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On contraction semi-groups and (di)-operators
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(Received March 14, 1966)

Lumer and Phillips have studied semi-groups of linear contraction
operators in a Banach space by virtue of the notation of semi-inner product
introduced by Lumer.

The infinitesimal generator of such a semi-group is dissipative in their
terminology. In a Banach lattice Phillips have studied semi-groups of
positive contraction operators by virtue of a special semi-inner product and
the infinitesimal generator of such a semi-group is dispersive.

In this article we characterize the infinitesimal generators of such semi-
groups of operators by virtue of tangent functionals.

The author wishes to express his gratitude to Professor Isao Miyadera
for his valuable advice.

1. We begin this section with a study of some properties of tangent
functionals in a Banach space X. For more general results, see Dunford and

Schwarz [1]

PROPOSITION 1. The functional
u(x, y, a)=a (| x+ayl|—l x)

1s an increasing function of the positive real variables a for any x and y in X.
The limit
(X, = lim u'(xr ) a)
a-0+

exisls for any x and y in X.
PrROOF. Let a’=a>0; then

u(x, y, @’)—u(x, y, a) =z (aa’y(al| x+a’y|| —aj x}
~Jlaxtaa’y|—(@ —a) x| +a'| x])=0.
Thus u(x, y, a) decreases as a decreases. Since

uxy, o=y,
the assertion is proved.
DEFINITION 1. To each pair {x, v} of a Banach space X, we associate a

real number z/(x, y) as follows:

/(x, y) =2z (x, V)—1(x, —¥)} .
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PROPOSITION 2. For any x, y and z in X,

) e, N=|yll,

@) (%, y+2) = 7(x, Y)+7(x, 2),

3 t(x, ay)=ar(x, ) (@z0),

@ o(x, ax+y)=al x|+z(x,y)  (a real),
®) Tty

©6) t/(x, ay)=at’'(x,y) (a real),

) /(x, ax+y)=al x| +7'(x, ) (a real).

Proor. Statements (1)-(3) are obvious. To prove (4) we note that

z(x, ax-+y) =blj§3 b (| x+bax+by|—| x1D)
=blj§r+1 A+ab)b= (|| x+(A4-ab) by | —| x|)+a] x|

=al| x| +7(x, 3).

(5)~(7) are readily follows from (1)-(4).
DEFINITION 2. A linear operator A with domain ®(A4) in a Banach space
X is called a (dl)-operator if

(dl) '(x, Ax) L0 (x e DA)).

LEMMA 1. If A is a (dD)-operator and 2 >0, then (A[—A)™* exists and is
bounded with norm < AL
PROOF. Suppose y € ©(A) and x=Ay—Ay. Then

Ayl =7y, 4y
=t/(y, A—7'(y, Ay)
=7'(y, )= x|f.

DEFINITION 3. Let ¥ ={T,; t=0} be a family of bounded linear operators
on X satisfying

(1) Tth = Tt+s: TO = I (t: S g 0) »
2) tlim Tix=x xe X),
® IT.=1 (@=0).

We shall refer to 2 as a strongly continuous semi-group of contraction
operators.
THEOREM 1. A necessary and sufficient condition for a linear operator A
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with dense domain to generate a strongly continuous semi-group of contraction
operators is that A be a (dl)-operator and that RI—A)= X.
PrRoOF. We see by Lemma 1 that (41/—A)~! satisfies the norm condition

A=A =47 (A>0).

By assumption R(/—A)= X, =1 is in the resolvent set of A. Denoting the
resolvent of A at 42 by R(4; A), it readily follows that

R(2; A)=R(1; A) 3 (1—DRA; A"

for |A—1| < 1. (See [4] and [10].) And the method of analytic continuation
siows that R(4; A) exists and satisfies the norm condition | R(A; A)|| < A7!
for any 2> 0.

Since D(A) is dense in X by hypothesis, it follows from the Hille-Yosida
theorem (see [4] and [10]) that A generates a strongly continuous semi-group
of contraction operators.

Suppose {T,;t=0} is a strongly continuous semi-group of contraction
operators. Then

/(% Tix—x)=1'(x, )~ x| = | Tex |- x| =0.
Thus, for any x € ©(A), we have

t/(x, Ax)=lim t ¢/(x, T,x—x) <0.
t—=0+

Hence A is a (dl)-operator. Moreover it is known that ©(A) is dense and that
NUI—-A)=X.

REMARK 1. A necessary and sufficient condition for a linear operator A
with dense domain to generate a strongly continuous group of contraction
operators is that f(/+A)= X and that A satisfies

(d0) z/(x, Ax)=0 (xeDA)).

The following proposition is essentially due to Lumer and Phillips [5].
ProPOSITION 3. Let {T,;t=0} be a strongly continuous semi-group of
operators with infinitesimal generator A of the local type w(A). If we define

w=lim¢log | T,|
t—0+

then w=w(A) whenever w < oo and
w(A)=0(A) = sup {z'(x, Ax); x € D), | x| =1} .
Proor. If we define
x=exp (—whT,x xe X),

then {T,;t=0} defines a strongly continuous semi-group of contraction opera-
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tors with infinitesimal generator A’=A—wl. It follows from Theorem 1 that
0z0(A)=0A)—w.

On the other hand if A is a infinitesimal generator then so is A”
=A—0(A)I and A” is a (d1)-operator. In fact, for any x € D(A4”),

t/(x, A"x)=1'(x, Ax)—0(A)| x|

=l (o Ay ) —0) 0.

NEdlR
As a consequence {7 =exp (—0(A))T,} is a strongly continuous semi-group
of contraction operators and thus

w(A") = —0(A)+w(A) 0.

Hence we obtain w(A)=0(A).

2. In this section we are concerned with the problem of semi-groups of
positive contraction operators in a Banach lattice.

Let X be a Banach lattice, that is, X be a complete normed real vector
lattice for which the order relation and the norm are related by

lx|=lyl  implies  [lx|l=lyll;
here we have used the notation
Ix}=xt+x~
where x*=xVv 0 and x =(—x) Vv 0.

PROPOSITION 4. For any x in X, we have;
Q) If x=0 then <'(x,y)=0 for any y=0,

) o/(xt, )= xt |,
3 /(x*, x7)=0.
Proor. To prove (1) we consider the relation

[x—ay|—|xt+ay|=(—2ay) vV (—=2x) =0
and so that
| x—ayll =l xt+ayl (@=0.

Thus we have
T/(x, y)=2"{z(x, y)—7(x, =)}

= lim (20)7(| x+ay ||~ | x—ay|) 20,
(2) is readily follows from the equality
o(xt, —x7)=7(x*, x7).

The last assertion is follows from the fact that
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xtAx =0,

that is, x=x*—x~ is the Jordan decomposition of x.
PROPOSITION 5. If T is a positive linear operator and satisfies

ITx) =l (=20,

then T is a contraction operator.
PrROOF. We see that
|Tx| S| Txt |+ Tx~ |=T|x|
and hence
I Tx| =TIl = xll=x].

DEFINITION 4. A linear operator A with domain ®(A4) is called a (d2)-
operator if A satisfies the following condition (d2):

(d2) (xt, AN <0 (xeD(A).

THEOREM 2. A necessary and sufficient condition for a linear operator A
with dense domain ®(A) to generate a strongly continuous semi-group of posi-
tive contraction operators is that A be a (d2)-operator and that R(I—A)= X.

Proor. If A generates a strongly continuous semi-group of positive con-
traction operators X = {T,; t =0} then R(/—A)= X by thz Hille-Yosida theo-
rem. Moreover we have

2¢/(x*, Tox—x)=27¢'(x*, Tox+x7)—2|| x* |
=r(x*, Tox+x)—c(x*, =T x—x7)—2] x* |
< 2r(x*, Toxt)—=2|| x* ||+ (x*, x =T x7)—t(x*, Typx~—x7)

St x—Tx)—o(xt, Tix~—x7).

If we set
w=|x"+ax —aTx |—|x*—ax +aTx"|
then
w={2x)AQax )} v0=0
and so that

|x*+ax —aTwx™ | S| x*—ax +aTx" | (az=0).

Thus we have
o/(xt, Tyx—x)Z0
and, for any x & D(A),
t/(x*, Ax) <0

which proves that A is a (d2)-operator.
We next prove the inverss assertion. Let A be a (d2)-operator and sup-
pose that R(A/—A)= X for some A>0. Then the inverse (A7— A)~! exists and
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A=A yl=2yl (yeX).
In fact, for fixed y=0 in X there is an x € ©(A) such that Ax—Ax=y and
A x| =7'(x", Ax7)
Zo/(x, Ax)—7/(x~, —AX)
=7/(x7, —y+4x*)
=0,

(the last inequality follows from the similar calculation as that of w), since
x=0 and
A x| ='(x, Ax)
< 7/(x, 2x)—z'(x, Ax)

=Ny,
Thus, by Proposition 5, this inequality implies that (A/—A) is one-to-one and
AR(A; A) = A(AT—A)™?

is a positive contraction operator. By hypothesis, R(/—A)=X so that the
above discussions are true for A=1. If |A—1|<1, then the resolvent R(1; A)
exists and is given by

RQ; A= R(L; 4) S {A-DRA; A).

Since (d2) implies || R(1; A)|| < A7, the methcd of analytic continuation shows
that R(4; A) exists and satisfies the norm condition || R(2; A)|| < 47! for 1>0.
It follows from the Hille-Yosida theorem that A generates a strongly con-
tinuous semi-group of contraction operators {T,; t=0}. It also follows from

the proof of the Hille-Yosida theorem that
Tre I CT) P
X = glglo exp (—Ab) Eofr;r{lR(l ; A)Yx
and this expression implies that T, is a positive operator if R(1; A) is positive.
REMARK 2. To each pair {x, y} in a Banach lattice X, we can associate

a real number z”(x, y) such that

7(x, y) =7'(x*, )+7'(x7, ¥),

then this functional also characterizes the infinitesimal generator of a semi-
group of positive contraction operators. In particular, if X is an abstract (L)-
space, then the functional

e =1t"(x, )= | x*||—] x~|
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completely characterizes the infinitesimal generators of such semi-groups on X.
See Reuter [9] and Miyadera [6].
3. In this section we concern with a generation of positive contraction
semi-groups which dominate a given semi-group in a Banach lattice.
DEFINITION 5. Given a semi-group 2 = {T,; t =0} of positive contraction
operators and 2/ = {T}; t =0} is another one, we say that ¥/ dominates %, if

Tix=Tx (x=0,t=0).

The following lemma in a Banach space will be required in the sequel.

PROPOSITION 6. Suppose that a linear operator A generates a strongly
continuous semi-group of contraction operators on a Banach space X and that
B is a linear operator with domain D(B) DD(A).

If A’=A+B has a closed extension A’ then

| BR(A; A)| = K<oo,
where K is independent of 2>1 and
}im | BR(A; A)x|| =0 xe X).

Proor. Using the closed graph theorem, the formula
BRQ; A)=A’R(A; A)—ARQ; A)
=A'R(1; A)—ARQ; A)

implies that BR(1; A) is a bounded linear operator for any A>0. By the
resolvent equation, we have

BR(A; A)=BR(1; A)—(A—1)BR(; A)R(A; A)
and
| BR(A; A = BR(L; AIA+AA-1)=K< oo,

Since, for any x = D(A), there is y € X such that x=R(; A)y, we have
I BR(Z; Ax| = BRA; ARQ; Ayl
SKIIR@; Ayl =2 K|y .

The assertion is proved by this inequality and ®(4) = X.

The following theorem is previously obtained by the author when A’ is
dispersive with respect to some semi-inner product [3] Some modifications
are necessary to apply his proof for the present case.

THEOREM 3. In a weakly complete Banach lattice X let A be a generator
of a positive contraction semi-group 2 and let B be a linear operator with
domain D(B) D D(A). Then A’ = A+ B or its closed extension generates a posi-
tive contraction semi-group X' which dominates Y if and only if
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(¢)) Bx=0 (x=0, x € DA)),
) /(x, A’x) =0 (x=0, x=D4),

B A’ has a closed extension.
Proor. We define a sequence of linear operators {A4,,} by

Apa=A+n—DBR(n; A) (=4
and {B,,} by

B = Ansr1,a—Ana
=BR(n+1; A)A—ARn; A) (n=A).
Then it follows from Proposition 6 that
[ Bual = || BR(n+1; A|{l+n"'(n—2)}
SL< oo

where L is independent of n and A
If we assume that the resolvent R(4; A,,) exists which acts on X and is
positive for some A and n (n= 1), then we have, for any x=0,

A RQA; Ag x|l =7/ (R(A; Ap,)x, AR(A; A, 0%)
S (R Ap )X, AR(A; Ay 2)%)
—t/(R(4A; Ap,0x, A'RQA; Ap,2)%)
=t/ (R(A; Ax 0%, (A—A)RA; Ay )%)
=t/ (R(A; A%, x—BR(n; A)(A—A)RA; Au2x)
<ix|,
where the last inequality holds by virtue of the formula
(A—A)RQA; Ay px=x+Mm—ADBR(n; A)RA; AnDxX.

In fact, if we set
y=BR(n; AQA—ARQA; A, )x
then we see that

2t'(R(A; Ap 0%, x—y)—2|| x|
=t(R(A; Ap)x, x—))—(R(A; Ay 0%, y—1)—2| x|
:1:511 a (| R(2; A, pxt+ax—ay|
—| R(A; Ay px—ax+ay||—2a| x|)
éﬁa“(ll R(; A, px+ax—ay|
' — | RQA; AuDx+ax+ayl)

A

0.
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Thus we obtain
ARA; Apdx| =llx]l  (x=0)

and so that, for any x e X,
A RQ@; Ag x| S 2 R A Dl x| S 2l =1 2]l

By induction on 7 we next show that the resolvent R(1; A,,) exists which
acts on X and is positive for any 4> L and n= 4. It is obvious that

R(2; Ay )= R(4; A)

is a positive operator for any 1> L. Suppose that R(1; A4,,) is positive for
any 4> L and some n, then we have

I BaaR(A5 A DI = 1| Ball | R(A5 A, DI <1.
It follows from this norm condition that R(2; A,4,,) exists which acts on X
and is given by

RQ; Ausa, )= 2 RA; An){(BaaRA; An D}

for any 4> L. See and [10]. Moreover we have, for any x>0,
By aR(2; Ap)x
= BR(n+1; AR(n; A{x+n—)BR(n; ARQ; A, )x}
=0.
It follows that
RQA; Apr )xZ R(A; Apx 20 (x=0).

Since X is a weakly complete Banach lattice, we have, for any x=0 and then
for any xe X,

lim || RA; An)x—RQ; Ay dx]=0.

n,n/ =00

To show that {R(X’'; A, »x} (0< A <24) is a Cauchy sequence for any
x € X, we make use of the relation

RG—p; An)= 3 iR Ay,

where, provided that |u| <4, the right hand side converges uniformly in n.

See and [10].
It also follows from this formula that R(2’; A, ;) (0< 1’ < 2) is positive
and that

AR Ay pxll=lxl (xeX).

We have already proved that a family of resolvents
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{R(A; Aww); A=k}, (R=[L1+1,[L]+2, )

has the following properties:

L lim | R(2; Ap0x—RA; Ap x| =0 (xeX),
@ R(A; Apd— R An ) =X —DRQA; An )R 5 Ap ),
©)) AIRA; Ap | =1

Setting

B; Ayx= im RQ2; A,0x - (reX),
we see that {R(1; Ay); A<k} satisfies the above properties (2) and (3) and is
a consistent family of resolvents in the following sense:
R Ax=R; A)x (e X, A<k<Rk).
In fact, we have
| R(2; Awyx—R2; Adx|
<1 RQ; Au)x—R@; Au)x]|
+I R@; Anx—RQ; Adx|

+” R(l H An.k’)x'—R(l N An,lc)x “ .
Here

| R(2; Appdx—R(QA; An x|
S(R'—RB| R(A; App)BR(n; A)RA; A, x|l
<27 (k' —R)| BR(n; AYRQ; Apx|
+A"1(k'—R)L|| R(A; A, )x—RQ; A)x]l .
Hence, we obtain the desired inequality
| B2 Aw)x—RQ2; Apx|
<1 BQ; An)x—RQ; An)x]|
+{1+27 1R —RLY| RQA; Anx—R(2; Ax|
+ 273k —k)| BR(n; A)R(A; Apx].
Letting n—oo0, we have, for any 1<k <Fk,
R(; Apx=R@; Apx (xe X).

Since {R(1; Ap; A<k} is consistent, we obtain a family of resolvents
{R(2; A"} which satisfies the following conditions :

@ Ra; Ay=FRa; Ay sk,
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@) R, An—RQ; A=W —DRG; AVR ; Ay,
€)) ARQ; Ay =1.

It follows from (2) that R(1; A’) is a one-to-one transformation from X to
R(R(2; A7) and

Ay=21—R@; A
is independent of A, that is,
flxzfl,lx:fl,vx xeR)

where %t = R(FB(; A)=REW ; A). Then, by the Hille-Yosida theorem, we
find that A generates a strongly continuous semi-group of contraction opera-
tors. It is readily verified that A is a closed extension of A’ and that 3
dominates 2.

The inverse part of this theorem is obvious.

THEOREM 4. [In a weakly complete Banach lattice X let A be a generator
of a positive contraction semi-group X and let B be a linear operator with
domain D(B) DD(A).

Then A’= A+B or its closed extension generates a positive contraction
semi-group 2’ which dominates X if and only if

@ Bxz0 (xz0, xeD4),
@ A’ 1s a (d3)-operator, that is,

A’ satisfies the following condition
(d3) (x, A’x) <0 (xeDA).

Proor. The proof of this theorem follows from the following lemma due
to Lumer and Phillips when A is a dissipative operator in a semi-inner pro-
duct space. Some modifications are necessary in their proof of Lemma 3.3 in
[5] to apply for the case when A is a (d3)-operator.

PROPOSITION 7. If A is a (d3)-operator with dense domain in a Banach
space X, then A has a smallest closed linear extension A.

Proor. If A does not have a closed extension, then there is a sequence
{x,} CD(A) such that

x,—0, Ax,—Yy and ly)=1.
Choose u € ©(A) such that |u—y|| <27, Ju||=1
Since z(u-+cx,, -) is a real continuous functional on X such that
t(utcxy, y+2) < t(ut-cx,, Y)+r(u+tcx,, 2)
and

t(UCxp,, ay) = at(utcx,, v) for a=0,
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it follows that there exists a continuous real linear functional k¥, on X
satisfying
kot cx,) = T(ut ey, utcx) = | u-tcx, |
and
—t(utcx,, =N S k() St(utcx,, ) (ve X).
It also follows that the bounded set {k¥,} in X* has a limit point %¥ in the
X-topology. Moreover we have

[ < lim || &, =1,
kF(u)=lim k¥, (u)
= lim k¥,(u+cx,)

=1
and
EX(Au+tcy) <Tim o/(u-tcx,, Autcy)

Tim r(u+cx,, AutcAx,)

0.

A

On the other hand
kE(y) = REw)— k¥ (u—1y)
Z1l—flu—y| >2

so that k¥(Au-+tcy)<0 is impossible if ¢ is chosen larger than 2| Aul.

REMARK 3. In Theorem 1, the condition (dl) can be replaced by (d3).

The following theorem is due to Miyadera [6] when X is an abstract
(L)-space. Analogous result is obtained when X is a Banach lattice by Olu-
bummo [7].

THEOREM 5. Let A generate a strongly continuous semi-group 2 of positive
contraction operators on a weakly complete Banach lattice X and let B be a
linear operator with domain D(B) DD(A).

Then A’ = A+ B will generate a strongly continuous semi-group 2’ of posi-
tive contraction operators dominating X if and only if

()] Bx=0 (x=0, xeDA4),
2 o/(x, A’x) 0 (x=20, xe D),
3) RUI—BRQA; A))=X (@A>0).

ProoF. We note that
(I—BR(1; AAX=U-AYDA =X,



302 M. HaseGcawa

thus the assertion is readily follows from the proof of Theorem 3.

4. As an application of Theorem 4, we remark a convergence theorem of
a family of semi-groups of operators. See [3]

PROPOSITION 8. Suppose that a family of linear operators {A,} (n=1,2, ...)
which generate strongly continuous semi-groups of positive contraction operators
on a weakly complete Banach lattice X satisfies the following conditions:

@ D(An+) CTB(4,)
) Ay = A, x+B,x,
Bxz20 (20, xeD(4,41),
(3) there is a dense set M in X on which
| Anx || = K(x) < o0

where K(x) is independent of n.

Then the limit operator A= lim A, exists on M and has a closed extension
A which generates a strongly continuous semi-group of positive contraction
operators.

PrOOF. Since X is weakly complete, (3) implies the existence of the limit
A=1im A, and the assertion readily follows from Theorem 4.

Waseda University

References

[1] N. Dunford and J.T. Schwarz, Linear Operators I, Interscience, New York, 1958.

[2] M. Hdsegawa, A note on the convergence of semi-groups of operators, Proc.
Japan Acad.; 40 (1964), 262-266.

[3] M. Hasegawa, On the convergence of resolvents of operators, (in preparation).

[4] E. Hille and R.S. Phillips, Functional Analysis and Semi-groups, American
Mathematical Society, 1957.

[5] G. Lumer and R.S. Phillips, Dissipative operators in a Banach space, Pacific J.
Math., 11 (1961), 679-698.

[6] I. Miyadera, A note on contraction semi-groups of operators, To6hoku Math. J.,
11 (1959), 98-105.

[7] A. Olubummo, A note on perturbation theory for scmi-groups of operators, Proc.
Amer. Math. Soc., 16 (1964), 818-822.

[8] R.S. Phillips, Semi-groups of positive contraction operators, Czechoslovak Math.
J., 12 (87) (1962), 294-313.

[9] G.E.H. Reuter, A note on contraction semi-groups, Math. Scand., 3 (1955) 275-
280.

[10] K. Yosida, Functional Analysis, Springer, Berlin, 1965.



	On contraction semi-groups ...
	References


