The structure of K_A -rings of the lens space and their applications

By Tsunekazu KAMBE

(Received June 14, 1965)

Introduction.

In [2] M. F. Atiyah used the Grothendieck ring KO(M), of real vector bundles over a differentiable manifold M, to the problems of immersion and imbedding of M, and applied his methods to the n-dimensional real projective space RP^n whose $KO(RP^n)$ had been determined by J. F. Adams [1].

In this paper we shall consider the lens space $L^n(p)$ which is defined as follows: Let p be an integer >1 and γ be the rotation of (2n+1)-sphere

$$S^{2n+1} = [(z_0, z_1, \dots, z_n) / \sum_{i=0}^{n} |z_i|^2 = 1]$$

of the complex (n+1)-space C^{n+1} given by

$$\gamma(z_0, z_1, \dots, z_n) = (e^{2\pi i/p} z_0, e^{2\pi i/p} z_1, \dots, e^{2\pi i/p} z_n).$$

Then γ generates the topological transformation group Γ of S^{2n+1} of order p, and the lens space is defined to be the orbit space:

$$L^n(p) = S^{2n+1}/\Gamma$$
.

This is the compact differentiable (2n+1)-manifold without boundary and in particular $L^n(2) = RP^{2n+1}$.

The reduced Grothendieck rings $\widetilde{K}(L^n(p))$ (for prime p) and $\widetilde{KO}(L^n(p))$ (for odd prime p), of complex and real vector bundles over $L^n(p)$ respectively, are determined by the following two theorems.

Let η be the canonical complex line bundle over the complex projective space CP^n . Consider the natural projection

$$\pi: L^n(p) = S^{2n+1}/\Gamma \to S^{2n+1}/S^1 = CP^n$$

and the element

$$\sigma = \pi!(\eta - l_c)^{\scriptscriptstyle 1)} \in \widetilde{K}(L^n(p))$$

¹⁾ Throughout this paper, the trivial real (complex) bundle of dimension n will be simply denoted by n (n_c) .

136 Т. Камве

where $\pi^!: \widetilde{K}(CP^n) \to \widetilde{K}(L^n(p))$ is the induced homomorphism of π .

THEOREM 1. Let p be prime, let n be an integer and let n=s(p-1)+r $(0 \le r < p-1)$. Then

$$\widetilde{K}(L^n(p)) \cong (Z_{ps+1})^r + (Z_{ns})^{p-r-1}$$

and $\sigma^1, \dots, \sigma^r$ generate additively the first r factors and $\sigma^{r+1}, \dots, \sigma^{p-1}$ the last p-r-1 factors. Moreover, the ring structure of $\tilde{K}(L^n(p))$ is given by

$$\sigma^p = -\sum_{i=0}^{p-1} {p \choose i} \sigma^i \qquad \sigma^{n+1} = 0.$$

Also, consider the operator $r: \widetilde{K}(L^n(p)) \to \widetilde{KO}(L^n(p))$ which sends complex vector bundles to the corresponding naturally defined real vector bundles, and the element

$$\bar{\sigma} = r\sigma \in \widetilde{KO}(L^n(p))$$
.

THEOREM 2. Let p be an odd prime, q=(p-1)/2, and n=s(p-1)+r $(0 \le r < p-1)$. Then

$$\widetilde{KO}(L^n(p)) \cong \begin{cases} (Z_{p^{s+1}})^{\lceil r/2 \rceil} + (Z_{p^s})^{q - \lceil r/2 \rceil} & (if \ n \not\equiv 0 \ \operatorname{mod} (4)) \\ \\ Z_2 + (Z_{p^{s+1}})^{\lceil r/2 \rceil} + (Z_{p^s})^{q - \lceil r/2 \rceil} & (if \ n \equiv 0 \ \operatorname{mod} (4)) \text{,} \end{cases}$$

and the direct summand $(Z_{p^{s+1}})^{[r/2]}$ and $(Z_{p^s})^{q-[r/2]}$ are generated additively by $\bar{\sigma}, \dots, \bar{\sigma}^{[r/2]}$ and $\bar{\sigma}^{[r/2]+1}, \dots, \bar{\sigma}^q$ respectively. Moreover its ring structure is given by

$$\bar{\sigma}^{q+1} = \sum_{i=1}^{q} \frac{-(2q+1)}{2i-1} {q+i-1 \choose 2i-2} \bar{\sigma}^{i}, \quad \bar{\sigma}^{[n/2]+1} = 0.$$

As an application of Theorem 2, we obtain following,

THEOREM 333. Let p be odd prime, then

- (1) The lens space $L^n(p)$ cannot be immersed in $R^{2n+2L(n,p)-1}$,
- (2) $L^n(p)$ cannot be imbedded in $R^{2n+2L(n,p)}$. where L(n,p) is the integer defined by

$$L(n, p) = \max \left\{ i \leq \lfloor n/2 \rfloor \mid \binom{n+i}{i} \equiv 0 \mod (p^{1+\lfloor (n-2i)/(p-1) \rfloor}) \right\}.$$

In § 1, we recall the basic properties of the rings K(X) and KO(X) of a finite CW-complex X, which are necessary in the latter sections. Theorem 1 is proved in § 2 by the use of $K(CP^n)$ determined by J. F. Adams, and Theorem 2 is proved in § 3. In § 4, the Grothendieck operator γ^i in $KO(L^n(p))$ are determined, and Theorem 3 is proved by the methods of M. F. Atiyah.

The author wishes to express his sincere gratitude to Professors H. Toda

²⁾ $(Z_a)^b$ indicates the direct sum of b-copies of a cyclic group Z_a of order a.

³⁾ Immersion and imbedding mean C^{∞} -differentiable ones.

and M. Sugawara who suggested this topic and offered helpful advices, and to Professor A. Komatsu for constant encouragement and guidance given during the preparation of this paper.

§ 1. The Grothendieck ring

Let X be a finite CW-complex with a base point x_0 and let $\mathcal{E}_A(X)$ denote the set of equivalence classes of Λ -vector bundles over X (Λ denotes either the real field R or the complex field C). The Whitney sum of bundles makes $\mathcal{E}_A(X)$ a semi-group. The Grothendieck group $K_A(X)$ is the associated abelian group. The tensor product of vector bundles defines a ring structure in $K_A(X)$.

For a continuous map $f: Y \to X$ we have the natural ring homomorphism $f': K_A(X) \to K_A(Y)$ induced by the lifting of bundles under f. The reduced ring $\widetilde{K}_A(X)$ is defined to be the kernel of $i^!: K_A(X) \to K_A(x_0)$ where map $i: x_0 \to X$ is an imbedding of a point x_0 .

Let Y be a subcomplex of X, define $K_A^{-n}(X,Y) = \tilde{K}_A(S^n(X/Y))$. Here X/Y is the complex obtained from X by collapsing Y to a point and $S^n(X/Y)$ is the n-times iterated suspension of X/Y. For negative n, $K_A^{-n}(X,Y)$ is defined by using isomorphisms $K_c^{-n-2}(X,Y) \cong K_c^{-n}(X,Y)$, $K_R^{-n-8}(X,Y) \cong K_R^{-n}(X,Y)$. In this way we have periodic cohomology theories $K_c^*(\cdot, \cdot)$ and $K_R^*(\cdot, \cdot)$, of periods 2 and 8 respectively [3].

Then we have the exact sequence

$$(1.1) \cdots \to \widetilde{K}_{A}^{-n-1}(Y) \to K_{A}^{-n}(X, Y) \to \widetilde{K}_{A}^{-n}(X) \to \widetilde{K}_{A}^{-n}(Y) \to \cdots$$

In what follows we use the notations K and KO in place of K_C and K_R respectively.

From $\lceil 1 \rceil$ we have operators

$$r: K(X) \to KO(X)$$
, $c: KO(X) \to K(X)$, $t: K(X) \to K(X)$

such that

$$(1.2) rc = 2: KO(X) \rightarrow KO(X), cr = 1+t: K(X) \rightarrow K(X).$$

These operators are natural with respect to maps and c and t are ring homomorphisms.

The values of $\widetilde{K}(S^n)$ and $\widetilde{K}O(S^n)$ are as follows [1].

(1.3)
$$n \equiv 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \mod 8$$

$$\widetilde{K}(S^n) \cong Z \quad 0 \quad Z \quad 0 \quad Z \quad 0 \quad Z \quad 0$$

$$\widetilde{K}O(S^n) \cong Z \quad Z_2 \quad Z_2 \quad 0 \quad Z \quad 0 \quad 0 \quad 0$$

The structure of $K(CP^n)$ is stated as follows, [1].

138 T. Kambe

(1.4) Adams' theorem

Let η be the canonical complex line bundle over \mathbb{CP}^n and put $\mu = \eta - 1_c$ then $K(\mathbb{CP}^n)$ is a truncated polynomial ring over the integers with one generator μ and one relation $\mu^{n+1} = 0$.

§ 2. The ring $\widetilde{K}(L^n(p))$

In this section we shall determine the ring $\tilde{K}(L^n(p))$ for prime p. As is well-known, $L^n(p)$ has a cell structure given by

$$L^n(p) = S^1 \cup e^2 \cup e^3 \cup \cdots \cup e^{2n} \cup e^{2n+1}$$

and

(2.1)
$$H^{i}(L^{n}(p), Z) = \begin{cases} Z_{p} & i = 2, 4, \dots, 2n \\ Z & i = 0, 2n+1 \\ 0 & \text{for other } i. \end{cases}$$

In the followings, we use the subcomplex

$$L_0^n(p) = S^1 \cup e^2 \cup e^3 \cup \cdots \cup e^{n}$$

being the 2n-skelton of the above CW-complex $L^n(p)$. Then we have obviously

(2.2)
$$L_0^n(p)/L_0^{n-1}(p) = S^{2n-1} \bigcup_p e^{2n}$$

where attaching map $p: S^{2n-1} \to S^{2n-1}$ means the map of degree p.

Now, consider the pair $(S^{2n-1} \cup_p e^{2n}, S^{2n-1})$. We have the following exact sequence of (1.1).

$$\cdots \to \widetilde{K}^{-1}(S^{2n}) \to \widetilde{K}^{-1}(S^{2n-1} \bigcup_{p} e^{2n}) \to \widetilde{K}^{-1}(S^{2n-1}) \overset{\hat{\beta}}{\to} \widehat{K}(S^{2n})$$
$$\to \widetilde{K}(S^{2n-1} \bigcup_{p} e^{2n}) \to \widetilde{K}(S^{2n-1}) \to \cdots$$

In this sequence, the coboundary homomorphism δ is the composition $S_0p^!$: $\widetilde{K}^{-1}(S^{2n-1}) \to \widetilde{K}^{-1}(S^{2n-1}) \stackrel{\cong}{=} \widetilde{K}(S^{2n})$ where the homomorphism $p^!$ induced by p is obviously given by $p^!(x) = px$, $x \in \widetilde{K}^{-1}(S^{2n-1})$. Hence, using (1.3) we have $\widetilde{K}^{-1}(S^{2n-1} \cup_p e^{2n}) = 0$, $\widetilde{K}(S^{2n-1} \cup_p e^{2n}) = Z_p$ and so

(2.3)
$$K^{\pm 1}(L_0^n(p), L_0^{n-1}(p)) = 0, \quad K(L_0^n(p), L_0^{n-1}(p)) = Z_p.$$

LEMMA (2.4). $\widetilde{K}(L_0^n(p))$ consists of p^n elements and $\widetilde{K}^{\pm 1}(L_0^n(p)) = 0$.

PROOF. We prove by induction on n. For the case n=0, our assertions are trivial, since $L_0^0(p)$ is one point. Suppose that (2.4) is true for n-1 and consider the following exact sequence (1.1) of the pair $(L_0^n(p), L_0^{n-1}(p))$:

$$\cdots \to K^{-1}(L_0^n(p), L_0^{n-1}(p)) \to \widetilde{K}^{-1}(L_0^n(p)) \to \widetilde{K}^{-1}(L_0^{n-1}(p)) \to K(L_0^n(p), L_0^{n-1}(p))$$
$$\to \widetilde{K}(L_0^n(p)) \to \widetilde{K}(L_0^{n-1}(p)) \to K^1(L_0^n(p), L_0^{n-1}(p)) \to \cdots.$$

From (2.3) and the inductive assumption, $K^1(L_0^n(p), L_0^{n-1}(p)) = \tilde{K}^{-1}(L_0^{n-1}(p))$ = 0, $K(L_0^n(p), L_0^{n-1}(p)) = Z_p$ and $\tilde{K}(L_0^{n-1}(p))$ consists of p^{n-1} elements. Therefore the above exact sequence implies that $\tilde{K}(L_0^n(p))$ contains exactly p^n elements and $\tilde{K}^{-1}(L_0^n(p)) = 0$, and (2.4) is true for n. q. e. d.

Comparing $\widetilde{K}(L^n(p))$ with $\widetilde{K}(L_0^n(p))$, we have

LEMMA (2.5). The inclusion map $i: L_0^n(p) \subset L^n(p)$ induces the isomorphism $i^!: \widetilde{K}(L^n(p)) \cong \widetilde{K}(L_0^n(p))$, and $\widetilde{K}(L^n(p))$ consists of p^n elements.

PROOF. Since $L^n(p)/L_0^n(p) = S^{2n+1}$, we have the following exact sequence:

$$\cdots \to \check{K}(S^{2n+1}) \to \check{K}(L^n(p)) \xrightarrow{i^!} \check{K}(L^n(p)) \to \check{K}^1(S^{2n+1}) \to \cdots$$

Here, $\widetilde{K}(L_0^n(p))$ is a finite group by (2.4) and $\widetilde{K}^1(S^{2n+1})$ is an infinite cyclic group, then the above homomorphism δ is trivial. This and $\widetilde{K}(S^{2n+1})=0$ and (2.4) imply the lemma. q. e. d.

Let $\pi': S^{2n+1} \to L^n(p)$ be a natural projection and define the map $\pi: L^n(p) \to CP^n$ by $\pi(\pi'(z_0, z_1 \cdots, z_n)) = [z_0, z_1, \cdots, z_n]$. Then $(L^n(p), \pi, CP^n)$ is the locally trivial fibre space with fibre S^1 . Consider its Gysin's sequence:

$$\cdots \to H^{i-2}(CP^n) \to H^i(CP^n) \to H^i(L^n(p)) \to H^{i-1}(CP^n) \to \cdots.$$

Since $H^{i-1}(CP^n) = 0$ for each even $i \neq 1$ and $H^i(L^n(p)) = 0$ for each odd i < 2n, thus we have

(2.6) The homomorphism π^* : $H^i(\mathbb{C}P^n) \to H^i(\mathbb{L}^n(p))$ i < 2n+1 is an epimorphism.

The following proposition is basic in our computation of $\widetilde{K}(L^n(p))$.

PROPOSITION (2.7). The ring homomorphism $\pi^!: \widetilde{K}(\mathbb{C}P^n) \to \widetilde{K}(\mathbb{L}^n(p))$ is an epimorphism.

PROOF. Let $\pi_0 = \pi \mid L_0^n(p) : L_0^n(p) \to CP^n$ be the restriction of π . Then, by Lemma (2.5), it is sufficient to prove that the homomorphism $\pi_0^! : \tilde{K}(CP^n) \to \tilde{K}(L_0^n(p))$ is an epimorphism. This is trivial for n=0 and we suppose inductively that $\pi_0^! : \tilde{K}(CP^{n-1}) \to \tilde{K}(L_0^{n-1}(p))$ is an epimorphism. Consider the following commutative diagram where the horizontal sequences are exact:

$$\cdots \to \widetilde{K}(CP^{n}/CP^{n-1}) \to \widetilde{K}(CP^{n}) \to \widetilde{K}(CP^{n-1}) \to \widetilde{K}^{1}(CP^{n}/CP^{n-1}) \to \cdots$$

$$\downarrow \pi_{0}^{i} \qquad \qquad \downarrow \pi_{0}^{i} \qquad \qquad \downarrow \pi_{0}^{i}$$

$$\cdots \to \widetilde{K}(L_{0}^{n}(p)/L_{0}^{n-1}(p)) \to \widetilde{K}(L_{0}^{n}(p)) \to \widetilde{K}(L_{0}^{n-1}(p)) \to \widetilde{K}^{1}(L_{0}^{n}(p)/L_{0}^{n-1}(p)) \to \cdots$$

Here, $\pi_0^!: \tilde{K}^1(CP^n/CP^{n-1}) \to \tilde{K}^1(L_0^n(p)/L_0^{n-1}(p))$ is a monomorphism, since $\tilde{K}^1(CP^n/CP^{n-1}) = \tilde{K}^1(S^{2n}) = 0$, and $\pi_0^!: \tilde{K}(CP^{n-1}) \to \tilde{K}(L_0^{n-1}(p))$ is an epimorphism by the hypothesis of induction. Also, since $\pi_0: L_0^n(p)/L_0^{n-1}(p) = S^{2n-1} \cup e^{2n} \to CP^n/CP^{n-1} = S^{2n}$ is nothing but the map collapsing S^{2n-1} to a point, $\pi_0^!: \tilde{K}(CP^n/CP^{n-1}) \to \tilde{K}(L_0^n(p)/L_0^{n-1}(p))$ is an epimorphism. Therefore $\pi_0^!: \tilde{K}(CP^n) \to \tilde{K}(L_0^n(p))$ is an

140 T. Kambe

epimorphism by the Five Lemma, and this completes the proof by induction. q. e. d.

Now, concerning the element

$$\sigma = \pi! \mu \in \widetilde{K}(L^n(p))$$
,

we have two lemmas.

Lemma (2.8). $(1_c+\sigma)^p = 1_c$, $\sigma^{n+1} = 0$.

PROOF. The total Chern class $C(\eta)$ of the canonical complex line bundle η is given by $C(\eta) = 1 + x$, where $x \in H^2(\mathbb{C}P^n) = \mathbb{Z}$ is a generater [4]. By the naturality of Chern class and (2.1) and (2.6), we have

$$C((\pi^!\eta)^p) = \pi^*C(\eta \otimes \cdots \otimes \eta) = \pi^*(1+px) = 1+p\pi^*x = 1$$
.

and so $(\pi^!\eta)^p=1_c$, for the complex line bundles are classified by their first Chern class. Thus

$$(\sigma+1_c)^p = (\pi!\mu+1_c)^p = (\pi!\eta)^p = 1_c$$
.

 $\sigma^{n+1}=0$ is an immediate consequence of $\mu^{n+1}=0$ of (1.4). q. e. d. Lemma (2.9). Lep p be prime, then

$$p^{+1} \left[\frac{i}{p-1} \right] \sigma^{n-i} = 0.$$

PROOF. Multiplying σ^{n-i-1} to the first equation of (2.8), we have

$$\binom{p}{1}\sigma^{n-i} + \binom{p}{2}\sigma^{n-i+1} + \cdots + \sigma^{n-i+p-1} = 0.$$

For i=0, this and $\sigma^{n+1}=0$ imply $p\sigma^n=0$. Suppose inductively that the lemma is true for $j \leq i-1$. Multiply $p^{\left[\frac{i}{p-1}\right]}$ to the above equation, we have

$$P^{\left[\frac{i}{p-1}\right]}\binom{p}{1}\sigma^{n-i} + p^{\left[\frac{i}{p-1}\right]}\binom{p}{2}\sigma^{n-(i-1)} + \cdots + p^{\left[\frac{i}{p-1}\right]}\sigma^{n-i+(p-1)} = 0 \; .$$

Here, $\binom{p}{j} = 0 \mod (p)$ for $1 \le j \le p-1$ since p is prime. Then this and the assumption of induction imply

$$p^{\left[\frac{i}{p-1}\right]}\binom{p}{2}\sigma^{n-(i-1)}=\cdots=p^{\left[\frac{i}{p-1}\right]}\binom{p}{p-1}\sigma^{n-(i-(p-1))}=0$$

and

$$p^{\left[\frac{i}{p-1}\right]}\sigma^{n-i+p-1} = p^{1+\left[\frac{i-(p-1)}{p-1}\right]}\sigma^{n-(\iota-(p-1))} = 0 \ .$$

Hence we have $p^{1+\left[\frac{i}{p-1}\right]}\sigma^{n-i}=0$ from the above equation. q. e. d.

Now, we are ready to prove Theorem 1.

PROOF OF THEOREM 1. $\widetilde{K}(L^n(p))$ is generated by σ by (1.4) and Proposition (2.7). This and the relation of (2.8) imply that $\widetilde{K}(L^n(p))$ is additively generated by σ , σ^2 , \cdots , σ^{p-1} . On the other hand (2.9) implies

$$p^{s+1+\left[\frac{r-1}{p-1}\right]}\sigma^i = p^{1+\left[\frac{n-1}{p-1}\right]}\sigma^i = 0$$
 for $i = 1, 2, \dots, p-1$

and also we have $(p^{s+1})^r \times (p^s)^{p-1-r} = p^n$. Therefore we have Theorem 1 using Lemma (2.5).

LEMMA (2.10). Element σ^i is of order $p^{1+\left[\frac{n-i}{p-1}\right]}$.

PROOF. Lemma (2.9) shows that σ^n is 0 or of order p. If $\sigma^n = 0$, it follows $p^{\left[\frac{n-i}{p-1}\right]}\sigma^i = 0$ by the similar way as (2.9). But this does not happen for elements σ , σ^2 , \cdots , σ^{p-1} by Theorem 1. Therefore σ^n must be of order p. Clearly

order
$$\sigma^n \leq \text{order } \sigma^{n-1} \leq \cdots \leq \text{order } \sigma^{n-(p-2)}$$

and $p\sigma^{n-(p-2)}=0$ by (2.9). Therefore elements σ^n , σ^{n-1} , \cdots , $\sigma^{n-(p-2)}$ are of order p. Assume that the elements $\sigma^{n-j(p-1)}$, $\sigma^{n-j(p-1)-1}$, \cdots , $\sigma^{n-j(p-1)-(p-2)}$ are of order p^{j+1} . Then multipling $\sigma^{n-j(p-1)-p}$ to the equation

$$\binom{p}{1}\sigma + \binom{p}{2}\sigma^2 + \cdots + \sigma^p = 0$$
,

we have

$$\binom{p}{1}\sigma^{n-(j+1)(p-1)} = -\sigma^{n-j(p-1)} \,.$$

Therefore $\sigma^{n-(j+1)(p-1)}$ is of order p^{j+2} . Since

order
$$\sigma^{n-(j+1)(p-1)-1} \le \cdots \le \text{order } \sigma^{n-(j+1)(p-1)-(p-2)}$$

and $p^{j+2}\sigma^{n-(j+1)(p-1)-(p-2)} = 0$ by (2.9), the elements $\sigma^{n-(j+1)(p-1)}$, $\sigma^{n-(j+1)(p-1)-1}$, ..., $\sigma^{n-(j+1)(p-1)-(p-2)}$ are of order p^{j+2} . q. e. d.

§ 3. The ring $\widetilde{KO}(L^n(p))$.

Throughout this section, we assume that p is an odd prime. As our first step, we can take the similar arguments with § 2. Consider the exact sequence:

$$\cdots \to \widetilde{KO}(S^{2n}) \overset{*p}{\to} \widetilde{KO}(S^{2n}) \to KO(L_0^n(p), L_0^n(p)) \to \widetilde{KO}^1(S^{2n}) \overset{*p}{\to} \widetilde{KO}^1(S^{2n}) \to \cdots$$

where $\widetilde{KO}^i(S^{2n})$ is isomorphic to Z, Z_2 , or 0 by (1.3). For $n \equiv 0 \mod (2)$, the above sequence is

$$Z \xrightarrow{\star p} Z \rightarrow KO(L_0^n(p), L_0^{n-1}(p)) \rightarrow 0$$

and for $n \neq 0 \mod (2)$, we have the following two cases:

$$Z_2 \xrightarrow{\times p} Z_2 \rightarrow KO(L_0^n(p), L_0^{n-1}(p)) \rightarrow Z_2 \xrightarrow{\times p} Z_2$$

 $0 \rightarrow KO(L_0^n(p), L_0^{n-1}(p)) \rightarrow 0.$

Thus we have

(3.1)
$$KO(L_0^n(p), L_0^{n-1}(p)) = \begin{cases} Z_p & n \equiv 0 \mod (2) \\ 0 & n \equiv 0 \mod (2) \end{cases}$$

142 Т. Камве

Similarly we have

(3.2)
$$KO^{\pm 1}(L_0^n(p), L_0^{n-1}(p)) = 0$$

Using (3.1), (3.2) and the exact sequences of the pair $(L_0^n(p), L_0^{n-1}(p))$ and the pair $(L^n(p), L_0^n(p))$, we can prove the following two lemmas by the similar way to the proof of Lemmas (2.4), (2.5).

LEMMA (3.3). $\widetilde{KO}(L_0^n(p))$ contains exactly $p^{\left[\frac{n}{2}\right]}$ elements. LEMMA (3.4).

$$\widetilde{KO}(L^n(p)) \cong \begin{cases} \widetilde{KO}(L_0^n(p)) & \text{if } n \equiv 0 \mod (4) \\ Z_2 + \widetilde{KO}(L_0^n(p)) & \text{if } n \equiv 0 \mod (4) \end{cases}$$

Now, consider the following commutative diagram

$$\widetilde{K}(CP^n) \xrightarrow{\pi^!} \widetilde{K}(L^n(p))$$

$$r \downarrow \uparrow c \qquad r \downarrow \uparrow c$$

$$\widetilde{K}O(CP^n) \xrightarrow{\pi^!} \widetilde{K}O(L^n(p))$$

where r, c are operators recalled in § 1.

For the elements $\mu \in \widetilde{K}(\mathbb{CP}^n)$ and $\sigma \in \widetilde{K}(\mathbb{L}^n(p))$, we put

$$\bar{\mu} = r(\mu) \in \widetilde{KO}(CP^n)$$
, $\bar{\sigma} = r(\sigma) \in \widetilde{KO}(L^n(p))$.

Since the inclusion map $i: L_0^n(p) \subset L^n(p)$ induces the isomorphism $i^!: \widetilde{K}(L^n(p)) \cong \widetilde{K}(L_0^n(p))$ by (2.5), we identify $\widetilde{K}(L_0^n(p))$ and Im $i^!$ and regard σ as an elements of $\widetilde{K}(L_0^n(p))$ and also regard $\bar{\sigma} = r(\sigma) \in \widetilde{KO}(L_0^n(p))$.

LEMMA (3.5).

- i) The homomorphism $r: \widetilde{K}(L_0^n(p)) \to \widetilde{KO}(L_0^n(p))$ is an epimorphism.
- ii) The homomorphism $c: \widetilde{KO}(L_0^n(p)) \to \widetilde{K}(L_0^n(p))$ is a monomorphism and

$$c(\bar{\sigma}) = \sigma^2 - \sigma^3 + \sigma^4 - \cdots = \frac{\sigma^2}{1+\sigma}.$$

PROOF. $\widetilde{KO}(L_0^n(p))$ has not an element of order 2 by (3.3). Therefore $rc=2:\widetilde{KO}(L_0^n(p))\to\widetilde{KO}(L_0^n(p))$ is an isomorphism and so r is epimorphic and c is monomorphic. For the complex line bundle η , the conjugation operator t satisfies clearly $\eta\cdot(t\eta)=1$, and we have $(1+\mu)(1+t\mu)=1$ and so $t(\mu)=-\mu+\mu^2-\mu^3+\cdots$. Therefore by (1.2) $c(\bar{\mu})=c(r(\mu))=(1+t)\mu=\mu^2-\mu^3+\mu^4-\cdots$, and the equation of ii) follows from the naturality of the operator c. q. e. d.

(2.10) and (3.5) ii) give

(3.6) $\bar{\sigma}^i$ is of order $p^{1+\left[\frac{n-2i}{p-1}\right]}$.

The following lemma is necessary to determine the ring structure of $\widetilde{KO}(L^n(p))$.

LEMMA (3.7).

$$\binom{2q}{j} = \sum_{i=1}^{j+1} \binom{q+i-1}{j} \binom{j+1}{2i-1}$$

$$\binom{2q+1}{j} = \sum_{i=1}^{j+1} \binom{q+i-1}{j} \binom{j+1}{2i-2}.$$

PROOF. For q=1, two formulas are true for any j. Assuming the first equation, we have

$$\binom{2q+1}{j} = \binom{2q}{j} + \binom{2q}{j-1}$$

$$= \sum_{i=1}^{j+1} \binom{q+i-1}{j} \binom{j+1}{2i-1} + \sum_{i=1}^{j} \binom{q+i-1}{j-1} \binom{j}{2i-1}$$

$$= \sum_{i=1}^{j} \binom{q+i-1}{j} \binom{j}{2i-1} + \sum_{j=1}^{j+1} \binom{q+i-1}{j} \binom{j}{2i-1}$$

$$+ \sum_{i=1}^{j} \binom{q+i-1}{j-1} \binom{j}{2i-1}$$

$$= \sum_{i=1}^{j} \binom{q+i}{j} \binom{j}{2i-1} + \sum_{i=1}^{j+1} \binom{q+i-1}{j} \binom{j}{2i-2}$$

$$= \sum_{i=1}^{j+1} \binom{q+i-1}{j} \binom{j}{2i-3} + \sum_{i=1}^{j+1} \binom{q+i-1}{j} \binom{j}{2i-2}$$

$$= \sum_{i=1}^{j+1} \binom{q+i-1}{j} \binom{j+1}{2i-2} .$$

Therefore the first one implies the second one. Similarly the second one implies the first one for q+1, and the lemma is obtained by induction. q, e, d.

Now, we are ready to prove Theorem 2.

PROOF OF THEOREM 2. First, we prove the equation

$$\bar{\sigma}^{q+1} = \sum_{i=1}^{q} a_i \bar{\sigma}^i$$
, $a_i = \frac{-(2q+1)}{2i-1} {q+i-1 \choose 2i-2}$.

Because c is monomorphic, this is equivalent to

$$(c(\bar{\sigma}))^{q+1} = \sum_{i=1}^{q} a_i (c(\bar{\sigma}))^i$$
,

and to

$$- \Big(\sum_{j=1}^{2q} \binom{2q+1}{j} \sigma^{j+1} \Big) = \sum_{i=1}^{q} a_i \sigma^{2i} \binom{\sum_{k=0}^{q+1-i} \binom{q+1-i}{k}}{i} \sigma^k \Big)$$

by (2.8) and ii) of (3.5). Therefore it is sufficient to show

$$-\binom{2q+1}{j} = \sum_{i=1}^{j} a_i \binom{q-i+1}{j-2i+1}, \quad a_i = \frac{-(2q+1)}{2i-1} \binom{q+i-1}{2i-2}.$$

This is clearly equivalent to

$$\binom{2q}{j-1} = \sum_{i=1}^{j} \frac{j}{2i-1} \binom{q+i-1}{2i-2} \binom{q-i+1}{j-2i+1} = \sum_{i=1}^{j} \binom{q+i-1}{j-1} \binom{j}{2i-1}$$

and this follows from Lemma (3.7).

Now, Lemma (3.5) i) and the above equation $\bar{\sigma}^{q+1} = \sum_{i=1}^{q} a_i \bar{\sigma}^i$ shows that $KO(L_0^n(p))$ is generated additively by $\bar{\sigma}, \cdots, \bar{\sigma}^q$. By (3.6) the order of $\bar{\sigma}^i$ is equal to p^{s+1} for $i=1,\cdots,\left \lceil \frac{r}{2} \right \rceil$ and to p^s for $i=\left \lceil \frac{r}{2} \right \rceil +1,\cdots,q$. This and (3.3) and

$$(p^{s+1})^{\left[\frac{r}{2}\right]} \times (p^s)^{q-\left[\frac{r}{2}\right]} = p^{\left[\frac{n}{2}\right]}$$

imply $\widetilde{KO}(L_0^n(p)) \cong (Z_{p^{g+1}})^{\left[\frac{r}{2}\right]} + (Z_{p^g})^{q-\left[\frac{r}{2}\right]}$.

This and (3.4) complete the proof of Theorem 2.

q. e. d.

§ 4. Immersions and imbeddings of lens spaces.

First we recall the Theorem of Atiyah [2]. Consider the exterior power operators λ^i which have the following properties in $\mathcal{E}_R(X)$.

$$\lambda^0(x) = 1,$$

$$\lambda^1(x) = x.$$

(4.3)
$$\lambda^{i}(x+y) = \sum_{j=0}^{i} \lambda^{j}(x) \otimes \lambda^{i-j}(y),$$

(4.4)
$$\lambda^i(x) = 0$$
 for $i > \dim x$, for any $x, y \in \mathcal{E}_R(X)$.

Let A(X) denote the multiplicative group of formal power series in t with coefficient in KO(X) and constant term 1. Then

$$\lambda_t(x) = \sum_{i=1}^{\infty} \lambda^i(x) t^i$$

defines a homomorphism $\mathcal{E}_R(X) \to A(X)$ by (4.3). Hence we have a homomorphism $\lambda_t : KO(X) \to A(X)$. Taking the coefficients of λ_t we have operator

$$\lambda^i: KO(X) \to KO(X)$$
.

Again we introduce the homomorphism

$$\gamma_t = \lambda_{t/1-t} : KO(X) \rightarrow A(X)$$

and the Grothendieck operator

$$\gamma^i: KO(X) \to KO(X)$$

is also defined as the coefficients of γ_t :

$$\gamma_t(x) = \sum_{i=1}^{\infty} \gamma^i(x) t^i.$$

Then Theorem of Atiyah is stated as follows.

- (4.5) Let M be a compact n-dimensional manifold and let $\tau(M)$ denote its tangent bundle and put $\tau_0(M) = \tau(M) n \in \widetilde{KO}(M)$. Then
 - i) Let M be immersible in R^{n+k} , then $\gamma^i(-\tau_0(M)) = 0$ for i > k,
 - ii) Let M be imbeddable in R^{n+k} , then $\gamma^i(-\tau_0(M)) = 0$ for $i \ge k$.

Now, consider the differential bundle space $(L^n(p), \pi, CP^n, S^1)$ and let α be its bundle along the fibre. Then as is well-known,

$$\tau(L^n(p)) = \pi!(\tau(CP^n)) + \alpha.$$

Here, since the manifolds $L^n(p)$ and CP^n are orientable and dim $\alpha=1$, we have $\alpha=1$ and so

(4.6)
$$\tau(L^n(p)) = \pi! \tau(CP^n) + 1.$$

LEMMA (4.7).

$$\tau_0(L^n(p)) = (n+1)\tilde{\sigma} \in \widetilde{KO}(L^n(p))$$
.

PROOF. It is well-known that the complex tangent bundle $\tau_c(CP^n)$ is given by $\tau_c(CP^n)+1=(n+1)\eta$ [4]. Hence

$$\tau(L^n(p))+1=\pi!(\tau(CP^n)+2)=\pi!(r(\tau_c(CP^n)+1_c))=(n+1)r\pi!\eta$$

by (4.6), and so

$$\tau_0(L^n(p)) = \tau(L^n(p)) - (2n+1) = (n+1)r\pi! \eta - (n+1)_c = (n+1)\bar{\sigma}.$$
 q. e. d.

LEMMA (4.8).

$$\gamma_t(\bar{\sigma}) = 1 + \bar{\sigma}t - \bar{\sigma}t^2 \in A(L^n(p))$$
.

PROOF. If x is an oriented real bundle of dimension n, then $\lambda^n(x) = 1$ by the definition of the exterior power operations. Since $r(\eta)$ is an oriented bundle of dimension 2, $\lambda_t(r(\eta)) = 1 + r(\eta)t + t^2$ by the properties (4.1), (4.2) and (4.4) and so $\lambda_t(\bar{\mu}+2) = (1+t)^2 + \bar{\mu}t$. On the other hand, since λ_t is the homomorphism, we have

$$\lambda_t(\bar{\mu}+2) = \lambda_t(\bar{\mu}) \cdot \lambda_t(1)^2 = \lambda_t(\bar{\mu})(1+t)^2$$

and so $\lambda_t(\bar{\mu}) = 1 + \frac{t}{(1+t)^2}\bar{\mu}$. Hence

$$\gamma_t(\bar{\mu}) = \lambda_{t/1-t}(\bar{\mu}) = 1 + \bar{\mu}t - \bar{\mu}t^2$$
.

Therefore $\gamma_t(\bar{\sigma}) = 1 + \bar{\sigma}t - \bar{\sigma}t^2$ by the naturality of the operator γ_t . q. e. d. PROOF OF THEOREM 3. Lemmas (4.7) and (4.8) imply

$$\begin{split} \gamma_t(-\tau_0(L^n(p))) &= (\gamma_t(\bar{\sigma}))^{-(n+1)} = (1+\bar{\sigma}(t-t^2))^{-(n+1)} \\ &= \sum_{i=0}^{\infty} {\binom{-(n+1)}{i}} \bar{\sigma}^i(t-t^2)^i \\ &= \sum_{i=0}^{\infty} (-1)^i {\binom{n+i}{i}} \bar{\sigma}^i(t-t^2)^i \,. \end{split}$$

Therefore we have

 $L^{n}(p)$ cannot be immersed in $R^{2n+1+2L'(n,p)-1}$,

 $L^{n}(p)$ cannot be imbedded in $R^{2n+1+2L'(n,p)}$.

by Theorem of Atiyah, where $L'(n, p) = \max \left\{ i \mid \binom{n+i}{i} \bar{\sigma}^i \neq 0 \right\}$. On the other hand, (3.6) and $\bar{\sigma}^{\left[\frac{n}{2}\right]+1} = 0$ imply L'(n, p) = L(n, p), and Theorem 3 is obtained. q. e. d.

COROLLARY 1. For odd prime $p > n + \left[\frac{n}{2} \right]$, $L^n(p)$ cannot be immersed in $R^{2n+2\left[\frac{n}{2}\right]}$ and cannot be imbedded in $R^{2n+2\left[\frac{n}{2}\right]+1}$.

Here, we notice that the following immersibility theorem is obtained, using (4.6) and the notion of the geometric dimension [2].

THEOREM 4. If CP^n is immersible in R^{2n+s} , then $L^n(p)$ is immersible in R^{2n+s+1} .

This and Corollary 1 give the known result:

COROLLARY 2. CP^n cannot be immersed in $R^{2n+2\left[\frac{n}{2}\right]-1}$.

Kyoto University

References

- [1] J.F. Adams, Vector field on spheres, Ann. of Math., 75 (1962), 603-632.
- [2] M.F. Atiyah, Immersions and imbeddings of manifolds, Topology, 1 (1962), 125-132.
- [3] M.F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Symposia in Pure Math. Vol. III (American Math. Soc. 1961).
- [4] J. Milnor, Lectures on characteristic classes, (mimeographed notes), Princeton University, 1957.