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1. Introduction

We know that for the finitely generated extension fields of the ground
field, the complex of differential forms is isomorphic to a universal complex.
Therefore, it seems of interest to investigate the universality of the complex
of differential forms of a unitary commutative R-algebra $A,$ $R$ being a com-
mutative ring with unit. This paper is an attempt to find conditions under
which the two objects–complex of differential forms of $A$ and a univeral
complex over $A$ are same. The main theorems of the paper are

(1) If $(U, d)$ is a universal complex over $A$ such that $U_{1}$ is a finitely
generated projective A-module then $(U, d)$ and $(A(D), \delta)$ are isomorphic, $(A(D), \delta)$

being the complex of differential forms of $A$ .
(2) If $A$ is a finitely generated algebra over a noetherian commutative

ring $R$ such that $A$ is a hereditary ring and if $U_{1}$ is reflexive then the com-
plex of differential forms of $A$ is universal.

Since for certain algebras, the two complexes–the complex of differential
forms and the universal complexes–are isomorphic, it is interesting to see
that they differ quite widely in other cases. The algebra considered here is
the algebra $K\{x\}$ of formal power series in one indeterminate $x$ over a field
$K$ . We have proved that if (V, $\partial$ ) is a universal complex over $K\{x\}$ then $V_{1}$

cannot be finitely generated free $K\{x\}$ -module whereas the $K\{x\}$ -module
$D_{K}(K\{x\})$ of K-derivations of $K\{x\}$ is a free module with basis consisting of
one element; thus $V_{1}$ cannot be isomorphic to the $K\{x\}$ -dual $D_{K}^{*}(K\{x\})$ .

Throughout this paper $R$ will be a commutative ring with unit.

2. Basic definitions

A complex over $A$ is a pair (X, d) where $X$ is an anticommutative regulariy
graded A-algebra [1] and $d:X\rightarrow X$ is an R-linear mapping such that (i) $dX_{l}$

$\subseteqq X_{n+1}\forall n\geqq 0$ : (ii) $d(xx^{\prime})=dx\cdot x^{\prime}+(-1)^{n}x\cdot dx^{\prime}$ for all $X\in X_{n}$ and $X^{\gamma}\in X(n\geqq 0)$ :
and (iii) $dd=0$ . If (X, d) and $(Y, \delta)$ are two complexes over $A$ then a complex
homomorphism $f:(X, d)\rightarrow(Y, \delta)$ is an A-algebra homomorphism from $X$ into



Complex of differential forms 375

Ysuch that (i) $f(X_{n})\subseteqq Y_{n}\forall n\geqq 0$ ; and (ii) $ f_{0}d=\delta$ of. $A$ complex $(U, d)$ over $A$

is called universal if given any complex (V, $\delta$) over $A$ there exists a unique
complex homomorphism $f:(U, d)\rightarrow(V, \delta)$ .

An R-linear mapping $\zeta:A\rightarrow A$ is called an R-derivation of $A$ if and
only if $d(ab)=da\cdot b+a\cdot db$ for all $a,$ $b\in A$ . It is well known that the set $D$ of
all R-derivations of $A$ is an A-module.

The alternating differential forms of degree $n$ of $A$ are (i) $a\in A$ for $n=0$ ;
(ii) the alternating multilinear forms [1] of degree $n$ of the A-module $D$ for
$n\geqq 1$ . We denote the set of alternating differential forms of degree $n$ of $A$

by $A_{n}(D)$ and put $A(D)=\sum_{n\geqq 0}A_{n}(D)$ (dir). Then $A(D)$ is an anticommutative

regularly graded A-algebra [1]. The multiplication in $A(D)$ being given by,
For $\varphi\in A_{n}(D),$ $\psi\in A_{m}(D),$ ( $\varphi$ A $\psi$) $(\zeta_{1}, \zeta_{2}, \cdots , \zeta_{m+n})=\sum_{\sigma}\eta(\sigma, \sigma^{*})\varphi(t(\sigma))\psi(t_{\backslash }^{(}\sigma^{*}))$

where $\zeta_{1},$ $\zeta_{2},$ $\cdots$ , $\zeta_{m+n}$ are in $D;\sigma=$ $(i_{1}, i_{2}, \cdots , i_{n})$ with $i_{1}<i_{2}<\ldots<i_{n}$ ; $\sigma^{*}$ is the
complementary sequence $(j_{1}, j_{2}, \cdot.. , j_{m})$ with $j_{1}<j_{2}<\ldots<j_{m}$ ; $t(\sigma)=(\zeta_{i_{1}},$ $\zeta_{i_{2}}$ , $\cdot$ .. ,

$\zeta_{i_{n}});t(\sigma^{*})=(\zeta_{j_{1}}, \zeta_{J2}, \cdots , \zeta_{j_{m}})$ and $\eta(\sigma, \sigma^{*})=(-1)^{N(\sigma,\sigma*})$ where $N(\sigma, \sigma^{*})=number$

of pairs $(i, j)$ with $i\in\sigma,$ $j\in\sigma^{*},$ $i>j$ .
Let $\delta$ : $A(D)\rightarrow A(D)$ be given by

$(\delta\varphi)(\zeta_{1}, \zeta_{2}, \zeta_{n+1})=\sum_{i=1}^{n1}(-1)^{i+1}\zeta_{i}(\varphi(\zeta_{1}, \zeta_{2}\perp, ’\hat{\zeta}_{i}, \zeta_{n+1}))$

$-\sum_{r<s}(-1)^{r+s\pm 1}\varphi([\zeta_{r}, \zeta_{s}], \zeta_{1}, \zeta_{2}, \hat{\zeta}_{r}, \hat{\zeta}_{s}, \zeta_{n+1})$

where $\varphi\in A_{n}(D)$ arbitrary; $\zeta_{1},$ $\zeta_{2},$ $\cdots$ , $\zeta_{n+1}$ are any elements of $D$ and $[\zeta_{r}, \zeta_{s}]$

is the derivation $\zeta_{r}\zeta_{6}-\zeta_{S}\zeta_{r}$ . It is known [1] that $\delta$ is an R-linear mapping
such that (i) $\delta(A_{n}(D))\subseteqq A_{n+1}(D)$ for all $n\geqq 0$ (ii) $\delta$ ( $\varphi$ A $\psi$) $=(\delta\varphi)\wedge\psi+(-1)^{n}\varphi\wedge(\delta\psi)$

for all $\varphi\in A_{n}(D),$ $\psi\in A(D),$ $n\geqq 0$ . ( $‘\wedge‘$ being the grassmann product in $A(D)$);

and (iii) $\delta\delta=0$ . Therefore $(A(D), \delta)$ is a complex over $A$ , called the comp’ex
of differential forms of $A$ .

3. Universality of the complex of differential forms

First we shall prove that if $(U, d)$ is a universal complex over $A$ such
that the module $U_{1}$ of homogeneous elements of degree 1 of $U$ is finitely
generated and projective then $(A(D), \delta)$ is a universal complex over $A$ . For
this we need the following machinary.

LEMMA 3.1. Let $M$ be an A-module and let $L$ be a direct summand of $M$.
If the natural homomorphism $\lambda_{M}$ of $M$ into its bidual $M^{**}$ is an isomorphism
then so is $\lambda_{L}$ : $L\rightarrow L^{**}$ where $L^{**}$ is the bidual of $L$ .

PROOF. Proof follows immediately from the fact that the association of
the bidual $M^{**}$ with an A-module $M$ and of $f^{**}:$ $M^{**}\rightarrow N^{**}$ with any A-
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module homomorphism $f:M\rightarrow N$ is a covariant functor from the category of
all $A\cdot modules$ into itself.

Next we make the following observations:
1. Recall [1] that with every A-module $M$ we can associate its exterior

algebra $E(M)$ ; and with every A-module homomorphism $f:M\rightarrow N,$ $N$ being an
A-module, we can associate the A-algebra homomorphism $f:E(M)\rightarrow E(N)$ such
that $\overline{f}(E_{n}(M))\subseteqq E_{n}(N)(n\geqq 0)$ and such that $f$ extends $f$ . If $\mathfrak{M}$ denotes $th\prime 1$

category of all A-modules and their homomorphisms: and if $\mathcal{G}$ denotes the
category of all graded A-algebras and their homomorphisms then the function
$T:\mathfrak{M}\rightarrow \mathcal{G}$ given by $T(M)=E(M)$ and $T(f)=f$ for all $M$ and $f$ in $\mathfrak{M}$ is a co-
variant functor.

2. The association of the A-module $M^{*}$ with an A-module $M$ and of the
A-module homomorphism $f^{*}:$ $N^{*}\rightarrow M^{*}$ with any A-module homomorphism
$f:M\rightarrow N$, ($N$ being an A-module) is a contravariant functor.

3. For any A-module homomorphism $f$ from an A-module $M$ into an A-
module $N$, let $f^{n}$ : $M^{n}\rightarrow N^{n}$ denote the mapping $(x_{1}, x_{2}, \cdot., , x_{n})\rightarrow(f(x_{1}), f(x_{2})$ , $\cdot$ .. ,
$f(x_{n}))$ . Then for any $\varphi$ in $A_{n}(N)(A_{n}(N)$ being the A-module of the alternating
multilinear forms of degree $n$ of $N$), $\varphi\circ f^{n}$ belongs to $A_{n}(M)$ . Let $f^{\gamma\gamma}$ : $A(N)$

$\rightarrow A(M)$ be given by $f^{\prime\prime}(\varphi)=\varphi\circ f^{n}$ for each $\varphi\in A_{n}(N),$ $n\geqq 0$ . $Thenf^{\prime/}$ is an A-
algebra homomorphism such that $f^{\prime\prime}(A_{n}(N))\subseteqq A_{n}(M)$ . Moreover, let $f^{1}$ : $E(N^{*})$

$\rightarrow E(M^{*})$ be induced by $f^{*}:$ $N^{*}\rightarrow M^{*}$ . Then the diagram

$E(N^{*})\rightarrow E(M^{*})f^{\prime}$

$\tau_{N}\downarrow$

$f^{\prime\prime}$

$\downarrow\tau_{M}$

$A(N)\rightarrow A(M)$

commutes, where for any A-module $M,$ $\tau_{M}$ : $E(M^{*})\rightarrow A(M)$ is given by $\tau_{M}(\varphi_{1}$ ,

$\varphi_{2},$
$\cdots$ , $\varphi_{n}$) $=\varphi_{1}\wedge\varphi_{2}\wedge\cdots\wedge\varphi_{n},$ $\varphi_{i}$ in $M^{*}(1\leqq i\leqq n)$ and $‘\wedge‘$ denotes the grass-

mann product [1] in $A(M)$ .
Observations 1, 2 and 3 immediately lead to the following Lemma.
LEMMA 3.2. Let $M$ be any A-module and $L$ be a direct summand in $M$.

Then if $\tau_{M}$ is an isomorphism, $\tau_{L}$ is also an isomorphism.
To prove the following lemma let us recall [4] that a complex over $(U, d)$

$\iota s$ universal if and only if $(U_{1}, d_{0})$ is a universal derivation module of $A$ and
$U$ is the exterior algebra of $A$ . By a derivation module of $A$ we mean a pair
$(M, \delta)$ where $M$ is an A-module and $\delta:A\rightarrow M$ is an R-linear mapping such that
$\delta(ab)=\delta ab+a\delta b$ , for all $a,$

$b$ in $A$ . A derivation module $(M, \delta)$ of $A$ is called
universal if and only if given any other derivation module $(N, \partial)$ of $A$ there
exists a unique A-homomorphism $f:M\rightarrow N$ such that $ f\circ\delta=\partial$ .

LEMMA 3.3. Let $(U, d)$ be a universal complex over A. Then $U_{1}^{*}$ is iso-



Complex of differential forms 377

morphic to $D$ .
PROOF. Let $f\in U_{1}^{*}$ be arbitrary. Then $f=U_{1}\rightarrow A$ is an A-module homo-

morphism. It can be easily seen that $f\circ d_{0}$ is an R-derivation and hence $f\circ d_{0}$

$\in D$ . Now we consider the mapping $\varphi:U_{1}^{*}\rightarrow D$ given by $\varphi(f)=f\circ d_{0}$ for all $f$

in $U_{1}^{*}$ . Clearly, $\varphi$ is an A-module homomorphism. Also, $f\circ d_{0}=0$ implies
$f(d_{0}A)=0$ and so $f(U_{1})=0$ since $U_{1}$ is gererated by $dA$ as an A-module.
Therefore, $f\circ d_{0}=0$ implies $f=0$ which shows that $\varphi$ is one-one. It remains
to show that $\varphi$ is onto. For this we note that for any $\delta\in D,$ $(A, \delta)$ is a deri-
vation module of $A$ . By universality of $(U_{1}, d_{0})$ there exists a unique A-module
homomorphism $f_{\delta}$ : $U_{1}\rightarrow A$ such that $ f_{\delta}\circ d_{0}=\delta$ . Since $f_{\delta}\in U_{1}^{*}$ , we have that
$\varphi(f_{\delta})=f_{\delta}\circ d_{0}=\delta$ and this proves the ontoness of $\varphi$ . Hence the lemma is
proved.

THEOREM 3.1. Let $(U, d)$ be a universal complex over A. If $U_{1}$ is a finitely
generated projective A-module then $(A(D), \delta)$ is isomorphic to $(U, d)$ .

PROOF. Since $(A(D), \delta)$ is a complex over $A$ , in view of the universality
of $(U, d)$ there exists a unique complex homomorphism $f:(U, d)\rightarrow(A(D), \delta)$ .
Let $g:U_{1}\rightarrow A_{1}(D)$ be the restriction of $f$ to $U_{1}$ . Then $g\circ d_{0}=\delta_{0}$ on $A$ . We
claim that $g$ is an isomorphism. Recall that $U_{1}$ being a finitely generated
projective A-module, is a direct summand of a free A-module $F$ with finite
basis. For $F$ the natural homomorphism $\lambda_{F}$ : $F\rightarrow F^{**}$ is an isomorphism; and
so, by lemma 4.1 $\lambda_{U_{1}}$ : $U_{1}\rightarrow U_{1}^{**}$ is also an isomorphism. In view of lemma 4.3,
$U_{1}^{*}$ is isomorphic to $D$ and the isomorphism $\varphi:U_{1}^{*}\rightarrow D$ is given by $\varphi(f)=f\circ d_{0}$ .
Let $\varphi^{-1}$ : $D\rightarrow U_{1}^{*}$ be the inverse isomorphism. Then $\varphi^{-1}(\partial)=f_{\theta}$ for each $\partial$ in
$D$ , where $f_{\partial}\in U_{1}^{*}$ , is such that $ f_{\partial}\circ d_{0}=\partial$ . Let $(\varphi^{-1})^{*}:$ $U_{1}^{**}\rightarrow D^{*}=A(D)$ be
the mapping induced by $\varphi^{-1}$ . Then $(\varphi^{-1})^{*}$ is given by $(\varphi^{-1})^{*}(f)=f\circ\varphi^{-1}$ for
each $f$ in $U_{1}^{**}$ , and $(\varphi^{-1})^{*}$ is an isomorphism. Thus $(\varphi^{-1})_{0}^{*}\lambda_{U_{1}}$ is an isomor-
phism of the A-module $U_{1}$ with the A-module $D^{*}=A_{1}(D)$ . Moreover, for each
$a$ in $A,$ $(\varphi^{-1})^{*}\circ\lambda_{U_{1}}(d_{0}a)=\text{{\it \‘{A}}}_{\sigma_{1}}(d_{0}a)\circ\varphi^{-1}$ . Therefore, for an arbitrary $\partial$ in $D$ ,
$(\lambda_{\sigma_{1}}(d_{0}a)\circ\varphi^{-1})\partial=\lambda_{U_{1}}(d_{0}a)(\varphi^{-1}(\partial))=\varphi^{-1}(\partial)(d_{0}a)=\partial a$ , that is $(\varphi^{-1})^{*}\lambda_{U_{1}}(d_{0}a)$ is a
mapping of $D$ in $A$ given by $\partial\rightarrow\partial a$ for all $\partial$ in $D$ . But by the defininition
of $\delta:A(D)\rightarrow A(D),$ $(\delta a)\partial=\partial a$ for each $a\in A,$ $\partial\in D$ . Therefore $(\varphi^{-1})^{*}\circ\lambda_{\sigma_{1}}(d_{0}a)$

$=\delta a$ , for all $a\in A$ ; that is $(\varphi^{-1})^{*}\circ\lambda_{U_{1}}\circ d_{0}=\delta$ on $A$ . Hence $(\varphi^{-1})^{*}\circ\lambda_{\sigma_{1}}\circ d_{0}=g\circ d_{0}$

on A. $\vee\backslash SinceU_{1}$ is generated by $d_{0}A$ as an A-module, we have that $(\varphi^{-1})^{*}\circ\lambda_{\sigma_{1}}$

$=g$ on $U_{1}$ and hence $g:U_{1}\rightarrow D^{*}=A_{1}(D)$ is an isomorphism. Now, we recall
that $g$ extends to a unique A-algebra isomorphism $\overline{g}:E(U_{1})\rightarrow E(D)^{*}$ . Since
$E(U_{1})=U$ we get that $g:U\rightarrow E(D^{*})$ is an isomorphism. Now recall that $U_{1}$

finitely generated and projective A-module implies $U_{1}^{*}$ is a finitely generated
projective A-module. Therefore $D$ is a finitely generated projective A-module.
Thus $D$ is a direct summand of a finite free A-module, say $P$ . We know [1]
that for $P,$ $E(P^{*})$ is isomorphic to $E^{*}(P)=A(P)$ i.e. $\tau_{p}E(P^{*})\rightarrow A(P)$ is an
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isomorphism. Therefore, by lemma 4.2, $\tau_{D}$ ; $E(D^{*})\rightarrow A(D)$ is also an isomor-
phism. Therefore, $\overline{g}$ induces an A-algebra isomorphism $h:U\rightarrow A(D)$ . Now
$h|U_{1}=\overline{g}|U_{1}=g=f|U_{1}$ and since $U_{1}$ generates the complex $(U, d)$ we have that
$h=f$ on $U$. Hence it follows that $f$ : $(U, d)\rightarrow(A(D), \delta)$ is an isomorphism.

DEFINITION 3.1. A ring $A$ is called hereditary if every submodule of a
projective A-module is again projective.

PROPOSITION 3.1. Let $R$ be a commutative noetherian ring with unit and
let $A$ be a finitely generated R-algebra. Suppose $A$ is a hereditary ring. If
$(U, d)$ is a universal complex over $A$ such that $U_{1}$ is reflexive ( $i$ . $e$ . the natural
homomorphism $\lambda_{M}$ : $M\rightarrow M^{**}$ is an isomorphism) then $(U, d)$ is isomorphic to
$(A(D), \delta)$ .

PROOF. If $A$ is generated by $a_{1},$ $a_{2}$ , $\cdot$ .. , $a_{n}$ then the mapping $\partial\rightarrow(\partial a_{1},$ $\partial a_{2}$ ,
... , $\partial a_{n}$) gives an A-monomorphism $D\rightarrow A^{n}$ . Since $A$ is noetherian and here-
ditary $D$ is finitely generated projective. Hence, in view of lemma 3.3 $U_{1}^{*}$ is
finitely generated projective A-module. Therefore, the dual $U_{1^{**}}$ of $U_{1}^{*}$ is also
finitely generated projective A-module. Since $U_{1}$ is refiexive, $U_{1}$ is finitely
generated projective A-module. Hence the result follows from theorem 3.1.

REMARK. If $U_{1}$ is finitely presented and flat then $U_{1}$ is finitely generated
projective and so theorem 3.1 gives the isomorphism of two complexes in this
case.

Now we shall show that if $K\{x\}$ is the K-algebra of formal power series
in one indeterminate $x$ over a field $K$ , then the complex of dfferential forms
of $K\{x\}$ is not universal. To prove this it is enough to show that if (V, $\partial\rangle$

is a universal complex over $K\{x\}$ then $V_{J}$ is not isomorphic to the dual of
the $K\{x\}$ -module of all K-derivations on $K\{x\}$ . Since the $K\{x\}$ -module of all
K-derivations of $K\{x\}$ is a free module with basis consisting of one element,
its dual is also a free module with basis consisting of one element. But, as
we shall see in the following, $V_{1}$ is an infinitely generated free K{x}-moduule.

Let $S\subseteqq A$ be a multiplicatively closed subset of $A$ and let $A_{s}$ denote the
generalized algebra of quotients of $A$ with respect to $S$ . Now, if $X$ is an
anticommutative regularly graded A-algebra, then $X_{S}=A_{SA}\otimes X$ is an anticom-
mutative regularly graded $A_{s}$-algebra. Moreover, if (X, d) is a complex over
$A$ , then there exists a unique derivation $d_{s}$ : $X_{s}\rightarrow X_{s}$ such that $(X_{s}, d_{s})$ is a

complex over $A_{s}$ . Actually $d_{s}$ : $X_{s}\rightarrow X_{s}$ is given by $d_{s}(\frac{X}{s})=\underline{sdx}+_{-}(s\frac{-1)^{n}xds}{2}$

for each homogeneneous $\frac{X}{s}$ of degree $n$ in $X_{s}$ .
LEMMA 3.4. If $(U, d)$ is a universal complex over A then $(U_{s}, d_{s})$ is a

universal complex over $A_{s}$ .
PROOF. Let (V, $\Delta$) be any complex over $A_{6}$ . We wish to show that there

exists a unique complex homomorphism from $(U_{s}, d_{s})$ into (V, $\Delta$). For this
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recall that for each $n\geqq 1,$ $V_{n}$ can be made into an A-module by way of natural
homomorphism $\mu:A\rightarrow A_{s}$. Let $t\mu$) $Vn$ be the A-module thus obtained $(n\geqq 1)$ .
Then $(W, \Delta^{\prime})$ with $W_{0}=A,$ $W_{n}=(\beta)V_{n}(n\geqq 1)$ and $\Delta_{0}^{\prime}=\Delta_{0}\circ\mu,$ $\Delta_{n}^{\prime}=\Delta_{n}(n\geqq 1)$ is
a complex over $A$ . By universality of $(U, d)$ there exists a unique complex

homomorphism $f:(U, d)\rightarrow(W, \Delta^{\prime})$ . Consider $f_{s}$ : $U_{s}\rightarrow W_{s}$ given by $f_{s}(\frac{\mu}{s})$

$=\frac{f(\mu)}{s}$ for each $\mu\in U,$ $s\in S$ . Then it can be easily checked that $f_{s}$ is a

complex homomorphism from $(U_{S}, d_{s})$ to $(W_{s}, \Delta_{\acute{s}})$ . Moreover, $f_{s}$ is unique.
Since $W_{S}=A_{S}\bigotimes_{A}W=A_{s}+\sum_{n\geqq 1}A_{s}\bigotimes_{A}(V=A_{s}+\sum_{n\geqq 1}V_{\mathcal{T}l}$ and since $\Delta_{s}^{\prime}$ is the same
as $\Delta$ we have that $f_{s}$ is a unique homomorphism from $(U_{S}, d_{s})$ to (V, $\Delta$) and
this proves the lemma.

Now let (V, $\partial$) be a universal complex over $K\{x\}$ and let $S$ be the set of
all non-zero elements of $K\{x\}$ . Then $(V_{s}, \partial_{s})$ is a universal complex over
$K((x))$ which is the field of quotients of the integral domain $K\{x\}$ . Since the
degree of transcendence of $K\{x\}$ over $K$ is infinite, the dimension of $(V_{s})$

}

over $K((x))$ is infinite. Since $V_{s}=K((x))\otimes V$ , we have that $V_{1}$ is infinitely
generated over $K\{x\}$ . Or, in other words $V_{1}$ cannot be a finite free $K\{x\}$

module. Hence $V_{1}$ is not isomorphic to the dual of the $K\{x\}$ -module of K-
derivations on $K\{x\}$ ; and therefore, the complex of differential forms of $K\{x\}$

is not universal.
S. U. N. Y. Buffalo, New York, U. S. A.
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