and hence $V_{A}^{e_{e}}=V_{B}^{e_{e}}$ . Since $h_{A}^{e_{e}}(L^{e})_{j}=h_{A}^{q_{q}}(L^{q})_{j}=h_{B}^{q_{q}}(L^{q})_{J}$

$=h_{B^{e}}^{e}(L^{e})_{j}$ for $j\in J^{q},$ $h_{A}^{e_{e}}=h_{B}^{e_{e}}$ . Hence $A^{e}\sim B^{e}$ .
THEOREM 1.4. Let (V, h) be a finite chart with $J$ as nodes. If a synthetic

relation is defined for (V, $h$), then there is a finite digital extension $(V^{e}, h^{e})$ of
(V, $h$). In particular, if the set $K$ is empty, then $(V^{e}, h^{e})=(V, h)$ . Otherwise
$(V^{e}, h^{e})$ is a k-extension of (V, h) for every $k$ of the set K. Moreover, a chart
$(V^{e}, h^{e})$ is a digital extension of (V, h) if $(V^{e}, h^{e})$ is a k-extension of (V, h) for
each $k$ of $K$.

PROOF. Suppose that $K$ is empty. Let $A,$ $B$ be states of $V$ . Since there
is no distinct classes $\pi,$ $\varphi$ such that $h(\pi)=h(\varphi),$ $A$ and $B$ belong to the same
$\simeq$ class if $h(A)=h(B)$ . Hence $A\sim B$ by (1) and (V, h) itself is digital.

Suppose that $K$ is not empty. Then there is a k-extension $(V^{k}, h^{k})$ for
each $k$ of $K$, although some of the k-extensions may not be mutually distinct.
Let $\{(V^{m}, h^{m}), (V^{p}, h^{p}), \cdots , (V^{n}, h^{n})\}$ be the set of distinct $(V^{k}, h^{k})s$ . Then by
1.3 the amalgamation $((\cdots((V^{m}, h^{m})\otimes(V^{p}, h^{p}))\otimes\cdots)\otimes(V^{n}, h^{n}))$ , which we shall
denote by $(V^{e}, h^{e})$ , is a k-extension for each $k$ of $K$. It is clear that $(V^{e}, h^{e})$

is a finite extension over (V, $h$).
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Let us see that any extension $(V^{e}, h^{e})$ over (V, h) is digital if $(V^{e}, h^{e})$ is a
k-extension for each $k$ of $K$. Suppose that $(V^{e}, h^{e})$ is a k-extension for each
$\kappa$ . Let $A^{e},$ $B^{e}$ be states of $V^{e}$ such that $h^{e}(A^{e})=h^{e}(B^{e})$ . If $A^{e}|J\neq B^{e}|J$, then
$h^{e}(A^{e})\neq h^{e}(B^{e})$ by (3), entailing a contradiction. Therefore $A^{e}|J\simeq B^{e}|J$. Then
by (4) we have that $A^{e}\sim B^{e}$ . Therefore $(V^{e}, h^{e})$ is digital, completing the
proof.

THEOREM 1.5. Let a finite extension $(V^{e}, h^{e})$ of a chart (V, h) be digital.

Define $A\simeq^{e}B$ for states $A,$ $B$ of $V$ if and only if there are extensions $A^{e},$ $B^{e}$

over $A,$ $B$ respectively such that $A^{e}\sim B^{e}$ . Then $\simeq e$ is a synthetic relation for
(V, $h$). In fact, $(V^{e}, h^{e})$ is a k-extension of (V, $h$ ) $for$ every $k$ of the set $K$ with

respect to
$\simeq^{e}$ .

$e$

We $ call\simeq$ the induced synthetic relation.
PROOF. The reflexive and symmetric laws for $\simeq^{e}$ are trivial. Suppose

that $A\simeq^{e}B$ and $B\simeq^{e}C$ . Then there are states $A^{e},$ $B(0)^{e},$ $B(1)^{e}$ and $C^{e}$ such that
$A^{e}\sim B(0)^{e},$ $B(1)^{e}\sim C^{e}$ where $A^{e}|J=A,$ $B(0)^{e}|J=B(1)^{e}|J=B$ and $C^{e}|J=C$ . Let
$B^{e}=B(1)^{e}\vee B(0)^{e}$ . Then $B(0)^{e}\sim B(1)^{e}\sim B^{e}$ by 2.9 of [7]. Since $B(1)^{e}\sim C^{e}$ and
$B^{e}-B(1)^{e}\in V_{B(1)^{e}}^{e}=V_{c^{e}}^{e},$ $B^{e}\sim C^{e}+B^{e}-B(1)^{e}$ by 2.2 of [7]. Similary we have
that $B^{e}\sim A^{e}+B^{e}-B(0)^{e}$ . Hence $C^{e}+B^{e}-B(1)^{e}\sim A^{e}+B^{e}-B(0)^{e}$ . Moreover, $(C^{e}$

$+B^{e}-B(1)^{e})|J=C$ and $(A^{e}+B^{e}-B(0)^{e})|J=A$ . Therefore $A\simeq Ce$ proving the
$\iota$ ransitivity law. If $A\simeq Be$ in $V$, then there are extensions $A^{e}$ and $B^{e}$ over
$A$ and $B$ , respectively, such that $A^{e}\sim B^{e}$ . Then by 5.11 of [7], $A\sim B$ , proving
(1) of 1.2.

Since $(V^{e}, h^{e})$ is finite and each similarity class corresponds to a class de-
$e$

fined by $\simeq,$ (2) of 1.2 is satisfied. If the set $K$ is empty, then there is noth-
ing to prove. Suppose that $K$ is not empty. Let $ A^{e}|J\in\pi$ and $ B^{e}|J\in\varphi$ where
$k=(\pi, \varphi)\in K$. If $h^{e}(A^{e})=h^{e}(B^{e})$ , then $A^{e}\sim B^{e}$ because $(V^{e}, h^{e})$ is digital, a
contradiction. Thus $h^{e}(A^{e})\neq h^{e}(B^{e})$ , proving (3) of 1.2.

If $h^{e}(A^{e})=h^{e}(B^{e})$ , then $A^{e}\sim B^{e}$ , proving (4) of 1.2. Then $\simeq^{\ell}$ is a synthetic
relation for (V, h) and also $(V^{e}, h^{e})$ is a k-extension for every $k$ of $K$.

THEOREM 1.6. $A$ finite chart (V, h) is finitely realizable if and only if
(V, h) admits a synthetic relation.

This follows from 1.4 and 1.5.
LEMMA 1.7. Let (V, h) be a finite chart with $J$ as nodes admitting a syn-

thetic relation $\simeq$ . For non-empty subset $J^{p}$ of $J$ define a relation on $V^{p}(=V|J^{p})$ ,

say $A^{p}\simeq^{p}B^{p}$, if and only if there are extensions $A,$ $B$ of $A^{p},$ $B^{p}$ such that
$A\simeq B$ . Then $\simeq p$ is a synthetic relation for (V, h) $|J^{p}$ .

PROOF. Clearly $\simeq p$ is a congruence. The conditions (1), (2) of 1.2 are trivi-
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ally satisfied. Let $(V^{e}, h^{e})$ be a k-extension of (V, h) for every $k=(\pi, \varphi)$ of $K$,

see 1.3, and let $K^{p}$ be a set of pairs $K^{p}=(\pi^{p}, \varphi^{p})$ of distinct
$\simeq^{p}$ classes such

that $h^{p}(\pi^{p})=h^{p}(\varphi^{p})$ . Let us verify that $(V^{e}, h^{e})$ is a $k^{p}$-extension of $(V^{p}, h^{p})$

for each $k$ . Then $\simeq p$ is a synthetic relation.
If $A^{p}\in\pi^{p}$ and $B^{p}\in\pi^{q}$ where $k^{p}=(\pi^{p}, \varphi^{p})$ , then $A$ and $B$ are not in the

same synthetic class where $A,$ $B$ are extensions, respectively of $A^{p},$ $B^{p}$ over
V. If $h(A)\neq h(B)$ then $h^{e}(A^{e})\neq h^{e}(B^{e})$ (where $A^{e},$ $B^{e}$ are extensions respectively
of $A,$ $B$ over $V^{e}$) proving (3) of 1.2. Otherwise $(\pi, \varphi)\in K$ and $h^{e}(A^{e})\neq h^{e}(B^{e})$

by (3) of 1.2 where $A\in\pi,$ $ B\in\varphi$ . It proves (3) of 1.2. If $A^{p}\simeq^{\rho}B^{p}$ then there

are extensions $A,$ $B$ such that $A\simeq B$ . Thus $A^{p}\simeq B^{p}p$ and $h^{e}(A^{e})=h^{e}(B^{e})$ im-
pl,$iesA^{e}\sim B^{e}$ by (4) of 1.2, which proves (4) of 1.2.

THEOREM 1.8. Let (V, h) be a finite chart with $J$ as nodes where $J$ consists

of at least two elements. Suppose that there is a synthetic relation
$\simeq q$

for each
(V, h) $|q$ where $q=\{i, j\}$ is an unordered pair of distinct elements of J. Define
$A\simeq B$ by takmg $A^{q^{q}}\simeq B^{q}$ for every $q$, then $\cong$ is a synthetic relation for (V, $h$),

where $A^{q},$ $B^{q}$ are the grounds of $A,$ $B$ in $q$ respectively. (For the definition of
grounds, see 5.1 in [7].)

PROOF. Clearly the relation $\simeq$ on $V$ is a congruence and the condition (2)

of 1.2 is satisfied. By $Q$ we denote the set of $q=\{i, j\}$ .
If $A\simeq B$ then $A^{q}\simeq B^{q}$ and $A^{q}\sim B^{q}$ for each $q$ by (1) of 1.2. Suppose that

for some $[\theta, p],$ $[\phi, c]\in\Sigma A+L\in V,$ $[\theta, p]\leqq[\phi, c]$ and $(B+L)_{p}<\theta$ . Since
$A^{a}\sim B^{a},$ $(A+L)^{a}\in V^{!1}$ and $(B+L)^{a}\in V^{a}$ where $d=\{p, c\}\in Q,$ $(B+L)_{c}<\phi$ .
From this we conclude that $B+L\in V$, since this holds for any choice of
$[\theta, p]$ and $[\phi, c]$ , by 9.3 in [6]. It follows that $V_{A}\subset V_{B}$ and $V_{B}\subset V_{A}$ by the
similar argument, and that $V_{A}=V_{B}$ . Since $h_{A}(L)_{j}=h_{A}^{q_{q}}(L^{q})_{j}=h_{B}^{q_{q}}(L^{q})_{j}=h_{B}(L)_{j}$

where $j\in q,$ $h_{A}=h_{B}$ and $A\sim B$ , verifying (1) of 1.2.
By $(V^{f(q)}, h^{f(q)})$ we denote the digital extension with the nodes $J^{f(q)}$ of

$(V^{q}, h^{q})$ obtained in 1.3. Then it is assumed without loss of generality that
$J^{f(q)}\cap J=q$ and $J^{f(q)}\cap I^{f(a)}=q\cap d$ for any distinct $q,$

$d$ of $Q$ . Then we may
form the amalgamation (V, $h$) $\otimes(V^{f(q)}, h^{f(q)})$ for each $q$ so that (V, $h$) $\otimes(V^{f(q)}$ ,
$h^{f(q)}),$ $q\in Q$ , is a co-intersectional system of charts where (V, $h$) $\otimes(V^{f(q)}, h^{f(q)})$

$|J=(V, h)$ for each $q$ . Let $(V^{e}, h^{e})$ be the amalgamation $\otimes_{q}((V, h)\otimes(V^{f(q)}, h^{f(q)}))$ ,
$q\in Q$ . Then we shall see that $(V^{e}, h^{e})$ is a k-extension of (V, h) for every
$k=(\pi, \varphi)$ of the set $K$ with respect to the relation $\simeq$ .

Suppose that $ A^{e}|J\in\pi$ and $ B^{e}|J\in\varphi$ where $(\pi, \varphi)\in K$. Then there is a $q$

such that $A^{q}$ and $B^{q}$ are not in the
$\simeq q$

class where $A^{q}\in\pi^{q}$ , and $B^{q}\in\varphi^{q}$ and
$\pi^{q},$ $\varphi^{q}$ are the synthetic classes with respect to $\simeq q$ . Since $(V^{f(q)}, h^{f(q)})$ is a
$(\pi^{q}, \varphi^{q})$ -extension over $(V^{q}, h^{q})$ by 1.3, $h^{f(q)}(A^{f(q)})\neq h^{f(q)}(B^{f(q)})$ by (3) of 1.2.
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Then $h^{e}(A^{e})\neq h^{e}(B^{e})$ , proving (3) of 1.2.
Suppose that $A^{e}|J\simeq B^{e}|J$ and $h^{e}(A^{e})=h^{e}(B^{e})$ . We shall prove that $A^{e}\sim B^{e}$

and verify (4) of 1.2, so that we may complete the proof. Suppose that
$A^{e}+L^{e}\in V^{e},$ $[\theta, p]\leqq[\phi, c]$ and $(B^{e}+L^{e})_{p}<\theta$ . If $p,$ $c\in J$, then $(B^{e}+L^{e})_{c}<\phi$

since $A^{e}|J\simeq B^{e}|J$ implies $A^{e}|J\sim B^{e}|J$. If $p,$ $c\in J^{f(q)}-J$, then $h^{f(q)}(A^{f(q)})=$

$h^{f(q)}(B^{f(q)})$ . Since $(V^{f(q)}, h^{f(q)})$ is digital, $A^{f(q)}\sim B^{f(q)}$ . Thus $A^{f(q)}+L^{f(q)}\in V^{f(q)}$

implies $B^{f(q)}+L^{f(q)}$ , and hence $(B^{e}+L^{e})_{c}<\phi$ . If $p\in J^{f(q)}-J$ and $c\in.r$ (or $p\in J$

and $c\in J^{f(q)}-J$), then there is a $[\rho, r]$ of $\sigma(V)$ where $r$ is in $J$ such that
$[\theta, p]\leqq[\rho, r]\leqq[\phi, c]$ by 9.4 in [7]. Since $h^{f(q)}(A^{f(q)})=h^{f(q)}(B^{f(q)})$ and $(V^{f(q)}$ ,
$h^{f(q)})$ is digital, $(B^{e}+L^{e})_{r}<\rho$ . By the similar argument applied for (V, h) we
have $(B^{e}+L^{e})_{c}<\phi$ . If $p\in J^{f(q)}-J$ and $e\in J^{f(a)}-J$ where q\neq \’a, then there is an
$r\in J$ such that $[\theta, p]\leqq[\rho, r]\leqq[\phi, c]$ . Then $(A^{e}+L^{e})_{p}<\theta$ implies $(B^{e}+L^{e})_{c}<\phi$

by an argument similar to the above one. Hence we conclude that if $A^{e}+L^{e}$

$\in V^{e}$ then $B^{e}+L^{e}\in V^{e}$ , and conversely. Hence $V_{A}^{e_{e}}=V_{B}^{e_{e}}$ .
Let us prove that $h_{A}^{e_{e}}=h_{B}^{e_{e}}$ . For any $J\in J^{e}$ , there exists $q$ such that $j\in J^{q}$

and $A^{f(q),}\sim B^{f(q)}$ because $(V^{f(q)}, h^{f(q)})$ is digital. Therefore $h_{A}^{e_{e}}(L^{e})_{j}=h_{B^{e}}^{e}(L^{e})_{f}$ .
Hence we have that $h_{A}^{e_{e}}=h_{B^{e}}^{e}$ . Summing up we conclude that $A^{e}\sim B^{e}$ .

REMARK. There are semi-modular state charts which violate the Theo-
rem 1.8.

THEOREM 1.9. $A$ finite, binary chart is finitely realizable. In fact, it has
a finite, binary digital extension.

PROOF. Let (V, h) be a given finite, binary chart with $J$ as nodes. By 1.6
and 1.8 it is enough to prove that each (V, $h$ ) $|\{i, j\}$ and each (V, $h$) $|\{i\}$ admit
synthetic relations for $i,$ $j\in J$ where $i\neq j$ .

For (V, h) $|\{i, j\}$ there are the following possibilities, by the orthogonality
as seen from 7.8 of [7]. For (V, $h$) $|\{i\}$ , the possibilities are $A$ and $B$ .

A. It has no cycle.
B. It has a unique cycle $z$ such that $z_{j}=0$ for a $j$ . ( $j$ may be empty.)

C. It has two cycles $z(i)$ and $z(j)$ .
D. It has a cycle $z$ such that $z_{i}\neq 0\neq z_{j}$ .
In \S 2 the preliminary Lemmas $PA,$ $PB,$ $PC$ and $PD$ are provided for each

of the cases $A,$ $B,$ $C,$ $D$ . Then in \S 3 the synthesis procedures are established
in the Lemmas SA, $SB,$ $SC$ and $SD$ for the respective cases by giving syn-
thetic relations for each of (V, $h$) $|\{i, j\}$ and (V, $h$) $|\{i\}$ , thus completing the
proof of this Theorem at the end of \S 3.

\S 2. Preliminaries for the systhesis procedure

In the remainder of the paper, charts will be assumed as being finite and
binary.
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LEMMA 2.1. (PA) Let (V, h) be a chart. If a similarity class $T$ has no
cycle, then $T$ consists of just one state. In particular, if (V, h) has no cycle,
then $V$ is finite.

PROOF. If $T$ consists of at least two distinct states $M$ and $N$, there is a
state $L$ covering $M$ in $T$ because $M<M\vee N$ and $M\vee N\in T$ by 2.9 of [7].

Then $z=L-M$ is a cycle of $T$, entailing a contradiction. Hence $T$ consists
of one state. Suppose that $V$ is not finite. Since there is a finite number of
similarity classes, one of them, say $T$, has infinitely many states. Then by
the previous argument (V, h) has a cycle, which is a contradiction. Thus we
conclude that (V, h) has no cycle whenever $V$ is finite.

LEMMA 2.2. (PB) Let (V, h) have a unique cycle $z$ such that for some $i$

$z_{i}\neq 0$ and $z_{j}=0$ for each $j$ where $j\neq i$ . Then $z_{i}=2$ . Futhermore there is a
change $[\theta, i]$ cyclicly spanned by $z$ such that there is no change $[\phi, j]$ satisfy-
ing that $[\theta. i]<[\phi, i]$ for some $j$ not equal to $i$ where $j$ may be empty.

PROOF. By 10.8 of [7] there is a change $[\theta, i]$ cyclicly spanned by $z$ such
that there is no change $[\phi, j]$ satisfying $[\theta, i]<[\phi, j]$ . Let us show that
$z=2\delta^{i}$ . Since $z$ is a cycle, $z\geqq 2\delta^{i}$ . Let $M\leftrightarrow[\theta, i]$ . ($For\leftrightarrow see8.4$ of [6].)

Since $M\sim M+z$ and $M\leqq M+2\delta^{i}<M+z,$ $N=M+2\delta^{i}\in V$ by 3.3 of [6]. Let
us see that $V_{M}=V_{N}$ . If so, since $h_{M}=h_{N},$ $M\sim N$ . Therefore $2\delta^{:}\geqq z$

and $z=2\delta^{i}$ by the previous result. If $M+L\in V$ then $M+z+L\in V$ and
$M+L+2\delta^{i}=N+L\in V$. Conversely if $N+L\in V$, then $N+L+z\in V$, because
$M<N$, and $M+L+z\in V$, because $N+L\leqq M+L+z\leqq N+L+z$ . Therefore
$M+L\in V$ . Hence $V_{M}=V_{N}$ , completing the proof.

LEMMA 2.3. (PC) Let a chart (V, h) have just two nodes $i$ and $j$ . Suppose
that there are two cycles $z(i)$ and $z(j)$ such that $z(i)_{i}\neq 0\neq z(j)_{j}$ . Then $z(i)=2\delta^{i}$

and $z(j)-2\delta^{j}$ and there are changes $[X_{i}, i]$ and $[X_{j}, j]$ cyclicly spanned by
$z(i)$ and $z(j)$ respectively such that neither [X., $i$] $<[X_{j}, j]$ nor $[X_{j}, j]<[X_{i}, i]$ .

PROOF. By the orthogonality, see 7.8 of [7], we have that $z(i)_{j}=0=z(j)_{i}$ .
Let $T(i)^{*}$ and $T(j)^{*}$ be the unique minimal classes with respect to $z(i)$ and
$z(j)$ of which existence is assured by 7.10 of [7], and $M,$ $N$ be the minimal
states respectively of $T(i)^{*},$ $T(j)^{*}$ , see 7.7 of [7]. Since $T(i)^{*}$ is the minimal
class with respect to $z(i)$ , there is a state $Y$ such that for each integer $m\geqq M_{i}$ ,
$Y_{i}=m$ . Therefore we can conclude that $V_{M\vee N}=W^{2}$ where $W$ is the set of
non-negative integers. Since $M+az(\iota)\in V$ for each $a\in W$ and $V|\{j\}$ is a
semi-modular subset, there is a state $R$ of $V$ such that $R_{i}=(M\vee N)_{i}$ and
$R_{j}=M_{j}$ . If $R=M\vee N$, then $V_{R}=W^{2}$ . Suppose that $R\neq M\vee N$. Since there
is a covering sequence $\{R=R(0), \cdot.. , R(r)=M\vee N\}$ in $V$ and $V_{MN}=W^{2}$ ,
$V_{\Gamma}=W^{2}$ . Since $V\ni M+az(i)\geqq R$ for some $a,$ $V_{M+az(i)}=W^{2}$ . Since $M\sim M+az(i)$ ,
$V_{M}=V_{M+az(i)}=W^{2}$ . Hence $z(j)$ is a cycle of $M$. Since $T(j)^{*}$ is minimal with
respect to $z(j),$ $T(j)^{*}\mathfrak{F}T(i)^{*}$ . By the similar argument we have that $T(i)^{*}\mathfrak{F}T(j)^{*}$ ,
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and that $T(\iota)^{*}=T(j)^{*}$ and $M=N$.
Since $V_{M}=W^{2}$ and (V, h) is binary, $z(i)=2\delta^{t}$ and $z(j)=2\delta^{j}$ .
By 10.8 of [7] there are changes $[X_{i}, i]$ and $[X_{j}, j]$ cyclicly spanned by

$z(\iota)$ and $z(j)$ respectively such that neither $[X_{i}, i]<[X_{j}, j]$ nor $[X_{j}, j]<[X_{i}, i]$ .
LEMMA 2.4. (PD) Let a chart (V, h) have a unique cycle $z$ such that $z_{j}\neq 0$

for each $j$ . Then there is a change $[\theta, i]$ satisfying what follows. If $[\theta, i]\leftrightarrow X$,
then [X, $j$] is cyclicly spanned by $z$ for each $j$ . Let $M(p)\geqq X$ be the minimum
state of a similarity class $T(p)$ having $z$ as its cycle. Then for any $p$ and $q$

there is an integer $k$ such that $M(p)_{j}<M(q)_{j}+kz_{j}$, for each $j$ .
Let $Z=kz$ . Then states $\geqq X$ are classified into classes such that two states

$P$ and $Q$ are in a same class if and only if $P\equiv Qmod$ Z. Then the number
of classes is finite and each class $\pi$ has a minimum state and $h(\pi)$ is well de-
fined by taking $h(\pi)=h(P)$ for any $ P\in\pi$ . Let $M,$ $N$ be the minimum states of
distinct classes $\pi,$ $\varphi$ such that $h(\pi)=h(\varphi)$ , where each class has a minimum
state.

If $M_{i}<N_{i}$ then $M_{i}+Z_{i}>N_{i}$ , and if $M_{i}=N_{i}$ and $M_{j}<N_{j}$ for some $j$ then
$M_{j}+Z_{j}>N_{j}$ .

PROOF. By 10.8 of [7] a change $[\theta, i]\leftrightarrow X$ exists such that each $[X_{j}, j]$

$\iota s$ cyclicly spanned by $z$ . Since (V, h) is finite, the existence of $k$ is trivial.
The relation $\equiv$ is a congruence which classifies states $\geqq X$ into finite classes.
Also it is trivially seen that each $\pi$ has a minimum state. Let us show that
the final part of the Lemma is true.

Suppose that $M_{i}<N_{i}$ and $M_{i}+Z_{i}\leqq N_{i}$ . Since $[N_{t}-Z_{i}, i]$ and $[N_{i}, i]$ are
cyclicly spanned by $z,$ $N(i)+Z\leftrightarrow[N_{i}, i]$ by 10.8 of [7] and $N\geqq N(\iota)+Z$ by 8.4
of [6], where $[N_{i}-Z_{i}, i]\leftrightarrow N(i)$ . Since $N(i)+Z\sim N(i),$ $N-(N(i)+Z)\in V_{N(i)}$ and
hence $N-Z\in V$. Since $N-Z\geqq N(i)\geqq X,$ $N-Z$ and $N$ are in the class $\varphi(N)$ ,

contradicting that $N$ is the minimum state in $\varphi(N)$ . This proves that
$M_{i}+Z_{i}>N_{i}$ .

Next suppose that $M_{i}=N_{i}$ and $M_{j}<N_{j}$ for some $j$ . Assume that $Q\geqq X$

be the minimum state in the similarity class containing $N$ and that $N=Q+qz$ .
$SinceNistheminimumstate,$ $wehave0\leqq q<k$ . $Let[Q_{j}, j]\leftrightarrow Q(j),$ $[Q_{j}+qz_{j}, j]$

$\leftrightarrow N(j)$ and $[M_{j}, j]\leftrightarrow M(j)$ for each $j\in J$. Then by 8.2 of [6] $Q,$ $M$ and $N$

are joins of respectively $Q(j),$ $M(j),$ $N(j)$ where $j$ runs through $J$. Since
$M_{i}=N_{i}=Q_{i}+qz_{i},$ $M\geqq M(\iota)=Q(i)+qz\leftrightarrow[Q_{i}+qz_{i}, i]>[Q_{i}, i]\leftrightarrow Q(i)$ . Let $R\geqq X$

be the minimum state of the similarity class containing $Q(\iota)$ . Because $Q,$ $R$

are the minimum states $\geqq X$ of the similarity classes containing $N$ and $Q(i)$

respectively, $Q<R+Z$ by the property of $Z$. Since $R\leqq Q(i),$ $R+Z\leqq Q(l)+Z$.
Hence $Q<R+Z\leqq Q(i)+Z$. Therefore $N_{j}=Q_{j}+qz_{j}<Q(i)_{j}+Z_{j}+qz_{j}$ . Since
$M\geqq Q(i)+qz,$ $Q(i)_{j}+Z_{j}+qz_{j}\leqq M_{j}+Z_{j}$ . Therefore $N_{j}<M_{j}+Z_{j}$ , completing the
proof.
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\S 3. Systhesis procedure

In this $\sec$ tion a synthesis procedure, consisting in adding new nodes to
a chart $[\Sigma, H]$ having $J$ as nodes will be described. As in \S 2 only finite,
$i\}_{\wedge}inary$ charts are considered.

DEFINITION 3.1. For the sake of convenience, it is assumed that the set
$J$ of nodes does not contain $0$ .

We shall, in fact, use two synthesis procedures of types $\alpha$ and $\beta$ accord-
ing as the cases.

(Type $\alpha$) Suppose that a congruence is defined on $V$, which satisfies (1),

(2) of 1.2. By $K$ we shall denote the set of pairs $(\pi, \varphi)$ of distinct classes
such that $h(\pi)=h(\varphi)$ .

For a $(\pi, \varphi)\in K$, choose a particular state $M$ of $\pi$ and a node $i$ of $J$ (the

choice is dependent on the cases) and add the new node $0$ by taking
$\Sigma^{k}=\Sigma\cup[1,0]$ where $\Sigma^{k}\supset\Sigma$ and $[M_{i}+1, i]\ll[1,0]<[\theta, j]$ in $\Sigma^{k}$ if and

only if $[M_{i}+1, i]<[\theta, j]$ in $\Sigma$ , and $H^{k}$ where $H^{k}|J=H,$ $H^{k}[0,0]=0$ and
$H^{k}[1,0_{\lrcorner}^{\urcorner}=1$ . It is easily seen that $[\Sigma^{k}, H^{k}]$ is binary change chart having
nodes $J^{k}=J\cup\{0\}$ which is a binary extension of $[\Sigma, H]$ , this extension of
$\llcorner\ulcorner\Sigma,$ $H$ ] is said to be of type $\alpha$ with respect to $M$ and $i$ .

(Type $\beta$) The type $\beta$ of the synthesis procedure is only needed for the
case $D$ . In the situation of 2.4, the states $\geqq X$ are classified into classes. Let
$k=(\pi(M), \varphi(N))$ be a pair of the distinct classes such that $h(\pi)=h(\varphi)$ and
$M,$ $N$ be the minimum states of $\pi,$ $\varphi$ respectively. Since $h(M)=h(N)=h(M+Z)$
and the chart is binary, we may assume that there exists a node $r$ of $J$ such
that $M.+1<N_{r}$ and $M.+Z_{r}>N_{r}+1$ , by 2.4. Let us add new node $0$ by taking

$\Sigma^{k}=\Sigma U\{[\eta, 0]|\eta>0\}$ where $\Sigma\subset\Sigma^{k}$ and
(i) $[\theta, p]<[2m+1,0]\ll[N_{r}+mZ_{r}, r]$ if and only if $[\theta, p]<$

$[N_{r}+mZ_{\gamma}, r]$ in $\Sigma$ where $m\geqq 0$ , and
(ii) $[N_{r}+mZ_{r}+1, r]\ll[2m+2,0]<[\phi, j]$ if and only if $[N_{r}+mZ_{\gamma}+1, r]<$

$[\phi, j]$ in $\Sigma$ where $m\geqq 0$ (for $\ll$ , see 3.1 of [6]) and $H^{k}$ where $H^{k}|J$

$=H$ and $H^{k}[\eta, 0]=\eta mod 2$ .
Then $[\Sigma kH^{k}]$ is a binary chart with the nodes $J^{k}=JU\{0\}$ , which is an exten-
sion over $[\Sigma, H]$ , called the extension of type $\beta$ .

LEMMA 3.2. Let $[\Sigma^{k}, H^{k}]$ be an extension over $[\Sigma, H]$ of type $\beta$ . Define
$Z^{k}$ by taking $Z^{k}|J=Z$ and $Z_{0}^{k}=2$ and $X^{k}$ by taking $X^{k}|J=X$ and $X_{0}^{k}=0$ . Then

(iii) $[\theta, p]\leqq[\phi, q]$ in $\Sigma^{k}$ where $[x_{p}, p]\leqq[\theta, p]$ and $[X_{p}, q]\leqq[\phi, q]$ in $\Sigma^{k}$

if and only if $[\theta+Z_{p}^{k}, p]\leqq[\phi+Z_{p}^{k}, q]$ .
PROOF. If $[x_{p}, p]<[\theta, p]<[2m+1,0]$ where $p\neq 0$ then $[\theta, p]<[N_{\gamma}+mZ_{r}^{k}, r]$

by (i). Hence $[\theta+Z_{p}^{k}, p]<[N_{r}+(m+1)Z_{r}^{k}, r]$ by 10.8 of [7]. Therefore
$[\theta+Z_{p}^{k}, p]<[2m+1+Z_{0}^{k},0]$ by (i), since $Z_{0}^{k}=2$ . Conversely if $\theta\geqq X_{p}$ and
$[\theta+Z_{p}^{k}, p]<[2m+1+Z_{0}^{k}, 0]$ then $[X_{p}, p]<[\theta, p]<[2m+1,0]$ .
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If $[X_{p}, p]<[\theta, p]<[2m+2,0]$ where $p\neq 0$ then $[\theta, p]\leqq[N_{r}+mZ_{\gamma}^{k}+1, r]$

$\ll[2m+2,0]$ by (ii) and $[\theta+Z_{p}^{k}, p]\leqq[N_{r}+(m+1)Z_{r}^{k}+1, r]<[2m+2+Z_{0}^{k}, 0]$ by
(ii) and 10.8 of [7]. Therefore $[\theta+Z_{p}^{k}, p]<[2m+2+Z_{0}^{k}, 0]$ . The converse is
also true. Hence $[\theta, p]\leqq[\eta, 0]$ if and only if $[\theta+Z_{p}^{k}, p]\leqq[\eta+Z_{0}^{k}, 0]$ where
$p\in J^{k}$ . By the similar argument we see that $[\eta, 0]\leqq[\phi, q]$ in $\Sigma^{k}$ if and only
i\’i $[\eta+Z_{0}^{k}, 0]\leqq[\phi+Z_{q}^{k}, q]$ . This result and 10.8 of [7] prove (iii).

LEMMA 3.3. The extension $[\Sigma^{k}, H^{k}]$ of $[\Sigma, H]$ of type $\alpha$ and $\beta$ is finite.
PROOF. For each similarity class $T$ of the extension $(V^{k}, h^{k})$ , let us cor-

respond a $\simeq$ class $\pi$ by taking if there is a state $M^{k}$ of $T$ satisfying that
$ M^{k}|J\in\pi$ . (The correspondence may not be single valued.)

Suppose that $M^{k},$ $N^{k}$ are states of $V^{k}$ such that $M^{k}|J,$ $N^{k}|J$ are contained
in the same class $\pi$ . If $h^{k}(M^{k})=h^{k}(N^{k})$ , then $M^{k}\sim N^{k}$ by (4) of 1.2. However,
since $h(M^{k}|J)=h(N^{k}|J)$ and $(V^{k}, h^{k})$ is binary, either $h^{k}(M^{k})_{0}=h^{k}(N^{k})_{0}$ or
$|h^{1}(M^{k})_{0}-h^{k}(N^{k})_{0}|=1$ .

Therefore there are at most two similarity classes corresponding to the
$\simeq$ class. Since the number of the $\simeq$ classes is finite, $(V^{k}, h^{k})$ is finite.

LEMMA 3.4. (SA) Let a chart $[\Sigma, H]$ have no cycle. Define $M\simeq N$ if and
only if $M=N$ . Then $\simeq$ is the synthetic relation.

PROOF. By 2.1, (1) and (2) of 1.2 are satisfied. Each $\simeq$ class consists of
one state in this case. For each $k=(M, N)$ of $K$ it may be assumed that
$M_{i}+1<N_{i}$ for some $i$ of $J$, because $h(M)=h(N)$ and $M\neq N$. Let $[\Sigma kH^{k}]$ be
the extension of type $\alpha$ with respect to $M$ and $i$ . Let $(V^{k}, h^{k})$ be the induced
chart. The condition (4) of 1.2 is trivially satisfied because $M^{k}=N^{k}$ whenever
$M^{k}|J\simeq N^{k}|J$ and $h^{k}(M^{k})=h^{k}(N^{k})$ . Suppose that $M^{k},$ $N^{k}\in V^{k}$ such that $M^{k}|J$

$=M,$ $N^{k}|J=N$. Since $[M_{i}+1, i]\ll[1,0],$ $M_{0}^{k}<1$ , that is $M_{0}^{k}=0$ . Since $[1, 0]$

$<[N_{i}, i],$ $N_{0}^{k}\geqq 1$ and $N_{0}^{k}=1$ . Therefore $h^{k}(M^{k})\neq h^{k}(N^{k})$ , verifying the condi-
tion (3) of 1.2.

Thus $[\Sigma kH^{k}]$ is the required k-extension.
LEMMA 3.5. (SB) Let a chart $[\Sigma, H]$ or (V, h) have a single cycle $z$ such

that $z_{i}\neq 0$ and $z_{j}=0$ for an $i$ and $j\neq j$ . Using 2.2 (PB), define $M\simeq N$ if and
only if

$M=N$ if either $M\not\leqq X$ or $N\not\leqq X$ ,

$M\sim N$ if $M,$ $N\geqq X$, where $X\leftrightarrow[\theta, i]$ .

$Then\simeq is$ the synthetic relation.
PROOF. The conditions (1) and (2) of 1.2 are satisfied, because (V, h) is

fnite and the number of states $M\not\leqq X$ is finite.
It is also seen that there is the minimum state $M$ in each $\simeq$ class $\pi$ .
For $k\subset(\pi(M), \varphi(N))$ of the set $K$ there are three cases,

(1) $\pi(M)=\{M\}$ , $\varphi(N)=\{N\}$
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(2) $\pi(M)=\{M\}$ . $\varphi(N)\neq\{N\}$

(3) $\pi(M)\neq\{M\}$ , $\varphi(N)\neq\{N\}$ .

For (1) and (2) we may assume that there is a node $r$ such that $M_{r}+1<N_{r}$

However, for (3) there is a node $r\neq i$ such that $M_{r}+1<N_{r}$ . In any case, let
$[\Sigma kH^{k}]$ be the extension of type $\alpha$ with respect to $M$ and $r$ . Then the con-
dition (3) of 1.2 is verified by the corresponding argument in 3.5 (SA). Let us
verify (4) of 1.2. Suppose that $A^{k}|J\simeq B^{k}|J$ in $V$ and $h^{k}(A^{k})=h^{k}(B^{k})$ . Then
it is shown below $V_{A}^{k_{k}}=V_{B^{k}}^{k}$ and hence $A^{k}\sim B^{k}$ , because $h^{k}(A^{k})=h^{k}(B^{k})$ and
the chart is binary.

Since $h^{k}(A^{k})=h^{k}(B^{k}),$ $A_{0}^{k}=B_{0}^{k}$ . Hence, if $A^{k}|J=B^{k}|J$ then $A^{k}=B^{k}$ and
$A^{k}\sim B^{k}$ . Then it is assumed that $A^{k}|J\neq B^{k}|J$, and then $A^{k}|J,$ $B^{k}|J\geqq X$. Sup-
pose that $A^{k}+L^{k}\in V^{k},$ $[\eta, s]\leqq[\phi, j]$ and $(B^{k}+L^{k})_{s}<\eta$ . Then $(B^{k}+L^{k})|J\in V$,

because $A^{k}|J\simeq B^{k}|J$ implies $A^{k}|J\sim B^{k}|J$. If $[\eta, s],$ $[\phi, j]\in\Sigma$ then $(B^{k}+L^{k})_{j}<\phi$ ,

since $(B^{k}+L^{k})_{s}<\eta$ where $[(B^{k}+L^{k}), j]\in\Omega$ . Then suppose that $[1, 0]\leqq[\phi, j]$

and $(B^{k}+L^{k})_{0}<1$ . If $j\neq i$ , then $A_{j}^{k}=B_{j}^{k}$ by 2.2, because $A^{k}|J\sim B^{k}|J$. Since
$(A^{k}+L^{k})_{0}=(B^{k}+L^{k})_{0}=0<1,$ $(A^{k}+L^{k})_{j}=(B^{k}+L^{k})_{j}<\phi$ . Assume that $[1, 0]$

$\leqq[\phi, i]$ , then it is shown that $r=i$ . And then $[1, 0]\leqq[\phi, i]$ may not be
happen as shown below. Suppose that $r\neq i$ . Since $[M.+1, r]\ll[1,0]\leqq[\phi, i]$ .
$M_{r}+1\leqq P_{r}$ where $P\leftrightarrow[\phi, i]$ . Since $B^{k}|J\geqq X,$ $X_{i}\leqq B_{\iota}^{k}$ . Since $[1, 0]\leqq[\phi, i]$

and $B_{0}^{k}=0<1,$ $ B_{i}^{k}<\phi$ . Hence $[X_{i}, i]<[\phi, i]$ , and $X<P$ by 8.4 of [6]. Since
$[X_{i}, i]$ is cyclicly spanned by $z$ and $r\neq i,$ $X_{r}=P_{\gamma}$ . Let $[X_{r}, r]\leftrightarrow X(r)$ , then
$X(r)\leqq X$ by 8.1 of [6]. Let $[M_{r}+1, r]\leftrightarrow M(r)$ . Since $M_{r}+1\leqq P_{r}=X_{r},$ $M(r)$

$\leqq X(r)$ . Since $M(r)\leqq X(r)\leqq X$ and $X\leftrightarrow[X_{i}, i],$ $[M_{\gamma}+1, r]\ll[1,0]<[X_{i}, i]$ .
Since $[1, 0]<[X_{i}, i]$ and $B_{0}^{k}=0,$ $B_{i}^{k}<X_{i}$ , contradicting $B_{i}^{k}\geqq X_{i}$ . It proves that
$r=i$ . Then suppose that $r=i$ and then $[M_{i}+1, i]\ll[1,0]\leqq[\phi, i]$ . Since $r=i$ ,

this is not the case (3) and it is assumed that $\pi(M)=\{M\}$ , that is, $M_{i}<X_{i}$ .
Hence $[M_{i}-\vdash 1, i]\ll[1,0]<[X_{i}+1, i]$ . From $[1, 0]<[X_{i}+1, i]$ and $A_{0}^{k}=B_{0}^{k}=0$

it follows $A_{i}^{k},$ $B_{i}^{k}<X_{i}+1$ . However since $x\leqq A^{k}$ and $B^{k},$ $X_{i}\leqq A_{i}^{k},$ $B_{i}^{k}$ and $A_{j}^{k}$

$=B_{i}^{k}=X_{i}$ . Hence $A^{k}|J=B^{k}|J$, contradicting the assumption $A^{k}|J\neq B^{k}|J$.
It remains to prove that if $[\eta, s]<[1,0]$ and $(B^{k}+L^{k})_{s}<\eta$ , then $(B^{k}+L^{k})_{0}$

$<1$ . Suppose that $s\neq i$ . Then $A_{s}^{k}=B_{s}^{k}$ and $(B^{k}+L^{k})_{s}=(A^{k}+L^{h})_{s}<\eta$ . Since
$h^{k}(A^{k})_{0}=h^{k}(B^{k})_{0},$ $(B^{k}+L^{k})_{0}=(A^{k}+L^{k})_{0}<1$ . On the other hand it is seen below
that if $[\eta, s]<[1,0]$ then $s\neq i$ , and then it verifies that if $A^{k}+L^{k}\in V^{k}$ then
$B^{k}+L^{k}\in V^{k}$ and conversely. Hence $V_{A^{k}}^{k}=V_{B^{k}}^{k}$ , completing the proof of the
Lemma. Assume $s=i$ . Since $[M_{r}+1, r]\ll[1,0],$ $[\eta, i]\leqq[M_{r}+1, r]\ll[1,0]$ .
Since $X\leqq B^{k}|J$ and $(B^{k}+L^{k})_{i}<\eta,$ $ X_{i}\leqq B_{i}^{k}<\eta$ . It follows that $[X_{i}, i]<[\eta, i]$

$\leqq[M_{r}+1, r]$ . Hence $r=i$ , by 2.2. Then $[\eta, i]\leqq[M_{i}+1, i]\ll[1,0]$ . Hence
this is not the case (3) and it is assumed that $\pi(M)=\{M\}$ and then $M_{i}<X_{i}$ .
Then $[M_{i}+1, i]\leqq[X., i]$ contradicting $[X_{i}, i]<[\eta, i]\leqq[M_{i}+1, i]$ .
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LEMMA 3.6. (SC) Let a chart (V, h) have just two nodes $i$ and $j$ , and two
cycles $z(i),$ $z(j)$ such that $z(i)_{i}\neq 0\neq z(j)_{f}$ . Let $X=X(i)\vee X(j)$ where $ X(i)\prec\rightarrow$

$[X_{i}, i]$ and $X(j)=[X_{j}, j]$ , using 2.3(PC). Define $M\cong N$ if and only if
$M\sim N$ if (1) either $M,$ $N\geqq X$ or (2) $M_{i},$ $N_{i}\geqq X_{i}$ and $M_{j}=N_{j}<X_{j}$ or
(3) $M_{j},$ $N_{j}\geqq X_{j}$ and $M_{i}=N_{i}<X_{i}$ ,

(4) $M=N$, otherwise.

Then $\simeq$ is the synthetic relation.
PROOF. The conditions (1) and (2) of 1.2 are trivially satisfied and for

each $\pi$ , there is the minimum state. Then for each $k=(\pi(M), \varphi(N))$ of the
set $K$ it is assumed that there is an $r$ such that $M_{r}+1<N_{r}$ .

Let $[\Sigma^{k}, H^{k}]$ be the extension of $[\Sigma, H]$ with respect to $M$ and $r$ . Let
us $veri\wedge fy$ that, $[\Sigma kH^{k}]$ is the $(\pi(M), \pi(N))$ -extension. Since the condition (4)

of 1.2 is easily verified, it is enough to verify (3) of 1.2.
Assume that $A^{k}|J\simeq B^{k}|J,$ $h^{k}(A^{k})=h^{k}(B^{k})$ and $A^{k}+L^{k}\in V^{k}$ , where it is as-

sumed that $A^{k}|J\neq B^{k}|J$ otherwise the condition (3) of 1.2 becomes trivial.
Under the assumption, however it is also enough to prove $B^{k}+L^{k}\in V^{k}$ in the
case $A^{k}|J,$ $B^{k}|J\geqq X$, because other cases may be treated by the similar argu-
ment in 3.5 (SB). Then assume that $A^{k}|J,$ $B^{k}|J\geqq X$. If $[\eta, s]\leqq[\phi, t]$ in $\Sigma$ ,

then $(B^{k}+L^{k})_{t}<\phi$ follows from the argument in 3.5 (SB), which treated similar
situation. Suppose that $[1, 0]<[\phi, t]$ and $(B^{k}+L^{k})_{0}<1$ , where it may be as-
sumed that $M_{r}<X_{r}$ otherwise $M\geqq X$ and $N\geqq X$ and $h(M)=h(N)$ implies
$M\sim N$ and $\pi(M)=\pi(N)$ . Then we may assume that $[M_{r}+1, r]\ll[1,0]$

$<[X_{r}+1, r]$ . From $A^{k},$ $B^{k}\in V^{k},$ $[1,0]<[\phi, t],$ $(B^{k}+L^{k})_{0}<1,$ $h^{k}(A^{k})=h^{k}(B^{k})$ , it
follows that $B_{0}^{k}=A_{0}^{k}=0$ and $B_{r}^{k},$ $A_{r}^{k}<X_{r}+1$ . Since $A^{k}|J,$ $B^{k}|J\geqq X,$ $A_{r}^{k}=B_{r}^{k}=X_{r}$ .
If $t=r,$ $[M_{r}+1, r]\ll[1,0]<[\phi, r]$ and $(A^{k}+L^{k})_{\gamma}=(B^{k}+L^{k})_{r}<\phi$ . If $t\neq r$ , then
by the last argument in 3.5 (SB) we may prove that $[M_{r}+1, r]\ll[1,0]<[X_{t}, t]$ .
Since $A_{0}^{k}=0,$ $A_{t}^{k}<X_{t}$ , a contradiction. Then $[1, 0]<[\phi, t]$ may not appear.
Finally suppose that $[\eta, t]<[1,0]$ and $(B^{k}+L^{k})_{t}<\eta$ . Since $ X_{t}\leqq(B^{k}+L^{k})_{t}<\eta$ ,

$[\eta, t]$ is cyclicly spanned by $z(t)$ and $r=t$ . Since $M_{r}<X_{r}$ and $(B^{k}+L^{k})_{r}<\eta$

and $[M_{r}+1, r]\ll[1, O]<[X_{\gamma}, r],$ $(B^{k}+L^{k})_{\gamma}<\eta\leqq M_{r}+1\leqq X_{r}\leqq B_{r}$ , a contradiction.
Then $[\eta, t]<[1,0]$ and $(B^{k}+L^{k})_{t}<\eta$ may not appear. It proves $B^{k}+L^{k}\in V^{k}$

and then $A^{k}\sim B^{k}$ , verifying (3) of 1.2.
LEMMA 3.7. (SD) Let a chart $[\Sigma, H]$ have a unique cycle $z$ such that $z_{j}\neq 0$

$\acute{r}_{0}\gamma$ each $j$ . Using 2.4, (PD), define $M\simeq N$ if and only if
$M\equiv N$ if $M,$ $N\geqq X$, and

$M=N$, otherwise.

Then $\simeq$ is the synthetic relation.
PROOF. Since (V, h) is finite and each $[X_{j}, j]$ is cyclicly spanned by $z$,
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the condition (1) and (2) of 1.2 are easily verified. Now let us show each
$k=(\pi(M), \varphi(N))$ of the set $K$ has the k-extension $[\Sigma^{k_{f}}H^{k}]$ . In fact, two
synthesis procedures $SD\alpha$ and $SD\beta$ will be used to get $[\Sigma^{k}, H^{k}]$ according as
the cases.

(SDa) If $M\geqq X$ is not true, then $M=\pi(M)\neq\varphi(N)$ and $h(M)=h(N)$ .
Then there is an $ r\in$ ] such that $M_{\gamma}+1<N_{r}$ where $r=i$ if $N>X$. Let
$[\Sigma kH^{k}]$ be the extension of $[\Sigma, H]$ of type $\alpha$ with respect to $M$ and $r$ . Let
us see that $[\Sigma kH^{k}]$ is the $(M, \varphi(N))$ -extension. Since $[M_{r}+1, r]\ll[1,0]$ ,

$A^{k}|J=M$ implies $A_{0}^{k}=0$ . Since $[1, 0]<[N_{r}, r],$ $B^{k}|J\in\varphi(N)$ implies $B_{0}^{k}=1$ .
Hence $h^{k}(A^{k})\neq h^{k}(B^{\tilde{r}})$ , proving (3) of 1.2.

Let $A^{k},$ $B^{k}\in V^{k}$ such that $A^{k}|J\simeq B^{k}|J$ and $h^{k}(A^{k})=h^{k}(B^{k})$ . Since $h^{k}(A^{k})$

$=h^{k}(B^{k}),$ $A_{\mathfrak{q}}^{k}=B_{0}^{k}$ .
Then $A^{k}=B^{k}$ and $A^{k}\sim B^{k}$ if $A^{k}|J=B^{k}|J$. Then it is assumed that $B^{k}|$]

$=(A^{k}|J)+mZ,$ $m>0$ , where $A^{k}|J\geqq X$. At first, let us see that $A_{0}^{k}=1$ . Suppose
that $A_{()}^{k}=0$ . Then $B_{0}^{k}=0$ . Since $[1, 0]<[N_{r}, r]$ and $B^{k}|J\geqq A^{k}|J\geqq X,$ $X_{r}\leqq A_{r}$

$\leqq B_{r}\leqq N_{r}$ by (2) of 9.3 of [6]. If $N\geqq X$ does not hold then $N_{i}<\theta=X_{i}$ by
8.1 of [6], because $[\theta, i]\leftrightarrow X$. Then $(N\vee X)_{i}=X_{i}$ and $X_{r}\leqq(N\vee X)_{r}$ . If
$N\geqq X$ , then NV $X=N$. In any case, $N_{r}=(N\vee X)_{r}$ where $r=i$ if $N>X$, and
$X$ and $N\vee X$ are the minimum states in their synthetic classes whose states
are $\geqq X$ whenever $N\neq X$. Then $N_{r}=(N\vee X)_{r}<X_{r}+Z_{r}$ by 2.4. Since $X_{r}\leqq A_{r}^{k}$

$\leqq B_{r^{f}}\leqq N_{r},$ $B_{r}^{k}<X_{r}+Z_{r}<A_{r}^{k}+Z_{r}$ , contradicting $(B^{k}|J)=(A^{k}|J)+mZ_{\gamma},$ $m>0$ .
Hence $A_{0}^{k}=1$ .

Suppose that $A^{k}+L^{k}\in V^{k},$ $[\eta, t]\leqq[\phi, j]$ in $\Sigma^{k}$ and $(B^{k}+L^{k})_{t}<\eta$ , where
$[(B^{k}+L^{k})_{j}, j]\in\Omega^{k}$ . Then $[\eta, t]\neq[1,0]$ and $[\phi, j]=[1,0]$ , otherwise $B_{0}^{k}=A_{0}^{k}=0$ ,

a contradiction. Hence $[\eta, t]\leqq[\phi, j]$ in $\Sigma$ . Since $(B^{k}+L^{k})|J\in V,$ $(B^{k}+L^{k})_{j}<\phi$

and then $B^{k}+L^{k}\in V^{k}$ . Therefore $V_{A^{k}}^{k}=V_{B^{k}}^{k}$ and $A^{k}\sim B^{k}$ , completing (4) of
1.2.

$(SD\beta)$ If $M,$ $N\geqq X$ where $(\pi(M), \varphi(N))\in K$, then the extension $[\Sigma kH^{k}]$

of type $\beta$ described in 3.1 is the required $(\pi(M), \varphi(N))$ -extension. Let $ A^{k}|J\in\pi$

and $ B^{k}|J\in\varphi$ . Then $A^{k}|J=M+mZ$ and $B^{k}|J=N+nZ$ by the definition of $\simeq$ ,

where $m,$ $n\geqq 0$ are integers. Then we may write $A^{k}=A(m)^{k}$ and $B^{k}=B(n)^{k}$ .
By (i) of 3.1 $[2m+1,0]\ll[N_{r}+mZ, r]$ . Then $B(m)_{0}^{k}\geqq 2m+1$ by (2) of 9.2 of
[6]. By (ii) of 3.1 $[N_{r}+mZ_{r}+1, r]\ll[2m+2,0]$ . Then $B(m)_{0}^{k}<2m+2$ by (2)
of 9.2 of [6]. Hence $B(m)_{0}^{k}=2m+1$ . Since $M_{r}+1<N_{r},$ $[M_{r}+mZ_{r}+1, r]$

$<(2m+1,0]\ll[N_{r}+mZ_{r}, r]$ by (i) of 3.1 and $A(m)_{0}^{k}<2m+1$ . In particular if
$m=0$ then $A(0)_{0}^{k}=0$ . Since $M_{\gamma}+Z_{r}>N_{r}+1,$ $[N_{r}+mZ_{r}+1, r]<[M_{r}+(m+1)Z_{r}, r]$ .
Then by (ii) of 3.1 $[N_{r}+mZ_{r}+1, r]\ll[2m+2,0]$ , and $[2m+2,0]<[M_{r}+(m$
$+1)Z_{r},$ $r$]. Therefore $2m+2\leqq A(m+1)_{0}^{k}$ by (2); of 9.3 of [6], and then $A(m)_{0}^{k}$

$=2m$ . Hence $h^{k}(A(p)^{k})\neq h^{k}(B(q)^{k})$ for any integers $p,$ $q\geqq 0$ , completing (3) of
1.2. Suppose that $A^{k}|J=A\simeq B=B^{k}|J$ and $h^{k}(A^{k})=h^{k}(B^{k})$ . Then it is assumed
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that $A\neq B$ , otherwise (4) of 1.2 is trivially satisfied. If $A_{r}^{k}<N_{r}^{k}$ then $A_{0}^{k}$ is
either $0$ or 1 because $[N_{r}+1, r]\ll[2,0]$ by (ii) of 3.1. If $N_{r}+mZ_{r}^{k}\leqq A_{r}^{k}\leqq N_{r}$

$+mZ_{r}^{k}+1$ , then $A_{0}^{k}$ is either $2m+1$ or $2m+2$ , because of $[N_{r}+mZ_{r}+1, r]<$

$[M_{r}+(m+1)Z_{r}, r]<[2m+3,0]$ and (i) of 3.1. And if $N.+mZ_{r}^{k}+1<A_{r}^{k}<N_{r}+$

$(m+1)Z_{r}^{k}+1$ then $A_{0}^{k}$ is either $2m+2$ or $2m+3$ by $[N_{r}+(m+1)Z_{r}^{k}+1, r]\ll[2m$

$+4,0]$ and (i), (ii) of 3.1. Since we may assume $B^{k}|J=(A^{k}|J)+sZ$ for some
integer $s>0$ , the same is true if $m$ is replaced by $m+s$ . Hence if $A<B$ then
$B^{k}=A^{k}+sZ^{k}$, because $Z_{0}^{k}=2$ .

Now let us prove that $V_{A^{k_{k}}}=V_{A+sZ^{k}}^{k_{k}}$ using (iii) of 3.2. Suppose that $A^{k}+$

$L^{k}\in V^{k},$ $[\theta, p]\leqq[\phi, q]$ in $\Sigma^{k}$ and $(A^{k}+sZ^{k}+L^{k})_{p}<\theta$ , where $[A_{j}^{k}+sZ_{j}^{k}+L_{j}^{k}, j]$

$\in\Omega^{k}$ . Then by (iii) $[\theta-sZ_{p}^{k}, p]\leqq[\phi-sZ_{q}^{k}, q]$ and $(A^{k}+L^{k})_{q}<\theta-sZ_{q^{i}}^{\prime}$ , because
$X\leqq A^{k}|J,$ $B^{k}|J$. Then $(A^{k}+L^{k})_{q}<\phi-sZ_{q}^{k}$ and $(A^{k}+sZ^{k}+L^{k})_{q}<\phi$ , that is,
$A^{k}+L^{k}+sZ^{k}\in V^{k}$ . By the similar argument, if $A^{k}+L^{k}+sZ^{k}\in V^{k}$ then $A^{k}+L^{k}$

$\in V^{k}$ . Hence $V_{A}^{k_{k}}=V_{A+sZ^{k}}^{k_{k}}$ . Hence $A^{k}\sim A^{k}+sZ^{k}=B^{k}$ , completing the proof
of (4) of 1.2.

\S 4. An example

Let us synthesize a simple chart. Since our chart is binary, it is enough
to give the change diagram $\Sigma$ or distributive subset $V$ which are shown be-
low where $X\rightarrow Y$ means that $Y$ covers $X$.

$\Sigma$ $V$
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The change chart could be a change chart for a binary counter for every
change on node 2 implies two changes occuring at node 1. The chart is not
digital, because $V$ has a cycle $z=(4,2)$ spanning nodes 1 and 2, contradicting
10.9 of [7]. The chart has eight similarity classes which are represented by
$(0,0),$ $(1,0),$ $(2,0),$ $(1,1),$ $(2,1),$ $(3,1),$ $(4,1)$ and $(3, 2)$ respectively, where each
representative is the minimum state of the similarity class. The chart will
be treated by 2.4 (PD) and 3.7 (SD). In view of 2.4 $[\theta, i]=[1,1],$ $X=(1,1)$

and $Z=z$ . Since there is no harm in this case, we will apply 3.7 (SD) by
taking $X=(O, 0)$ , that is, the synthetic relation is the similarity relation. Here
$K=\{((0,0), (2,0)), ((1,0), (3,2)), ((1,1), (3,1)), ((2,1), (4,1))\}$ . The following $\Sigma 1$

is the $((0,0),$ $(2,0))$ -extension of $\Sigma$ of type $\beta$ where $r=1$ and the new node is
3. In fact, $\Sigma 1$ is also a $((1,0),$ $(3,2))$ -extension of $\Sigma$ . Similary $\Sigma 2$ is the $((1,1)$ ,
$(3, 1))$ -extension of $\Sigma$ of type $\beta$ where $r=1$ and the new node is 4. It turns
out that $\Sigma 2$ is also a $((2,1),$ $(4,1))$ -extension of $\Sigma$ . $\Sigma 1\cup\Sigma 2=\Sigma^{e}$ is the digital
extension required of $\Sigma$ .
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$\Sigma 1$ $\mu(\Sigma 1)$

The third node In $\mu(\Sigma 1)$ is the new node 3.
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$\Sigma 2$ $\mu(\Sigma 2)$

The third node in $\mu(\Sigma 2)$ is the new node 4.
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$\Sigma^{e}=\Sigma 1\cup\Sigma 2$ $V^{e}=\mu(\Sigma^{e})$

$[3, 1]$

$[7, 1]$
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