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Introduction.

In M. F. Atiyah used the Grothendieck ring KO(M), of real vector
bundles over a differentiable manifold M, to the problems of immersion and
imbedding of M, and applied his methods to the n-dimensional real projective
space RP" whose KO(RP™) had been determined by J.F. Adams [T].

In this paper we shall consider the lens space L™(p) which is defined as.
follows: Let p be an integer >1 and y be the rotation of (2n+1)-sphere

SN =[(z,, 24, -, 20)) D2 =17
D)
of the complex (n-+1)-space C"*! given by

720, 21, o0 4 20) = (€702, €7VPZy, oo, @VPZ,)

Then 7 generates the topological transformation group [’ of S2**! of order
p, and the lens space is defined to be the orbit space:

L"(p) — Szn+1/F .

This is the compact differentiable (2n+1)-manifold without boundary and in
particular L"(2)= RP¥*.

The reduced Grothendieck rings K(L™()) (for prime p) and I?CJ)(L"(p)) (for
odd prime p), of complex and real vector bundles over L*(p) respectively, are
determined by the following two theorems.

Let » be the canonical complex line bundle over the complex projective
space CP" Consider the natural projection

m LMp) =S+ /[N — S /S = CP"
and the element

o= (p—Il)» & K({L"(p))

1) Throughout this paper, the trivial real (complex) bundle of dimension n will
be simply denoted by n (n.).
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where 7' : K(CP™— K(L™(»)) is the induced homomorphism of 7.
THEOREM 1. Let p be prime, let n be an integer and let n=s(p—1)+r
V= r<p=1). Then

RAMD) = (ZyssaY +(Zp)?7=1 ¥
and o¢%, ---, 0" generate additively the first v factors and o™, --, o' the last

p—r—1 factors. Moveover, the ring structure of I?(L"(p)) s giwen by

ap:—ig(p)oi o™t =0,

i
Also, consider the operator r:K(L"(p))HI,(\OJ(L"(p)) which sends complex

vector bundles to the corresponding naturally defined real vector bundles,
and the element

5=rc e KO(L"(p).

THEOREM 2. Let p be an odd prime, g=(p—1)/2, and n=s(p—1D+r
0=Zr<p—1). Then

(Zys )" 4(Z, )" (if n==0 mod (4))
ZyAH(Z )" H(Z, )T (if n=0 mod (4)),

RO p)) =

and the divect summand (Z )" and (Z,)?"'""* are generated additively by
G, -+, 61 and UL, ... G respectively. Moreover its ring structure is given
by

59+ = Z’ —(2g¢+1) (Q‘H‘“l) gt, Gl — (),

S 2q—1 \ 2(—2

As an application of [Theorem 2, we obtain following,
THEOREM 3®. Let p be odd prime, then
(1) The lens space L™(p) cannot be immersed in R*+2Lmp-1
(2) L™p) cannot be imbedded in R*+Lmp,
where L(n, p) is the integer defined by
Ln, p)=max {i=[n/2]] (n—}—z) 2 0 mod (pr+in—2/p-vl)}

?

in §1, we recall the basic properties of the rings K(X) and KO(X) of a
finite CW-complex X, which are necessary in the latter sections. [Theorem 1l
is proved in §2 by the use of K(CP") determined by J.F. Adams, and Theo-
rem 2 is proved in §3. In §4, the Grothendieck operator 7’ in KO(L"(p)) are
determined, and Theorem 3 is proved by the methods of M.F. Atiyah.

The author wishes to express his sincere gratitude to Professors H. Toda

2) (Z,)® indicates the direct sum of b-copies of a cyclic group Z, of order a.
3) Immersion and imbedding mean Cee-differentiable ones.
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and M. Sugawara who suggested this topic and offered helpful advices, and
to Professor A. Komatsu for constant encouragement and guidance given
during the preparation of this paper.

§1. The Grothendieck ring

Let X be a finite CW-complex with a base point x, and let £4(X) denote
the set of equivalence classes of A-vector bundles over X (4 denotes either
the real field R or the complex field C). The Whitney sum of bundles makes
&£,X) a semi-group. The Grothendieck group K ,(X) is the associated abelian
group. The tensor product of vector bundles defines a ring structure in
K (X).

For a continuous map f: Y — X we have the natural ring homomorphism
i K (X)— K,Y) induced by the lifting of bundles under f. The reduced
ring IN(A(X) is defined to be the kernel of ': K ,(X)— K (x,) where map i:x,
— X is an imbedding of a point x,.

Let Y be a subcomplex of X, define K "(X, Y)——-I?A(S"(X/Y)). Here X/Y
is the complex obtained from X by collapsing Y to a point and S™(X/Y) is
the n-times iterated suspension of X/Y. For negative n, K*(X, V) is defined
by using isomorphisms K;" (X, V)= K;"(X,Y), Kz" %X, V)= Kz(X,Y). In
this way we have periodic cohomology theories K¥(,) and K%(,), of periods
2 and 8 respectively [3]

Then we have the exact sequence

(L. e K (V)= K7(X, V)= K (X)) K7(Y ) — -
In what follows we use the notations K and KO in place of K, and K

respectively.
From we have operators

r: K(X)— KO(X), c: KO(X)— K(X), t: K(X)— K(X)
such that
1.2) rc=2: KO(X)— KO(X), cr=1+4+t: K(X)— K(X).

These operators are natural with respect to maps and ¢ and ¢ are ring homo-

morphisms.
The values of K(S™) and KO(S™) are as follows [1].

1.3) n =01 2 3 45 6 7mod8
Ks» =20 20 Z0 Z0
Kosm=2z Z,2Z,0 Z 0 0 0

The structure of K(CP™) is stated as follows, [1].
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(1.4 Adams’ theorem
Let » be the canonical complex line bundle over CP" and put g=7»—1, then
K(CP™ is a truncated polynomial ring over the integers with one generator
¢ and one relation p"*1=0.

§2. The ring K(L"(p))

In this section we shall determine the ring I?(L"(p)) for prime p.
As is well-known, L™(p) has a cell structure given by

L'(p)=S1Uet\Ue\U ... Ue\Ugnt!
and
Z, 1=2,4,--,2n
VAN H{(L™p), Z)=1Z 1=0, 2n+1
0  for other i.
In the followings, we use the subcomplex
Lip)=S'UerUes\U ... Ueg'™n,
being the 2n-skelton of the above CW-complex L™(p). Then we have obvicusly
(2.2) Ly@)/Li~ (D) IS”‘“Kp)e‘“’"
where attaching map p:S*'—S*~' means the map of degree p.

Now, consider the pair (S~ e*, S*1). We have the following exact
sequence of (1.1). ’

. _)I?—I(SZW)_)]?—I(SZn—l U e2n)__)]/€~1(52n—1)_r‘)‘)}~{(52n)
P
_)[%(SETI—-J. Ueﬂn),_)k(SZn—l)__)
p

In this sequence, the coboundary homomorphism 6 is the composition Syp':
K-1(S-1)— K-1(S*-1) = (S*) where the homomorphism p' induced by p is
obviously given by p'(x)=px, xe]?—’(SQ"‘l). Hence, using (1.3) we have
K-3(Son-1\J ety =0, K(S™1\J ¢*)=Z, and so

» »

2.3) K= (Ly), Ly (o) =0,  KLy®), LN =2,.

LEMMA (24). k(Lg@)) consists of p" elements and I?*I(Lz,"(p))zo.

Proor. We prove by induction on n. For the case n=0, our assertions
are trivial, since L}(p) is one point. Suppose that (2.4) is true for n—1 and
consider the following exact sequence (1.1) of the pair (L), L27(p)):

e = KTLY(E), Ly () — K- L300 — KL () — K5 @), Li™(1)
— K(Ly(p) — Ry p) — KX (L), L' () — -+
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From (2.3) and the inductive assumption, KLi(p), Lr%p)):l?‘l(L;'f"(p))
=0, K(L§(p), Li'(p))=Z, and I?(Lf“(p)) consists of p"! elements. Therefore
the above exact sequence implies that 1%([4’,’(1))) contains exactly p" elements
and [?“I(Lg(p)):o, and (2.4) is true for n. g.e.d.

Comparing K’(L"(p)) with K(L{;(p)), we have

LEMMA (2.5). The inclusion map i: L¥(p)C L™(p) induces the isomorphism
2 KWL) = R(Lr(p), and K(L"(p)) consists of p* elements.

PRroOF. Since L™(p)/Li(p) =S, we have the following exact sequence:

N

_ N §
.o -9]((537”.1)—"1<(Ln(p))‘—’K(LSI(p))_’KI(S2"+1)—’ vee

Here, K(L{;(p)) is a finite group by (2.4) and K'(S?*) is an infinite cyclic
group, then the above homomorphism ¢ is trivial. This and IZ'(SQ”“):O and
(2.4) imply the lemma. q.e.d.

Let n/:S**'— [™(p) be a natural projection and define the map =: L™p)
—CP™ by n(n'(z,, 2, ***» 2Z0)) =20, 21, *** » Z]. Then (L™p), =, CP™) is the lo-
cally trivial fibre space with fibre S!. Consider its Gysin’s sequence:

wv > H%(CP™) — H{(CP™ — H(L"(p)) — H(CP ™) — -
Since H"'(CP™ =0 for each even i 11 and HYL"(p))=0 for each odd i < 2n,
thus we have

(2.6) The homomorphism z*: HYCP™— H"L"(p)) i <2n-+1is an epimor-
phism.

The following proposition is basic in our computation of }?(L"(p)).

PropPosITION (2.7). The ring homomovphism ﬂ!:K(CP")ﬁK(L"({))) 1S an
epimorphism.

Proor. Let my=m|L3p): L}(p)— CP™ be the restriction of #. Then, by
Lemma (2.5), it is sufficient to prove that the homomorphism né:l?(CP”)
—»I%(Lgl(p)) is an epimorphism. This is trivial for =0 and we suppose in-
ductively that né:ﬁ(CP"‘l)—»f?(Lﬁl"l(p)) is an epimorphism. Consider the fol-
lowing commutative diagram where the horizontal sequences are exact:

.. — K(CP"/CP™ ) — K(CP™ — K(CP™") — KYCP"/CP™") —» ...

‘t T T J’ v l Th

oo — K(LE(p)/ L= (0)) — K(LE()) — K(Lu~1(p)) — K3(La(p)/ LE(py) — -

Here, x}: K"(CP"/CP’H) — I?l(Lg(p)/L'g—l(p)) is a monomorphism,  since

Ky(CP*/CP™ ) =K} S™=0, and =} : K(CP™)—K(Lz~(p)) is an epimorphism by

the hypothesis of induction. Also, since z,: L(p)/ L2 (p)=S*"1\Je*»—~CP"/CP"!
»

=S is nothing but the map collapsing S*~! to a point, m‘,:l?(CP”/CP"“)
-—»K(Lg(p)/L;'f—l(p)) is an epimorphism. Therefore né:K(CP”)—-*ff(Lg(p)) is an
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epimorphism by the Five [Lemmal, and this completes the proof by induction.
g.e.d.
Now, concerning the element

o=x'pe KL @),
we have two lemmas.
LEMMA (2.8). (1,+0)?=1,, o™*'=0.
Proor. The total Chern class C(») of the canonical complex line bundle
7 is geven by C(p)=1+x, where x€ H¥CP™) =Z is a generater [4]. By the
naturality of Chern class and (2.1) and (2.6), we have

C(@'n)?) =7 CH@ -+ @7) = x*(L+px) =L+ pr*r =1.

and so (z'p)?=1, for the complex line bundles are classified by their first
Chern class. Thus

(o+ ]-c)p = (71'!#—‘— 1)? = (ﬁ!v)p =1,.

o™ =0 is an immediate consequence of p"*'1=0 of (1.4). g.e.d.
LEMMA (2.9). Lep p be prime, then

p+1[p%1]an—i =0.
PrRooOF. Multiplying o™ to the first equation of (2.8), we have
G

For i=0, this and ¢"**=0 imply po®"=0. Suppose inductively that the lem-

ma is true for j <i:—1. Multiply p[iii‘i] to the above equation, we have
P[#;l](jl))(fn_i‘{‘i)[5%1](3)0n_(i—1)+ _i_p[;;:l]‘o-n—i+(p—l):0'

Here, (?) =0 mod (p) for 1<j=<p—1 since p is prime. Then this and the

assumption of induction imply

[*'i_ D\ sa-ci-1 e — P n—CE=-(P-1))
plop 1]<2>a b= —p[p 1]<p_1)0 P00 =)
and
p[;‘l;—l]o-n—i+p—1 — p1+[%{%1)]0-n—u~(p—1)) =0.
Hence we have p”[pil]o"'i:O from the above equation. qg.e.d.

Now, we are ready to prove Theorem 1.

ProOOF OF THEOREM 1. K(L"(p)) is generated by ¢ by (1.4) and Proposi-
tion (2.7). This and the relation of (2.8) imply that I?(L”(p)) is additively
generated by o, 0?2, -+, 6?71, On the other hand (2.9) implies
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prevlimilet = prelstilot =0 for i=1,2, ., p—1
and also we have (p**)" x (p*)?*""=p". Therefore we have using
2.5). q.e.d.
LEMMA (2.10). Element o is of order p”[z_:f].
ProoF. Lemma (2.9) shows that ¢" is 0 or of order p. If ¢*=0, it follows
p[?::»—;-ﬂai =0 by the similar way as (2.9). But this does not happen for elements

o, % -+, 0"t by Theorem 1. Therefore ¢® must be of order p. Clearly
order ¢" <order o"'< ... < order ¢"?®
and po™ P2 =0 by (2.9). Therefore elements ¢”, ¢"7%, ---, ¢"~#~%® are of order

p. Assume that the elements ¢" /@D, gn=/@-D-1 ... gn=J@-D=-@-2 gre of order
7+, Then multipling ¢"/®--? to the equation

D Qs =0,
we have

(i)) or—UFD@-D — _ gn—Jp-1)

Therefore o"Y+P@-1 jg of order p/*2. Since

order g™ U+tD@-D-1< ... < grder gP-Y+DW-D--2)

and pj+20-n—(j+1)(p—1>—(p—z)___0 by (2.9)’ the elements gn~<j+1)(p—1>, 0n—(j+1)(p—x)-—1'
o UtD@-D-P-2 gre of order pj-n—z_ q.e.d.

[av]
§3. The ring KOUL™P)).

Throughout this section, we assume that p is an odd prime. As our first
step, we can take the similar arguments with § 2. Consider the exact sequence:
= RO(s™)— KO(S™) — KO(Ly(p), Li(1)— KO S™) = KOY(S™)— -~
where IfOi(Sz") is isomorphic to Z, Z,, or 0 by (1.3). For n=0 mod (2), the

above sequence is
xp
Z—Z— KO(Lg(p), LE~(p)—0

and for n==0 mod (2), we have the following two cases:

Zy2 Zy— KOWLAB), LA-Y(p))— Z,— Z,

0—KO(Ly(p), Ly~'(p))—0.
Thus we have
Z, n=0 mod(2)

n =% 0 mod (2)

CAY KO(Ly(p), L~ ()=
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Similarly we have
3.2) KO*(Ly(p), Ly () =0

Using (3.1), (3.2) and the exact sequences of the pair (L2(p), L?%(p)) and the

pair (L™(p), Li(p)), we can prove the following two lemmas by the similar
‘way to the proof of Lemmas (2.4), (2.5).

LEMMA (3.3). ]’{VO(LZ)’(p)) contains exactly p['g‘] elements.
LEMMA (3.4).

KO3 (b)) if n=0 mod (4)
Z,4+KOWy(p)  if n=0 mod (4)

Now, consider the following commutative diagram

KO(L"(p)) = ’

RePm — Ry
e ol
KO(CP™ —s KO(L™®))

where 7, ¢ are operators recalled in §1.
For the elements p = K(CP™ and o & 1%([,”(;0)), we put

A=r(wye KOCP™, &=r(0)e KOL"p)).
Sinse the inclusion map i:Lg(p)NCL“(p) induces the isomorphism i': I?(L”(p))
=~ K(L2(p)) by (2.5), we identify K(LZ(p)) and Im ¢* and regard ¢ as an elements
of K(Lg(p)) and also regard ¢ =r(0) ef?O(Lg’(p)).
LEMMA (3.5).
iy The homomorphism r:ﬁ(Lg(p))—»KAOJ(Lg’(p)) is an epimorphism.
i1) The homomorphism ¢ :l?b(Lg(p))—»f?(Lg(p)) s a monomorphism and

0-2
c(6) = 0% —03+gt— - =q1g

PROOF. K\(J)(Lg'(p)) has not an element of order 2 by (3.3). Therefore
rc::2:1’(\(1)(LZ§(p))—+KAé(L{,’(p)) is an isomorphism and so 7 is epimorphic and ¢
is monomorphic. For the complex line bundle %, the conjugation operator t
satisfies clearly 7-(ty)=1, and we have (1+p)(1+tx)=1 and so #(y)
= —p+p2— 4 . Therefore by (1.2) ¢(@) = c(r(p) = A-+D)p = p2— o pri—---,
and the equation of ii) follows from the naturality of the operator ¢. q.e.d.

(2.10) and (3.5) ii) give

(3.6) & is of order p”[’%li].

The following lemma is necessary to determine the ring structure of
RO @p)).
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LEMMA (3.7).
2 2+1 y
CH== ("N
CEN=2(*HEY-

ProoOF. For g=1, two formulas are true for any j. Assuming the first
equation, we have

Coh=Co+(%
=S (TG EEENGL)
=§<"+§‘1>(2i11)+’”(“1’“ )G )
2T
=5 GI)FEET DG
=SNG+ EETTGLY

I gt+i—1N\/J+1

—E( G-
Therefore the first one implies the second one. Similarly the second one im-
plies the first one for ¢+1, and the lemma is obtained by induction. gq.e.d.

Now, we are ready to prove Theorem 2.
ProorF OF THEOREM 2. First, we prove the equation

N P | R |
=240, =1 g0

Because ¢ is monomorphic, this is equivalent to

(c(@)t = 2 ac(@)t,

and to

~(ZC D) =Far (S ()
by (2.8) and ii) of (3.5). Therefore it is sufficient to show

~Cr = Fa( 1Y), a=—gab (f]

- 2i—1 2i—2
This is clearly equivalent to
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( j—2—ql> = é TZJfl‘ q;—_zl) ( Jg:zzitrll) = é (q]i?l) (21']— 1>
and this follows from Lemmal (3.7).
Now, Lemmal (3.5) i) and the above equation 6‘1‘“1:22‘1 a,* shows that
KO(Li(p)) is generated additively by 4,---,4% By (3.6) the order of & is

equal to p** for i=1, .-, [—g{l and to p* for i:[fg~]+1, -, g. This and
3.3) and

(ol e [F)= plE]

imply KOW3() = (Zps+)[F14-(Z,5 7T,
This and (3.4) complete the proof of g.e.d.

§4. Immersions and imbeddings of lens spaces.

First we recall the of Atiyah [2]. Consider the exterior power
operators A' which have the following properties in €z(X).

4.1) A0 =1,

4.2) M x)=x,

4.3) Haty) = BHD@A(),

(4.4) Ax)=0 for i>dimx, for any x, yeEu(X).

Let A(X) denote the multiplicative group of formal power series in ¢
with coefficient in KO(X) and constant term 1. Then

A= 3 AW

defines a homomorphism €z(X)— A(X) by (4.3). Hence we have a homomor-
phism 1,: KO(X)— A(X). Taking the coefficients of 4, we have operator
24 KO(X)— KO(X).
Again we introduce the homomorphism
7t =Aun— : KO(X)— A(X)
and the Grothendieck operator
7" KO(X)— KO(X)

is also defined as the coefficients of 7,:
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7= e,

Then of Atiyah is stated as follows.

(45) Let M be a compact n-dimensional manifold and let z(M) denote
its tangent bundle and put r,(M)=r(M)—n < KO(M). Then

i) Let M be immersible in R"**, then y*(—z,(M))=0 for i >k,

ii) Let M be imbeddable in R™* then y(—z,(M))=0 for i="%.

Now, consider the differential bundle space (L™p), =, CP", S*) and let «
be its bundle along the fibre. Then as is well-known,

t(L"(p) =7 (r(CP™)+a.
Here, since the manifolds L"”(p) and CP”™ are orientable and dim a =1, we
have @« =1 and so
(4.6) (L)) = n'z(CP™)+1.
LeMMA (4.7).
o (L"(p) = (n+1)3 & KO(L"(®))
ProOF. It is well-known that the complex tangent bundle z,(CP") is
given by 7,(CP™+1=(n+1y [4]. Hence
(L") +1=n(z(CP")+2) = (r(r (CP™)+1p)) = (n+Dra'y
by (4.6), and so
T (LYP) = (L") —~Cn+1) = (n+Dra‘p—(n+1),=n-+1)d.
g.e.d.

LEMMA (4.8).

7:(0) =14at—at* = AL™(D)) .

Proor. If x is an oriented real bundle of dimension 7, then A%(x)=1 by
the definition of the exterior power operations. Since 7(y) is an oriented
bundle of dimension 2, 2,(r(n)) =1+4r(n)t+i* by the properties (4.1), (42) and
(4.4) and so A(F+2)=(+1t2+4at. On the other hand, since 4, is the homomor-
phism, we have

A(f+2) = 2L@) - A(1)* = A (DA +1)?

and so l,(ﬂ):l%——(—lﬁ?—fp. Hence

7@ = Ap-(f) = 1+ fat— fit* .

Therefore y,(3) =1+34t—34t* by the naturality of the operator 7, g.e.d.
ProOF OF THEOREM 3. Lemmas (4.7) and (4.8) imply



146 T. KAMBE

TL—To(L"DN) = (@)~ "0 = +-6(1—19)) "+

= i ~0E DY 5oy

__OO . zn+l =t(f___42\¢
=3 1)( ! )a(t 12yt
Therefore we have

L™(p) cannot be immersed in R¥+i+2L/tp-t

L™(p) cannot be imbedded in R¥®++L/mp
by of Atiyah, where L/(n, p) = max {il (n;.{_l>6i +* O}. On the other

hand, (3.6) and slEln=p imply L/(n, p)=L(n, p), and Theorem 3 is obtained.
q.e.d.
COROLLARY 1. For odd prime p>n—l—[-gf], L™(p) cannot be immersed in

R™5 ] and cannot be imbedded in R™+T14,

Here, we notice that the following immersibility theorem is obtained,
using (4.6) and the notion of the geometric dimension [2].

THEOREM 4. If CP" is immersible in R™*S, then L™p) is immersible in
R2n+s+1'

This and give the known result:

COROLLARY 2. CP™® cannot be immersed in R 5],

Kyoto University
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