J. Math. Soc. J _{et} pan Vol. 18, No. 4, 1966

Note on cohomological dimension for non-compact spaces

By Yukihiro KODAMA

(Received Feb. 9, 1966)

§1. Introduction

The purpose of the present paper is to develop the theory of cohomological dimension for non-compact spaces. Let us denote by D(X, G) the cohomological dimension of a space X with respect to an abelian group G. In the first part of this paper we shall give a characterization of D(X, G) in terms of continuous mappings of X into an Eilenberg-MacLane complex in case X is a collectionwise normal space. As an application of this characterization, we have sum theorems. Some of our sum theorems were proved by Okuyama [20] in case X is paracompact normal. In the second part of this paper we shall concern the cohomological dimension of the product of a compact space X and a paracompact normal space Y. We shall prove that $D(X \times Y, G)$ is the largest integer n such that $H^n((X, A) \times (Y, B); G) \neq 0$ for some closed sets A and B of X and Y. By our previous paper [15] or Boltyanskii [3] we know which compact spaces are dimensionally full-valued for compact spaces. However, a space which is known to be dimensionally fullvalued for paracompact normal spaces is only a locally finite polytope. This was proved by Morita $\lceil 19 \rceil$. We shall prove that a locally compact paracompact normal space is dimensionally full-valued for paracompact normal spaces if and only if it is dimensionally full-valued for compact spaces. As an immediate consequence of this theorem we can know that $\dim(X \times Y)$ $\geq \dim Y+1$ in case X is a locally compact paracompact normal space with covering dimension ≥ 1 and Y is paracompact normal. Moreover, we shall show that, if a compact space X is an ANR (metric) and R is a rational field, then $D(X, R) + D(Y, G) \leq D(X \times Y, G) \leq \dim X + D(Y, G)$ for a paracompact normal space Y and an abelian group G.

Throughout this paper we assume that all spaces are normal and mappings are continuous transformations.

§2. Cohomological dimension

Let X be a space and let \mathfrak{l} be an open covering of X. We mean by the *nerve* of \mathfrak{l} the nerve of \mathfrak{l} with weak topology. If \mathfrak{l} is locally finite, then there is a canonical mapping of X into the nerve of \mathfrak{l} . (See Dowker [5].) We denote by $\phi_{\mathfrak{l}\mathfrak{l}}$ a canonical mapping of X into the nerve of $\mathfrak{l}\mathfrak{l}$. If $\mathfrak{l}\mathfrak{l} = \{U_{\alpha} | \alpha \in \Omega\}$ is a covering of X and A is a closed set of X, then we denote the covering $\{U_{\alpha} \cap A | \alpha \in \Omega\}$ of A by $\mathfrak{l}\mathfrak{l} | A$. We mean by $H^*(X, A:G)$ the Čech cohomology group of (X, A) with coefficients in G based on locally finite open coverings of X. If X is paracompact normal, then $H^*(X, A:G)$ is equal to the unrestricted Čech cohomology group.

DEFINITION 1. The cohomological dimension D(X, G) of a space X with respect to an abelian group G is the least integer n such that, for each $m \ge n$ and each closed set A of X the homomorphism $i^*: H^m(X:G) \to H^m(A:G)$ induced by the inclusion mapping $i: A \subset X$ is onto.

Recently, Skljarenko [23] proved that, if X is paracompact normal, then D(X, G) is the largest integer n such that $H^n(X, A:G) \neq 0$ for some closed set A of X.

DEFINITION 2. A space X is called *collectionwise normal* if, for every locally finite collection $\{A_{\lambda}\}$ of mutually disjoint closed subsets of X, there is a collection $\{U_{\lambda}\}$ of mutually disjoint open sets such that $A_{\lambda} \subset U_{\lambda}$ for each λ (Bing [1]).

The following was proved by Dowker [6, Lemma 1].

LEMMA 1. (Dowker) Let A be a closed subset of a collectionwise normal space X and let $\{U_{\lambda}\}$ be a locally finite open covering of A. Then there exists a locally finite open covering $\{V_{\lambda}\}$ of X such that, for each λ , $V_{\lambda} \cap A \subset U_{\lambda}$.

DEFINITION 3. Let Q be a class of spaces. A space X is called an ANR(Q) if, whenever X is a closed subset of Y in Q, X is a retract of a neighborhood of X in Y.

LEMMA 2. (i) (Dowker) A simplicial complex with metric topology is an ANR (collectionwise normal and perfectly normal).

(ii) (Hanner) A finite dimensional simplicial complex with metric topology is an ANR (collectionwise normal).

The proof is found in Dowker [6] and Hanner [10].

For an abelian group G, we denote by $K(G, m), m \ge 1$, an Eilenberg-Mac-Lane space which is a simplicial complex with metric topology (cf. Hu [11]). For m = 0, K(G, 0) is G itself with discrete topology. For an integer q, denote by $(K(G, m))^q$ the q-section of K(G, m). According to Wojdyslawski [24, p. 186] $(K(G, m))^q$ can be imbedded as a closed set of a convex subset D of a normed vector space. Since $(K(G, m))^q$ is an ANR (*metric*) by Lemma 2 (i), there is a neighborhood T of $(K(G, m))^q$ in D and a retraction $r: T \to (K(G, m))^q$. For each point k of $(K(G, m))^q$, take an open spherical neighborhood S(k) such that $S(k) \subset T$. Put $\mathfrak{S} = \{S(k) | k \in (K(G, m))^q\}$. There is a subdivision K' of $(K(G, m))^q$ such that the open covering of $(K(G, m))^q$ consisting of the open stars of K' is a star refinement of the open covering $\mathfrak{S}|(K(G, m))^q$. We denote K' by $(K(G, m))^q$ again.

We say that two mappings f_1 and f_2 of a space X into a simplicial complex K is *contiguous* if, for each point x of X, there is a closed simplex s(x) of K such that $f_1(x) \cup f_2(x) \subset s(x)$.

LEMMA 3. Let A be a closed set of a collectionwise normal space X, and let f_1 and f_2 be contiguous mappings of A into $(K(G, m))^q$. If f_1 is extendable over X, then f_2 is extendable over X.

PROOF. We shall prove the lemma by the same argument as in Dowker [4, Th. 2.1]. Put $(K(G, m))^q = K$. Let $F_1: X \to K$ be an extension of f_1 . Since K is an ANR (collectionwise normal) by Lemma 2 (ii), f_2 is extendable over some open neighborhood U_1 of A in X. Denote by f' this extension. Since f_1 and f_2 are contiguous, we can take an open neighborhood U_2 of A such that (1) $\overline{U}_2 \subset U_1$ and (2), for each point x of U_2 , there is some spherical neighborhood S(k) of \mathfrak{S} which contains $F_1(x) \cup f'(x)$. Let h_1 be the mapping of $U_2 \times I$ into T which maps (x, t) in the point dividing the segment $(F_1(x), f'(x))$ in the ratio t: 1-t. Define the mapping $h_2: X \times 0 \cup U_2 \times I \to \bigcup \{S(k) \mid S(k) \in \mathfrak{S}\} \subset T$ by $h_2 \mid X \times 0 = F_1$ and $h_2 \mid U_2 \times I = h_1$. Take an open set U_3 of X such that g(x)=1 for $x \in A$ and g(x)=0 for $x \in X-U_3$. Let h_3 be the mapping of $X \times I$ into T defined by $h_3(x, t) = h_2(x, t \cdot g(x))$. Define the mapping $F_2: X \to K$ by $F_2(x) = rh_3(x, 1)$ for $x \in X$. Since $r: T \to K$ is a retraction, F_2 is an extension of f_2 .

REMARK. If X is paracompact normal, then Lemma 1 is proved simply. Since $X \times I$ is paracompact normal, it follows from the homotopy extension theorem.

LEMMA 4. Let X be a collectionwise normal space such that dim X < q, where dim X means the covering dimension of X. In order that every mapping from a closed set A into $(K(G, m))^q$ be extendable over X it is necessary and sufficient that the homomorphism $i^*: H^m(X:G) \to H^m(A:G)$ induced by the inclusion mapping $i: A \subset X$ be onto.

PROOF OF THE NECESSITY. Take an element e of $H^m(A:G)$. Let \mathfrak{l} be a locally finite open covering of A with order $\leq q$ such that, if $N_{\mathfrak{l}}$ is the nerve of \mathfrak{l} , there is a cocycle $z_{\mathfrak{l}}$ of $Z^m(N_{\mathfrak{l}}:G)$ which represents e. Denote $(K(G, m))^q$ by K and let k_0 be a fixed vertex of K. Let $f_{\mathfrak{l}}$ be a mapping from the m-section $(N_{\mathfrak{l}})^m$ of $N_{\mathfrak{l}}$ into K such that $f_{\mathfrak{l}}((N_{\mathfrak{l}})^{m-1}) = k_0$ and, for each m-simplex

 $\sigma, f_{\mathfrak{ll}} | \sigma$ represents the element $z_{\mathfrak{ll}}(\sigma)$ of the homotopy group $\pi_m(K, k_0) = G$. Since $z_{\mathfrak{u}}$ is a cocycle over G, $f_{\mathfrak{u}}$ is extendable over $N_{\mathfrak{u}}$. (See Hu [11, Chap. VI].) Denote this extension by $f_{\mathfrak{u}}$ again. We say that $f_{\mathfrak{u}}$ is determined by the cocycle $z_{\mathfrak{u}}$. Let $\overline{f}_{\mathfrak{u}}$ be a simplicial approximation of $f_{\mathfrak{u}}$. Then $\overline{f}_{\mathfrak{u}}$ is a simplicial mapping from a subdivision $\overline{N}_{\mathfrak{l}}$ of $N_{\mathfrak{l}}$ into K such that $\overline{f}_{\mathfrak{l}} \sim f_{\mathfrak{l}} j : \overline{N}_{\mathfrak{l}} \to K$, where $j: \overline{N}_{\mathfrak{u}} \to N_{\mathfrak{u}}$ is the identity mapping. Let $\phi_{\mathfrak{u}}$ be a canonical mapping of A into $N_{\mathfrak{u}}$. Put $\bar{\phi}_{\mathfrak{u}} = j^{-1}\phi_{\mathfrak{u}}$. Let \mathfrak{B}' be the open covering of $\bar{N}_{\mathfrak{u}}$ consisting of the open stars of $\overline{N}_{\mathfrak{u}}$. We may assume that $\overline{N}_{\mathfrak{u}}$ is the nerve of the covering $\mathfrak{V} = \bar{\phi}_{\mathfrak{u}}^{-1}(\mathfrak{V}')$. By the assumption the mapping $\bar{f}_{\mathfrak{u}} \bar{\phi}_{\mathfrak{u}} \colon A \to K$ has an extension $g: X \to K$. Denote by \mathfrak{U}_0 the open covering consisting of the open stars of K. Let \mathfrak{W} be a locally finite open covering of X with order $\leq q$ such that \mathfrak{W} is a refinement of $g^{-1}(\mathfrak{U}_0)$ and $\mathfrak{W}|A$ is a refinement of \mathfrak{V} . The existence of such a covering follows from Lemma 1. Let $M_{\mathfrak{W}}$ be the nerve of \mathfrak{W} . We denote by w the vertex of $M_{\mathfrak{W}}$ corresponding to an element W of \mathfrak{W} . Define a simplicial mapping $f_{\mathfrak{B}}: M_{\mathfrak{B}} \to K$ by $f_{\mathfrak{B}}(w) = u$ for a vertex w of $M_{\mathfrak{B}}$, where $W \subset g^{-1}(U)$, $U \in \mathfrak{U}_0$, and u is the vertex of K corresponding to U. Let us denote by $N_{\mathfrak{W}}$ the nerve of $\mathfrak{W} \mid A$, and let $\overline{\pi}_{\mathfrak{W}\mathfrak{U}} : N_{\mathfrak{W}} \to \overline{N}_{\mathfrak{U}}, \pi_{\mathfrak{W}\mathfrak{U}} : N_{\mathfrak{W}} \to N_{\mathfrak{U}}$ and π : $\bar{N}_{\mathfrak{u}} \to N_{\mathfrak{u}}$ be projections. Since $\bar{f}_{\mathfrak{u}} \bar{\pi}_{\mathfrak{W}\mathfrak{u}}$ and $f_{\mathfrak{W}} | N_{\mathfrak{W}}$ are contiguous, they are homotopic. Also, we have $f_{\mathfrak{u}} \pi \sim f_{\mathfrak{u}} j \sim \overline{f}_{\mathfrak{u}} : \overline{N}_{\mathfrak{u}} \to K$. Thus, we know $f_{\mathfrak{u}} \pi_{\mathfrak{Ru}}$ $\sim f_{\mathfrak{W}} | N_{\mathfrak{W}} : N_{\mathfrak{W}} \to K$. Since $f_{\mathfrak{U}} \pi_{\mathfrak{W}\mathfrak{U}} ((N_{\mathfrak{W}})^{m-1}) = k_0$, K has the homotopy extension property in $M_{\mathfrak{B}}$ and K is (m-1)-connected, there is a mapping $g_{\mathfrak{B}}: M_{\mathfrak{B}} \to K$ such that $g_{\mathfrak{W}}((M_{\mathfrak{W}})^{m-1}) = k_0$ and $g_{\mathfrak{W}}|_{N_{\mathfrak{W}}} = f_{\mathfrak{U}} \pi_{\mathfrak{W}\mathfrak{U}}$. For each *m*-simplex σ of $M_{\mathfrak{W}}$, if we assign the element of $\pi_m(K) = G$ represented by $g_{\mathfrak{B}} | \sigma$ to σ , then we have a cocycle $z_{\mathfrak{W}}$ of $M_{\mathfrak{W}}$ (cf. Hu [11, Chap. VI]). We say that $z_{\mathfrak{W}}$ is determined by the mapping $g_{\mathfrak{W}}$. The restriction of $z_{\mathfrak{W}}$ to $N_{\mathfrak{W}}$ is the cocycle $(\pi_{\mathfrak{W}\mathfrak{u}})^* z_{\mathfrak{u}}$. This proves that $i^*: H^m(X:G) \to H^m(A:G)$ is onto.

PROOF OF THE SUFFICIENCY. Let f be a mapping of A into K. We shall use the same notation in the proof of the necessity. Take a locally finite open covering \mathfrak{ll} of A such that order of $\mathfrak{ll} \leq q$ and \mathfrak{ll} is a refinement of $f^{-1}(\mathfrak{ll}_0)$. There is a mapping $f_\mathfrak{ll}: N_\mathfrak{ll} \to K$ such that $f_\mathfrak{ll} \phi_\mathfrak{ll}$ and f are contiguous. Since K is (m-1)-connected, we can take a mapping $f': N_\mathfrak{ll} \to K$ such that $f'((N_\mathfrak{ll})^{m-1})$ $= k_0$ and $f' \sim f_\mathfrak{ll}$. The mapping f' determines a cocycle $z_\mathfrak{ll}$ of $Z^m(N_\mathfrak{ll}:G)$. Let $f'_\mathfrak{ll}$ be a mapping from a subdivision $\overline{N}_\mathfrak{ll}$ of $N_\mathfrak{ll}$ into K which is a simplicial approximation of f'. Put $\phi_\mathfrak{ll} = j^{-1}\phi_\mathfrak{ll}$. Let \mathfrak{ll}' be the open covering of A consisting of the inverse images of the open stars of $\overline{N}_\mathfrak{ll}$ under $\phi_\mathfrak{ll}$. We may assume that $\overline{N}_\mathfrak{ll}$ is the nerve of \mathfrak{ll}' and $\phi_\mathfrak{ll}$ is a canonical mapping of A into $\overline{N}_\mathfrak{ll}$. Take a locally finite open covering \mathfrak{V} of X with order $\leq q$ such that (1) $\mathfrak{B} | A$ is a refinement of \mathfrak{ll}' and (2) there is a cocycle $z_\mathfrak{R}$ of $Z^m(M_\mathfrak{R}:G)$ whose restriction to $N_\mathfrak{R}$ is $(\pi_\mathfrak{R}\mathfrak{ll})^* z_\mathfrak{ll}$, where $(M_\mathfrak{R}, N_\mathfrak{R})$ is the pair of the nerves of \mathfrak{V} for (X, A) and $\pi_{\mathfrak{Bl}}$ is a projection: $N_{\mathfrak{B}} \to N_{\mathfrak{l}}$. Since $\mathfrak{B}|A$ is a refinement of $f^{-1}(\mathfrak{l}_0)$, there is a mapping $f_{\mathfrak{B}}: N_{\mathfrak{B}} \to K$ such that f and $f_{\mathfrak{B}}\phi_{\mathfrak{B}}|A$ are contiguous. where $\phi_{\mathfrak{B}}: X \to M_{\mathfrak{B}}$ is a canonical mapping. Then we have homotopies $f_{\mathfrak{B}} \sim f_{\mathfrak{l}}\pi_{\mathfrak{Bl}} \sim f_{\mathfrak{l}}\pi_{\mathfrak{l}\mathfrak{B}}: N_{\mathfrak{B}} \to K$, where $\bar{\pi}_{\mathfrak{Bl}}: N_{\mathfrak{B}} \to N_{\mathfrak{l}}$ is a projection. Since the cocycle $(\pi_{\mathfrak{Bl}})^* z_{\mathfrak{l}}$ determined by the mapping $f_{\mathfrak{l}}\pi_{\mathfrak{B}\mathfrak{l}}$ is extended to the cocycle $z_{\mathfrak{B}}$ of $M_{\mathfrak{B}}, f_{\mathfrak{l}}\pi_{\mathfrak{B}\mathfrak{l}}$ is extendable over $M_{\mathfrak{B}}$. Since K has the homotopy extension property in $M_{\mathfrak{B}}, f_{\mathfrak{B}}$ is extendable over $M_{\mathfrak{B}}$. Denote this extension by $f_{\mathfrak{B}}$ again. Since $f_{\mathfrak{B}}\phi_{\mathfrak{B}}|A$ and f are contiguous, by Lemma 3, f is extendable over X. This completes the proof.

The following is a consequence of Lemma 4 and an analogous theorem in terms of homology is proved in [15, II, p. 103].

COROLLARY 1. If X is a collectionwise normal space with covering dimension > 0, then $D(X, G) \ge 1$ for an abelian group G.

PROOF. By Morita [17, I, Th. 3.1], there exist disjoint closed subsets A and B of X such that for any open set $U, A \subset U \subset \overline{U} \subset X - B$, we have $\overline{U} - U \neq \phi$. Put K = K(G, 0). K is G itself with discrete topology. Take two distinct points a and b of K. Define a mapping f of $A \cup B$ into K by f(A) = a and f(B) = b. If the homomorphism $i^*: H^0(X:G) \to H^0(A \cup B:G)$ is onto, then we can prove by the same argument as in the proof of the sufficiency of Lemma 4 for m = 0 that f is extendable over X. Since K has discrete topology, we have a contradiction.

We need the following lemma in § 4.

LEMMA 5. Let X be a collectionwise normal space with covering dimension $\langle q, and let A and A' be closed sets of X such that <math>A \subset A'$. If there is a mapping f of A into $(K(G, m))^q$ such that (1) f is extendable over A' and (2) f is not extendable over X, then the homomorphism $i^*: H^{m+1}(X, A': G) \rightarrow H^{m+1}(X, A: G)$ induced by the inclusion mapping $i: (X, A) \subset (X, A')$ is not zero.

PROOF. Let $f': A' \to K = (K(G, m))^q$ be an extension of f. There is a locally finite open covering \mathbb{I} of A' with order $\leq q$ and a mapping $f'_{\mathfrak{l}}$ from the nerve $L_{\mathfrak{l}}$ of \mathbb{I} into K such that f' and $f'_{\mathfrak{l}}\phi_{\mathfrak{l}}$ are contiguous. Take a mapping $f_{\mathfrak{l}}: L_{\mathfrak{l}} \to K$ such that $f'_{\mathfrak{l}} \sim f_{\mathfrak{l}}$ and $f_{\mathfrak{l}}((L_{\mathfrak{l}})^{m-1}) = k_0$. Let $N_{\mathfrak{l}}$ be the nerve of $\mathbb{I} | A$. Denote by $z'_{\mathfrak{l}}$ and $z_{\mathfrak{l}}$ the cocycles of $L_{\mathfrak{l}}$ and $N_{\mathfrak{l}}$ determined by the mappings $f_{\mathfrak{l}}$ and $f_{\mathfrak{l}} | N_{\mathfrak{l}}$. Then the restriction of $z'_{\mathfrak{l}}$ to $N_{\mathfrak{l}}$ is $z_{\mathfrak{l}}$. Let e' and e be the elements of $H^m(A':G)$ and $H^m(A:G)$ represented by $z'_{\mathfrak{l}}$ and $z_{\mathfrak{l}}$. We have $e = j^*e'$, where $j: A \subset A'$. Take a locally finite open covering \mathfrak{V} of Xwith order $\leq q$ such that $\mathfrak{V} | A'$ is a refinement of \mathfrak{l} . By Lemma 1, any locally finite open covering of X has such a covering \mathfrak{V} as a refinement. Let $M_{\mathfrak{g}}$ and $N_{\mathfrak{g}}$ be the nerves of \mathfrak{V} and $\mathfrak{V} | A$. Assume that there is a cocycle z of $M_{\mathfrak{g}}$ whose restriction to $N_{\mathfrak{g}}$ is cohomologous to $(\pi_{\mathfrak{gu}})^* z_{\mathfrak{l}}$ in $N_{\mathfrak{g}}$, where $\pi_{\mathfrak{gu}}: N_{\mathfrak{g}}$ $\to N_{\mathfrak{l}}$ is a projection. By the same argument as in the proof of the sufficiency Y. KODAMA

of Lemma 4, we can know that the mapping $f: A \to K$ is extendable over X. Thus we proved that $e \notin j_1^* H^m(X:G)$, where $j_1: A \subset X$. Consider the following diagram:

It is known by Lemma 1 that the Čech cohomology theory based on locally finite open coverings in collectionwise normal spaces satisfies axioms 3 and 4 of Eilenberg-Steenrod [9]. Thus we have $i^*\delta_1^*e' = \delta^*j^*e' = \delta^*e \neq 0$. This completes the proof.

The following theorem is an immediate consequence of Lemma 4 and Definition 1.

THEOREM 1. Let X be a collectionwise normal space with covering dimension $\langle q$. The cohomological dimension D(X:G) is the least integer n such that, for each $m \ge n$ and each closed set A of X, every mapping from A into $(K(G, m))^q$ is extendable over X.

Let X be collectionwise normal and perfectly normal. If we make use of Lemma 2 (i) in place of Lemma 2 (ii) in the proofs of Lemmas 3 and 4, then we know that Lemmas 3 and 4 are true without restriction of finite dimension. Thus we have:

THEOREM 2. If X is collectionwise normal and perfectly normal, then the cohomological dimension D(X:G) is the least integer n such that, for each $m \ge n$ and each closed set A of X, every mapping from A into K(G, m) is extendable over X.

§3. Sum theorems

DEFINITION 4. Let $\{A_{\lambda}\}$ be a closed covering of a space X. We say that X has the weak topology with respect to $\{A_{\lambda}\}$, if the union of any subcollection $\{A_{\mu}\}$ of $\{A_{\lambda}\}$ is closed in X and any subset of $\bigcup A_{\mu}$ whose intersection with each A_{μ} is closed relative to the subspace topology of A_{μ} is necessarily closed in the subspace $\bigcup A_{\mu}$ (Morita [18]).

THEOREM 3. Let X be a finite dimensional collectionwise normal space or a collectionwise normal and perfectly normal space.

(1) If $\{A_i; i=1, 2, \dots\}$ is a closed covering of X, then $D(X, G) = Max \{D(A_i, G); i=1, 2, \dots\}$.

(2) If X has the weak topology with respect to $\{A_{\lambda} | \lambda \in \Gamma\}$, then $D(X, G) = Max \{D(A_{\lambda}, G); \lambda \in \Gamma\}$.

(3) If A is a closed subset of X such that the complement X-A and X

348

are both collectionwise normal or collectionwise normal and perfectly normal, then $D(X, G) \leq Max \{D(X-A, G), D(A, G)\}$. Moreover, A is G_{δ} , then the equality holds.

REMARK 1. If $\{A_{\lambda}\}$ is a locally finite closed covering of X, then X has the weak topology with respect to $\{A_{\lambda}\}$ by Morita [18].

REMARK 2. In case X is paracompact normal, (1), (3) and (2) in which $\{A_{\lambda}\}$ is replaced by a locally finite closed covering are proved by Okuyama [20].

By an analogous argument as in Morita [18, I, Th. 2], Theorem 3 can be deduced from Theorems 1 and 2 and the following Lemma.

LEMMA 6. Let K be a space having the neighborhood extension property in X. Under the assumptions of Theorem 4, if K has the extension property in subsets A_i , A_λ , A and X-A, then K has the extension property in X.

PROOF. Let $\{A_i; i=1, 2, \cdots\}$ be a closed covering of X, and let f_0 be a mapping from a closed set F_0 of X into K. Since K has the extension property in A_1 , f_0 is extendable over $F_0 \cup A_1$. Since K has the neighborhood extension property in X, there is a closed neighborhood F_1 of $F_0 \cup A_1$ over which f is extendable. Continuing such procedure, we know that there exist sequences of closed sets $\{F_k; k=1, 2, \cdots\}$ and mappings $\{f_k; k=1, 2, \cdots\}$ such that (1) F_k is a closed neighborhood of $A_k \cup F_{k-1}$ and (2) $f_k: F_k \to K$ is an extension of $f_{k-1}: F_{k-1} \to K$, $k=1, 2, \cdots$. Define a mapping $f: X \to K$ by $f(x) = f_k(x)$ for $x \in F_k$. Since each point x of X is contained in the interior of some F_k , f is continuous. Thus f_0 has a continuous extension. Others are proved similarly.

DEFINITION 5. A compact space X is called to be a *Cantor manifold for* an abelian group G if, whenever X is a union of non empty closed subsets A and B, then $D(A \cap B, G) \ge D(X, G) - 1$.

It is obvious that X is a Cantor manifold if and only if it is a Cantor manifold for Z, where Z is the additive group of integers.

THEOREM 4. Every finite dimensional compact space X contains a Cantor manifold C for G such that D(X, G) = D(C, G).

By Hurewicz-Wallman [12, Th. VI, 8] the theorem is a consequence of Theorem 1 and the following lemma.

LEMMA 7. Let X be a finite dimensional paracompact normal space such that D(X, G) < m-1. Then every mapping $f: X \rightarrow (K(G, m))^q$ is homotopic to a constant mapping, where $q > \dim X$.

PROOF. In the next section, it is proved that $D(X \times I, G) = D(X, G) + 1$ for a finite dimensional paracompact normal space X. Thus, the lemma is a consequence of Theorem 1.

Y. Kodama

$\S 4$. The cohomological dimension of product spaces

THEOREM 5. If X is a finite dimensional locally compact metric space and Y is a finite dimensional paracompact normal space, then $D(X \times Y, G)$ is the largest integer n such that, for some closed sets $A_2 \subset A_1 \subset X$ and $B_2 \subset B_1 \subset Y$, $H^n((A_1, A_2) \times (B_1, B_2): G) \neq 0$.

REMARK 1. In case X and Y are locally compact paracompact normal, the theorem is proved by Dyer [8]. The local compactness of $X \times Y$ is essential in his proof.

PROOF. Put $d_1(X \times Y, G) = \text{Max} \{n : H^n((A_1, A_2) \times (B_1, B_2) : G) \neq 0 \text{ for some closed sets } A_i \text{ and } B_i \text{ of } X \text{ and } Y\} \text{ and } d_2(X \times Y, G) = \text{Max} \{n : H^n(X \times Y, F : G) \neq 0 \text{ for some closed set } F \text{ of } X \times Y\}.$ Since $X \times Y$ is paracompact normal by Morita [19], we have the equality $D(X \times Y, G) = d_2(X \times Y, G)$ by Skljarenko [23]. Using the exact sequence of triples, we know that $d_2(X \times Y, G) = \text{Max} \{n : H^n(F_1, F_2 : G) \neq 0 \text{ for some closed sets } F_2 \subset F_1 \subset X \times Y\}.$ Thus, we have $D(X \times Y, G) \ge d_1(X \times Y, G)$. It is sufficient to prove that $D(X \times Y, G) \le d_1(X \times Y, G)$. By Theorem 3 or Okuyama [20] we may assume that X is a compact metric space. Let us set the following assumption.

Assumption (*):
$$\begin{cases} D(X \times Y, G) = n, \text{ and } H^m((A_1, A_2) \times (B_1, B_2): G) = 0 \\ \text{for } m \ge n, \text{ any closed sets } A_i \text{ and } B_i, i = 1, 2. \end{cases}$$

We shall prove that Assumption (*) gives us a contradiction. Since the inequality $D(X \times Y, G) > d_1(X \times Y, G)$ means (*), we have the theorem. The proof is devided in five steps.

1st step. Since X is a compact metric space, it is the inverse limit of a countable sequence $\{M_i: i=1, 2, \cdots\}$ of finite simplicial complexes such that (i) dim $M_i \leq \dim X$, and (ii) the projection $\pi_i^{i+1}: M_{i+1} \rightarrow M_i$ is linear in each simplex of $M_{i+1}, i=1, 2, \cdots$. (See Isbell [13].) Denote by $\pi_i^j: M_j \rightarrow M_i, j > i$, the composition of $\pi_k^{k+1}, k=i, \cdots, j-1$, and by μ_i the projection: $X \rightarrow M_i$. We have $\mu_i = \pi_i^j \mu_j$ for j > i. Let $\mathfrak{U}_i, i=1, 2, \cdots$, be the open covering of X consisting of the inverse images of the open stars of M_i under μ_i . We can assume without loss of generality that $\{\mathfrak{U}_i; i=1, 2, \cdots\}$ forms a cofinal system of open coverings of X.

2nd step. By Theorem 1 and Assumption (*), there is a closed set F of $X \times Y$ and a mapping f of F into $(K(G, n-1))^q$ such that f is not extendable over $X \times Y$, where $q > \dim X + \dim Y$. Put $K = (K(G, n-1))^q$. Since K has the neighborhood extension property in $X \times Y$ by Lemma 2, f is extendable over some open neighborhood S of F. We denote an extension by f again. Let \mathfrak{U} be a locally finite open covering of K which is a refinement of the open covering of K consisting of the open stars of K. Since the covering $f^{-1}\mathfrak{U}|F$ of F

is a locally finite collection in $X \times Y$, there exists a locally finite open covering $\mathfrak{W} = \{W_{\alpha} | \alpha \in \Omega\}$ of Y with order $\leq \dim Y+1$ satisfying the following conditions:

(i) For each $\alpha \in \Omega$ there is an open covering $\mathfrak{U}_{i(\alpha)}$ of X such that the collection $\mathfrak{V} = {\{\mathfrak{U}_{i(\alpha)} \times W_{\alpha} | \alpha \in \Omega\}}$ is a locally finite open covering of $X \times Y$. (See 1st step for $\mathfrak{U}_{i(\alpha)}$.)

- (ii) The covering $\mathfrak{V}|F$ is a star refinement of $f^{-1}\mathfrak{U}|F$.
- (iii) Every element of \mathfrak{V} does not intersect both F and $X \times Y S$.

(iv) If $\Omega_{\alpha} = \{\beta | W_{\alpha} \cap W_{\beta} \neq \phi\}$, then Max $\{i(\beta) | \beta \in \Omega_{\alpha}\} < \infty$ for each $\alpha \in \Omega$. The existence of \mathfrak{V} satisfying (iv) is proved by taking locally finite refinements and star refinements.

3rd step. Let N be the nerve of \mathfrak{W} . Denote by w_{α} the vertex of N corresponding to an element W_{α} of \mathfrak{B} . Let T^{0} be a topological sum of the sets $M_{i(\alpha)} \times w_{\alpha}, \alpha \in \Omega$. Suppose that T^{l} is constructed for $0 \leq l < j$. For a j-simplex σ of N, put $i(\sigma) = \text{Max} \{i(\mu) : \mu \text{ is a } (j-1) \text{-face of } \sigma\}$. Let T^j be a topological sum of the sets $M_{i(\sigma)} \times \sigma$, where σ ranges over all *j*-simplexes of N. For 1-simplex $s = (w_{\alpha}, w_{\beta})$ of N, since $i(s) = \max \{i(\alpha), i(\beta)\}$, the projections $\pi_{i(\alpha)}^{i(s)}$ and $\pi_{i(\beta)}^{i(s)}$ induce a mapping g_s of the subcomplex $M_{i(s)} \times (w_{\alpha} \cup w_{\beta})$ of T^{\perp} into T^{0} . If we identify the corresponding points of T^{1} and T^{0} under these mappings g_s , we obtain a set P_1 . Let f_1 be the identification mapping: $T^{0} \cup T^{1} \rightarrow P_{1}$. Since the projection π_{i}^{j} , i < j, is linear in each simplex of M_{i} , we see that P_1 is a CW complex whose closed cells are topological cells. The closure finiteness of P_1 is guaranteed by the condition (iv) satisfied by the covering \mathfrak{W} . (See 2nd step.) Assume that the CW complex P_{j-1} is constructed for j-1>0 and $f_{j-1}: \bigcup_{i=0}^{j-1} T_i \to P_{j-1}$ is the identification mapping. Consider the cell complex $T^{j} = \bigcup \{M_{i(\sigma)} \times \sigma \mid \sigma \text{ is a } j \text{-simplex of } N\}$. If μ is a (j-1)-face of σ , then we have $i(\mu) \leq i(\sigma)$. Put $S^j = \bigcup \{M_{i(\sigma)} \times \dot{\sigma}\}$, where $\dot{\sigma}$ is the boundary of σ . Then S^{j} is a subcomplex of T^{j} . Define the mapping $g_{j}: S^{j} \rightarrow P_{j-1}$ by $g_i(x, y) = f_{j-1}(\pi_{i(\mu)}^{i(\sigma)}(x), y)$ for $x \in M_{i(\sigma)}$ and $y \in \mu$, where μ is a (j-1)-face of σ . If s is a k-face of σ , $k \leq j-2$, and $y \in s$, then we have $f_{j-1}(\pi_{\lambda(\mu)}^{i(\sigma)}(x), y) =$ $f_k(\pi_{\ell(s)}^{i(\sigma)}(x), y)$, where μ is a (j-1)-face of σ containing the simplex s. Thus we see that g_j is a continuous mapping. By identifying the corresponding points of T^{j} and P_{j-1} under the mapping g_{j} , we obtain a CW complex P_{j} . Denote by P the CW complex P_j for $j = \dim Y$. Each closed cell τ of P is obtained from a product cell $\nu \times \sigma$ by contracting some simplexes of $\nu \times \dot{\sigma}$, where ν and σ are simplexes of $M_{i(\sigma)}$ and N. Thus each closed cell of P is a topological cell. We say that P is the CW complex associated with the product covering \mathfrak{V} of $X \times Y$.

4th step. Consider the cell complex $T^j = \bigcup \{M_{i(\sigma)} \times \sigma\}$. (See 3rd step.) Let ϕ be a canonical mapping of Y into N. Put $B_{\sigma} = \phi^{-1}(\sigma)$ for a j-simplex σ of

Y. Kodama

N. Define the mapping $\bar{g}_{\sigma}: X \times B_{\sigma} \to T^{j}$ by $\bar{g}_{\sigma}(x, y) = (\mu_{i(\sigma)}(x), \phi(y))$ for $x \in X$ and $y \in B_{\sigma}$. Since the mapping $\bar{g}_{\sigma}, j = 1, 2, \cdots$, dim Y and $\sigma \in N$, is compatible with the identification mapping: $\bigcup \{T^{j}, j = 1, 2, \cdots$. dim $Y\} \to P$ (cf. 3rd step), \bar{g}_{σ} induces the mapping $\phi: X \times Y \to P$. It is easy to see that ϕ is continuous. Moreover, the mapping ϕ has the following property: For each closed cell τ of P there are simplexes σ of N and $\nu_{i(\sigma)}$ of $M_{i(\sigma)}$ such that $\phi^{-1}(\tau, \dot{\tau}) = (\mu_{i(\sigma)}^{-1}(\nu_{i(\sigma)})$ $\times \phi^{-1}(\sigma), \mu_{i(\sigma)}^{-1}(\dot{\nu}_{i(\sigma)}) \times \phi^{-1}(\sigma) \cup \mu_{i(\sigma)}^{-1}(\nu_{i(\sigma)}) \times \phi^{-1}(\dot{\sigma}))$, where $\dot{\tau}$ means the boundary of τ . Put $A_{\tau} = \mu_{i(\sigma)}^{-1}(\nu_{i(\sigma)}), A_{\dot{\tau}} = \mu_{i(\sigma)}^{-1}(\dot{\nu}_{i(\sigma)}), B_{\tau} = \phi^{-1}(\sigma)$ and $B_{\dot{\tau}} = \phi^{-1}(\dot{\tau})$ for a closed cell τ of P. Then we have $\phi^{-1}(\tau, \dot{\tau}) = ((A_{\tau}, A_{\dot{\tau}}) \times (B_{\tau}, B_{\dot{\tau}}))$.

5th step. Let Q be the minimal closed subcomplex of P such that $\phi(F)$ $\subset Q$. By the condition (iii) satisfied by the covering \mathfrak{W} (2nd step), we have $\psi(X \times Y - S) \cap Q = \phi$. By an analogous argument as in the proof of Lemma 4 we see that there is a mapping g of Q into K such that $g\phi|F \sim f: F \rightarrow K$. Denote Q^j the j-section of Q. Since K is (n-2)-connected, we may assume that $g(Q^{n-2}) = k_0$ (=a base point of K). Let L be the closed subcomplex of P consisting of closed cells which do not intersect Q. Let us extend g over $^{4}Q \cup L \cup P^{n-1}$ such that $g(L) = k_{0}$ and, if μ is an (n-1)-cell of P^{n-1} whose interior is in P-Q, $g(\mu) = k_0$. Take an *n*-cell τ such that $\tau \in Q \cup L$. Then we have $\psi^{-1}(\tau, \dot{\tau}) = ((A_{\tau}, A_{\dot{\tau}}) \times (B_{\tau}, B_{\dot{\tau}}))$ by 4th step. Denote by h_{τ} the mapping $g\psi|\psi^{-1}(\dot{\tau}):\psi^{-1}(\dot{\tau})\to K$. Since $H^n((A_{\tau}, A_{\dot{\tau}})\times(B_{\tau}, B_{\dot{\tau}}):G)=0$ by Assumption (*), the homomorphism : $H^{n-1}(A_{\tau} \times B_{\tau}:G) \rightarrow H^{n-1}(A_{\tau} \times B_{\tau}: \cup A_{\tau} \times B_{\tau}:G)$ is onto. By Lemma 4 h_{τ} is extendable over $\psi^{-1}(\tau) = A_{\tau} \times B_{\tau}$. Continuing this procedure, we see that the mapping $g\phi|F:F \rightarrow K$ is extendable over $X \times Y$. Since $f \sim g\phi | F: F \rightarrow K$, the mapping f is extendable over $X \times Y$. We obtain a contradiction. This completes the proof.

From the proof of Theorem 5 (3rd step), we can see the following fact. Let $D(X \times Y, G) = n$. Then there exist; (1) closed sets $A_2 \subset A_1 \subset X$ and $B_2 \subset B_1 \subset Y$, (2) closed simplexes ν and σ , (3) mappings $f:(A_1, A_2) \to (\nu, \dot{\nu})$, $g:(B_1, B_2) \to (\sigma, \dot{\sigma})$ and $h:(\nu \times \sigma)^* = \nu \times \dot{\sigma} \cup \dot{\nu} \times \sigma \to (K(G, n-1))^q$, and (4) the mapping $h(f \times g) | A_1 \times B_2 \cup A_2 \times B_1 : A_1 \times B_2 \cup A_2 \times B_1 \to (K(G, n-1))^q$ is not extendable over $A_1 \times B_1$. Extend the mappings f and g over X and Y, respectively. We denote by f and g such extensions, again. Put $f^{-1}(\dot{\nu}) = A$ and $g^{-1}(\dot{\sigma}) = B$. Then the mapping $h(f \times g) | X \times B \cup A \times Y : X \times B \cup A \times Y \to (K(G, n-1))^q$ is not extendable over $X \times Y$. By Theorem 1, the homomorphism : $H^{n-1}(X \times Y:G) \to H^{n-1}(X \times B \cup A \times Y:G)$ is not onto.

Consider the mapping $h: (\nu \times \sigma) = \nu \times \dot{\sigma} \cup \dot{\nu} \times \sigma \to (K(G, n-1))^q$. Since $(K(G, n-1))^q$ has the neighborhood extension property in $\nu \times \sigma$, h is extendable over some neighborhood U of $(\nu \times \sigma)$ in $\nu \times \sigma$. Denote this extension by h again. By the compactness of $\nu \times \sigma$, there are closed neighborhoods s_1 and s_2 of $\dot{\nu}$ and $\dot{\sigma}$ such that $\nu \times s_2 \cup s_1 \times \sigma \subset U$. Put $A' = f^{-1}(s_1)$ and $B' = g^{-1}(s_2)$.

Then A' and B' are closed neighborhoods of A and B. Moreover, the mapping $h(f \times g) | X \times B' \cup A' \times Y : X \times B' \cup A' \times Y \rightarrow (K(G, n-1))^q$ is not extendable over $X \times Y$. By Lemma 5, the homomorphism $i^* : H^n((X, A') \times (Y, B') : G) \rightarrow$ $H^n((X, A) \times (Y, B) : G)$ is not zero, where $i : (X, A) \times (Y, B) \subset (X, A') \times (Y, B')$. Thus, we have the following corollaries.

COROLLARY 2. $D(X \times Y, G) = Max \{n : H^n((X, A) \times (Y, B) : G) \neq 0 \text{ for some closed sets } A \text{ and } B \text{ of } X \text{ and } Y \text{ respectively} \}.$

COROLLARY 3. Let $D(X \times Y, G) = n$. Then there exist closed sets $A_2 \subset A_1$ $\subset X$ and $B_2 \subset B_1 \subset Y$ such that (1) A_1 and B_1 are closed neighborhoods of A_2 and B_2 respectively, and (2) the homomorphism: $H^n((X, A_1) \times (Y, B_1): G) \rightarrow$ $H^n((X, A_2) \times (Y, B_2): G)$ is not zero.

Let X be a finite simplicial complex and let Y be a finite dimensional paracompact normal space. For an open covering $\mathfrak{V} = \{\mathfrak{U}_{i(\sigma)} \times W_{\sigma} | \sigma \in \Omega\}$ of $X \times Y$, where $\mathfrak{W} = \{W_{\alpha} | \alpha \in \Omega\}$ is a locally finite open covering of Y and $\mathfrak{U}_{i(\sigma)}$ is the open covering of X consisting of the open stars of the $i(\sigma)$ -th barycentric subdivision of X, construct a CW complex P associated with \mathfrak{V} (cf. the proof of Theorem 5). Then P is a subdivision of the cell complex $X \times N_{\mathfrak{W}}$, where $N_{\mathfrak{W}}$ is the nerve of \mathfrak{W} . If \mathfrak{W}' is a locally finite refinement of \mathfrak{W} and $\pi_{\mathfrak{W}'\mathfrak{W}}: N_{\mathfrak{W}'} \to N_{\mathfrak{W}}$ is a projection, let us define a mapping $\overline{\pi}_{\mathfrak{W}'\mathfrak{W}}: X \times N_{\mathfrak{W}'} \to X \times N_{\mathfrak{W}}$ by $\overline{\pi}_{\mathfrak{W}'\mathfrak{W}}(x, y) = (x, \pi_{\mathfrak{W}'\mathfrak{W}}(y))$ for $x \in X$ and $y \in N_{\mathfrak{W}'}$. Then we have:

COROLLARY 4. Let (X, A) be a pair of finite simplicial complexes and let (Y, B) be a pair of finite dimensional paracompact normal spaces. Then $H^n((X, A) \times (Y, B): G)$ is the direct limit of the system $\{H^n((X, A) \times (M_{\mathfrak{R}}, N_{\mathfrak{R}}): G) | (\pi_{\mathfrak{R}'}, \pi)^* \}$, where \mathfrak{W} ranges over all locally finite open coverings of Y and $(M_{\mathfrak{R}}, N_{\mathfrak{R}})$ is the pair of the nerves of \mathfrak{W} for (X, A).

COROLLARY 5. If X is a locally finite polytope and Y is a finite dimensional paracompact normal space, then $D(X \times Y, G) = \dim X + D(Y, G)$.

PROOF. It is sufficient to prove the corollary in case X = I. Let $D(I \times Y, G) = n$. By Corollary 2, there are closed subsets A and B of I and Y such that $H^n((I, A) \times (Y, B) : G) \neq 0$. We may assume that $A = \dot{I}$ (= the boundary of I). By Corollary 4, $H^n((I, \dot{I}) \times (Y, B) : G) = \lim \{H^n((I, \dot{I}) \times (M_{\mathfrak{B}}, N_{\mathfrak{B}}) : G) | (\pi_{\mathfrak{B}'\mathfrak{B}})^* \}$. It is well known that $H^n((I, \dot{I}) \times (M_{\mathfrak{B}}, N_{\mathfrak{B}}) : G) \approx H^{n-1}(M_{\mathfrak{B}}, N_{\mathfrak{B}} : G)$. Thus, we have $H^{n-1}(Y, B : G) \neq 0$. This proves that $D(I \times Y, G) \leq D(Y, G)+1$. The converse relation $D(I \times Y, G) \geq D(Y, G)+1$ is proved similarly.

Recently O'Neil [21] proved the following Künneth theorem.

THEOREM. (O'Neil) If X is compact and Y is paracompact normal, then the sequence

$$0 \to \sum_{q=0}^{n} H^{q}(X;Z) \otimes H^{n-q}(Y;Z) \to H^{n}(X \times Y;Z) \to \sum_{q=0}^{n} H^{q+1}(X;Z) * H^{n-q}(Y;Z) \to 0$$

is exact.

From his proof we have the following exact sequence:

$$0 \to \sum_{q=0}^{n} H^{q}(X;Z) \otimes H^{n-q}(Y;G) \to H^{n}(X \times Y;G) \to \sum_{q=0}^{r} H^{q+1}(X;Z) * H^{n-q}(Y;G) \to 0.$$

Here G is any abelian group.

REMARK 2. For compact spaces, the Künneth sequence in relative forms is exact (Dyer [8, Appendix]). But, it is not known whether or not it is true for non compact spaces.

REMARK 3. The following theorem was proved by Peterson [22, Appendix]. THE UNIVERSAL COEFFICIENT THEOREM. If X is compact and G is an abelian group or X is paracompact normal and G is finitely generated, the sequence

$$0 \to H^n(X:Z) \otimes G \to H^n(X:G) \to H^{n+1}(X:Z) * G \to 0$$

is exact.

But, as the following simple example shows, if G is not finitely generated, the universal coefficient theorem does not hold even for a finite dimensional countable simplicial complex. Let Y be a one point union of a countable infinite number of the segments $s_i = (x_0, x_i)$, $i = 1, 2, \cdots$, such that $s_i \cup s_j = x_0$ for $i \neq j$. Denote by X' the product of Y and an (n-1)-sphere S^{n-1} . Let $q = (p_1, p_2, \cdots)$ be a sequence of all prime integers. Let f_i be a simplicial mapping from the subspace $x_i \times S^{n-1}$ of X' into an (n-1)-sphere S_i^{n-1} with degree p_i . The simplicial complex X is obtained by identifying points of $x_i \times S^{n-1}$ mapped to the same point under the mapping f_i , $i = 1, 2, \cdots$. Then we have:

- (1) $H^n(X;Z)$ contains an element with infinite order.
- (2) For every prime p, $H^n(X; Z)$ contains an element with order p.

(3) Let R = the additive group of rationals, $R_p =$ the additive group of rationals whose denominators are coprime with p, $Q_p =$ the additive group of p-adic rationals reduced mod 1 and $Z_p =$ the cyclic group of order p. If G is one of the groups R, R_p , Q_p and Z_p , p a prime, then $H^n(X:G) = 0$.

The properties (1) and (3) imply that the universal coefficient theorem does not hold for the group R or R_p .

THEOREM 6. Let X be a compact ANR (metric) and let Y be a finite dimensional paracompact normal space. Then we have the relation:

$$D(X, R) + D(Y, G) \leq D(X \times Y, G) \leq \dim X + D(Y, G)$$
.

REMARK 4. As the following example shows, we can not replace a compact ANR(*metric*) X by a metric Cantor manifold. Consider the 2-dimensional Cantor manifold M_0 constructed in [16, p. 44]. By [16, Lemma 9], we have $D(M_0, R)=2$ and $D(M_0, Q_p)=D(M_0, Z_p)=1$ for a prime p. In case G is Q_p or a finite group, we have $D(M_0, G)=1$. If Y is a compact space such that

354

dim Y = D(Y, G), then $D(M_0 \times Y, G) \leq D(M_0, G) + D(Y, G) = 1 + D(Y, G)$ by Bockstein [2]. Thus we have $D(M_0, R) + D(Y, G) = 2 + D(Y, G) > D(M_0 \times Y, G)$.

We need the following lemmas.

LEMMA 8. Let X be an LC^{∞} compact space and let A_2 be a closed subset of X. For a closed neighborhood A_1 of A_2 there are a pair (K, L) of finite simplicial complexes, mappings $f:(X, A_2) \rightarrow (K, L)$ and $g:(K, L) \rightarrow (X, A_1)$ such that $g \cdot f \sim i:(X, A_2) \rightarrow (X, A_1)$, where $i:(X, A_2) \subset (X, A_1)$.

The proof is given by a similar way to [14].

Following Dyer [8, p. 144], a group H is said to have property F(p), p a prime, if there is some element of H/H_p which is not divisible by p, where H_p is the p-primary part of H.

LEMMA 9. If X is an LC^{∞} compact space such that D(X, R) = m, then there is a closed set A of X such that (1) $H^m(X, A:Z)$ contains an element with infinite order which is not divisible by any integer > 1 and (2) $H^m(X, A:Z)$ has property P(p) for every prime p.

PROOF. There is a closed set A_2 of X such that $H^m(X, A_2: R) \neq 0$. By the universal coefficient theorem [22], $H^m(X, A_2: Z)$ contains an element ewith infinite order. Take a closed neighborhood A_1 of A_2 such that, if $i:(X, A_2) \subset (X, A_1)$, then $e \in i^*H^m(X, A_1: Z)$. Let (K, L), f and g be complexes and mappings in Lemma 8. Put $H = g^*H^m(X, A_1: Z) \subset H^m(K, L: Z)$. Then His finitely generated. Take an element e' of H such that (1) e' is of infinite order and (2) e' is not divisible by any integer > 1 in H. Let e'' be an element of $H^m(X, A_1: Z)$ such that $g^*e'' = e'$. Then e'' is of infinite order and it is not divisible by any integer > 1. Since H is finitely generated and contains an element with infinite order, H has property P(p). Thus, $H^m(X, A_1: Z)$ has property P(p) for any prime p.

PROOF OF THE RELATION $D(X, R) + D(Y, G) \leq D(X \times Y, G)$. We shall give the proof by an analogous argument as in Morita [19, p. 220]. Let $s \leq D(X, R)$ and $t \leq D(Y, G)$. For some $m \geq s$, there is a closed set A of X satisfying the conclusion of Lemma 9. Put $X_0 = X/A$ and denote by x_0 the point corresponding to A. Take a closed set B of Y such that $H^n(Y, B: G) \neq 0, n \geq t$. Put $Y_0 = Y/B$ and denote by y_0 the point corresponding to B. Then, $H^m(X_0: Z)$ contains an element with infinite order which is not divisible by any integer >1 and it has property P(p) for every prime p. Also, we have $H^n(Y_0:G) \neq 0$. Thus, by Dyer [8, Lemmas 1.6 and 1.7], $H^m(X_0:Z) \otimes H^n(Y_0:G) \neq 0$. By O'Neil [21] we can conclude that $H^{m+n}(X_0 \times Y_0:G) \neq 0$ and $D(X_0 \times Y_0:G) \geq m+n$. We may assume that A and B are G_{δ} . Let $X - A = \bigcup_{i=1}^{\infty} A_i$ and $Y - B = \bigcup_{i=1}^{\infty} B_i$. Then we have $X_0 \times Y_0 = x_0 \times y_0 \cup (\bigcup_{i=1}^{\infty} A_i \times y_0) \cup (\bigcup_{i=1}^{\infty} X_0 \times B_i) \cup (\bigcup_{i=1}^{\infty} A_i \times B_i)$. By Theorem 3 or Okuyama [20], we have $D(A_i \times B_i, G) \geq m+n$ for some i. Since $A_i \times B_i$ is closed in $X \times Y$, this proves that $D(X \times Y, G) \ge m+n$.

PROOF OF THE RELATION $D(X \times Y, G) \leq \dim X + D(Y, G)$. If D(Y, G) = 0, then, since dim Y = 0 by Corollary 1, we have $D(X \times Y, G) \leq \dim (X \times Y)$ $= \dim X = \dim X + D(Y, G)$. If dim X = 0, then X consists of a finite number of points. If dim $X = \infty$, then the relation is obvious. Therefore, it is sufficient to prove the relation in case $0 < \dim X < \infty$ and $0 < D(Y, G) < \infty$. Let $D(X \times Y, G) = m$ and dim X = n. Let us assume that m > n + D(Y, G). We shall prove that this assumption gives us a contradiction. Since $D(Y, G) \ge 1$, we have m > n+1. By Corollary 3, there are closed sets $A_2 \subset A_1 \subset X$ and $B \subset Y$ such that (1) A_1 is a closed neighborhood of A_2 and (2) the homomorphism $i_1^*: H^m((X, A_1) \times (Y, B): G) \to H^m((X, A_2) \times (Y, B): G)$ is not zero, where $i_1: (X, A_2) \times (Y, B) \subset (X, A_1) \times (Y, B).$ Applying Lemma 8 to the inclusion $i:(X, A_2) \subset (X, A_1)$, we find a pair (K, L) of *n*-dimensional finite simplicial complexes, mappings $f:(X, A_2) \rightarrow (K, L)$ and $g:(K, L) \rightarrow (X, A_1)$ such that $gf \sim i: (X, A_2) \rightarrow (X, A_1)$. Define mappings $f: (X, A_2) \times (Y, B) \rightarrow (K, L) \times (Y, B)$ and $\bar{g}: (K, L) \times (Y, B) \rightarrow (X, A_1) \times (Y, B)$ by $f(x, y) = (f(x), y), x \in X$ and $y \in Y$, and $\bar{g}(k, y) = (g(k), y), k \in K$ and $y \in Y$. Then we have $\bar{g}f \sim i: (X, A_2) \times (Y, B)$ $\rightarrow (X, A_1) \times (Y, B)$. Since the homomorphism $i_1^* = (\bar{g}\bar{f})^*$ is not zero, we can conclude that $H^m((K, L) \times (Y, B) : G) \neq 0$. By Corollary 4, $H^m((K, L) \times (Y, B) : G)$ = $\lim_{\mathfrak{W}} \{H^m((K, L) \times (M_{\mathfrak{W}}, N_{\mathfrak{W}}): G) | (\pi_{\mathfrak{W}'\mathfrak{W}})^* \}$, where \mathfrak{W} ranges over all locally finite open coverings of Y and $(M_{\mathfrak{M}}, N_{\mathfrak{M}})$ is the pair of the nerves of \mathfrak{M} for (Y, B). Take a locally finite open covering \mathfrak{W} such that some element e of $H^m((K, L))$ $\times (M_{\mathfrak{B}}, N_{\mathfrak{B}}): G)$ represents a non-zero element of $H^{\mathfrak{m}}((K, L) \times (Y, B): G)$. Put $K/L = K_0$ and $M_{\mathfrak{W}}/N_{\mathfrak{W}} = M_{\mathfrak{W}}^{\mathfrak{d}}$, and let k_0 and m_0 be the points corresponding to L and $N_{\mathfrak{W}}$. Consider the following exact sequence:

$$\rightarrow H^{m-1}(K_0 \times m_0 \cup k_0 \times M^0_{\mathfrak{B}}:G) \xrightarrow{\delta^*} H^m((K_0, k_0) \times (M^0_{\mathfrak{B}}, m_0):G) \xrightarrow{j^*} H^m(K_0 \times M^0_{\mathfrak{B}}:G)$$

We shall assert that the element e does not belong to the image of δ^* . Let us assume that $e \in \text{Image}$ of δ^* . Since $H^{m-1}(K_0 \times m_0 \cup k_0 \times M_{\mathfrak{W}}^0: G) = H^{m-1}(K_0:G) + H^{m-1}(M_{\mathfrak{W}}^0:G)$ and dim $K_0 = \dim K = n < m - 1$, we have $H^{m-1}(M_{\mathfrak{W}}^0:G) \neq 0$. If \mathfrak{W}' is a locally finite refinement of \mathfrak{W} , then $h^*: H^{m-1}(M_{\mathfrak{W}}^0:G) \to H^{m-1}(M_{\mathfrak{W}}^0:G)$ is not zero, where h is the mapping induced by a projection $\pi_{\mathfrak{W}'\mathfrak{W}}:(M_{\mathfrak{W}'}, N_{\mathfrak{W}'}) \to (M_{\mathfrak{W}}, N_{\mathfrak{W}})$. This shows that $D(Y, G) \geq m-1$. Then we have $D(X \times Y, G) = m > \dim X + D(Y, G) = n + m - 1 \geq m$. This contradiction proves that $e \notin \text{Image}$ of δ^* . Thus we have $0 \neq j^*e \in H^m(K_0 \times M_{\mathfrak{W}}^0:G)$. By O'Neil [21], there exist integers p and q such that (1) p+q=m and $H^p(K_0:Z) \otimes H^q(M_{\mathfrak{W}}^0:G) \neq 0$ or (2) p+q=m+1 and $H^p(K_0:Z) * H^q(M_{\mathfrak{W}}^0:G) \neq 0$. In any case (1) or (2) we can conclude that $D(Y,G) \geq q$. Since dim $X = n \geq p$, we have $m > n+q \geq p+q=m$. This completes the proof.

As an immediate consequence of Theorem 6, we have:

COROLLARY 6. If X is a compact ANR(metric) such that dim X = D(X, R), then $D(X \times Y, G) = \dim X + D(Y, G)$ for a finite dimensional paracompact normal space Y.

REMARK 5. Let Y be paracompact normal and perfectly normal. If we make use of Theorem 2 in place of Theorem 1, then we can see that Theorems 5 and 6, and Corollaries 2, 3, 4, 5 and 6 are true without restriction of finite dimension.

THEOREM 7. Let X be a locally compact paracompact normal space. If $D(X, Q_p) \ge k$ for every prime p and $D(X, R) \ge k$, then dim $X \times Y \ge \dim Y + k$ for a paracompact normal space Y.

PROOF. If dim $X = \infty$ or dim $Y = \infty$, then the theorem is obvious. Moreover, by Theorem 3 and Morita [17], we may assume that X is compact. Let dim Y = n. There exists a closed G_{δ} set B of Y such that $H^n(Y, B : Z) \neq 0$. Put $Y/B = Y_0$ and let y_0 be the point corresponding to B. We have the following two cases: (1) the p-primary part of $H^n(Y_0:Z) \neq 0$ for some prime p, or (2) $H^n(Y_0:Z)$ contains an element with infinite order. If (1) holds, take a closed set A of X such that $H^m(X, A:Q_p) \neq 0$, $m \geq k$. Let $X/A = X_0$ and let x_0 be the point corresponding to A. Then we have $H^m(X_0:Q_p) \neq 0$. By Dyer [8, Theorem 1], we can conclude that (i) $H^m(X:Z)$ has property P(p) or (ii) $H^{m+1}(X_0:Z)$ contains an element with order p. If (i) holds, then $H^m(X_0:Z)$ $\otimes H(Y_0:Z) \neq 0$. If (ii) holds, then $H^{m+1}(X_0:Z) * H^n(Y_0:Z) \neq 0$. (See Dyer [8, Lemma 1.6].) In any case (i) or (ii), we can show that $H^{m+n}(X_0 \times Y_0:Z) \neq 0$ by O'Neil [21]. Thus, we have dim $X_0 \times Y_0 \geq m+n$. By an analogous argument as in the proof of Theorem 6, we can prove that dim $X \times Y \geq m+n$ $\geq k+\dim Y$. The proof for the case (2) is given similarly.

DEFINITION 6. Let Q be a class of spaces. A space X is called dimensionally full-valued for Q if dim $X \times Y = \dim X + \dim Y$ for every space Y of Q.

Let Q be the class of paracompact normal spaces.

THEOREM 8. A locally compact paracompact normal space X is dimensionally full-valued for Q if and only if $D(X, Q_p) = \dim X$ for every prime p.

PROOF. The proof of 'only if ' part follows from [15] or Boltyanski [3]. Let $D(X, Q_p) = \dim X$ for every prime p. By Bockstein [2] or Dyer [8, Corollary 2.1 (c)], we have $D(X, Q_p) \leq \max \{D(X, R), D(X, R_p) - 1\} \leq \dim X$. This shows that $D(X, Q_p) = D(X, R) = \dim X$. The theorem follows from Theorem 7.

THEOREM 9. If X is locally compact paracompact normal space such that dim X > 0, then dim $X \times Y \ge \dim Y + 1$ for every paracompact normal space Y.

The theorem follows from Corollary 1 and Theorem 7.

DEFINITION 7. A compact space C is called a pseudo n-cell if there exists a mapping f of an n-cell E onto C such that f| the boundary of E is a homeomorph. THEOREM 10. If a locally compact paracompact normal space X contains a pseudo n-cell, then $D(X \times Y, G) \ge D(Y, G) + n$ for every paracompact normal space Y.

PROOF. There exists a mapping f of an n-cell E into X such that f| the boundary of E is a homeomorph. Denote by S the boundary of E, and put C = f(E) and D = f(S). The mapping $f^{-1}: D \to S$ is extendable over C. Denote this extension by g. Then $gf \sim 1: (E, S) \to (E, S)$, where 1 means the identity mapping. Let D(Y, G) = m. Take a closed set B of Y such that $H^m(Y, B:G) \neq 0$. By an analogous argument as in the proof of Corollary 5, we can prove that $H^{m+n}((E, S) \times (Y, B): G) \neq 0$. This shows that $H^{m+n}((C, D) \times (Y, B): G) \neq 0$. Thus, we have $D(X \times Y, G) \ge D(Y, G) + n$.

COROLLARY 7. If a compact n-dimensional metric space X is lc^n (over Z), then it is dimensionally full-valued for Q if and only if D(X, R) = n.

It follows from Dyer [7, Corollary 2], [15] and Theorem 9.

COROLLARY 8. The following spaces are dimensionally full-valued for Q.

(1) A locally compact 2-dimensional ANR (metric).

(2) A 1-dimensional locally compact paracompact normal space.

(3) An n-dimensional locally compact paracompact normal space which contains a pseudo n-cell.

Department of Mathematics Tokyo University of Education

References

- [1] R.H. Bing, Metrization of topological spaces, Canad. J. Math., 3 (1951), 175-186.
- M. Bockstein, On the homological invariants of topological products, I, Trudy Moskov. Mat. Obšč., 5 (1956), 3-80. (Amer. Math. Soc. Transl., Ser. 2, 2 (1959), 173-385.); II, ibid., 6 (1957), 3-133.
- [3] V. Boltyanskii, On dimensional full-valuedness of compacta, Dokl. Akad. Nauk SSSR (N.S.), 67 (1949), 773-776. (Amer. Math. Soc. Transl., Ser. 1, 8 (1951), 6-10.)
- [4] C.H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math., 69 (1947), 202-242.
- [5] C.H. Dowker, Topology of metric complex, Amer. J. Math., 74 (1952), 555-577.
- [6] C. H. Dowker, On a theorem of Hannor, Ark. Mat., 2 (1954), 307-313.
- [7] E. Dyer, Regular mappings and dimension, Ann. of Math., 67 (1958), 119-149.
- [8] E. Dyer, On the dimension of products, Fund. Math., 47 (1959), 141-160.
- [9] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton, 1952.
- [10] O. Hanner, Retraction and extension of mappings of metric and non-metric spaces, Ark. Mat., 2 (1952), 315-360.
- [11] S. T. Hu, Homotopy theory, Academic Press, New York, 1959.
- [12] W.Hurewicz and H. Wallman, Dimension theory, Princeton, 1941.
- [13] I.R. Isbell, Embeddings of inverse limits, Ann. of Math., 70 (1959), 73-84
- [14] Y. Kodama, On ANR for metric spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect.

A., 5 (1955), 96–98.

- [15] Y. Kodama, On a problem of Alexandroff concerning the dimension of product spaces I, J. Math. Soc. Japan, 10 (1958), 380-404; II, ibid., 11 (1959), 94-111.
- [16] Y. Kodama, Test spaces for homological dimension, Duke Math. J., 29 (1962), 41-50.
- [17] K. Morita, On the dimension of normal spaces I, Japan. J. Math., 20 (1950), 5-36; II, J. Math. Soc. Japan, 2 (1950), 16-33.
- [18] K. Morita, On spaces having the weak topology with respect to closed coverings, Proc. Japan Acad., 29 (1953), 537-543; II, ibid., 30 (1954), 711-717.
- [19] K. Morita, On the dimension of product spaces, Amer, J. Math., 75 (1953), 205-223.
- [20] A. Okuyama, On cohomological dimension for paracompact spaces I, Proc. Japan Acad., 38 (1962), 489-494; II, ibid., 655-659.
- [21] R.C. O'Neil, The Čech cohomology of paracompact product spaces, Amer. J. Math., 87 (1965), 71-78.
- [22] F. P. Peterson, Some results on cohomotopy groups, Amer, J. Math., 78 (1956), 243-259.
- [23] E.G. Skljarenko, On the definition of cohomology dimension, Soviet Math. Dokl.,6 (1965), 478-479.
- [24] M. Wojdeslawski, Rétracte absolus et hyperspaces des continus, Fund. Math., 32 (1939), 184-192.