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\S 1. Introduction

The purpose of the present paper is to develop the theory of cohomo-
logical dimension for non-compact spaces. Let us denote by $D(X, G)$ the co-
homological dimension of a space $X$ with respect to an abelian group $G$ . In
the first part of this paper we shall give a characterization of $D(X, G)$ in
terms of continuous mappings of $X$ into an Eilenberg-MacLane complex in
case $X$ is a collectionwise normal space. As an application of this characteri-
zation, we have sum theorems. Some of our sum theorems were proved by
Okuyama [20] in case $X$ is paracompact normal. In the second part of this
paper we shall concern the cohomological dimension of the product of a com-
pact space $X$ and a paracompact normal space $Y$. We shall prove that
$D(X\times Y, G)$ is the largest integer $n$ such that $H^{n}((X, A)\times(Y, B):G)\neq 0$ for
some closed sets $A$ and $B$ of $X$ and $Y$. By our previous paper [15] or Bolt-
yanskii [3] we know which compact spaces are dimensionally full-valued for
compact spaces. However, a space which is known to be dimensionally full-
valued for paracompact normal spaces is only a locally finite polytope. This
was proved by Morita [19]. We shall prove that a locally compact para-
compact normal space is dimensionally full-valued for paracompact normal
spaces if and only if it is dimensionally full-valued for compact spaces. As
an immediate consequence of this theorem we can know that $\dim(X\times Y)$

$\geqq\dim Y+1$ in case $X$ is a locally compact paracompact normal space with
covering dimension $\geqq 1$ and $Y$ is paracompact normal. Moreover, we shall
show that, if a compact space $X$ is an ANR (metric) and $R$ is a rational field,
then $D(X, R)+D(Y, G)\leqq D(X\times Y, G)\leqq\dim X+D(Y, G)$ for a paracompact
normal space $Y$ and an abelian group $G$ .

Throughout this paper we assume that all spaces are normal and mappings
are continuous transformations.
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\S 2. Cohomological dimension

Let $X$ be a space and let $\mathfrak{U}$ be an open covering of $X$. We mean by the
nerve of $\mathfrak{U}$ the nerve of $\mathfrak{U}$ with weak topology. If $\mathfrak{U}$ is locally finite, then
there is a canonical mapping of $X$ into the nerve of $\mathfrak{U}$ . (See Dowker [5].)

We denote by $\phi_{11}$ a canonical mapping of $X$ into the nerve of U. If $\mathfrak{U}$

$=\{U_{\alpha}|\alpha\in\Omega\}$ is a covering of $X$ and $A$ is a closed set of $X$, then we denote
the covering $\{U_{\alpha}\cap A|\alpha\in\Omega\}$ of $A$ by $\mathfrak{U}|A$ . We mean by $H^{*}(X, A:G)$ the
$Cech\forall$ cohomology group of (X, $A$) with coefficients in $G$ based on locally finite
open coverings of $X$. If $X$ is paracompact normal, then $H^{*}(X, A:G)$ is equal
to the unrestricted $\text{\v{C}}_{ech}$ cohomology group.

DEFINITION 1. The cohomological dimension $D(X, G)$ of a space $X$ with
respect to an abelian group $G$ is the least integer $n$ such that, for each $m\geqq n$

and each closed set $A$ of $X$ the homomorphism $i^{*}:$ $H^{m}(X:G)\rightarrow H^{m}(A:G)$ in-
duced by the inclusion mapping $i:A\subset X$ is onto.

Recently, Skljarenko [23] proved that, if $X$ is paracompact normal, then
$D(X, G)$ is the largest integer $n$ such that $H^{n}(X, A:G)\neq 0$ for some closed set
$A$ of $X$.

DEFINITION 2. A space $X$ is called collectionwise normal if, for every
locally finite collection $\{A_{\lambda}\}$ of mutually disjoint closed subsets of $X$, there is
a collection $\{U_{\lambda}\}$ of mutually disjoint open sets such that $A_{\lambda}\subset U_{\lambda}$ for each $\lambda$

(Bing [1]).

The following was proved by Dowker [6, Lemma 1].

LEMMA 1. $(Dot^{J}’ ker)$ Let $A$ be a closed subset of a collectionwise normal
space $X$ and let $\{U_{\lambda}\}$ be a locally finite open covering of A. Then there exists
a locally finite open covering $\{V_{\lambda}\}$ of $X$ such that, for each $\lambda,$ $V_{\lambda}\cap A\subset U_{\lambda}$ .

DEFINITION 3. Let $Q$ be a class of spaces. A space $X$ is called an $ANR(Q)$

if, whenever $X$ is a closed subset of $Y$ in $Q,$ $X$ is a retract of a neighbor-
hood of $X$ in $Y$.

LEMMA 2. (i) (Dowker) A simplicial complex with metric topology is an
ANR (collectionwise normal and perfectly normal).

(ii) (Hanner) $A$ finite dimensional simplicial complex with metric topology
is an ANR (collectionwise normal).

The proof is found in Dowker [6] and Hanner [10].

For an abelian group $G$ , we denote by $K(G, m),$ $m\geqq 1$ , an Eilenberg-Mac-
$\llcorner ane$ space which is a simplicial complex with metric topology (cf. Hu [11]).

For $m=0,$ $K(G, 0)$ is $G$ itself with discrete topology. For an integer $q$, denote
by $(K(G, m))^{q}$ the q-section of $K(G, m)$ . According to Wojdyslawski [24, $p$ .
186] $(K(G, m))^{q}$ can be imbedded as a closed set of a convex subset $D$ of a
normed vector space. Since $(K(G, m))^{q}$ is an ANR (metric) by Lemma 2 (i),
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there is a neighborhood $T$ of $(K(G, m))^{q}$ in $D$ and a retraction $r:T\rightarrow(K(G, m))^{q}$ .
For each point $k$ of $(K(G, m))^{q}$ , take an open spherical neighborhood $S(k)$ such
that $S(k)\subset T$ . Put $\mathfrak{S}=\{S(k)|k\in(K(G, m))^{q}\}$ . There is a subdivision $K^{\prime}$ of
$(K(G, m))^{q}$ such that the open covering of $(K(G, m))^{q}$ consisting of the open
stars of $K^{\prime}$ is a star refinement of the open covering $\mathfrak{S}|(K(G, m))^{q}$ . We denote
$K^{\prime}$ by $(K(G, m))^{q}$ again.

We say that two mappings $f_{1}$ and $f_{2}$ of a space $X$ into a simplicial com-
plex $K$ is contiguous if, for each point $x$ of $X$, there is a closed simplex $s(x)$

of $K$ such that $f_{1}(x)\cup f_{2}(x)\subset s(x)$ .
LEMMA 3. Let $A$ be a closed set of a collectionwise normal space $X$, and

let $f_{1}$ and $f_{2}$ be contiguous mappings of $A$ into $(K(G, m))^{q}$ . If $f_{1}$ is extendable
over $X$, then $f_{2}$ is extendable over $X$.

PROOF. We shall prove the lemma by the same argument as in Dowker
[4, Th. 2.1]. Put $(K(G, m))^{q}=K$. Let $F_{1}$ : $X\rightarrow K$ be an extension of $f_{1}$ . Since
$K$ is an ANR (collectionwise normal) by Lemma 2 (ii), $f_{2}$ is extendable over
some open neighborhood $U_{1}$ of $A$ in $X$. Denote by $f^{\prime}$ this extension. Since

$f_{1}$ and $f_{2}$ are contiguous, we can take an open neighborhood $U_{2}$ of $A$ such
that (1) $U_{2}\subset U_{1}$ and (2), for each point $x$ of $U_{2}$ , there is some spherical neigh-
borhood $S(k)$ of $\mathfrak{S}$ which contains $F_{1}(x)\cup f^{\prime}(x)$ . Let $h_{1}$ be the mapping of
$U_{2}\times I$ into $T$ which maps $(x, t)$ in the point dividing the segment $(F_{1}(x), f^{\prime}(x))$

in the ratio $t:1-t$ . Define the mapping $h_{2}$ : $X\times 0\cup U_{2}\times I\rightarrow\cup\{S(k)|S(k)\in \mathfrak{S}\}$

$\subset T$ by $h_{2}|X\times 0=F_{1}$ and $h_{2}|U_{2}\times I=h_{1}$ . Take an open set $U_{s}$ of $X$ such
that $A\subset U_{8}\subset\overline{U}_{3}\subset U_{2}$ and let $g$ be a continuous function of $X$ into $I$ such
that $g(x)=1$ for $x\in A$ and $g(x)=0$ for $\chi\in X-U_{3}$ . Let $h_{8}$ be the mapping of
$X\times I$ into $T$ defined by $h_{3}(x, t)=h_{2}(x, t\cdot g(x))$ . Define the mapping $F_{2}$ : $X\rightarrow K$

by $F_{2}(x)=rh_{3}(x, 1)$ for $x\in X$. Since $r:T\rightarrow K$ is a retraction, $F_{2}$ is an exten-
sion of $f_{2}$ .

REMARK. If $X$ is paracompact normal, then Lemma 1 is proved simply.
Since $X\times I$ is paracompact normal, it follows from the homotopy extension
theorem.

LEMMA 4. Let $X$ be a collectionwise normal space such that $\dim X<q$,
where $\dim X$ means the covering dimension of X. In order that every mapping
from a closed set $A$ into $(K(G, m))^{q}$ be extendable over $X$ it is necessary and
sufficient that the homomorphism $i^{*}:$ $H^{m}(X:G)\rightarrow H^{m}(A:G)$ induced by the inclu-
sion mapping $i:A\subset X$ be onto.

PROOF OF THE NECESSITY. Take an element $e$ of $H^{m}(A:G)$ . Let $\mathfrak{U}$ be a
locally finite open covering of $A$ with order $\leqq q$ such that, if $N_{\iota\iota}$ is the nerve
of $\mathfrak{U}$ , there is a cocycle $z_{\mathfrak{U}}$ of $Z^{m}(N_{\mathfrak{U}} : G)$ which represents $e$ . Denote $(K(G, m))^{q}$

by $K$ and let $k_{0}$ be a fixed vertex of $K$. Let $f_{\mathfrak{U}}$ be a mapping from the m-
-section $(N_{\mathfrak{U}})^{m}$ of $N_{\mathfrak{U}}$ into $K$ such that $f_{\mathfrak{U}}((N_{\mathfrak{U}})^{m-1})=k_{0}$ and, for each $\gamma\gamma\downarrow$ -simplex
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$\sigma,$
$ f_{11}|\sigma$ represents the element $z_{\mathfrak{U}}(\sigma)$ of the homotopy group $\pi_{m}(K, k_{0})=G$ .

Since $z_{\mathfrak{U}}$ is a cocycle over $G,$ $f_{\mathfrak{U}}$ is extendable over $N_{u}$ . (See Hu [11, Chap. VI].)
Denote this extension by $f_{\iota\iota}$ again. We say that $f_{11}$ is determined by the
cocycle $z_{\mathfrak{U}}$ . Let $\overline{f_{1t}}$ be a simplicial approximation of $f_{\mathfrak{U}}$ . Then $\overline{f}_{\mathfrak{U}}$ is a simplicial
mapping from a subdivision $\overline{N}_{\iota\iota}$ of $N_{11}$ into $K$ such that $\overline{f_{1t}}\sim f_{u}j:\overline{N}_{\iota\iota}\rightarrow K$,

where $j:\overline{N}_{11}\rightarrow N_{\mathfrak{U}}$ is the identity mapping. Let $\phi_{\mathfrak{U}}$ be a canonical mapping of
$A$ into $N_{\iota\iota}$ . Put $\overline{\phi}_{\mathfrak{U}}=j^{-1}\phi_{\mathfrak{U}}$ . Let $\mathfrak{B}^{\prime}$ be the open covering of $\overline{N}_{11}$ consisting
of the open stars of $\overline{N}_{11}$ . We may assume that $\overline{N}_{1t}$ is the nerve of the cover-
ing $\mathfrak{B}=\overline{\phi}_{\mathfrak{U}}^{-1}(\mathfrak{B}^{\prime})$ . By the assumption the mapping $\overline{f_{11}}\overline{\phi}_{1I}$ : $A\rightarrow K$ has an extension
$g:X\rightarrow K$. Denote by $\mathfrak{U}_{0}$ the open covering consisting of the open stars of $K$.
Let $\mathfrak{W}$ be a locally finite open covering of $X$ with order $\leqq q$ such that $\mathfrak{W}$ is
a refinement of $g^{-1}(\mathfrak{U}_{0})$ and $\mathfrak{W}|A$ is a refinement of $\mathfrak{B}$ . The existence of such
a covering follows from Lemma 1. Let $M_{\mathfrak{W}}$ be the nerve of $\mathfrak{W}$ . We denote
by $w$ the vertex of $M_{\mathfrak{W}}$ corresponding to an element $W$ of $\mathfrak{W}$ . Define a sim-
plicial mapping $f_{\mathfrak{W}}:M_{\mathfrak{W}}\rightarrow K$ by $f_{W}(w)=u$ for a vertex $w$ of $M_{\mathfrak{W}}$ , where
$W\subset g^{-1}(U),$ $U\in \mathfrak{U}_{0}$ , and $u$ is the vertex of $K$ corresponding to $U$ . Let us
denote by $N_{\mathfrak{W}}$ the nerve of $\mathfrak{W}|A$ , and let $\overline{\pi}_{\mathfrak{W}\mathfrak{U}}:N_{\mathfrak{W}}\rightarrow\overline{N}_{11},$ $\pi_{\mathfrak{W}\mathfrak{U}}:N_{\mathfrak{W}}\rightarrow N_{\iota\iota}$ and $\pi$ ;

$\overline{N}_{\iota\iota}\rightarrow N_{\mathfrak{U}}$ be projections. Since $\overline{f}_{u^{\overline{\pi}_{\mathfrak{W}\mathfrak{U}}}}$ and $f_{\mathfrak{W}}|N_{\mathfrak{W}}$ are contiguous, they are
homotopic. Also, we have $f_{1X}\pi\sim f_{\mathfrak{U}}j\sim\overline{f_{11}}:\overline{N}_{11}\rightarrow K$. Thus, we know $f_{\mathfrak{U}}\pi_{\mathfrak{W}t1}$

$\sim f_{\mathfrak{W}}|N_{\mathfrak{W}}:N_{\mathfrak{W}}\rightarrow K$. $Sincef_{1t}\pi_{\mathfrak{W}\mathfrak{U}}((N_{\mathfrak{W}})^{m-1})=k_{0},$ $Khasthehomotopyextensionpro-$

perty in $M_{\mathfrak{W}}$ and $K$ is $(m-1)$ -connected, there is a mapping $g_{\mathfrak{W}}$ : $M_{\mathfrak{W}}\rightarrow K$ such
that $g_{\mathfrak{W}}((M_{\mathfrak{W}})^{m-1})=k_{0}$ and $g_{\mathfrak{W}}|N_{\Psi\circ}=f_{\mathfrak{U}}\pi_{\mathfrak{W}\mathfrak{U}}$ . For each m-simplex $\sigma$ of $M_{\mathfrak{W}}$ , if we
assign the element of $\pi_{m}(K)=G$ represented by $ g_{\mathfrak{W}}|\sigma$ to $\sigma$ , then we have a
cocycle $z_{\mathfrak{W}}$ of $M_{\mathfrak{W}}$ (cf. Hu [11, Chap. VI]). We say that $z_{\mathfrak{W}}$ is determined by
the mapping $g_{\mathfrak{W}}$ . The restriction of $z_{\mathfrak{W}}$ to $N_{\mathfrak{W}}$ is the cocycle $(\pi_{\mathfrak{W}11})^{*}z_{\mathfrak{U}}$ . This
proves that $i^{*}:$ $H^{m}(X:G)\rightarrow H^{m}(A:G)$ is onto.

PROOF OF THE SUFFICIENCY. Let $f$ be a mapping of $A$ into $K$. We shall
use the same notation in the proof of the necessity. Take a locally finite
open covering $\mathfrak{U}$ of $A$ such that order of $\mathfrak{U}\leqq q$ and $\mathfrak{U}$ is a refinement of $f^{-1}(\mathfrak{U}_{0})$ .
There is a mapping $f_{11}$ : $N_{\iota\iota}\rightarrow K$ such that $f_{\mathfrak{U}}\phi_{\mathfrak{U}}$ and $f$ are contiguous. Since
$K$ is $(m-1)$ -connected, we can take a mapping $f^{\prime}$ : $N_{\mathfrak{U}}\rightarrow K$ such that $f^{\prime}((N_{1I})^{m-1})$

$=k_{0}$ and $f^{\prime}\sim f_{11}$ . The mapping $f^{\prime}$ determines a cocycle $z_{\mathfrak{U}}$ of $Z^{m}(N_{\iota\iota} : G)$ . Let
$f_{11}^{\prime}$ be a mapping from a subdivision $\overline{N}_{\mathfrak{U}}$ of $N_{u}$ into $K$ which is a simplicial
approximation of $f^{\prime}$ . Put $\overline{\phi}_{\mathfrak{U}}=j^{-1}\phi_{11}$ . Let $\mathfrak{U}^{\prime}$ be the open covering of $A$ con-
sisting of the inverse images of the open stars of $\overline{N}_{u}$ under $\overline{\phi}_{\mathfrak{U}}$ .

$\rightarrow$

We may
assume that $\overline{N}_{11}$ is the nerve of $\mathfrak{U}^{\prime}$ and $\overline{\phi}_{\mathfrak{U}}$ is a canonical mapping of $A$ into
$\overline{N}_{11}$ . Take a locally finite open covering $\mathfrak{B}$ of $X$ with order $\leqq q$ such that (1)
$\mathfrak{B}|A$ is a refinement of $\mathfrak{U}^{\prime}$ and (2) there is a cocycle $z_{\mathfrak{B}}$ of $Z^{m}(M_{\mathfrak{B}} : G)$ whose
restriction to $N_{\mathfrak{B}}$ is $(\pi_{\mathfrak{B}1t})^{*}z_{\mathfrak{U}}$ , where $(M_{\mathfrak{B}}, N_{\mathfrak{B}})$ is the pair of the nerves of $\mathfrak{B}$
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for (X, $A$) and $\pi_{\mathfrak{B}\mathfrak{U}}$ is a projection: $N_{\mathfrak{B}}\rightarrow N_{\mathfrak{U}}$ . Since $\mathfrak{B}|A$ is a refinement of
$f^{-1}(\mathfrak{U}_{0})$ , there is a mapping $f_{\mathfrak{B}}$ : $N_{\mathfrak{B}}\rightarrow K$ such that $f$ and $f_{\mathfrak{B}}\phi_{\mathfrak{B}}|A$ are contiguous.
where $\phi_{\mathfrak{B}}$ : $X\rightarrow M_{\backslash ^{\backslash }}\backslash $ is a canonical mapping. Then we have homotopies $ f_{\mathfrak{B}}\sim$

$f_{11}^{\prime}\overline{\pi}_{\mathfrak{B}\mathfrak{U}}\sim f_{t1}\pi_{\mathfrak{U}\mathfrak{V}}$ : $N_{\mathfrak{B}}\rightarrow K$, where $\overline{\pi}_{\mathfrak{B}\mathfrak{U}}$ : $N_{\mathfrak{B}}\rightarrow N_{\mathfrak{U}}$ is a projection. Since the cocycle
$(\pi_{\mathfrak{B}11})^{*}z_{1I}$ determined by the mapping $f_{\mathfrak{U}}\pi_{\mathfrak{B}t}$ is extended to the cocycle $z_{\mathfrak{B}}$ of
$M_{\mathfrak{V}},$ $f_{\mathfrak{U}}\pi_{\mathfrak{V}1}$ is extendable over $M_{\mathfrak{V}}$ . Since $K$ has the homotopy extension pro-
perty in $M_{\mathfrak{B}},$ $f_{\mathfrak{V}}$ is extendable over $M_{\mathfrak{B}}$ . Denote this extension by $f_{\mathfrak{V}}$ again.
Since $f_{\mathfrak{V}}\phi_{\mathfrak{V}}|A$ and $f$ are contiguous, by Lemma 3, $f$ is extendable over $X$.
This completes the proof.

The following is a consequence of Lemma 4 and an analogous theorem in
terms of homology is proved in [15, II, p. 103].

COROLLARY 1. If $X$ is a collectionwise normal space with covering dimen-
$sion>0$ , then $D(X, G)\geqq 1$ for an abelian group $G$ .

PROOF. By Morita [17, $I$ , Th. 3.1], there exist disjoint closed subsets $A$

and $B$ of $X$ such that for any open set $U,$ $A\subset U\subset\overline{U}\subset X-B$ , we have $\overline{U}-U$

$\neq\phi$ . Put $K=K(G, 0)$ . $K$ is $G$ itself with discrete topology. Take two dis-
tinct points $a$ and $b$ of $K$. Define a mapping $f$ of $A$ $UB$ into $K$ by $f(A)=a$

and $f(B)=b$ . If the homomorphism $i^{*}:$ $H^{0}(X:G)\rightarrow H^{0}(A\cup B:G)$ is onto, then
we can prove by the same argument as in the proof of the sufficiency of
Lemma 4 for $m=0$ that $f$ is extendable over $X$. Since $K$ has discrete topo-
logy, we have a contradiction.

We need the following lemma in \S 4.
LEMMA 5. Let $X$ be a collectionwise normal space with covering dimension

$<q$ , and let $A$ and $A^{\prime}$ be closed sets of $X$ such that $A\subset A^{\prime}$ . If there is a
mapping $f$ of $A$ into $(K(G, m))^{q}$ such that (1) $f$ is extendable over $A^{\prime}$ and (2) $f$

is not extendable over $X$, then the homomorphism $i^{*}:$ $H^{m+1}(X, A^{\prime} : G)\rightarrow H^{m+1}(X$,
$A:G)$ induced by the inclusion mapping $i:(X, A)\subset(X, A^{\prime})$ is not zero.

PROOF. Let $f^{\prime}$ : $A^{\prime}\rightarrow K=(K(G, m))^{q}$ be an extension of $f$. There is a
locally finite open covering $\mathfrak{U}$ of $A^{\prime}$ with order $\leqq q$ and a mapping $f_{\iota\iota}^{\prime}$ from
the nerve $L_{\iota\iota}$ of $\mathfrak{U}$ into $K$ such that $f^{\prime}$ and $f_{\mathfrak{U}}^{\prime}\phi_{11}$ are contiguous. Take a map-
ping $f_{\iota\iota}$ : $L_{\mathfrak{U}}\rightarrow K$ such that $f_{\mathfrak{U}}^{\prime}\sim f_{\mathfrak{U}}$ and $f_{11}((L_{\mathfrak{U}})^{m-1})=k_{0}$ . Let $N_{\iota\iota}$ be the nerve
of $\mathfrak{U}|A$ . Denote by z\’u and $z_{\mathfrak{U}}$ the cocycles of $L_{\mathfrak{U}}$ and $N_{\iota\iota}$ determined by the
mappings $f_{1t}$ and $f_{\mathfrak{U}}|N_{\mathfrak{U}}$ . Then the restriction of $z_{lX}^{\prime}$ to $N_{11}$ is $z_{t1}$ . Let $e^{\prime}$ and
$e$ be the elements of $H^{m}(A^{\prime} : G)$ and $H^{m}(A : G)$ represented by $z_{\mathfrak{U}}^{\prime}$ and $z_{\mathfrak{U}}$ . We
have $e=j^{*}e^{\prime}$ , where $j:A\subset A^{\prime}$ . Take a locally finite open covering $\mathfrak{B}$ of $X$

with order $\leqq q$ such that $\mathfrak{B}|A^{\prime}$ is a refinement of 11. By Lemma 1, any locally
finite open covering of $X$ has such a covering $\mathfrak{B}$ as a refinement. Let $M_{\{\}}$

and $N_{\mathfrak{V}}$ be the nerves of $\mathfrak{B}$ and $\mathfrak{B}|A$ . Assume that there is a cocycle $z$ of
$M_{\mathfrak{V}}$ whose restriction to $N_{\mathfrak{V}}$ is cohomologous to $(\pi_{\mathfrak{V}\mathfrak{U}})^{*}z_{\mathfrak{U}}$ in $N_{\mathfrak{V}}$ , where $\pi_{\mathfrak{V}\mathfrak{U}}$ ; $N_{\theta\}}$

$\rightarrow N_{\mathfrak{U}}$ is a projection. By the same argument as in the proof of the sufficiency
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of Lemma 4, we can know that the mapping $f:A\rightarrow K$ is extendable over $X$.
Thus we proved that $e\not\in j_{1}^{*}H^{m}(X:G)$ , where $j_{1}$ : $A\subset X$. Consider the following
diagram:

$j_{2}^{*}$ $\delta_{1}^{*}$

$\rightarrow H^{m}(X:G)-H^{m}(A^{\prime} : G)\rightarrow H^{m+1}(X, A^{\prime} : G)\rightarrow$

$\Vert$ $\downarrow j^{*}$

$\delta^{*}$

$\}i^{*}$

$\rightarrow H^{m}(X:G)\rightarrow^{j_{1}^{*}}H^{m}(A : G)\rightarrow H^{m+1}(X, A : G)\rightarrow$ .

It is known by Lemma 1 that the Cech cohomology theory based on locally
finite open coverings in collectionwise normal spaces satisfies axioms 3 and 4
of Eilenberg-Steenrod [9]. Thus we have $i^{*}\delta_{1}^{*}e^{\prime}=\delta^{*}j^{*}e^{\prime}=\delta^{*}e\neq 0$ . This com-
pletes the proof.

The following theorem is an immediate consequence of Lemma 4 and
Definition 1.

THEOREM 1. Let $X$ be a collectionwise normal space with covering dimen-
$sion<q$ . The cohomological dimension $D(X:G)$ is the least integer $7l$ such that,

for each $m\geqq n$ and each closed set $A$ of $X$, every mapping from $A$ into $(K(G, m))^{q}$

is extendable over $X$.
Let $X$ be collectionwise normal and perfectly normal. If we make use of

Lemma 2 (i) in place of Lemma 2 (ii) in the proofs of Lemmas 3 and 4, then
we know that Lemmas 3 and 4 are true without restriction of finite dimen-
sion. Thus we have:

THEOREM 2. If $X$ is collectionwise normal and perfectly normal, then the
cohomological dimension $D(X:G)$ is the least integer $n$ such that, for each
$m\geqq n$ and each closed set $A$ of $X$, every mapping from $A$ into $K(G, m)$ is ex-
tendable over $X$.

\S 3. Sum theorems

DEFINITION 4. Let $\{A_{\lambda}\}$ be a closed covering of a space $X$. We say that
$X$ has the weak topology with respect to $\{A_{\lambda}\}$ , if the union of any subcollection
$\{A_{1}\}$ of $\{A_{\lambda}\}$ is closed in $X$ and any subset of

$\bigcup_{\mu}A_{f}$ whose intersection with

each $A_{t}$ is closed relative to the subspace topology of $A_{\mu}$ is necessarily closed
in the subspace

$\bigcup_{\mu}A_{\alpha,}$
(Morita [18]).

THEOREM 3. Let $X$ be a finite dimensional collectionwise normal space or
a collectionwise normal and perfectly normal space.

(1) If $\{A_{i} ; i=1, 2, \}$ is a closed covering of $X$, then $D(X, G)={\rm Max}$

$\{D(A_{i}, G);i=1,2, \}$ .
(2) If $X$ has the weak topology with respect to $\{A_{\lambda}|\lambda\in\Gamma\}$ , then $D(X, G)$

$={\rm Max}\{D(A_{\lambda}, G) ; \lambda\in\Gamma\}$ .
(3) If $A$ is a closed subset of $X$ such that the complement $X-A$ and $X$
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are both collectionwise normal or $coltectionu\prime ise$ normal and perfectly normal,
then $D(X, G)\leqq{\rm Max}\{D(X-A, G), D(A, G)\}$ . Moreover, $A$ is $G_{\delta}$, then the equality
holds.

REMARK 1. If $\{A_{\lambda}\}$ is a locally finite closed covering of $X$, then $X$ has
the weak topology with respect to $\{A_{\lambda}\}$ by Morita [18].

REMARK 2. In case $X$ is paracompact normal, (1), (3) and (2) in which
$\{A_{\lambda}\}$ is replaced by a locally finite closed covering are proved by Okuyama
[20].

By an analogous argument as in Morita [18, $I$ , Th. 2], Theorem 3 can be
deduced from Theorems 1 and 2 and the following Lemma.

LEMMA 6. Let $K$ be a space having the neighborhood extension property in
X. Under the assumptions of Theorem 4, if $K$ has the extension property in
subsets $A_{i},$ $A_{\lambda},$ $A$ and $X-A$ , then $K$ has the extension property in $X$.

PROOF. Let $\{A_{i} ; i=1, 2, \}$ be a closed covering of $X$, and let $f_{0}$ be a
mapping from a closed set $F_{0}$ of $X$ into $K$. Since $K$ has the extension pro-
perty in $A_{1},$ $f_{0}$ is extendable over $F_{0}\cup A_{1}$ . Since $K$ has the neighborhood
extension property in $X$, there is a closed neighborhood $F_{1}$ of $F_{0}\cup A_{1}$ over
which $f$ is extendable. Continuing such procedure, we know that there exist
sequences of closed sets $\{F_{k} ; k=1, 2, \}$ and mappings $\{f_{k} ; k=1, 2, \}$ such
that (1) $F_{k}$ is a closed neighborhood of $A_{k}\cup F_{k-1}$ and (2) $f_{k}$ : $F_{k}\rightarrow K$ is an ex-
tension of $f_{k-1}$ : $F_{k-1}\rightarrow K,$ $k=1,2,$ $\cdots$ Define a mapping $f:X\rightarrow K$ by $f(x)=f_{k}(x)$

for $x\in F_{k}$ . Since each point $x$ of $X$ is contained in the interior of some $F_{k}$ ,
$f$ is continuous. Thus $f_{0}$ has a continuous extension. Others are proved
similarly.

DEFINITION 5. A compact space $X$ is called to be a Cantor manifold for
an abelian group $G$ if, whenever $X$ is a union of non empty closed subsets $A$

and $B$ , then $D(A\cap B, G)\geqq D(X, G)-1$ .
It is obvious that $X$ is a Cantor manifold if and only if it is a Cantor

manifold for $Z$, where $Z$ is the $additive\xi group$ of integers.
THEOREM 4. Every finite dimensional compact space $X$ contains a Cantor

manifold $C$ for $G$ such that $D(X, G)=D(C, G)$ .
By Hurewicz-Wallman [12, Th. VI, 8] the theorem is a consequence of

Theorem 1 and the following lemma.
LEMMA 7. Let $X$ be a finite dimensional paracompact normal space such

that $D(X, G)<m-1$ . Then every mapping $f:X\rightarrow(K(G, m))^{q}$ is homotopic to a
constant mapping, where $q>\dim X$.

PROOF. In the next section, it is proved that $D(X\times I, G)=D(X, G)+1$

for a finite dimensional paracompact normal space $X$. Thus, the lemma is a
consequence of Theorem 1.
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\S 4. The cohomological dimension of product spaces

THEOREM 5. If $X$ is a finite dimensional locally compact metric space and
$Y$ is a finite dimensional paracompact normal space, then $D(X\times Y, G)$ is the
largest integer $n$ such that, for some closed sets $A_{2}\subset A_{1}\subset X$ and $B_{2}\subset B_{1}\subset Y$.
$H^{n}((A_{1}, A_{2})\times(B_{1}, B_{2})$ : $G$) $\neq 0$ .

REMARK 1. In case $X$ and $Y$ are locally compact paracompact normal,
the theorem is proved by Dyer [8]. The local compactness of $X\times Y$ is
essential in his proof.

PROOF. Put $d_{1}(X\times Y, G)={\rm Max}\{n:H^{n}((A_{1}, A_{2})\times(B_{1}, B_{2}):G)\neq 0$ for some
closed sets $A_{t}$ and $B_{i}$ of Xand $Y$ } and $d_{2}(X\times Y, G)={\rm Max}\{n:H^{n}(X\times Y, F:G)$

$\neq 0$ for some closed set $F$ of $X\times Y$ }. Since $X\times Y$ is paracompact normal by
Morita [19], we have the equality $D(X\times Y, G)=d_{2}(X\times Y, G)$ by Skljarenko
[23]. Using the exact sequence of triples, we know that $d_{2}(X\times Y, G)=$

${\rm Max}$ { $n:H^{n}(F_{1},$ $F_{2}$ : $G)\neq 0$ for some closed sets $F_{2}\subset F_{1}\subset X\times Y$ }. Thus, we
have $D(X\times Y, G)\geqq d_{1}(X\times Y, G)$ . It is sufficient to prove that $D(X\times Y, G)$

$\leqq d_{1}(X\times Y, G)$ . By Theorem 3 or Okuyama [20] we may assume that $X$ is a
compact metric space. Let us set the following assumption.

Assumption $(^{*}):\left\{\begin{array}{l}D(X\times Y,G)=n,andH^{m}((A_{1},A_{2})\times(B_{1},B_{2})\cdot.G)=0\\form\geqq n,anyclosedsetsA_{i}andB_{i},i=1,2.\end{array}\right.$

We shall prove that Assumption $(^{*})$ gives us a contradiction. Since the in-
equality $D(X\times Y, G)>d_{1}(X\times Y, G)$ means $(^{*})$ , we have the theorem. The
proof is devided in five steps.

1st step. Since $X$ is a compact metric space, it is the inverse limit of a
countable sequence $\{M_{i} : i=1, 2, \}$ of finite simplicial complexes such that
(i) $\dim M_{i}\leqq\dim X$, and (ii) the projection $\pi_{i}^{i+1}$ ; $M_{i+1}\rightarrow M_{i}$ is linear in each
simplex of $M_{i+1},$ $i=1,2,$ $\cdots$ (See Isbell [13].) Denote by $\pi_{i}^{j}$ : $M_{j}\rightarrow M_{i},$ $j>i$ , the
composition of $\pi_{k}^{k+1},$ $k=i,$ $\cdots$ , $j-1$ , and by $\mu_{i}$ the projection: $X->M_{i}$ . We have
$\mu_{i}=\pi_{i}^{j}\mu_{j}$ for $j>i$ . Let $\mathfrak{U}_{i},$ $i=1,2$ , $\cdot$ .. , be the open covering of $X$ consisting
of the inverse images of the open stars of $M_{i}$ under $\mu_{i}$ . We can assume with-
out loss of generality that $\{U_{i} ; i=1, 2, \}$ forms a cofinal system of open
coverings of $X$.

2nd step. By Theorem 1 and Assumption $(^{*})$ , there is a closed set $F$ of
$X\times Y$ and a mapping $f$ of $F$ into $(K(G, n-1))^{q}$ such that $f$ is not extendable
over $X\times Y$, where $q>\dim X+\dim Y$. Put $K=(K(G, n-1))^{q}$ . Since $K$ has the
neighborhood extension property in $X\times Y$ by Lemma 2, $f$ is extendable over
some open neighborhood $S$ of $F$ . We denote an extension by $f$ again. Let $\mathfrak{U}$

be a locally finite open covering of $K$ which is a refinement of the open cover-
$!ng$ of $K$ consisting of the open stars of $K$ . Since the covering $f^{-1}\mathfrak{U}|F$ of $F$
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is a locally finite collection in $X\times Y$, there exists a locally finite open cover-
ing $\mathfrak{W}=\{W_{\alpha}|\alpha\in\Omega\}$ of $Y$ with order $\leqq\dim Y+1$ satisfying the following con-
ditions:

(i) For each $\alpha\in\Omega$ there is an open covering $\mathfrak{U}_{t(\alpha)}$ of $X$ such that the
collection $\mathfrak{B}=\{\mathfrak{U}_{i(\alpha)}\times W_{\alpha}|\alpha\in\Omega\}$ is a locally finite open covering of $X\times Y$.
\langle See 1st step for $l1_{i(\alpha)}.$)

(ii) The covering $\mathfrak{B}|F$ is a star refinement of $f^{-1}\mathfrak{U}|F$.
(iii) Every element of $\mathfrak{B}$ does not intersect both $F$ and $X\times Y-S$ .
(iv) If $\Omega_{\alpha}=\{\beta|W_{\alpha}\cap W_{\beta}\neq\phi\}$ , then ${\rm Max}\{i(\beta)|\beta\in\Omega_{\alpha}\}<\infty$ for each $\alpha\in\Omega$ .

The existence of $\mathfrak{B}$ satisfying (iv) is proved by taking locally finite refine-
ments and star refinements.

3rd step. Let $N$ be the nerve of $\mathfrak{W}$ . Denote by $w_{\alpha}$ the vertex of $N$ cor-
responding to an element $W_{\alpha}$ of $\mathfrak{W}$ . Let $T^{0}$ be a topological sum of the sets
$M_{i(\alpha)}\times w_{\alpha},$ $\alpha\in\Omega$ . Suppose that $T^{\iota}$ is constructed for $0\leqq l<j$ . For a j-sim-
plex $\sigma$ of $N$, put $i(\sigma)={\rm Max}$ { $ i(\mu):\mu$ is a $(j-1)$ -face of $\sigma$ }. Let $T^{j}$ be a topo-
logical sum of the sets $ M_{i(\sigma)}\times\sigma$ , where $\sigma$ ranges over all j-simplexes of $N$ .
For l-simplex $s=(w_{\alpha}, w_{\beta})$ of $N$ , since $i(s)={\rm Max}\{i(\alpha), i(\beta)\}$ , the projections

$\pi_{i(\alpha)}^{i(S)}$ and $\pi_{i(\beta)}^{?(S)}$ induce a mapping $g_{s}$ of the subcomplex $M_{i(s)}\times(w_{\alpha}\cup w_{\beta})$ of $T^{1}$

into $T^{0}$ . If we identify the corresponding points of $T^{1}$ and $T^{0}$ under these
mappings $g_{s}$ , we obtain a set $P_{1}$ . Let $f_{1}$ be the identification mapping:
$T^{0}\cup T^{1}\rightarrow P_{1}$ . Since the projection $\pi_{i}^{j}$ , $i<j$ , is linear in each simplex of $M_{j}$ ,

we see that $P_{1}$ is a CW complex whose closed cells are topological cells. The
closure finiteness of $P_{1}$ is guaranteed by the condition (iv) satisfied by the
covering $\mathfrak{W}$ . (See 2nd step.) Assume that the CW complex $P_{j-1}$ is constructed

$j-1$

for $j-1>0$ and $f_{j-1}$ : $\bigcup_{r=0}T_{i}\rightarrow P_{f-1}$ is the identification mapping. Consider the

cell complex $ T^{j}=\cup$ { $ M_{i(\sigma)}\times\sigma|\sigma$ is a j-simplex of $N$ }. If $\mu$ is a $(j-1)$ -face
of $\sigma$ , then we have $i(\mu)\leqq i(\sigma)$ . Put $S^{j}=\cup\{M_{t(\sigma)}\times\dot{\sigma}\}$ , where $\dot{\sigma}$ is the boundary
of $\sigma$ . Then $S^{j}$ is a subcomplex of $T^{j}$ . Define the mapping $g_{j}$ : $S^{j}\rightarrow P_{j-1}$ by
$g_{j}(x, y)=f_{j-1}(\pi_{i(\mu)}^{?(\sigma)}(x), y)$ for $x\in M_{i(\sigma)}$ and $ y\in\mu$ , where $\mu$ is a $(j-1)$ -face of $\sigma$ .
If $s$ is a k-face of $\sigma,$ $k\leqq j-2$ , and $y\in s$ , then we have $f_{j-1}(\pi_{i}^{i}\}_{/j)}^{\sigma)}(x), y)=$

$f_{k}(\pi_{i(s)}^{j(\sigma)}(x), y)$ , where $\mu$ is a $(j-1)$ -face of $\sigma$ containing the simplex $s$ . Thus
we see that $g_{j}$ is a continuous mapping. By identifying the corresponding
points of $T^{j}$ and $P_{j-1}$ under the mapping $g_{j}$ , we obtain a CW complex $P_{j}$ .
Denote by $P$ the CW complex $P_{f}$ for $j=\dim Y$. Each closed cell $\tau$ of $P$ is
obtained from a product cell $1$) $\times\sigma$ by contracting some simplexes of $\nu\times\dot{\sigma}$ ,

where $\iota$) and $\sigma$ are simplexes of $M_{t(\sigma)}$ and $N$. Thus each closed cell of $P$ is
a topological cell. We say that $P$ is the CW complex associated with the
product covering $\mathfrak{B}$ of $X\times Y$.

4th step. Consider the cell complex $T^{j}=\cup\{M_{t(\sigma)}\times\sigma\}$ . (See 3rd step.) Let
$\phi$ be a canonical mapping of $Y$ into $N$. Put $B_{\sigma}=\phi^{-1}(\sigma)$ for a j-simplex $\sigma$ of
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$N$. Define the mapping $\overline{g}_{\sigma}$ : $X\times B_{\sigma}\rightarrow T^{j}$ by $\overline{g}_{\sigma}(x, y)=(\mu_{i(\sigma)}(x), \phi(y))$ for $x\in X$

and $y\in B_{\sigma}$ . Since the mapping $\overline{g}_{\sigma},$ $j=1,2$ , $\cdot$ .. , $\dim Y$ and $\sigma\in N$, is compatible
with the identification mapping: $\cup\{T^{j}, j=1,2, \cdots \dim Y\}\rightarrow P$ (cf. 3rd step),

$\overline{g}_{\sigma}$ induces the mapping $\psi:X\times Y\rightarrow P$ . It is easy to see that $\psi$ is continuous.
Moreover, the mapping $\psi$ has the following property: For each closed cell $\tau$

of $P$ there are simplexes $\sigma$ of Nand $\nu_{t(\sigma)}$ of $M_{i(\sigma)}$ such that $\psi^{-1}(\tau,\dot{\tau})=(\mu_{i(\sigma)}^{-1}(\nu_{i(\sigma)}\rangle$

$\times\phi^{-1}(\sigma),$ $\mu_{i(\sigma)}^{-1}(\dot{\nu}_{t(\sigma)})\times\phi^{-1}(\sigma)\cup\mu_{i(\sigma)}^{-1}(\nu_{t(\sigma)})\times\phi^{-1}(\dot{\sigma}))$ , where $\dot{\tau}$ means the boundary
of $\tau$ . Put $A_{r}=\mu_{i(\sigma)}^{-1}(11_{i(\sigma)}),$ $A_{\dot{r}}=\mu_{i(\sigma)}^{-1}(\dot{\nu}_{i(\sigma)}),$ $B_{\tau}=\phi^{-1}(\sigma)$ and $B_{\dot{\tau}}=\phi^{-1}(\dot{\tau})$ for a closed
cell $\tau$ of $P$ . Then we have $\psi^{-1}(\tau,\dot{\tau})=((A_{\tau}, A_{\dot{r}})\times(B_{\tau}, B_{\dot{\tau}}))$ .

5th step. Let $Q$ be the minimal closed subcomplex of $P$ such that $\psi(F\rangle$

$\subset Q$ . By the condition (iii) satisfied by the covering $\mathfrak{W}$ (2nd step), we have
$\psi(X\times Y-S)\cap Q=\phi$ . By an analogous argument as in the proof of Lemma
4 we see that there is a mapping $g$ of $Q$ into $K$ such that $g\psi|F\sim f:F\rightarrow K$.
Denote $Q^{j}$ the j-section of $Q$ . Since $K$ is $(n-2)$ -connected, we may assume
that $g(Q^{n-z})=k_{0}$ ($=a$ base point of $K$). Let $L$ be the closed subcomplex of
$P$ consisting of closed cells which do not intersect $Q$ . Let us extend $g$ over
$Q\cup L\cup P^{n-1}$ such that $g(L)=k_{0}$ and, if $\mu$ is an $(n-1)$ -cell of $P^{n-1}$ whose
interior is in $P-Q,$ $g(\mu)=k_{0}$ . Take an n-cell $\tau$ such that $\tau\not\in Q\cup L$ . Then
we have $\psi^{-1}(\tau,\dot{\tau})=((A_{\tau}, A_{\dot{\tau}})\times$ ( $B_{\tau}$ , B.:)) by 4th step. Denote by $h_{\tau}$ the map-
ping $g\psi|\psi^{-1}(\dot{\tau}):\psi^{-1}(\dot{\tau})\rightarrow K$ . Since $H^{n}((A_{\tau}, A_{\dot{\tau}})\times(B_{r}, B_{\dot{\tau}}):G)=0$ by Assumption
$(^{*})$ , the homomorphism : $H^{n-1}(A_{\tau}\times B_{\tau} : G)\rightarrow H^{n-1}(A_{\tau}\times B_{\dot{\tau}}\cup A_{\dot{\tau}}\times B_{r} : G)$ is onto.
By Lemma 4 $h_{r}$ is extendable over $\psi^{-1}(\tau)=A_{r}\times B_{\tau}$ . Continuing this proce-
dure, we see that the mapping $g\psi|F:F\rightarrow K$ is extendable over $X\times Y$. Since
$f\sim g\psi|F:F\rightarrow K$, the mapping $f$ is extendable over $X\times Y$ We obtain a con-
tradiction. This completes the proof.

From the proof of Theorem 5 (3rd step), we can see the following fact.
Let $D(X\times Y, G)=n$ . Then there exist ; (1) closed sets $A_{2}\subset A_{1}\subset X$ and $ B_{2}\subset$

$B_{1}\subset Y,$ (2) closed simplexes 1) and $\sigma,$ (3) mappings $f$ : $(A_{1}, A_{2})\rightarrow(t)\dot{\nu}),$ $g:(B_{1},$ $ B_{2}\rangle$

$\rightarrow(\sigma,\dot{\sigma})$ and $h:(t)\times\sigma)=\nu\times\dot{\sigma}\cup\dot{\nu}\times\sigma\rightarrow(K(G, n-1))^{q}$ , and (4) the mapping
$h(fXg)|A_{1}\times B_{2}\cup A_{2}\times B_{1}$ : $A_{1}\times B_{2}\cup A_{2}\times B_{1}\rightarrow(K(G, n-1))^{q}$ is not extendable
over $A_{1}\times B_{1}$ . Extend the mappings $f$ and $g$ over $X$ and $Y$, respectively. We
denote by $f$ and $g$ such extensions, again. Put $f^{-1}(t))=A$ and $g^{-1}(\dot{\sigma})=B$ .
Then the mapping $h(f\times g)|X\times B\cup A\times Y:X\times B\cup A\times Y\rightarrow(K(G, n-1))^{q}$ is
not extendable over $X\times Y$. By Theorem 1, the homomorphism: $H^{n-1}(X\times Y:G)$

$\rightarrow H^{n-1}(X\times B\cup A\times Y:G)$ is not onto.

Consider the mapping $h$ : (1) $\times\sigma)=\nu\times\dot{\sigma}\cup\nu\times\sigma\rightarrow(K(G, n-1))^{q}$ . Since
$(K(G, n-1))^{q}$ has the neighborhood extension property in $1$) $\times\sigma,$

$h$ is extendable
over some neighborhood $U$ of $(\iota)\times\sigma)$ in $\nu\times\sigma$ . Denote this extension by $h$

again. By the compactness of $\nu\times\sigma$ , there are closed neighborhoods $s_{1}$ and $s_{r}$

of ab and $\dot{\sigma}$ such that $1I\times s_{2}\cup s_{1}\times\sigma\subset U$ . Put $A^{\prime}=f^{-1}(s_{1})$ and $B^{\gamma}=g^{-1}(s_{2})$ .
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Then $A^{\prime}$ and $B^{\prime}$ are closed neighborhoods of $A$ and $B$ . Moreover, the map-
ping $h(f\times g)|X\times B^{\prime}\cup A^{\prime}\times Y:X\times B^{\prime}\cup A^{\prime}\times Y\rightarrow(K(G, n-1))^{q}$ is not extendable
over $X\times Y$. By Lemma 5, the homomorphism $i^{*}:$ $ H^{n}((X, A^{\prime})\times(Y, B^{\prime}):G)\rightarrow$

$H^{n}((X, A)\times(Y, B):G)$ is not zero, where $i:(X, A)\times(Y, B)\subset(X, A^{\prime})\times(Y, B^{\prime})$ .
Thus, we have the following corollaries.

COROLLARY 2. $D(X\times Y, G)={\rm Max}\{n:H^{n}((X, A)\times(Y, B):G)\neq 0$ for some
closed sets $A$ and $B$ of $X$ and $Y$ respectively}.

COROLLARY 3. Let $D(X\times Y, G)=n$ . Then there exist closed sets $A_{2}\subset A_{1}$

$\subset X$ and $B_{2}\subset B_{1}\subset Y$ such that (1) $A_{1}$ and $B_{1}$ are closed neighborhoods of $A_{2}$

and $B_{2}$ respectively, and (2) the homomorphism: $ H^{n}((X, A_{1})\times(Y, B_{1}):G)\rightarrow$

$H^{n}((X, A_{2})\times(Y, B_{2}):G)$ is not zero.
Let $X$ be a finite simpl.cial complex and let $Y$ be a finite dimensional

paracompact normal space. For an open covering $\mathfrak{B}=\{\mathfrak{U}_{t(\sigma)}\times W_{\sigma}|\sigma\in\Omega\}$ of
$X\times Y$ , where $\mathfrak{W}=\{W_{\alpha}|\alpha\in\Omega\}$ is a locally finite open covering of $Y$ and $\mathfrak{U}_{i(\sigma)}$

is the open covering of $X$ consisting of the open stars of the $i(\sigma)$ -th bary-
centric subdivision of $X$, construct a CW complex $P$ associated with $\mathfrak{B}$ (cf.

the proof of Theorem 5). Then $P$ is a subdivision of the cell complex $X\times N_{\mathfrak{W}}$ ,

where $N_{\mathfrak{W}}$ is the nerve of $\mathfrak{W}$ . If $\mathfrak{W}^{\prime}$ is a locally finite refinement of EIB and
$\pi_{\mathfrak{W}^{\prime}\mathfrak{W}}$ : $N_{\mathfrak{W}^{}}\rightarrow N_{\mathfrak{W}}$ is a projection, let us define a mapping $\overline{\pi}_{\mathfrak{W}^{\prime}\mathfrak{W}}$ : $X\times N_{\mathfrak{P}_{\backslash }\backslash }’\rightarrow X\times N_{\mathfrak{W}}$

by $\overline{\pi}_{\mathfrak{W}^{\prime}\mathfrak{W}}(x, y)=(x, \pi_{\mathfrak{W}^{\prime}\mathfrak{W}}(y))$ for $x\in X$ and $y\in N_{\mathfrak{W}^{\prime}}$ . Then we have:
COROLLARY 4. Let (X, $A$) be a pair of finite simplicial complexes and $lel$

$(Y, B)$ be a pair of finite dimensional paracompact normal spaces. Then
$H^{n}((X, A)\times(Y, B):G)$ is the direct limit of the system { $H^{n}((X, A)\times(M_{\mathfrak{W}}, N_{\mathfrak{W}})$ :
$G)|(\pi_{\mathfrak{W}^{\prime}\mathfrak{W}})^{*}\}$ , where $\mathfrak{W}$ ranges over all locally finite open coverings of $Y$ and
$(M_{\mathfrak{W}}, N_{\mathfrak{W}})$ is the pair of the nerves of $\mathfrak{W}$ for (X, $A$).

COROLLARY 5. If $X$ is a locally finite polytope and $Y$ is a finite dimen-
sional paracompact normal space, then $D(X\times Y, G)=\dim X+D(Y, G)$ .

PROOF. It is sufficient to prove the corollary in case $X=I$ . Let
$D(I\times Y, G)=n$ . By Corollary 2, there are closed subsets $A$ and $B$ of $I$ and
$Y$ such that $H^{n}((I, A)\times(Y, B):G)\neq 0$ . We may assume that $A=\dot{I}(=the$

boundary of 1). By Corollary 4, $H^{n}((I, j)\times(Y, B):G)=\lim\{H^{n}((I,\dot{I})\times(M_{\mathfrak{W}}, N_{\mathfrak{W}})$ :
$G)|(\pi_{\mathfrak{W}^{\prime}\mathfrak{W}})^{*}\}$ . It is well known that $H^{n}((I,\dot{I})\times(M_{\mathfrak{W}}, N_{\mathfrak{W}}):G)\approx H^{n-\iota}(M_{\mathfrak{W}}, 1V_{\mathfrak{W}} : G)$ .
Thus, we have $H^{n-1}(Y, B : G)\neq 0$ . This proves that $D(I\times Y, G)\leqq D(Y, G)+1$ .
The converse relation $D(I\times Y, G)\geqq D(Y, G)+1$ is proved similarly.

Recently O’Neil [21] proved the following K\"unneth theorem.
THEOREM. (O’Neil) If $X$ is compact and $Y$ is paracompact normal, then

the sequence

$0\rightarrow\sum_{q=0}^{n}H^{q}(X:Z)\otimes H^{n-q}(Y:Z)\rightarrow H^{n}(X\times Y:Z)\rightarrow\sum_{q=0}^{n}H^{q+1}(X:Z)*H^{n-q}(Y:Z)\rightarrow 0$
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is exact.
From his proof we have the following exact sequence:

$0\rightarrow\sum_{q=0}^{n}H^{q}(X:Z)\otimes H^{n-q}(Y:G)\rightarrow H^{n}(X\times Y:G)\rightarrow\check{\sum_{q=0}}H^{q+}{}^{t}(X:Z)*H^{n-q}(Y:G)\rightarrow 0$ .

Here $G$ is any abelian group.
REMARK 2. For compact spaces, the K\"unneth sequence in relative forms

is exact (Dyer [8, Appendix]). But, it is not known whether or not it is true
for non compact spaces.

REMARK 3. The following theorem was proved by Peterson [22, Appendix].

THE UNIVERSAL COEFFICIENT THEOREM. If $X$ iS compact and $G$ iS an
abelian group or $X$ is paracompact normal and $G$ is finitely generated, the
sequence

$0\rightarrow H^{n}(X : Z)\otimes G\rightarrow H^{n}(X:G)\rightarrow H^{n+1}(X:Z)*G\rightarrow 0$

is exact.
But, as the following simple example shows, if $G$ is not finitely generated,

the universal coefficient theorem does not hold even for a finite dimensional
countable simplicial complex. Let $Y$ be a one point union of a countable
infinite number of the segments $s_{i}=(x_{0}, x_{i}),$ $i=1,2$ , $\cdot$ .. , such that $s_{i}\cup s_{j}=x_{0}$

for $i\neq j$ . Denote by $X^{\prime}$ the product of $Y$ and an $(n-1)$ -sphere $S^{n-1}$ . Let
$q=(p_{I}, p_{2}, )$ be a sequence of all prime integers. Let $f_{i}$ be a simplicial map-
ping from the subspace $x_{i}\times S^{n-1}$ of $X^{\prime}$ into an $(n-1)$ -sphere $S_{?}^{n-1}$ with degree
$p_{i}$ . The simplicial complex $X$ is obtained by identifying points of $x_{i}\times S^{n-1}$

mapped to the same point under the mapping $f_{i},$ $i=1,2,$ $\cdots$ . Then we have:
(1) $H^{n}(X:Z)$ contains an element with infinite order.
(2) For every prime $p,$ $H^{n}(X:Z)$ contains an element with order $p$ .
(3) Let $R=the$ additive group of rationals, $R_{p}=the$ additive group of

rationals whose denominators are coprime with $p,$ $Q_{p}=the$ additive group
of $p$ -adic rationals reduced $mod 1$ and $Z_{p}=the$ cyclic group of order $p$ . If
$G$ is one of the groups $R,$ $R_{p},$ $Q_{p}$ and $Z_{p}$ , $p$ a prime, then $H^{n}(X:G)=0$ .
The properties (1) and (3) imply that the universal coefficient theorem does
not hold for the group $R$ or $R_{p}$ .

THEOREM 6. Let $X$ be a compact ANR (metric) and let $Y$ be a finite
dimensional paracompact normal space. Then we have the relation:

$D(X, R)+D(Y, G)\leqq D(X\times Y, G)\leqq\dim X+D(Y, G)$ .

REMARK 4. As the following example shows, we can not replace a com-
pact ANR(metric) $X$ by a metric Cantor manifold. Consider the 2-dimensional
Cantor manifold $M_{0}$ constructed in [16, p. 44]. By [16, Lemma 9], we $ha^{\backslash _{f}}e$

$D(M_{0}, R)=2$ and $D(M_{0}, Q_{p})=D(M_{0}, Z_{p})=1$ for a prime $p$ . In case $G$ is $Q_{p}$ or
a finite group, we have $D(M_{0}, G)=1$ . If $Y$ is a compact space such that
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$\dim Y=D(Y, G)$ , then $D$ ( $ M_{()}\times$ Y. $G$) $\leqq D(M_{0}, G)+D(Y, G)=1+D(Y, G)$ by Bock $\cdot$

stein [2]. Thus we have $D(M(’ R)+D(Y. G)=2+D(Y, G)>D(M_{r}\times Y. G)$ .

We need the followlng lemmas,

LEMMA 8. Let $X$ be an $LC^{\infty}$ compact space and let $A_{2}$ be a closed subsel
of X. For a closed neighborhood $A_{1}$ of $A_{2}$ there are a pair $(K, L)$ of finite
simplicial complexes, mappings $f:(X, A_{2})\rightarrow(K, L)$ and $g:(K, L)\rightarrow(X, A_{1})$ such
that $g\cdot f\sim i:(X, A_{2})\rightarrow(X, A_{1})$ , where $\iota$ : $(X, A_{2})\subset(X, A_{1})$ .

The proof is given by a similar way to [14].

Following Dyer [8, p. 144], a group $H$ is said to have property $F(p),$ $p$ a
prlme, if there is some element of $H/H$, which is not divisible by $p$ , where
$H_{p}$ is the $p$ -primary part of $H$.

LEMMA 9. If $X$ is an $LC^{\infty}$ compact space such lhat $D(X, R)=m$ , then
there is a closed set $A$ of $X$ such that (1) $H^{m}(X, A:Z)$ contains an element
with infinite order which is not divisible by any integer $>1$ and (2) $H^{n}(X, A:Z)$

has property $P(p)$ for every prime $p$ .

PROOF. There is a closed set $A_{2}$ of $X$ such that $H^{m}(X, A_{A} . R)\neq 0$ . By
the universal coefficient theorem [22], $H^{m}(X, A_{z} : Z)$ contains an element $e$

with [nfinite order. Take a closed neighborhood $A_{1}$ of A-, such that, if
$i:(X, A_{2})\subset(X, A_{1})$ , then $e\in i^{*}H^{m}(X, A_{1} : Z)$ . Let $(K, L),$ $f$ and $g$ be complexes
and mappings in Lemma 8. Put $H=g^{*}H^{m}(X, A_{1}:Z)\subset H^{m}(K, L:Z)$ . Then $H$

is finitely generated. Take an element $e^{\prime}$ of $H$ such that (1) $e^{\prime}$ is of infinite
order and (2) $e^{\prime}$ is not divisible by any integer $>1$ in $H$. Let $e^{\prime\prime}$ be an ele-
ment of $H^{m}(X, A_{1} : Z)$ such that $g^{*}e^{\prime\prime}=e^{\prime}$ . Then $e^{\prime\prime}$ is of infinite order and
it is not divisible by any integer $>1$ . Since $H$ is finitely generated and con-
tains an element with infinite order, $H$ has property $P(p)$ Thus, $H^{m}(X, A_{1} : Z)$

has property $P(p)$ for any prime $p$ .
PROOF OF THE RELATION $D(X, R)+D(Y, G)\leqq D(X\times Y, (_{J^{\backslash }})$ . We shall glve

the proof by an analogous argument as in Morita [19, p. 220]. Let $s\leqq D(X, R)$

and $t\leqq D(Y, G)$ . For some $m\geqq s$ , there is a closed set $A$ of $X$ satisfying the
conclusion of Lemma 9. Put $X_{0}=X/A$ and denote by $x_{0}$ the point corres-
ponding to $A$ . Take a closed set $B$ of $Y$ such that $H^{n}(Y, B : G)\neq 0,$ $n\geqq t$ .
Put $Y_{()}=Y/B$ and denote by $y_{0}$ the point corresponding to $B$ . Then, $H^{m}(X_{0} : Z)$

contains an element with infinite order which is not divisible by any integer
$>1$ and it has property $P(p)$ for every prime $p$ . Also, we have $H^{n}(Y_{0} : G)\neq 0$ .

Thus, by Dyer [8, Lemmas 1.6 and 1.7], $H^{m}(X_{0} : Z)\otimes H^{n}(Y_{0} : G)\neq 0$ . By O’Neil
[21] we can conclude that $H^{m+n}(X_{0}\times Y_{0} : G)\neq 0$ and $D(X_{0}\times Y_{0} : G)\geqq m+n$ .

We may assume that $A$ and $B$ are $G_{\delta}$ . Let $X-A=\bigcup_{i=1}^{\infty}A_{i}$ and $Y-B=\bigcup_{j=1}^{\infty}B_{i}$ .

Then we have $X_{()}\times Y_{0}=x_{0}\times y_{0}\cup(\bigcup_{j-\rceil}^{\infty}A_{i}\times y_{0})\cup(\bigcup_{i=1}^{\infty}x_{0}\times B_{i})\cup(\bigcup_{i=1}^{\infty}A_{i}\times B_{i})$ . By

Theorem 3 or Okuyama [20], we have $D(A, \times B_{i}, G)\geqq m+n$ for some $i$ . Since
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$A_{i}\times B_{i}1S$ closed $\iota nX\times Y$ , this proves that $D(X\times Y, G)\geqq m+n$ .
PROOF OF THE RELATION $D(X\times Y, G)\leqq\dim X+D(Y, G)$ . If $D(Y, G)=0$ ,

then, since $\dim Y=0$ by Corollary 1, we have $D(X\times Y, G)\leqq\dim(X\times Y)$

$=\dim X=\dim X+D(Y, G)$ . If $\dim X=0$ , then $X$ consists of a finite number
of points. If $\dim X=\infty$ , then the relation is obvious. Therefore, it is suf-
ficient to prove the relation in case $ 0<\dim X<\infty$ and $ 0<D(Y, G)<\infty$ . Let
$D(X\times Y, G)=m$ and $\dim X=n$ . Let us assume that $m>n+D(Y, G)$ . We
shall prove that this assumption gives us a contradiction. Since $D(Y. G)\geqq 1$ ,

we have $m>n+1$ . By Corollary 3, there are closed sets $A_{2}\subset A_{1}\subset X$ and
$B\subset Y$ such that (1) $A_{1}$ is a closed neighborhood of $A_{Z}$ and (2) the homomor-
phism $i_{1}^{*}:$ $H^{m}((X, A_{1})\times(Y, B):G)\rightarrow H^{m}((X, A_{2})\times(Y, B):G)$ is not zero, where
$i_{1}$ : (X, $A_{2}$) $\times(Y, B)\subset(X, A_{1})\times(Y, B)$ . Applying Lemma 8 to the inclusion
$i:(X, A_{2})\subset(X, A_{1})$ , we find a pair $(K, L)$ of n-dimensional finite simplicial
complexes, mappings $f:(X, A_{2})\rightarrow(K, L)$ and $g:(K, L)\rightarrow(X, A_{1})$ such that
$gf\sim i:(X, A_{2})\rightarrow(X, A_{1})$ . Define mappings $f;(X, A_{2})\times(Y, B)\rightarrow(K, L)\times(Y, B)$

and $\overline{g}:(K, L)\times(Y, B)\rightarrow(X, A_{1})\times(Y, B)$ by $f(x, y)=(f(x), y),$ $x\in X$ and $v\in Y$ ,

and $\overline{g}(k, v)=(g(k), y),$ $k\in K$ and $y\in Y$ . Then we have $\overline{g}f\sim i:(X, A_{2})\times(Y, B)$

$\rightarrow(X, A_{1})\times(Y, B)$ . Since the homomorphism $i_{1}^{*}=(\overline{g}\overline{f})^{*}$ is not zero, we can
conclude that $H^{m}((K, L)\times(Y, B):G)\neq 0$ . By Corollary 4, $H^{m}((K, L)\times(Y, B):G)$

$=\rightarrow^{\lim}\{H^{m}((K, L)\times(M_{\mathfrak{B}\backslash }, N_{\mathfrak{W}}):G)|(\pi_{\mathfrak{W}^{\prime}\mathfrak{W}})^{*}\}$ , where $\mathfrak{W}$ ranges over all locally finite
open coverings of $Y$ and $(M_{\mathfrak{W}}, N_{\mathfrak{W}})$ is the pair of the nerves of $\mathfrak{W}$ for $(Y, B)$ .
Take a locally finite open covering $\mathfrak{W}$ such that some element $e$ of $H^{M}((K, L)$

$\times(M_{\mathfrak{B}}, N_{\mathfrak{W}})$ : $G$) represents a non-zero element of $H^{m}((K, L)\times(Y, B)$ : $(_{J}^{\neg})$ Put
$K/L=K_{0}$ and $M_{\mathfrak{W}}/N_{\mathfrak{W}}=M_{\mathfrak{W}}$

) and let $k_{0}$ and $m_{0}$ be the points corresponding to
$L$ and $N_{\mathfrak{W}}$ . Consider the following exact sequence:

$\rightarrow H^{m-1}(K_{0}\times m_{0}\cup k_{0}\times M_{\mathfrak{W}}^{0} : G)\rightarrow H^{m}((K_{0}, k_{0})\delta^{l}\times(M_{\mathfrak{W}}^{t)} , m_{0})$ : $G)^{j^{*}}\rightarrow H^{7n}(K_{0}\times M_{\mathfrak{W}}^{0} : G)$

We shall assert that the element $e$ does not belong to the image of $\delta^{*}$ .
Let us assume that $e\in Image$ of $\delta^{*}$ . Since $H^{m-1}(K_{0}\times m_{0}\cup k_{0}\times M_{\mathfrak{W}}^{t)}:G)$

$=H^{m-1}(K_{0} : G)+H^{m-1}(M_{\mathfrak{W}}^{0} : G)$ and $\dim K_{0}=\dim K=n<m-1$ , we have
$H^{m-1}(M_{\mathfrak{W}}^{0} : G)\neq 0$ . If $\mathfrak{W}^{\prime}$ is a locally finite refinement of $\mathfrak{W}$ , then $h^{*}:$ $H^{m-1}(M_{\mathfrak{B}^{0_{\backslash }}} : G)$

$\rightarrow H^{m-1}(M0, : G)$ is not zero, where $h$ is the mapping induced by a projection
$\pi_{\mathfrak{W}^{\prime}\mathfrak{W}}$ : $(M_{\mathfrak{W}^{\prime}}, N_{\mathfrak{W}^{\prime}})\rightarrow(M_{\mathfrak{W}}, N_{\mathfrak{W}})$ . This shows that $D(Y, G)\geqq m-1$ . Then we have
$D(X\times Y, G)=m>\dim X+D(Y, G)=n+m-1\geqq m$ . This contradiction proves
that $e\not\in Image$ of $\delta^{*}$ . Thus we have $0\neq j^{*}e\in H^{m}(K_{0}\times M_{\mathfrak{W}}^{0} : G)$ . By O’Neil
[21], there exist integers $p$ and $q$ such that (1) $p+q=m$ and $ H^{p}(K_{t)} : Z)\otimes$

$H^{q}(M_{\mathfrak{W}}^{0} : G)\neq 0$ or (2) $p+q=m+1$ and $H^{p}(K_{0} : Z)*H^{q}(M_{\mathfrak{W}})$ : $G$) $\neq 0$ . In any case
(1) or (2) we can conclude that $D(Y,G)\geqq q$ . Since $\dim X=n\geqq p$ , we have
$m>n-\vdash q\geqq p+q=m$ . This completes the proof.

As an immediate consequence of Theorem 6, we have .
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COROLLARY 6. If $X$ is a compact ANR(metric) such that $\dim X=D(X, R)$ ,

then $D(X\times Y, G)=\dim X+D(Y, G)$ for a finite dimensional paracompact normal
space $Y$.

REMARK 5. Let $Y$ be paracompact normal and perfectly normal. If we
make use of Theorem 2 in place of Theorem 1, then we can see that Theorems
5 and 6, and Corollaries 2, 3, 4, 5 and 6 are true without restriction of finite
dimension.

THEOREM 7. Let $X$ be a locally compact paracompact normal space. If
$D(X, Q_{p})\geqq k$ for every prime $p$ and $D(X, R)\geqq k$ , then $\dim X\times Y\geqq\dim Y+k$

for a paracompact normal space $Y$ .
PROOF. If $\dim X=\infty$ or $\dim Y=\infty$ , then the theorem is obvious. More-

over, by Theorem 3 and Morita [17], we may assume that $X$ is compact.
Let $\dim Y=n$ . There exists a closed $G_{\delta}$ set $B$ of $Y$ such that $H^{n}(Y, B:Z)\neq 0$ .
Put $Y/B=Y_{0}$ and let $y_{0}$ be the point corresponding to $B$ . We have the fol-
lowing two cases: (1) the p-primary part of $H^{n}(Y_{0} : Z)\neq 0$ for some prime $p$ ,

or (2) $H^{n}(Y_{0} : Z)$ contains an element with infinite order. If (1) holds, take a
closed set $A$ of $X$ such that $H^{m}(X, A:Q_{p})\neq 0,$ $m\geqq k$ . Let $X/A=X_{0}$ and let
$x_{0}$ be the point corresponding to $A$ . Then we have $H^{m}(X_{0} : Q_{p})\neq 0$ . By Dyer
[8, Theorem 1], we can conclude that (i) $H^{m}(X:Z)$ has property $P(p)$ or (ii)
$H^{m+1}(X_{0} : Z)$ contains an element with order $p$ . If (i) holds, then $H^{m}(X_{0} : Z)$

$\otimes H(Y_{0}:Z)\neq 0$ . If (ii) holds, then $H^{m+1}(X_{0} : Z)*H^{n}(Y_{0}:Z)\neq 0$ . (See Dyer [8,

Lemma 1.6].) In any case (i) or (ii), we can show that $H^{m+n}(X_{0}\times Y_{0}:Z)\neq 0$

by O’Neil [21]. Thus, we have $\dim X_{0}\times Y_{0}\geqq m+n$ . By an analogous argu-
ment as in the proof of Theorem 6, we can prove that $\dim X\times Y\geqq m+n$

$\geqq k+\dim Y$. The proof for the case (2) is given similarly.
DEFINITION 6. Let $Q$ be a class of spaces. A space $X$ is called dimen-

sionally full-valued for $Q$ if $\dim X\times Y=\dim X+\dim Y$ for every space $Y$ of $Q$ .

Let $Q$ be the class of paracompact normal spaces.
THEOREM 8. A locally compact paracompact normal space $X$ is dimen-

sionally full-valued for $Q$ if and only if $D(X, Q_{p})=\dim X$ for every prime $\rho$ .

PROOF. The proof of ‘ only if ‘ part follows from [15] or Boltyanski [3].

Let $D(X, Q_{p})=\dim X$ for every prime $p$ . By Bockstein [2] or Dyer [8, Corol-
lary 2.1 $(c)$], we have $D(X, Q_{p})\leqq{\rm Max}\{D(X, R), D(X, R_{p})-1\}\leqq\dim X$. This
shows that $D(X, Q_{p})=D(X, R)=\dim X$. The theorem follows from Theorem 7.

THEOREM 9. If $X$ is locally compact paracompact normal space such that
$\dim X>0$ , then $\dim X\times Y\geqq\dim Y+1$ for every paracompact normal space Y.

The theorem follows from Corollary 1 and Theorem 7.
DEFINITION 7. A compact space $C$ is called a pseudo n-cell if there exists

a mapping $f$ of an n-cell $E$ onto $C$ such that $f|$ the boundary of $E$ is a
homeomorph.
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THEOREM 10. If a locally compact paracompact normal space $X$ contains
a pseudo n-cell, then $D(X\times Y, G)\geqq D(Y, G)+n$ for every paracompact normal
space $Y$.

PROOF. There exists a mapping $f$ of an n-cell $E$ into $X$ such that $f|$ the
boundary of $E$ is a homeomorph. Denote by $S$ the boundary of $E$ , and put
$C=f(E)$ and $D=f(S)$ . The mapping $f^{-1}$ : $D\rightarrow S$ is extendable over $C$ . Denote
this extension by $g$. Then $gf\sim 1:(E, S)\rightarrow(E, S)$ , where 1 means the identity
mapping. Let $D(Y, G)=m$ . Take a closed set $B$ of $Y$ such that $H^{m}(Y, B : G)$

$\neq 0$ . By an analogous argument as in the proof of Corollary 5, we can prove
that $H^{m+n}((E, S)\times(Y, B):G)\neq 0$ . This shows that $H^{7n+n}((C, D)\times(Y, B):G)\neq 0$ .
Thus, we have $D(X\times Y, G)\geqq D(Y, G)+n$ .

COROLLARY 7. If a compact n-dimensional metric space $X$ is $lc^{n}$ (over $Z$),

then it is dimensionally full-valued for $Q$ if and only if $D(X, R)=n$ .
It follows from Dyer [7, Corollary 2], [15] and Theorem 9.
COROLLARY 8. The following spaces are dimensionally full-valued for $Q$ .
(1) A locally compact 2-dimensional ANR (metric).

(2) A l-dimensional locally compact paracompact normal space.
(3) An n-dimensional locally compact paracompact normal space which ccn-

tains a pseudo n-cell.
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