Note on cohomological dimension for non-compact spaces

By Yukihiro Kodama

(Received Feb. 9, 1966)

§ 1. Introduction

The purpose of the present paper is to develop the theory of cohomological dimension for non-compact spaces. Let us denote by $D(X, G)$ the cohomological dimension of a space X with respect to an abelian group G. In the first part of this paper we shall give a characterization of $D(X, G)$ in terms of continuous mappings of X into an Eilenberg-MacLane complex in case X is a collectionwise normal space. As an application of this characterization, we have sum theorems. Some of our sum theorems were proved by Okuyama [20] in case X is paracompact normal. In the second part of this paper we shall concern the cohomological dimension of the product of a compact space X and a paracompact normal space Y. We shall prove that $D(X \times Y, G)$ is the largest integer n such that $H^{n}((X, A) \times(Y, B): G) \neq 0$ for some closed sets A and B of X and Y. By our previous paper [15] or Boltyanskii [3] we know which compact spaces are dimensionally full-valued for compact spaces. However, a space which is known to be dimensionally fullvalued for paracompact normal spaces is only a locally finite polytope. This was proved by Morita [19]. We shall prove that a locally compact paracompact normal space is dimensionally full-valued for paracompact normal spaces if and only if it is dimensionally full-valued for compact spaces. As an immediate consequence of this theorem we can know that $\operatorname{dim}(X \times Y)$ $\geqq \operatorname{dim} Y+1$ in case X is a locally compact paracompact normal space with covering dimension $\geqq 1$ and Y is paracompact normal. Moreover, we shall show that, if a compact space X is an ANR (metric) and R is a rational field, then $D(X, R)+D(Y, G) \leqq D(X \times Y, G) \leqq \operatorname{dim} X+D(Y, G)$ for a paracompact normal space Y and an abelian group G.

Throughout this paper we assume that all spaces are normal and mappings are continuous transformations.

§2. Cohomological dimension

Let X be a space and let \mathfrak{l} be an open covering of X. We mean by the nerve of \mathfrak{l} the nerve of \mathfrak{l} with weak topology. If \mathfrak{l} is locally finite, then there is a canonical mapping of X into the nerve of \mathfrak{H}. (See Dowker [5].), We denote by $\phi_{\mathfrak{l}}$ a canonical mapping of X into the nerve of \mathfrak{u}. If \mathfrak{u} $=\left\{U_{\alpha} \mid \alpha \in \Omega\right\}$ is a covering of X and A is a closed set of X, then we denote the covering $\left\{U_{\alpha} \cap A \mid \alpha \in \Omega\right\}$ of A by $\mathfrak{u} \mid A$. We mean by $H^{*}(X, A: G)$ the Čech cohomology group of (X, A) with coefficients in G based on locally finite open coverings of X. If X is paracompact normal, then $H^{*}(X, A: G)$ is equal to the unrestricted Čech cohomology group.

Definition 1. The cohomological dimension $D(X, G)$ of a space X with respect to an abelian group G is the least integer n such that, for each $m \geqq n$ and each closed set A of X the homomorphism $i^{*}: H^{m}(X: G) \rightarrow H^{m}(A: G)$ induced by the inclusion mapping $i: A \subset X$ is onto.

Recently, Skljarenko [23] proved that, if X is paracompact normal, then $D(X, G)$ is the largest integer n such that $H^{n}(X, A: G) \neq 0$ for some closed set A of X.

Definition 2. A space X is called collectionwise normal if, for every locally finite collection $\left\{A_{\lambda}\right\}$ of mutually disjoint closed subsets of X, there is a collection $\left\{U_{\lambda}\right\}$ of mutually disjoint open sets such that $A_{\lambda} \subset U_{\lambda}$ for each λ (Bing [1]).

The following was proved by Dowker [6, Lemma 1].
Lemma 1. (Dowker) Let A be a closed subset of a collectionwise normal space X and let $\left\{U_{\lambda}\right\}$ be a locally finite open covering of A. Then there exists a locally finite open covering $\left\{V_{\lambda}\right\}$ of X such that, for each $\lambda, V_{\lambda} \cap A \subset U_{\lambda}$.

Definition 3. Let Q be a class of spaces. A space X is called an $\operatorname{ANR}(Q)$ if, whenever X is a closed subset of Y in Q, X is a retract of a neighborhood of X in Y.

Lemma 2. (i) (Dowker) A simplicial complex with metric topology is an ANR (collectionwise normal and perfectly normal).
(ii) (Hanner) A finite dimensional simplicial complex with metric topology is an ANR (collectionwise normal).

The proof is found in Dowker [6] and Hanner [10].
For an abelian group G, we denote by $K(G, m), m \geqq 1$, an Eilenberg-MacLane space which is a simplicial complex with metric topology (cf. Hu [11]). For $m=0, K(G, 0)$ is G itself with discrete topology. For an integer q, denote by $(K(G, m))^{q}$ the q-section of $K(G, m)$. According to Wojdyslawski [24, p. 186] $(K(G, m))^{q}$ can be imbedded as a closed set of a convex subset D of a normed vector space. Since $(K(G, m))^{q}$ is an ANR (metric) by Lemma 2 (i),
there is a neighborhood T of $(K(G, m))^{q}$ in D and a retraction $r: T \rightarrow(K(G, m))^{q}$. For each point k of $(K(G, m))^{q}$, take an open spherical neighborhood $S(k)$ such that $S(k) \subset T$. Put $\mathbb{S}=\left\{S(k) \mid k \in(K(G, m))^{q}\right\}$. There is a subdivision K^{\prime} of $(K(G, m))^{q}$ such that the open covering of $(K(G, m))^{q}$ consisting of the open stars of K^{\prime} is a star refinement of the open covering $\mathbb{S} \mid(K(G, m))^{q}$. We denote K^{\prime} by $(K(G, m))^{q}$ again.

We say that two mappings f_{1} and f_{2} of a space X into a simplicial complex K is contiguous if, for each point x of X, there is a closed simplex $s(x)$ of K such that $f_{1}(x) \cup f_{2}(x) \subset s(x)$.

Lemma 3. Let A be a closed set of a collectionwise normal space X, and let f_{1} and f_{2} be contiguous mappings of A into $(K(G, m))^{q}$. If f_{1} is extendable over X, then f_{2} is extendable over X.

Proof. We shall prove the lemma by the same argument as in Dowker [4, Th. 2.1]. Put $(K(G, m))^{q}=K$. Let $F_{1}: X \rightarrow K$ be an extension of f_{1}. Since K is an ANR (collectionwise normal) by Lemma 2 (ii), f_{2} is extendable over some open neighborhood U_{1} of A in X. Denote by f^{\prime} this extension. Since f_{1} and f_{2} are contiguous, we can take an open neighborhood U_{2} of A such that (1) $\bar{U}_{2} \subset U_{1}$ and (2), for each point x of U_{2}, there is some spherical neighborhood $S(k)$ of \mathfrak{S} which contains $F_{1}(x) \cup f^{\prime}(x)$. Let h_{1} be the mapping of $U_{2} \times I$ into T which maps (x, t) in the point dividing the segment $\left(F_{1}(x), f^{\prime}(x)\right)$ in the ratio $t: 1-t$. Define the mapping $h_{2}: X \times 0 \cup U_{2} \times I \rightarrow \cup\{S(k) \mid S(k) \in \mathbb{\Im}\}$ $\subset T$ by $h_{2} \mid X \times 0=F_{1}$ and $h_{2} \mid U_{2} \times I=h_{1}$. Take an open set U_{3} of X such that $A \subset U_{3} \subset \bar{U}_{3} \subset U_{2}$ and let g be a continuous function of X into I such that $g(x)=1$ for $x \in A$ and $g(x)=0$ for $x \in X-U_{3}$. Let h_{3} be the mapping of $X \times I$ into T defined by $h_{3}(x, t)=h_{2}(x, t \cdot g(x))$. Define the mapping $F_{2}: X \rightarrow K$ by $F_{2}(x)=r h_{3}(x, 1)$ for $x \in X$. Since $r: T \rightarrow K$ is a retraction, F_{2} is an extension of f_{2}.

Remark. If X is paracompact normal, then Lemma 1 is proved simply. Since $X \times I$ is paracompact normal, it follows from the homotopy extension theorem.

Lemma 4. Let X be a collectionwise normal space such that $\operatorname{dim} X<q$, where $\operatorname{dim} X$ means the covering dimension of X. In order that every mapping from a closed set A into $(K(G, m))^{q}$ be extendable over X it is necessary and sufficient that the homomorphism $i^{*}: H^{m}(X: G) \rightarrow H^{m}(A: G)$ induced by the inclusion mapping $i: A \subset X$ be onto.

Proof of the necessity. Take an element e of $H^{m}(A: G)$. Let \mathfrak{U} be a locally finite open covering of A with order $\leqq q$ such that, if $N_{\mathfrak{u}}$ is the nerve of \mathfrak{u}, there is a cocycle $z_{\mathfrak{u}}$ of $Z^{m}\left(N_{\mathfrak{u}}: G\right)$ which represents e. Denote $(K(G, m))^{q}$ by K and let k_{0} be a fixed vertex of K. Let $f_{\mathfrak{u}}$ be a mapping from the m --section $\left(N_{\mathfrak{u}}\right)^{m}$ of $N_{\mathfrak{u}}$ into K such that $f_{\mathfrak{u}}\left(\left(N_{\mathfrak{u}}\right)^{m-1}\right)=k_{0}$ and, for each m-simplex
$\sigma, f_{\mathfrak{u}} \mid \sigma$ represents the element $z_{\mathfrak{l}}(\sigma)$ of the homotopy group $\pi_{m}\left(K, k_{0}\right)=G$. Since $z_{\mathfrak{l}}$ is a cocycle over $G, f_{\mathfrak{u}}$ is extendable over $N_{\mathfrak{u}}$. (See Hu [11, Chap. VI].) Denote this extension by $f_{\mathfrak{u}}$ again. We say that $f_{\mathfrak{u}}$ is determined by the cocycle $z_{\mathfrak{l}}$. Let $\bar{f}_{\mathfrak{u}}$ be a simplicial approximation of $f_{\mathfrak{u}}$. Then $\overline{f_{\mathfrak{u}}}$ is a simplicial mapping from a subdivision $\bar{N}_{\mathfrak{l}}$ of $N_{\mathfrak{u}}$ into K such that $\bar{f}_{\mathfrak{u}} \sim f_{\mathfrak{u} j}: \bar{N}_{\mathfrak{u}} \rightarrow K$, where $j: \bar{N}_{\mathfrak{u}} \rightarrow N_{\mathfrak{u}}$ is the identity mapping. Let $\phi_{\mathfrak{u}}$ be a canonical mapping of A into $N_{\mathfrak{u}}$. Put $\bar{\phi}_{\mathfrak{u}}=j^{-1} \phi_{\mathfrak{u}}$. Let $\mathfrak{V ^ { \prime }}$ be the open covering of $\bar{N}_{\mathfrak{l}}$ consisting of the open stars of $\bar{N}_{\mathfrak{l}}$. We may assume that $\bar{N}_{\mathfrak{l}}$ is the nerve of the covering $\mathfrak{B}=\bar{\phi}_{\mathfrak{u}}^{-1}\left(\mathfrak{V}^{\prime}\right)$. By the assumption the mapping $\bar{f}_{1} \bar{\phi}_{11}: A \rightarrow K$ has an extension $g: X \rightarrow K$. Denote by \mathfrak{H}_{0} the open covering consisting of the open stars of K. Let \mathfrak{B} be a locally finite open covering of X with order $\leqq q$ such that \mathfrak{W} is a refinement of $g^{-1}\left(\mathfrak{H}_{0}\right)$ and $\mathfrak{W} \mid A$ is a refinement of \mathfrak{V}. The existence of such a covering follows from Lemma 1. Let M_{88} be the nerve of \mathfrak{B}. We denote by w the vertex of $M_{\mathbb{Z B}}$ corresponding to an element W of \mathfrak{M}. Define a simplicial mapping $f_{\mathfrak{2 B}}: M_{\mathfrak{P B}} \rightarrow K$ by $f_{\mathfrak{g}}(w)=u$ for a vertex w of $M_{\mathfrak{Z g}}$, where $W \subset g^{-1}(U), U \in \mathfrak{H}_{0}$, and u is the vertex of K corresponding to U. Let us denote by $N_{2 B}$ the nerve of $\mathfrak{W} \mid A$, and let $\bar{\pi}_{\mathfrak{Y z u}}: N_{\mathfrak{z B}} \rightarrow \bar{N}_{11}, \pi_{\mathfrak{Y z u}}: N_{\mathfrak{z B}} \rightarrow N_{11}$ and π : $\bar{N}_{\mathfrak{u}} \rightarrow N_{\mathfrak{u}}$ be projections. Since $\bar{f}_{\mathfrak{u}} \bar{\tau}_{\mathfrak{M u}}$ and $f_{\mathfrak{x}} \mid N_{\mathfrak{Z}}$ are contiguous, they are homotopic. Also, we have $f_{\mathfrak{u}} \pi \sim f_{\mathfrak{u}} j \sim \bar{f}_{\mathfrak{u}}: \bar{N}_{\mathfrak{u}} \rightarrow K$. Thus, we know $f_{\mathfrak{u}} \pi_{\mathfrak{w s u}}$ $\sim f_{\mathfrak{B}} \mid N_{\mathbb{B}}: N_{\mathbb{Z g}} \rightarrow K$. Since $f_{\mathfrak{U}} \pi_{\mathfrak{2 P u}}\left(\left(N_{\mathbb{Z B}}\right)^{m-1}\right)=k_{0}, K$ has the homotopy extension property in $M_{\mathbb{Z B}}$ and K is ($m-1$)-connected, there is a mapping $g_{\mathfrak{Y}}: M_{\mathfrak{Z B}} \rightarrow K$ such that $g_{\mathfrak{w}}\left(\left(M_{\mathfrak{Z}}\right)^{m-1}\right)=k_{0}$ and $g_{\mathfrak{P B}} \mid N_{\mathfrak{P B}}=f_{\mathfrak{u}} \pi_{\mathfrak{Z M}}$. For each m-simplex σ of $M_{\mathfrak{R}}$, if we assign the element of $\pi_{m}(K)=G$ represented by $g_{93} \mid \sigma$ to σ, then we have a cocycle $z_{\mathfrak{W}}$ of $M_{\mathfrak{B}}$ (cf. Hu [11, Chap. VI]). We say that $z_{\mathfrak{Z}}$ is determined by the mapping $g_{\mathbb{R}}$. The restriction of $z_{\mathbb{R}}$ to $N_{\mathbb{Q B}}$ is the cocycle $\left(\pi_{\mathfrak{P B}}\right)^{*} z_{\mathrm{u}}$. This proves that $i^{*}: H^{m}(X: G) \rightarrow H^{m}(A: G)$ is onto.

Proof of the sufficiency. Let f be a mapping of A into K. We shall use the same notation in the proof of the necessity. Take a locally finite open covering \mathfrak{U} of A such that order of $\mathfrak{H} \leqq q$ and \mathfrak{U} is a refinement of $f^{-1}\left(\mathfrak{H}_{0}\right)$. There is a mapping $f_{\mathfrak{u}}: N_{\mathfrak{u}} \rightarrow K$ such that $f_{\mathfrak{u}} \phi_{\mathfrak{u}}$ and f are contiguous. Since K is $(m-1)$-connected, we can take a mapping $f^{\prime}: N_{\mathfrak{u}} \rightarrow K$ such that $f^{\prime}\left(\left(N_{\mathfrak{u}}\right)^{m-1}\right)$ $=k_{0}$ and $f^{\prime} \sim f_{\mathfrak{u}}$. The mapping f^{\prime} determines a cocycle $z_{\mathfrak{u}}$ of $Z^{m}\left(N_{\mathfrak{u}}: G\right)$. Let $f_{\mathfrak{u}}^{\prime}$ be a mapping from a subdivision $\bar{N}_{\mathfrak{u}}$ of $N_{\mathfrak{u}}$ into K which is a simplicial approximation of f^{\prime}. Put $\bar{\phi}_{\mathfrak{u}}=j^{-1} \phi_{\mathfrak{u}}$. Let \mathfrak{u}^{\prime} be the open covering of A consisting of the inverse images of the open stars of $\bar{N}_{\mathfrak{u}}$ under $\bar{\phi}_{\mathfrak{u}}$. , We may assume that $\bar{N}_{\mathfrak{u}}$ is the nerve of \mathfrak{u}^{\prime} and $\bar{\phi}_{\mathfrak{u}}$ is a canonical mapping of A into $\bar{N}_{\mathfrak{u}}$. Take a locally finite open covering \mathfrak{F} of X with order $\leqq q$ such that (1) $\mathfrak{W} \mid A$ is a refinement of \mathfrak{u}^{\prime} and (2) there is a cocycle $z_{\mathfrak{B}}$ of $Z^{m}\left(M_{\mathfrak{B}}: G\right)$ whose restriction to $N_{\mathfrak{B}}$ is $\left(\pi_{\mathfrak{R}}\right)^{*} z_{\mathfrak{U}}$, where $\left(M_{\mathfrak{B}}, N_{\mathfrak{B}}\right)$ is the pair of the nerves of \mathfrak{B}
for (X, A) and $\pi_{\mathfrak{R u}}$ is a projection: $N_{\mathfrak{B}} \rightarrow N_{\mathfrak{u}}$. Since $\mathfrak{B} \mid A$ is a refinement of $f^{-1}\left(\mathfrak{H}_{0}\right)$, there is a mapping $f_{\mathfrak{B}}: N_{\mathfrak{B}} \rightarrow K$ such that f and $f_{\mathscr{E}} \phi_{\mathfrak{B}} \mid A$ are contiguous. where $\phi_{\mathbb{R}}: X \rightarrow M_{\mathfrak{R}}$ is a canonical mapping. Then we have homotopies $f_{\mathbb{R}} \sim$ $f_{\mathfrak{u}}^{\prime} \bar{\pi}_{\mathfrak{B u}} \sim f_{\mathfrak{u}} \pi_{\mathfrak{U P}}: N_{\mathfrak{B}} \rightarrow K$, where $\bar{\pi}_{\mathfrak{B} \mathfrak{M}}: N_{\mathfrak{B}} \rightarrow N_{\mathfrak{l}}$ is a projection. Since the cocycle $\left(\pi_{\mathfrak{R l n}}\right)^{*} z_{\mathfrak{l}}$ determined by the mapping $f_{\mathfrak{n}} \pi_{\mathfrak{R} 1}$ is extended to the cocycle $z_{\mathfrak{B}}$ of $M_{\mathfrak{R}}, f_{\mathfrak{U}} \tau_{\mathfrak{B} 1}$ is extendable over $M_{\mathfrak{B}}$. Since K has the homotopy extension property in $M_{\mathfrak{B}}, f_{\mathfrak{B}}$ is extendable over $M_{\mathfrak{B}}$. Denote this extension by $f_{\mathfrak{B}}$ again. Since $f_{\Re} \phi_{8} \mid A$ and f are contiguous, by Lemma 3, f is extendable over X. This completes the proof.

The following is a consequence of Lemma 4 and an analogous theorem in terms of homology is proved in [15, II, p. 103].

Corollary 1. If X is a collectionwise normal space with covering dimen. sion >0, then $D(X, G) \geqq 1$ for an abelian group G.

Proof. By Morita [17, I, Th. 3.1], there exist disjoint closed subsets A and B of X such that for any open set $U, A \subset U \subset \bar{U} \subset X-B$, we have $\bar{U}-U$ $\neq \phi$. Put $K=K(G, 0) . K$ is G itself with discrete topology. Take two distinct points a and b of K. Define a mapping f of $A \cup B$ into K by $f(A)=a$ and $f(B)=b$. If the homomorphism $i^{*}: H^{0}(X: G) \rightarrow H^{0}(A \cup B: G)$ is onto, then we can prove by the same argument as in the proof of the sufficiency of Lemma 4 for $m=0$ that f is extendable over X. Since K has discrete topology, we have a contradiction.

We need the following lemma in $\S 4$.
Lemma 5. Let X be a collectionwise normal space with covering dimension $<q$, and let A and A^{\prime} be closed sets of X such that $A \subset A^{\prime}$. If there is a mapping f of A into $(K(G, m))^{q}$ such that (1) f is extendable over A^{\prime} and (2) f is not extendable over X, then the homomorphism $i^{*}: H^{m+1}\left(X, A^{\prime}: G\right) \rightarrow H^{m+1}(X$, $A: G)$ induced by the inclusion mapping $i:(X, A) \subset\left(X, A^{\prime}\right)$ is not zero.

Proof. Let $f^{\prime}: A^{\prime} \rightarrow K=(K(G, m))^{q}$ be an extension of f. There is a locally finite open covering \mathfrak{U} of A^{\prime} with order $\leqq q$ and a mapping $f_{\mathfrak{u}}^{\prime}$ from the nerve $L_{\mathfrak{1}}$ of \mathfrak{l} into K such that f^{\prime} and $f_{\mathfrak{k}}^{\prime} \phi_{11}$ are contiguous. Take a mapping $f_{\mathfrak{u}}: L_{\mathfrak{u}} \rightarrow K$ such that $f_{\mathfrak{u}}^{\prime} \sim f_{\mathfrak{u}}$ and $f_{\mathfrak{u}}\left(\left(L_{\mathfrak{u}}\right)^{m-1}\right)=k_{0}$. Let $N_{\mathfrak{u}}$ be the nerve of $\mathfrak{u} \mid A$. Denote by $z_{\mathfrak{u}}^{\prime}$ and $z_{\mathfrak{u}}$ the cocycles of $L_{\mathfrak{u}}$ and $N_{\mathfrak{n}}$ determined by the mappings $f_{\mathfrak{u}}$ and $f_{\mathfrak{u}} \mid N_{\mathfrak{u}}$. Then the restriction of $z_{\mathfrak{u}}^{\prime}$ to $N_{\mathfrak{u}}$ is $z_{\mathfrak{u}}$. Let e^{\prime} and e be the elements of $H^{m}\left(A^{\prime}: G\right)$ and $H^{m}(A: G)$ represented by $z_{\mathfrak{u}}^{\prime}$ and $z_{\mathfrak{l}}$. We have $e=j^{*} e^{\prime}$, where $j: A \subset A^{\prime}$. Take a locally finite open covering \mathfrak{B} of X with order $\leqq q$ such that $\mathfrak{B} \mid A^{\prime}$ is a refinement of \mathfrak{l}. By Lemma 1, any locally finite open covering of X has such a covering \mathfrak{B} as a refinement. Let $M_{\mathfrak{B}}$ and $N_{\mathfrak{B}}$ be the nerves of \mathfrak{B} and $\mathfrak{B} \mid A$. Assume that there is a cocycle z of $M_{\mathfrak{B}}$ whose restriction to $N_{\mathfrak{B}}$ is cohomologous to $\left(\pi_{\mathfrak{B u}}\right) * z_{\mathfrak{n}}$ in $N_{\mathfrak{B}}$, where $\pi_{\mathfrak{B u}}: N_{\mathfrak{B}}$ $\rightarrow N_{\mathfrak{u}}$ is a projection. By the same argument as in the proof of the sufficiency
of Lemma 4, we can know that the mapping $f: A \rightarrow K$ is extendable over X. Thus we proved that $e \notin j_{1}^{*} H^{m}(X: G)$, where $j_{1}: A \subset X$. Consider the following diagram:

$$
\begin{array}{r}
\longrightarrow H^{m}(X: G) \xrightarrow{j_{2}^{*}} H^{m}\left(A^{\prime}: G\right) \xrightarrow{\delta_{1}^{*}} H^{m+1}\left(X, A^{\prime}: G\right) \longrightarrow \\
\| H^{m}(X: G) \xrightarrow{j^{*}} H^{m}(A: G) \xrightarrow{j^{*}} H^{m+1}(X, A: G) \longrightarrow i^{*}
\end{array}
$$

It is known by Lemma 1 that the Čech cohomology theory based on locally finite open coverings in collectionwise normal spaces satisfies axioms 3 and 4 of Eilenberg-Steenrod [9]. Thus we have $i^{*} \delta_{1}^{*} e^{\prime}=\delta^{*} j^{*} e^{\prime}=\delta^{*} e \neq 0$. This completes the proof.

The following theorem is an immediate consequence of Lemma 4 and Definition 1.

THEOREM 1. Let X be a collectionwise normal space with covering dimension $<q$. The cohomological dimension $D(X: G)$ is the least integer n such that, for each $m \geqq n$ and each closed set A of X, every mapping from A into $(K(G, m))^{q}$ is extendable over X.

Let X be collectionwise normal and perfectly normal. If we make use of Lemma 2 (i) in place of Lemma 2 (ii) in the proofs of Lemmas 3 and 4, then we know that Lemmas 3 and 4 are true without restriction of finite dimension. Thus we have:

THEOREM 2. If X is collectionwise normal and perfectly normal, then the cohomological dimension $D(X: G)$ is the least integer n such that, for each $m \geqq n$ and each closed set A of X, every mapping from A into $K(G, m)$ is extendable over X.

§3. Sum theorems

Definition 4. Let $\left\{A_{\lambda}\right\}$ be a closed covering of a space X. We say that X has the weak topology with respect to $\left\{A_{\lambda}\right\}$, if the union of any subcollection $\left\{A_{\mu}\right\}$ of $\left\{A_{\lambda}\right\}$ is closed in X and any subset of $\bigcup_{\mu} A_{\mu}$ whose intersection with each A_{μ} is closed relative to the subspace topology of A_{μ} is necessarily closed in the subspace $\bigcup_{\mu} A_{\mu}$ (Morita [18]).

THEOREM 3. Let X be a finite dimensional collectionwise normal space or a collectionwise normal and perfectly normal space.
(1) If $\left\{A_{i} ; i=1,2, \cdots\right\}$ is a closed covering of X, then $D(X, G)=\operatorname{Max}$ $\left\{D\left(A_{i}, G\right) ; i=1,2, \cdots\right\}$.
(2) If X has the weak topology with respect to $\left\{A_{\lambda} \mid \lambda \in \Gamma\right\}$, then $D(X, G)$ $=\operatorname{Max}\left\{D\left(A_{\lambda}, G\right) ; \lambda \in \Gamma\right\}$.
(3) If A is a closed subset of X such that the complement $X-A$ and X
are both collectionwise normal or collectionwise normal and perfectly normal, then $D(X, G) \leqq \operatorname{Max}\{D(X-A, G), D(A, G)\}$. Moreover, A is G_{δ}, then the equality holds.

Remark 1. If $\left\{A_{\lambda}\right\}$ is a locally finite closed covering of X, then X has the weak topology with respect to $\left\{A_{\lambda}\right\}$ by Morita [18].

Remark 2. In case X is paracompact normal, (1), (3) and (2) in which $\left\{A_{\lambda}\right\}$ is replaced by a locally finite closed covering are proved by Okuyama [20].

By an analogous argument as in Morita [18, I, Th. 2], Theorem 3 can be deduced from Theorems 1 and 2 and the following Lemma.

Lemma 6. Let K be a space having the neighborhood extension property in X. Under the assumptions of Theorem 4, if K has the extension property in subsets A_{i}, A_{λ}, A and $X-A$, then K has the extension property in X.

Proof. Let $\left\{A_{i} ; i=1,2, \cdots\right\}$ be a closed covering of X, and let f_{0} be a mapping from a closed set F_{0} of X into K. Since K has the extension property in A_{1}, f_{0} is extendable over $F_{0} \cup A_{1}$. Since K has the neighborhood extension property in X, there is a closed neighborhood F_{1} of $F_{0} \cup A_{1}$ over which f is extendable. Continuing such procedure, we know that there exist sequences of closed sets $\left\{F_{k} ; k=1,2, \cdots\right\}$ and mappings $\left\{f_{k} ; k=1,2, \cdots\right\}$ such that (1) F_{k} is a closed neighborhood of $A_{k} \cup F_{k-1}$ and (2) $f_{k}: F_{k} \rightarrow K$ is an extension of $f_{k-1}: F_{k-1} \rightarrow K, k=1,2, \cdots$. Define a mapping $f: X \rightarrow K$ by $f(x)=f_{k}(x)$ for $x \in F_{k}$. Since each point x of X is contained in the interior of some F_{k}, f is continuous. Thus f_{0} has a continuous extension. Others are proved similarly.

Definition 5. A compact space X is called to be a Cantor manifold for an abelian group G if, whenever X is a union of non empty closed subsets A and B, then $D(A \cap B, G) \geqq D(X, G)-1$.

It is obvious that X is a Cantor manifold if and only if it is a Cantor manifold for Z, where Z is the additive group of integers.

Theorem 4. Every finite dimensional compact space X contains a Cantor manifold C for G such that $D(X, G)=D(C, G)$.

By Hurewicz-Wallman [12, Th. VI, 8] the theorem is a consequence of Theorem 1 and the following lemma.

Lemma 7. Let X be a finite dimensional paracompact normal space such that $D(X, G)<m-1$. Then every mapping $f: X \rightarrow(K(G, m))^{q}$ is homotopic to a constant mapping, where $q>\operatorname{dim} X$.

Proof. In the next section, it is proved that $D(X \times I, G)=D(X, G)+1$ for a finite dimensional paracompact normal space X. Thus, the lemma is a consequence of Theorem 1.

§4. The cohomological dimension of product spaces

Theorem 5. If X is a finite dimensional locally compact metric space and Y is a finite dimensional paracompact normal space, then $D(X \times Y, G)$ is the largest integer n such that, for some closed sets $A_{2} \subset A_{1} \subset X$ and $B_{2} \subset B_{1} \subset Y$, $H^{n}\left(\left(A_{1}, A_{2}\right) \times\left(B_{1}, B_{2}\right): G\right) \neq 0$.

Remark 1. In case X and Y are locally compact paracompact normal, the theorem is proved by Dyer [8]. The local compactness of $X \times Y$ is essential in his proof.

Proof. Put $d_{1}(X \times Y, G)=\operatorname{Max}\left\{n: H^{n}\left(\left(A_{1}, A_{2}\right) \times\left(B_{1}, B_{2}\right): G\right) \neq 0\right.$ for some closed sets A_{i} and B_{i} of X and $\left.Y\right\}$ and $d_{2}(X \times Y, G)=\operatorname{Max}\left\{n: H^{n}(X \times Y, F: G)\right.$ $\neq 0$ for some closed set F of $X \times Y\}$. Since $X \times Y$ is paracompact normal by Morita [19], we have the equality $D(X \times Y, G)=d_{2}(X \times Y, G)$ by Skljarenko [23]. Using the exact sequence of triples, we know that $d_{2}(X \times Y, G)=$ $\operatorname{Max}\left\{n: H^{n}\left(F_{1}, F_{2}: G\right) \neq 0\right.$ for some closed sets $\left.F_{2} \subset F_{1} \subset X \times Y\right\}$. Thus, we have $D(X \times Y, G) \geqq d_{1}(X \times Y, G)$. It is sufficient to prove that $D(X \times Y, G)$ $\leqq d_{1}(X \times Y, G)$. By Theorem 3 or Okuyama [20] we may assume that X is a compact metric space. Let us set the following assumption.

$$
\text { Assumption }\left(^{*}\right):\left\{\begin{array}{l}
D(X \times Y, G)=n, \text { and } H^{m}\left(\left(A_{1}, A_{2}\right) \times\left(B_{1}, B_{2}\right): G\right)=0 \\
\text { for } m \geqq n, \text { any closed sets } A_{i} \text { and } B_{i}, i=1,2 .
\end{array}\right.
$$

We shall prove that Assumption (*) gives us a contradiction. Since the inequality $D(X \times Y, G)>d_{1}(X \times Y, G)$ means (*), we have the theorem. The proof is devided in five steps.

1 st step. Since X is a compact metric space, it is the inverse limit of a countable sequence $\left\{M_{i}: i=1,2, \cdots\right\}$ of finite simplicial complexes such that (i) $\operatorname{dim} M_{i} \leqq \operatorname{dim} X$, and (ii) the projection $\pi_{i}^{i+1}: M_{i+1} \rightarrow M_{i}$ is linear in each simplex of $M_{i+1}, i=1,2, \cdots$. (See Isbell [13].) Denote by $\pi_{i}^{j}: M_{j} \rightarrow M_{i}, j>i$, the composition of $\pi_{k}^{k+1}, k=i, \cdots, j-1$, and by μ_{i} the projection: $X \rightarrow M_{i}$. We have $\mu_{i}=\pi_{i}^{j} \mu_{j}$ for $j>i$. Let $\mathfrak{l}_{i}, i=1,2, \cdots$, be the open covering of X consisting of the inverse images of the open stars of M_{i} under μ_{i}. We can assume without loss of generality that $\left\{\mathfrak{U}_{i} ; i=1,2, \cdots\right\}$ forms a cofinal system of open coverings of X.

2nd step. By Theorem 1 and Assumption (*), there is a closed set F of $X \times Y$ and a mapping f of F into ($K(G, n-1)^{q}$ such that f is not extendable over $X \times Y$, where $q>\operatorname{dim} X+\operatorname{dim} Y$. Put $K=(K(G, n-1))^{q}$. Since K has the neighborhood extension property in $X \times Y$ by Lemma 2, f is extendable over some open neighborhood S of F. We denote an extension by f again. Let \mathfrak{u} be a locally finite open covering of K which is a refinement of the open covering of K consisting of the open stars of K. Since the covering $f^{-1} \mathfrak{l} \mid F$ of F
is a locally finite collection in $X \times Y$, there exists a locally finite open covering $\mathfrak{B}=\left\{W_{\alpha} \mid \alpha \in \Omega\right\}$ of Y with order $\leqq \operatorname{dim} Y+1$ satisfying the following conditions:
(i) For each $\alpha \in \Omega$ there is an open covering $\mathfrak{H}_{i(\alpha)}$ of X such that the collection $\mathfrak{H}=\left\{\mathfrak{H}_{i(\alpha)} \times W_{\alpha} \mid \alpha \in \Omega\right\}$ is a locally finite open covering of $X \times Y$. (See 1st step for $\mathfrak{l}_{i(\alpha)}$.)
(ii) The covering $\mathfrak{V} \mid F$ is a star refinement of $f^{-1} \mathfrak{d} \mid F$.
(iii) Every element of \mathfrak{F} does not intersect both F and $X \times Y-S$.
(iv) If $\Omega_{\alpha}=\left\{\beta \mid W_{\alpha} \cap W_{\beta} \neq \phi\right\}$, then $\operatorname{Max}\left\{i(\beta) \mid \beta \in \Omega_{\alpha}\right\}<\infty$ for each $\alpha \in \Omega$. The existence of \mathfrak{B} satisfying (iv) is proved by taking locally finite refinements and star refinements.
$3 r d$ step. Let N be the nerve of \mathfrak{B}. Denote by w_{α} the vertex of N corresponding to an element W_{α} of \mathfrak{W}. Let T^{0} be a topological sum of the sets $M_{i(\alpha)} \times w_{\alpha}, \alpha \in \Omega$. Suppose that T^{l} is constructed for $0 \leqq l<j$. For a j-simplex σ of N, put $i(\sigma)=\operatorname{Max}\{i(\mu): \mu$ is a $(j-1)$-face of $\sigma\}$. Let T^{j} be a topological sum of the sets $M_{i(\sigma)} \times \sigma$, where σ ranges over all j-simplexes of N. For 1 -simplex $s=\left(w_{\alpha}, w_{\beta}\right)$ of N, since $i(s)=\operatorname{Max}\{i(\alpha), i(\beta)\}$, the projections $\pi_{i(\alpha)}^{i(s)}$ and $\pi_{i(\beta)}^{i(s)}$ induce a mapping g_{s} of the subcomplex $M_{i(s)} \times\left(w_{\alpha} \cup w_{\beta}\right)$ of T^{1} into T^{0}. If we identify the corresponding points of T^{1} and T^{0} under these mappings g_{s}, we obtain a set P_{1}. Let f_{1} be the identification mapping: $T^{0} \cup T^{1} \rightarrow P_{1}$. Since the projection $\pi_{i}^{j}, i<j$, is linear in each simplex of M_{j}, we see that P_{1} is a CW complex whose closed cells are topological cells. The closure finiteness of P_{1} is guaranteed by the condition (iv) satisfied by the covering \mathfrak{W}. (See 2nd step.) Assume that the CW complex P_{j-1} is constructed for $j-1>0$ and $f_{j-1}: \bigcup_{i=0}^{j-1} T_{i} \rightarrow P_{j-1}$ is the identification mapping. Consider the cell complex $T^{j}=\cup\left\{M_{i(\sigma)} \times \sigma \mid \sigma\right.$ is a j-simplex of $\left.N\right\}$. If μ is a ($j-1$)-face of σ, then we have $i(\mu) \leqq i(\sigma)$. Put $S^{j}=\cup\left\{M_{i(\sigma)} \times \dot{\sigma}\right\}$, where $\dot{\sigma}$ is the boundary of σ. Then S^{j} is a subcomplex of T^{j}. Define the mapping $g_{j}: S^{j} \rightarrow P_{j-1}$ by $g_{j}(x, y)=f_{j-1}\left(\pi_{i(\alpha)}^{i(\sigma)}(x), y\right)$ for $x \in M_{i(\sigma)}$ and $y \in \mu$, where μ is a ($j-1$)-face of σ. If s is a k-face of $\sigma, k \leqq j-2$, and $y \in s$, then we have $f_{j-1}\left(\pi_{i(\mu)}^{i(\sigma)}(x), y\right)=$ $f_{k}\left(\pi_{i(s)}^{i(\sigma)}(x), y\right)$, where μ is a $(j-1)$-face of σ containing the simplex s. Thus we see that g_{j} is a continuous mapping. By identifying the corresponding points of T^{j} and P_{j-1} under the mapping g_{j}, we obtain a CW complex P_{j}. Denote by P the CW complex P_{j} for $j=\operatorname{dim} Y$. Each closed cell τ of P is obtained from a product cell $\nu \times \sigma$ by contracting some simplexes of $\nu \times \dot{\sigma}$, where ν and σ are simplexes of $M_{i(\sigma)}$ and N. Thus each closed cell of P is a topological cell. We say that P is the CW complex associated with the product covering \mathfrak{B} of $X \times Y$.

4th step. Consider the cell complex $T^{j}=\cup\left\{M_{i(\sigma)} \times \sigma\right\}$. (See 3rd step.) Let ϕ be a canonical mapping of Y into N. Put $B_{\sigma}=\phi^{-1}(\sigma)$ for a j-simplex σ of
N. Define the mapping $\bar{g}_{\sigma}: X \times B_{\sigma} \rightarrow T^{J}$ by $\bar{g}_{\sigma}(x, y)=\left(\mu_{i(\sigma)}(x), \phi(y)\right)$ for $x \in X$ and $y \in B_{\sigma}$. Since the mapping $\bar{g}_{\sigma}, j=1,2, \cdots, \operatorname{dim} Y$ and $\sigma \in N$, is compatible with the identification mapping: $\cup\left\{T^{j}, j=1,2, \cdots . \operatorname{dim} Y\right\} \rightarrow P$ (cf. 3rd step), \bar{g}_{σ} induces the mapping $\phi: X \times Y \rightarrow P$. It is easy to see that ψ is continuous. Moreover, the mapping ψ has the following property: For each closed cell τ of P there are simplexes σ of N and $\nu_{i(\sigma)}$ of $M_{i(\sigma)}$ such that $\psi^{-1}(\tau, \dot{\tau})=\left(\mu_{i(\sigma)}^{-1}\left(\nu_{i(\sigma)}\right)\right.$ $\left.\times \phi^{-1}(\sigma), \mu_{i(\sigma)}^{-1}\left(\dot{\nu}_{i(\sigma)}\right) \times \phi^{-1}(\sigma) \cup \mu_{i(\sigma)}^{-1}\left(\nu_{i(\sigma)}\right) \times \phi^{-1}(\dot{\sigma})\right)$, where $\dot{\tau}$ means the boundary of τ. Put $A_{\tau}=\mu_{i(\sigma)}^{-1}\left(\nu_{i(\sigma)}\right), A_{\dot{\tau}}=\mu_{i(\sigma)}^{-1}\left(\dot{\nu}_{i(\sigma)}\right), B_{\tau}=\phi^{-1}(\sigma)$ and $B_{\dot{\tau}}=\phi^{-1}(\dot{\tau})$ for a closed cell τ of P. Then we have $\psi^{-1}(\tau, \dot{\tau})=\left(\left(A_{\tau}, A_{\dot{\tau}}\right) \times\left(B_{\tau}, B_{\dot{\tau}}\right)\right)$.

5th step. Let Q be the minimal closed subcomplex of P such that $\psi(F)$ $\subset Q$. By the condition (iii) satisfied by the covering \mathfrak{F} (2nd step), we have $\phi(X \times Y-S) \cap Q=\phi$. By an analogous argument as in the proof of Lemma 4 we see that there is a mapping g of Q into K such that $g \psi \mid F \sim f: F \rightarrow K$. Denote Q^{j} the j-section of Q. Since K is ($n-2$)-connected, we may assume that $g\left(Q^{n-2}\right)=k_{0}$ (=a base point of K). Let L be the closed subcomplex of P consisting of closed cells which do not intersect Q. Let us extend g over $Q \cup L \cup P^{n-1}$ such that $g(L)=k_{0}$ and, if μ is an $(n-1)$-cell of P^{n-1} whose interior is in $P-Q, g(\mu)=k_{0}$. Take an n-cell τ such that $\tau \notin Q \cup L$. Then we have $\psi^{-1}(\tau, \dot{\tau})=\left(\left(A_{\tau}, A_{\dot{\tau}}\right) \times\left(B_{\tau}, B_{\dot{\tau}}\right)\right)$ by 4th step. Denote by h_{τ} the mapping $g \psi \mid \psi^{-1}(\dot{\tau}): \psi^{-1}(\dot{\tau}) \rightarrow K$. Since $H^{n}\left(\left(A_{\tau}, A_{\dot{\tau}}\right) \times\left(B_{\tau}, B_{\dot{\tau}}\right): G\right)=0$ by Assumption $\left.{ }^{*}\right)$, the homomorphism: $H^{n-1}\left(A_{\tau} \times B_{\tau}: G\right) \rightarrow H^{n-1}\left(A_{\tau} \times B_{\tau} \cup A_{\tau} \times B_{\tau}: G\right)$ is onto. By Lemma $4 h_{\tau}$ is extendable over $\psi^{-1}(\tau)=A_{\tau} \times B_{\tau}$. Continuing this procedure, we see that the mapping $g \phi \mid F: F \rightarrow K$ is extendable over $X \times Y$. Since $f \sim g \psi \mid F: F \rightarrow K$, the mapping f is extendable over $X \times Y$. We obtain a contradiction. This completes the proof.

From the proof of Theorem 5 (3rd step), we can see the following fact. Let $D(X \times Y, G)=n$. Then there exist ; (1) closed sets $A_{2} \subset A_{1} \subset X$ and $B_{2} \subset$ $B_{1} \subset Y$, (2) closed simplexes ν and σ, (3) mappings $f:\left(A_{1}, A_{2}\right) \rightarrow(\nu, \dot{\nu}), g:\left(B_{1}, B_{2}\right)$ $\rightarrow(\sigma, \dot{\sigma})$ and $h:(\nu \times \sigma)=\nu \times \dot{\sigma} \cup \dot{\nu} \times \sigma \rightarrow(K(G, n-1))^{q}$, and (4) the mapping $h(f \times g) \mid A_{1} \times B_{2} \cup A_{2} \times B_{1}: A_{1} \times B_{2} \cup A_{2} \times B_{1} \rightarrow(K(G, n-1))^{q}$ is not extendable over $A_{1} \times B_{1}$. Extend the mappings f and g over X and Y, respectively. We denote by f and g such extensions, again. Put $f^{-1}(\dot{\nu})=A$ and $g^{-1}(\dot{\sigma})=B$. Then the mapping $h(f \times g) \mid X \times B \cup A \times Y: X \times B \cup A \times Y \rightarrow(K(G, n-1))^{q}$ is not extendable over $X \times Y$. By Theorem 1, the homomorphism : $H^{n-1}(X \times Y: G)$ $\rightarrow H^{n-1}(X \times B \cup A \times Y: G)$ is not onto.

Consider the mapping $h:(\nu \times \sigma)^{\cdot}=\nu \times \dot{\sigma} \cup \dot{\nu} \times \sigma \rightarrow(K(G, n-1))^{q}$. Since $(K(G, n-1))^{q}$ has the neighborhood extension property in $\nu \times \sigma, h$ is extendable over some neighborhood U of $(\nu \times \sigma)^{\cdot}$ in $\nu \times \sigma$. Denote this extension by h again. By the compactness of $\nu \times \sigma$, there are closed neighborhoods s_{1} and s_{ε} of $\dot{\nu}$ and $\dot{\sigma}$ such that $\nu \times s_{2} \cup s_{1} \times \sigma \subset U$. Put $A^{\prime}=f^{-1}\left(s_{1}\right)$ and $B^{\prime}=g^{-1}\left(s_{2}\right)$.

Then A^{\prime} and B^{\prime} are closed neighborhoods of A and B. Moreover, the mapping $h(f \times g) \mid X \times B^{\prime} \cup A^{\prime} \times Y: X \times B^{\prime} \cup A^{\prime} \times Y \rightarrow(K(G, n-1))^{q}$ is not extendable over $X \times Y$. By Lemma 5, the homomorphism $i^{*}: H^{n}\left(\left(X, A^{\prime}\right) \times\left(Y, B^{\prime}\right): G\right) \rightarrow$ $H^{n}((X, A) \times(Y, B): G)$ is not zero, where $i:(X, A) \times(Y, B) \subset\left(X, A^{\prime}\right) \times\left(Y, B^{\prime}\right)$. Thus, we have the following corollaries.

Corollary 2. $D(X \times Y, G)=\operatorname{Max}\left\{n: H^{n}((X, A) \times(Y, B): G) \neq 0\right.$ for some closed sets A and B of X and Y respectively\}.

Corollary 3. Let $D(X \times Y, G)=n$. Then there exist closed sets $A_{2} \subset A_{1}$ $\subset X$ and $B_{2} \subset B_{1} \subset Y$ such that (1) A_{1} and B_{1} are closed neighborhoods of A_{2} and B_{2} respectively, and (2) the homomorphism: $H^{n}\left(\left(X, A_{1}\right) \times\left(Y, B_{1}\right): G\right) \rightarrow$ $H^{n}\left(\left(X, A_{2}\right) \times\left(Y, B_{2}\right): G\right)$ is not zero.

Let X be a finite simplicial complex and let Y be a finite dimensional paracompact normal space. For an open covering $\mathfrak{V}=\left\{\mathfrak{U}_{i(\sigma)} \times W_{\boldsymbol{f}} \mid \sigma \in \Omega\right\}$ of $X \times Y$, where $\mathfrak{W}=\left\{W_{\alpha} \mid \alpha \in \Omega\right\}$ is a locally finite open covering of Y and $\mathfrak{u}_{i(\sigma)}$ is the open covering of X consisting of the open stars of the $i(\sigma)$-th barycentric subdivision of X, construct a CW complex P associated with \mathfrak{B} (cf. the proof of Theorem 5). Then P is a subdivision of the cell complex $X \times N_{\mathfrak{x s}}$, where $N_{\mathbb{F}}$ is the nerve of \mathfrak{M}. If \mathfrak{W}^{\prime} is a locally finite refinement of \mathfrak{B} and
 by $\bar{\pi}_{\mathbb{Y S}^{\prime 28}}(x, y)=\left(x, \pi_{\mathbb{V Y}^{\prime}, 23}(y)\right)$ for $x \in X$ and $y \in N_{\mathbb{Z Y}^{\prime}}$. Then we have:

Corollary 4. Let (X, A) be a pair of finite simplicial complexes and let (Y, B) be a pair of finite dimensional paracompact normal spaces. Then $H^{n}((X, A) \times(Y, B): G)$ is the direct limit of the system $\left\{H^{n}\left((X, A) \times\left(M_{\mathfrak{R}}, N_{\mathfrak{R B}}\right)\right.\right.$: $\left.G) \mid\left(\pi_{\mathfrak{y j}^{\prime} \mathfrak{m}}\right)^{*}\right\}$, where \mathfrak{W} ranges over all locally finite open coverings of Y and $\left(M_{\mathrm{Rs}}, N_{\mathfrak{R}}\right)$ is the pair of the nerves of \mathfrak{W} for (X, A).

Corollary 5. If X is a locally finite polytope and Y is a finite dimensional paracompact normal space, then $D(X \times Y, G)=\operatorname{dim} X+D(Y, G)$.

Proof. It is sufficient to prove the corollary in case $X=I$. Let $D(I \times Y, G)=n$. By Corollary 2, there are closed subsets A and B of I and Y such that $H^{n}((I, A) \times(Y, B): G) \neq 0$. We may assume that $A=\dot{I}$ ($=$ the boundary of $I)$. By Corollary $4, H^{n}((I, \dot{I}) \times(Y, B): G)=\lim \left\{H^{n}\left((I, \dot{I}) \times\left(M_{\mathbb{2}}, N_{\text {28 }}\right)\right.\right.$: $\left.G) \mid\left(\pi_{\mathbb{Z S}} /{ }^{2}\right)^{*}\right\}$. It is well known that $H^{n}\left((I, \dot{I}) \times\left(M_{\mathbb{Z B}}, N_{\mathbb{R B}}: G\right) \approx H^{n-1}\left(M_{\mathfrak{R B}}, N_{\mathbb{R B}}: G\right)\right.$. Thus, we have $H^{n-1}(Y, B: G) \neq 0$. This proves that $D(I \times Y, G) \leqq D(Y, G)+1$. The converse relation $D(I \times Y, G) \geqq D(Y, G)+1$ is proved similarly.

Recently O'Neil [21] proved the following Künneth theorem.
Theorem. (O'Neil) If X is compact and Y is paracompact normal, then the sequence

$$
0 \rightarrow \sum_{q=0}^{n} H^{q}(X: Z) \otimes H^{n-q}(Y: Z) \rightarrow H^{n}(X \times Y: Z) \rightarrow \sum_{q=0}^{n} H^{q+1}(X: Z) * H^{n-q}(Y: Z) \rightarrow 0
$$

is exact.
From his proof we have the following exact sequence:

$$
0 \rightarrow \sum_{q=0}^{n} H^{q}(X: Z) \otimes H^{n-q}(Y: G) \rightarrow H^{n}(X \times Y: G) \rightarrow \sum_{q=0} H^{q+1}(X: Z) * H^{n-q}(Y: G) \rightarrow 0 .
$$

Here G is any abelian group.
Remark 2. For compact spaces, the Künneth sequence in relative forms is exact (Dyer [8, Appendix]). But, it is not known whether or not it is true for non compact spaces.

Remark 3. The following theorem was proved by Peterson [22, Appendix].
The universal coefficient theorem. If X is compact and G is an abelian group or X is paracompact normal and G is finitely generated, the sequence

$$
0 \rightarrow H^{n}(X: Z) \otimes G \rightarrow H^{n}(X: G) \rightarrow H^{n+1}(X: Z) * G \rightarrow 0
$$

is exact.
But, as the following simple example shows, if G is not finitely generated, the universal coefficient theorem does not hold even for a finite dimensional countable simplicial complex. Let Y be a one point union of a countable infinite number of the segments $s_{i}=\left(x_{0}, x_{i}\right), i=1,2, \cdots$, such that $s_{i} \cup s_{j}=x_{0}$ for $i \neq j$. Denote by X^{\prime} the product of Y and an $(n-1)$-sphere S^{n-1}. Let $q=\left(p_{1}, p_{2}, \cdots\right)$ be a sequence of all prime integers. Let f_{i} be a simplicial mapping from the subspace $x_{i} \times S^{n-1}$ of X^{\prime} into an $(n-1)$-sphere S_{i}^{n-1} with degree p_{i}. The simplicial complex X is obtained by identifying points of $x_{i} \times S^{n-1}$ mapped to the same point under the mapping $f_{i}, i=1,2, \cdots$. Then we have:
(1) $H^{n}(X: Z)$ contains an element with infinite order.
(2) For every prime $p, H^{n}(X: Z)$ contains an element with order p.
(3) Let $R=$ the additive group of rationals, $R_{p}=$ the additive group of rationals whose denominators are coprime with $p, Q_{p}=$ the additive group of p-adic rationals reduced $\bmod 1$ and $Z_{p}=$ the cyclic group of order p. If G is one of the groups R, R_{p}, Q_{p} and Z_{p}, p a prime, then $H^{n}(X: G)=0$.
The properties (1) and (3) imply that the universal coefficient theorem does not hold for the group R or R_{p}.

Theorem 6. Let X be a compact ANR (metric) and let Y be a finite dimensional paracompact normal space. Then we have the relation:

$$
D(X, R)+D(Y, G) \leqq D(X \times Y, G) \leqq \operatorname{dim} X+D(Y, G)
$$

Remark 4. As the following example shows, we can not replace a compact ANR (metric) X by a metric Cantor manifold. Consider the 2 -dimensional Cantor manifold M_{0} constructed in [16, p. 44]. By [16, Lemma 9], we have $D\left(M_{0}, R\right)=2$ and $D\left(M_{0}, Q_{p}\right)=D\left(M_{0}, Z_{p}\right)=1$ for a prime p. In case G is Q_{p} or a finite group, we have $D\left(M_{0}, G\right)=1$. If Y is a compact space such that
$\operatorname{dim} Y=D(Y, G)$, then $D\left(M_{0} \times Y, G\right) \leqq D\left(M_{0}, G\right)+D(Y, G)=1+D(Y, G)$ by Bock. stein [2]. Thus we have $D\left(M_{0}, R\right)+D(Y, G)=2+D(Y, G)>D\left(M_{6} \times Y, G\right)$.

We need the following lemmas.
Lemma 8. Let X be an $L C^{\infty}$ compact space and let A_{2} be a closed subset of X. For a closed neighborhood A_{1} of A_{2} there are a pair (K, L) of finite simplicial complexes, mappings $f:\left(X, A_{2}\right) \rightarrow(K, L)$ and $g:(K, L) \rightarrow\left(X, A_{1}\right)$ such that $g \cdot f \sim i:\left(X, A_{2}\right) \rightarrow\left(X, A_{1}\right)$, where $i:\left(X, A_{2}\right) \subset\left(X, A_{1}\right)$.

The proof is given by a similar way to [14].
Following Dyer [8, p. 144], a group H is said to have property $F(p), p$ a prime, if there is some element of H / H_{p} which is not divisible by p, where H_{p} is the p-primary part of H.

Lemma 9. If X is an $L C^{\infty}$ compact space such that $D(X, R)=m$, then there is a closed set A of X such that (1) $H^{m}(X, A: Z)$ contains an element with infinite order which is not divisible by any integer >1 and (2) $H^{m}(X, A: Z)$ has property $P(p)$ for every prime p.

Proof. There is a closed set A_{2} of X such that $H^{m}\left(X, A_{2}: R\right) \neq 0$. By the universal coefficient theorem [22], $H^{m}\left(X, A_{2}: Z\right)$ contains an element e with infinite order. Take a closed neighborhood A_{1} of A_{2} such that. if $i:\left(X, A_{2}\right) \subset\left(X, A_{1}\right)$, then $e \in i^{*} H^{m}\left(X, A_{1}: Z\right)$. Let $(K, L), f$ and g be complexes and mappings in Lemma 8. Put $H=g^{*} H^{m}\left(X, A_{1}: Z\right) \subset H^{m}(K, L: Z)$. Then H is finitely generated. Take an element e^{\prime} of H such that (1) e^{\prime} is of infinite order and (2) e^{\prime} is not divisible by any integer >1 in H. Let $e^{\prime \prime}$ be an element of $H^{m}\left(X, A_{1}: Z\right)$ such that $g^{*} e^{\prime \prime}=e^{\prime}$. Then $e^{\prime \prime}$ is of infinite order and it is not divisible by any integer >1. Since H is finitely generated and contains an element with infinite order, H has property $P(p)$. Thus, $H^{m}\left(X, A_{1}: Z\right)$ has property $P(p)$ for any prime p.

Proof of the relation $D(X, R)+D(Y, G) \leqq D(X \times Y, G)$. We shall give the proof by an analogous argument as in Morita [19, p. 220]. Let $s \leqq D(X, R)$ and $t \leqq D(Y, G)$. For some $m \geqq s$, there is a closed set A of X satisfying the conclusion of Lemma 9. Put $X_{0}=X / A$ and denote by x_{0} the point corresponding to A. Take a closed set B of Y such that $H^{n}(Y, B: G) \neq 0, n \geqq t$. Put $Y_{0}=Y / B$ and denote by y_{0} the point corresponding to B. Then, $H^{m}\left(X_{0}: Z\right)$ contains an element with infinite order which is not divisible by any integer >1 and it has property $P(p)$ for every prime p. Also, we have $H^{n}\left(Y_{0}: G\right) \neq 0$. Thus, by Dyer [8, Lemmas 1.6 and 1.7], $H^{m}\left(X_{0}: Z\right) \otimes H^{n}\left(Y_{0}: G\right) \neq 0$. By O'Neil [21] we can conclude that $H^{m+n}\left(X_{0} \times Y_{0}: G\right) \neq 0$ and $D\left(X_{0} \times Y_{0}: G\right) \geqq m+n$. We may assume that A and B are G_{δ}. Let $X-A=\bigcup_{i=1}^{\infty} A_{i}$ and $Y-B=\bigcup_{i=1}^{\infty} B_{i}$. Then we have $X_{0} \times Y_{0}=x_{0} \times y_{0} \cup\left(\bigcup_{i=1}^{\infty} A_{i} \times y_{0}\right) \cup\left(\bigcup_{i=1}^{\infty} x_{0} \times B_{i}\right) \cup\left(\bigcup_{i=1}^{\infty} A_{i} \times B_{i}\right) . \quad$ By Theorem 3 or Okuyama [20], we have $D\left(A_{i} \times B_{i}, G\right) \geqq m+n$ for some i. Since
$A_{i} \times B_{i}$ is closed in $X \times Y$, this proves that $D(X \times Y, G) \geqq m+n$.
Proof of the relation $D(X \times Y, G) \leqq \operatorname{dim} X+D(Y, G)$. If $D(Y, G)=0$, then, since $\operatorname{dim} Y=0$ by Corollary 1, we have $D(X \times Y, G) \leqq \operatorname{dim}(X \times Y)$ $=\operatorname{dim} X=\operatorname{dim} X+D(Y, G)$. If $\operatorname{dim} X=0$, then X consists of a finite number of points. If $\operatorname{dim} X=\infty$, then the relation is obvious. Therefore, it is sufficient to prove the relation in case $0<\operatorname{dim} X<\infty$ and $0<D(Y, G)<\infty$. Let $D(X \times Y, G)=m$ and $\operatorname{dim} X=n$. Let us assume that $m>n+D(Y, G)$. We shall prove that this assumption gives us a contradiction. Since $D(Y, G) \geqq 1$, we have $m>n+1$. By Corollary 3, there are closed sets $A_{2} \subset A_{1} \subset X$ and $B \subset Y$ such that (1) A_{1} is a closed neighborhood of A_{2} and (2) the homomorphism $i_{1}^{*}: H^{m}\left(\left(X, A_{1}\right) \times(Y, B): G\right) \rightarrow H^{m}\left(\left(X, A_{2}\right) \times(Y, B): G\right)$ is not zero, where $i_{1}:\left(X, A_{2}\right) \times(Y, B) \subset\left(X, A_{1}\right) \times(Y, B)$. Applying Lemma 8 to the inclusion $i:\left(X, A_{2}\right) \subset\left(X, A_{1}\right)$, we find a pair (K, L) of n-dimensional finite simplicial complexes, mappings $f:\left(X, A_{2}\right) \rightarrow(K, L)$ and $g:(K, L) \rightarrow\left(X, A_{1}\right)$ such that $g f \sim i:\left(X, A_{2}\right) \rightarrow\left(X, A_{1}\right) . \quad$ Define mappings $f:\left(X, A_{2}\right) \times(Y, B) \rightarrow(K, L) \times(Y, B)$ and $\bar{g}:(K, L) \times(Y, B) \rightarrow\left(X, A_{1}\right) \times(Y, B)$ by $f(x, y)=(f(x), y), x \in X$ and $y \in Y$, and $\bar{g}(k, y)=(g(k), y), k \in K$ and $y \in Y$. Then we have $\bar{g} \dot{f} \sim i:\left(X, A_{2}\right) \times(Y, B)$ $\rightarrow\left(X, A_{1}\right) \times(Y, B)$. Since the homomorphism $i_{1}^{*}=(\bar{g} \bar{f})^{*}$ is not zero, we can conclude that $H^{m}((K, L) \times(Y, B): G) \neq 0$. By Corollary 4, $H^{m}((K, L) \times(Y, B): G)$ $\xrightarrow{\lim }\left\{H^{m}\left((K, L) \times\left(M_{\mathfrak{R}}, N_{\mathfrak{R}}\right): G\right) \mid\left(\pi_{\mathfrak{B} \mathfrak{B}_{\mathfrak{B}}}\right)^{*}\right\}$, where \mathfrak{W} ranges over all locally finite open coverings of Y and $\left(M_{\mathfrak{2 3}}, N_{\mathfrak{W}}\right)$ is the pair of the nerves of \mathfrak{W} for (Y, B). Take a locally finite open covering \mathfrak{W} such that some element e of $H^{m}((K, L)$ $\left.\times\left(M_{\mathfrak{2}}, N_{\mathfrak{Z}}\right): G\right)$ represents a non-zero element of $H^{m}((K, L) \times(Y, B): G)$. Put $K / L=K_{0}$ and $M_{\mathfrak{F}} / N_{\mathfrak{\Re}}=M_{\mathfrak{B}}^{0}$, and let k_{0} and m_{0} be the points corresponding to L and $N_{\mathbb{Q B}}$. Consider the following exact sequence:

$$
\rightarrow H^{m-1}\left(K_{0} \times m_{0} \cup k_{0} \times M_{\mathfrak{2 B}}^{0}: G\right) \xrightarrow{\delta^{*}} H^{m}\left(\left(K_{0}, k_{0}\right) \times\left(M_{\mathfrak{2}}^{0}, m_{0}\right): G\right) \xrightarrow{j^{*}} H^{m}\left(K_{0} \times M_{\mathfrak{2}}^{0}: G\right)
$$

We shall assert that the element e does not belong to the image of δ^{*}. Let us assume that $e \in$ Image of δ^{*}. Since $H^{m-1}\left(K_{0} \times m_{0} \cup k_{0} \times M_{\mathfrak{2},}^{0}: G\right)$ $=H^{m-1}\left(K_{0}: G\right)+H^{m-1}\left(M_{\mathscr{M}}^{0}: G\right)$ and $\operatorname{dim} K_{0}=\operatorname{dim} K=n<m-1$, we have $H^{m-1}\left(M_{23}^{0}: G\right) \neq 0$. If \mathfrak{W}^{\prime} is a locally finite refinement of \mathfrak{M}, then $h^{*}: H^{m-1}\left(M_{\mathfrak{F}}^{0}: G\right)$ $\rightarrow H^{m-1}\left(M_{\mathfrak{X B}}^{0}: G\right)$ is not zero, where h is the mapping induced by a projection $\pi_{\mathfrak{2}, \mathfrak{B}}^{\prime}:\left(M_{\mathfrak{2 3}}, N_{23^{\prime}}\right) \rightarrow\left(M_{\mathfrak{2 B}}, N_{\mathfrak{Z B}}\right)$. This shows that $D(Y, G) \geqq m-1$. Then we have $D(X \times Y, G)=m>\operatorname{dim} X+D(Y, G)=n+m-1 \geqq m$. This contradiction proves that $e \notin$ Image of δ^{*}. Thus we have $0 \neq j^{*} e \in H^{m}\left(K_{0} \times M_{2 \mathfrak{R}}^{0}: G\right)$. By O'Neil [21], there exist integers p and q such that (1) $p+q=m$ and $H^{p}\left(K_{0}: Z\right) \otimes$ $H^{q}\left(M_{\text {趢 }}^{0}: G\right) \neq 0$ or (2) $p+q=m+1$ and $H^{p}\left(K_{0}: Z\right) * H^{q}\left(M_{\text {䟿 }}: G\right) \neq 0$. In any case (1) or (2) we can conclude that $D(Y, G) \geqq q$. Since $\operatorname{dim} X=n \geqq p$, we have $m>n+q \geqq p+q=m$. This completes the proof.

As an immediate consequence of Theorem 6, we have:

Corollary 6. If X is a compact ANR (metric) such that $\operatorname{dim} X=D(X, R)$, then $D(X \times Y, G)=\operatorname{dim} X+D(Y, G)$ for a finite dimensional paracompact normal space Y.

Remark 5. Let Y be paracompact normal and perfectly normal. If we make use of Theorem 2 in place of Theorem 1, then we can see that Theorems 5 and 6 , and Corollaries $2,3,4,5$ and 6 are true without restriction of finite dimension.

Theorem 7. Let X be a locally compact paracompact normal space. If $D\left(X, Q_{p}\right) \geqq k$ for every prime p and $D(X, R) \geqq k$, then $\operatorname{dim} X \times Y \geqq \operatorname{dim} Y+k$ for a paracompact normal space Y.

Proof. If $\operatorname{dim} X=\infty$ or $\operatorname{dim} Y=\infty$, then the theorem is obvious. Moreover, by Theorem 3 and Morita [17], we may assume that X is compact. Let $\operatorname{dim} Y=n$. There exists a closed G_{δ} set B of Y such that $H^{n}(Y, B: Z) \neq 0$. Put $Y / B=Y_{0}$ and let y_{0} be the point corresponding to B. We have the following two cases: (1) the p-primary part of $H^{n}\left(Y_{0}: Z\right) \neq 0$ for some prime p, or (2) $H^{n}\left(Y_{0}: Z\right)$ contains an element with infinite order. If (1) holds, take a closed set A of X such that $H^{m}\left(X, A: Q_{p}\right) \neq 0, m \geqq k$. Let $X / A=X_{0}$ and let x_{0} be the point corresponding to A. Then we have $H^{m}\left(X_{0}: Q_{p}\right) \neq 0$. By Dyer [8, Theorem 1], we can conclude that (i) $H^{m}(X: Z)$ has property $P(p)$ or (ii) $H^{m+1}\left(X_{0}: Z\right)$ contains an element with order p. If (i) holds, then $H^{m}\left(X_{0}: Z\right)$ $\otimes H\left(Y_{0}: Z\right) \neq 0$. If (ii) holds, then $H^{m+1}\left(X_{0}: Z\right) * H^{n}\left(Y_{0}: Z\right) \neq 0$. (See Dyer [8, Lemma 1.6].) In any case (i) or (ii), we can show that $H^{m+n}\left(X_{0} \times Y_{0}: Z\right) \neq 0$ by O'Neil [21]. Thus, we have $\operatorname{dim} X_{0} \times Y_{0} \geqq m+n$. By an analogous argument as in the proof of Theorem 6, we can prove that $\operatorname{dim} X \times Y \geqq m+n$ $\geqq k+\operatorname{dim} Y$. The proof for the case (2) is given similarly.

Definition 6. Let Q be a class of spaces. A space X is called dimensionally full-valued for Q if $\operatorname{dim} X \times Y=\operatorname{dim} X+\operatorname{dim} Y$ for every space Y of Q.

Let Q be the class of paracompact normal spaces.
Theorem 8. A locally compact paracompact normal space X is dimensionally full-valued for Q if and only if $D\left(X, Q_{p}\right)=\operatorname{dim} X$ for every prime p.

Proof. The proof of 'only if ' part follows from [15] or Boltyanski [3]. Let $D\left(X, Q_{p}\right)=\operatorname{dim} X$ for every prime p. By Bockstein [2] or Dyer [8, Corollary 2.1 (c)], we have $D\left(X, Q_{p}\right) \leqq \operatorname{Max}\left\{D(X, R), D\left(X, R_{p}\right)-1\right\} \leqq \operatorname{dim} X$. This shows that $D\left(X, Q_{p}\right)=D(X, R)=\operatorname{dim} X$. The theorem follows from Theorem 7.

Theorem 9. If X is locally compact paracompact normal space such that $\operatorname{dim} X>0$, then $\operatorname{dim} X \times Y \geqq \operatorname{dim} Y+1$ for every paracompact normal space Y.

The theorem follows from Corollary 1 and Theorem 7.
Definition 7. A compact space C is called a pseudo n-cell if there exists a mapping f of an n-cell E onto C such that $f \mid$ the boundary of E is a homeomorph.

Theorem 10. If a locaily compact paracompact normal space X contains a pseudo n-cell, then $D(X \times Y, G) \geqq D(Y, G)+n$ for every paracompact normal space Y.

Proof. There exists a mapping f of an n-cell E into X such that $f \mid$ the boundary of E is a homeomorph. Denote by S the boundary of E, and put $C=f(E)$ and $D=f(S)$. The mapping $f^{-1}: D \rightarrow S$ is extendable over C. Denote this extension by g. Then $g f \sim 1:(E, S) \rightarrow(E, S)$, where 1 means the identity mapping. Let $D(Y, G)=m$. Take a closed set B of Y such that $H^{m}(Y, B: G)$ $\neq 0$. By an analogous argument as in the proof of Corollary 5, we can prove that $H^{m+n}((E, S) \times(Y, B): G) \neq 0$. This shows that $H^{m+n}((C, D) \times(Y, B): G) \neq 0$. Thus, we have $D(X \times Y, G) \geqq D(Y, G)+n$.

Corollary 7. If a compact n-dimensional metric space X is $l c^{n}$ (over Z), then it is dimensionally full-valued for Q if and only if $D(X, R)=n$.

It follows from Dyer [7, Corollary 2], [15] and Theorem 9,
Corollary 8. The following spaces are dimensionally full-valued for Q.
(1) A locally compact 2-dimensional ANR (metric).
(2) A 1-dimensional locally compact paracompact normal space.
(3) An n-dimensional locally compact paracompact normal space which contains a pseudo n-cell.

> Department of Mathematics
> Tokyo University of Education

References

[1] R. H. Bing, Metrization of topological spaces, Canad. J. Math., 3 (1951), 175-186.
[2] M. Bockstein, On the homological invariants of topological products, I, Trudy Moskov. Mat. Obšč., 5 (1956), 3-80. (Amer. Math. Soc. Transl., Ser. 2, 2 (1959), 173-385.) ; II, ibid., 6 (1957), 3-133.
[3] V. Boltyanskii, On dimensional full-valuedness of compacta, Dokl. Akad. Nauk SSSR (N. S.), 67 (1949), 773-776. (Amer. Math. Soc. 'Transl., Ser. 1, 8 (1951), 6-10.)
[4] C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math., 69 (1947), 202-242.
[5] C. H. Dowker, Topology of metric complex, Amer. J. Math., 74 (1952), 555-577.
[6] C. H. Dowker, On a theorem of Hannor, Ark. Mat., 2 (1954), 307-313.
[7] E. Dyer, Regular mappings and dimension, Ann. of Math., 67 (1958), 119-149.
[8] E. Dyer, On the dimension of products, Fund. Math., 47 (1959), 141-160.
[9] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton, 1952.
[10] O. Hanner, Retraction and extension of mappings of metric and non-metric spaces, Ark. Mat., 2 (1952), 315-360.
[11] S. T. Hu, Homotopy theory, Academic Press, New York, 1959.
[12] W.Hurewicz and H. Wallman, Dimension theory, Princeton, 1941.
[13] I. R. Isbell, Embeddings of inverse limits, Ann. of Math., 70 (1959), 73-84.
[14] Y. Kodama, On ANR for metric spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect.
A., 5 (1955), 96-98.
[15] Y. Kodama, On a problem of Alexandroff concerning the dimension of product spaces I, J. Math. Soc. Japan, 10 (1958), 380-404; II, ibid., 11 (1959), 94-111.
[16] Y. Kodama, Test spaces for homological dimension, Duke Math. J., 29 (1962), 41-50.
[17] K. Morita, On the dimension of normal spaces I, Japan. J. Math., 20 (1950), 536 ; II, J. Math. Soc. Japan, 2 (1950), 16-33.
[18] K. Morita, On spaces having the weak topology with respect to closed coverings, Proc. Japan Acad., 29 (1953), 537-543 ; II, ibid., 30 (1954), 711-717.
[19] K. Morita, On the dimension of product spaces, Amer, J. Math., 75 (1953), 205223.
[20] A. Okuyama, On cohomological dimension for paracompact spaces I, Proc. Japan Acad., 38 (1962), 489-494; II, ibid., 655-659.
[21] R.C. O'Neil, The Čech cohomology of paracompact product spaces, Amer. J. Math., 87 (1965), 71-78.
[22] F.P. Peterson, Some results on cohomotopy groups, Amer, J. Math., 78 (1956). 243-259.
[23] E. G. Skljarenko, On the definition of cohomology dimension, Soviet Math. Dokl., 6 (1965), 478-479.
[24] M. Wojdeslawski, Rétracte absolus et hyperspaces des continus, Fund. Math., 32 (1939), 184-192.

