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The purp\={o}se \={o}f this paper is t\={o} pr\={o}ve s\={o}me anal\={o}g\={o}us pr\={o}p\={o}siti\={o}ns t\={o} the
results \={o}f Kodaira [8] in three dimensi\={o}nal case. Termin\={o}logies and n\={o}tations

are the same as th\={o}se in K\={o}daira [8]. We shall use the fundamental results
\={o}f Hir\={o}naka [5].

Let $M^{n}$ be a compact c\={o}mplex analytic manifold \={o}f c\={o}mplex dimensi\={o}n $n$ .
Let $g(M^{n})$ be the field \={o}f all merom\={o}rphic functi\={o}ns \={o}n $M^{n}$ . Then by a
theorem of Chow-Remmert [9] $g(M^{n})$ is an algebraic function field \={o}f c\={o}m-

plex dimensi\={o}n n\={o}t greater than $n$ . Hence there is a n\={o}n-singular pr\={o}jective
m\={o}del $V$ \={o}f $S^{i}(M^{n})$ . We identify $q(M^{n})$ and the functi\={o}n field \={o}f $V$ . Let
$($1, $x^{1}$ , $\cdot$ .. , $x^{\nu})$ be a generic p\={o}int \={o}f $V$ . Then $x^{i}\in 9(M^{n})$ . Hence we \={o}btain a
mapping

$\Phi$ : $M\ni z\rightarrow(1, x^{1}(z),$ $x^{\nu}(z))\in V$ .
PROPOSITION. $\Phi$ is a meromorphic mapping. That is, there exists an irre-

ducible and locally irreducible complex subspace $X$ of $M^{n}\times V$ which is the closure

of the graph of $\Phi$ and the natural projection $p$ of $X$ to $M^{n}$ is a proper modi-
fication.

$f$

$\varphi:X\rightarrow M^{n}\times V-\rightarrow V$

$\sim$ $\downarrow$

$p$ $M^{n}$

Pr\={o}\={o}f is parallel t\={o} Remmert [10] and we d\={o} n\={o}t repr\={o}duce it here.
Let $\varphi$ be the natural pr\={o}jecti\={o}n fr\={o}m $X$ t\={o} the sec\={o}nd c\={o}mp\={o}nent $V$ .
Clearly the underlying c\={o}ntinu\={o}us map \={o}f $\varphi$ is surjective and $\varphi$ induces

an is\={o}m\={o}rphism \={o}f $g(X)$ and $9(V)$ , where $9(X)$ and $\mathcal{G}(V)$ are the functi\={o}n

fields \={o}f $X$ and $V$ , respectively.
THEOREM 1. Every fibre of $\varphi$ is connected. Consequently, if $\dim 9(M^{n})=n$ ,

then $M^{n}$ is bimeromorphically equivalent to a non-singular projective variety.
COROLLARY. If $\dim 5^{i}(M^{n})=n=3$ , then the first Betti number of $M^{s}$ is

even.
Let $n$ be equal to 3 and $\rho:M^{\prime}\rightarrow X$ be the res\={o}luti\={o}n of singularities.
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Then the underlying continuous map of $\psi=\varphi\circ\rho$ is surjective and $\psi$ induces
an isomorphism of the function fields of $M^{\prime}$ and $V$ .

THEOREM 2. If $\dim \mathcal{G}(M^{\prime})=\dim V=2$ , then a general fibre of $\psi$ is a non-
-singular elliptic curve. Consequently, if $\dim 9(M^{3})=2$ , then $M^{8}$ is bimeromor-
phically equivalent to an elliptic fibre space over a projective surface.

\S 1. Preliminaries.

PROPOSITION 1 (H. Cartan [2]). If a morphism of complex spaces $f:X\rightarrow Y$

is finite and $Y$ is compact algebraic. Then $X$ is also algebraic.
PROOF. By Houzel [7] we may assume that $X=Specan(A)$ where $A$ is a

coherent algebra on $Y$ . By a result due to Serre-Grothendieck (cf. S\’em. H..
Cartan 1956/57 $Exp$ . $2$) $A$ is algebraic. Taking these into account, follow the
construction of Specan $(A)$ in Houzel [7]. Then the proof is immediate.

PROPOSITION 2. Let $f:M\rightarrow M^{\gamma}$ be a morphism of compact complex mani-
folds of complex dimension $n$ which is a modification. Then the induced homo-
morphism

$f_{*}:$ $H_{1}(M, R)\rightarrow H_{1}(M^{\prime}, R)$

is an isomorphism.
PROOF. By Grauert and Remmert [3] there is a proper analytic set $A$

(resp. $A^{\prime}$) of $M$ (resp. $M^{\prime}$ ) (where the codimension of $A^{\prime}$ is at least 2) and $f$

induces an isomorphism of $M-A$ and $M^{\prime}-A^{\prime}$ . Every l-cycle in $M^{\prime}$ is homo-
topic to a l-cycle in $M^{\prime}-A^{\prime}$ . Hence $f_{*}$ is surjective. On the other hand from
the exact sequence

$H^{2n-1}(M-A, R)\rightarrow H^{2n-1}(M, R)\rightarrow H^{2n-1}(A, R)$

we have $\dim H^{2n-1}(M-A, R)\geqq\dim H^{2n-1}(M, R)$ . By the excision theorem
$\dim H^{2n-1}(M^{\prime}-A^{\prime}, R)=\dim H^{2n-1}(M^{\prime}, R)$ . Hence $\dim H^{2n-1}(M^{\prime}, R)=\dim H^{2n-1}(M, R)$ .
By Poincar\’e duality we have $\dim H_{1}(M^{\prime}, R)\geqq\dim H_{1}(M, R)$ .

$CoROLLARY$ . The first Betti number is invariant under bimeromorphic map-
pings of compact complex manifolds of complex dimension not greater than 3.

PROPOSITION 3 (Bertini). Let $D$ be an effective divisor on a compact com-
plex manifold. Then the singular point of a general member of $|D|$ is a fixed
point of it.

Proof is well-known.
LEMMA 4. Let $D$ be a non-singular divisor on a compact complex manifold

$M^{n}$ such that the restriction of $[D]$ to $D$ contains an effective divisor. Then
for every positive integer $m,$ $\dim H^{n-1}(M, \Omega(F+mD))$ is bounded, where $F$ is an
arbitrary complex line bundle on $M^{n}$ .

PROOF. From the exact sequence
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$0\rightarrow\Omega(F+(m-1)[D]\rangle\rightarrow\Omega(F+m[D])\rightarrow\hat{\Omega}_{D}(F+m[D])\rightarrow 0$ ,

where $\hat{\Omega}_{D}(F+m[D])=\Omega(F+m[D])/\Omega(F+(m-1)[D])$ , we have the exact sequence

$H^{n-1}(M, \Omega(F+(m-1)[D]))\rightarrow H^{n-1}(M, \Omega(F+m[D]))$

$\rightarrow H^{n-1}(D,$ $\Omega((F+m[D])_{D})$ .
Let $K$ be the canonical line bundle of $D$ , by the duality theorem we obtain

$H^{n-1}(D, \Omega((F+m[D])_{D}))=H^{0}(D, \Omega(K-F_{D}-m([D]_{D})))$ .
The latter is $0$ for sufficiently large $m$ by Kodaira [8]. Hence $\dim H^{n-1}(M$,
$\Omega(F+m[D]))$ is a non-increasing function for sufficiently large $m$ , which proves
the proposition.

\S 2. Proof of Theorem 1.

Let $\varphi:X\rightarrow X^{\prime}\rightarrow Vf$ be the factorization of Stein. That is, $x/=(Specan$

($\varphi_{*(O_{x})))_{re(}}l$ . Clearly $X^{\prime}$ is irreducible and $f$ induces an isomorphism of the
function fields. By Proposition 1 $X^{\prime}$ is algebraic. Hence by the connectedness
theorem of Zariski (cf. [4] (4.3.7)) every fibre of $f$ is connected. Therefore
every fibre of $\varphi$ is also connected.

\S 3. Proof of Theorem 2.

We denote by $S$ the set of degeneracy points of the jacobian of $\psi$ . Then
$S$ is a proper analytic set of $M^{\prime}$ and the restriction of $\psi$ to $M^{\prime}-S$ is a simple
morphism. Therefore the fibre space $\psi|M^{\prime}-\psi^{-1}(\psi(S)):M^{\prime}-\psi^{-1}(\psi(S))\rightarrow V-\psi(S)$

is differentiably locally trivial. Hence general fibres of $\psi$ are diffeomorphic
and homotopic to each other.

Let $C$ be the divisor on $V$ by a hyperplane section. We set $D=\psi^{-1}(C)$ .
For a given complex line bundle $F$ on $M^{\prime}$ , if $|F+mD|$ contains no effective
divisor, then $\dim|F+mD|=-1$ . If } $F+mD|$ contains an effective divisor
$D^{\prime}$ , then $F=D^{\prime\prime}$ , where $D^{\prime\prime}=D^{\prime}-mD$. Clearly

$\dim|F+lD|=\dim|D^{\prime}+(l-m)D|$ , for $l\geqq m$ .
For every effective divisor $E$ on $M^{\prime}$ we denote by $\mathfrak{a}(E)$ the effective divisor
on $V$ defined in the following way. Each component of $a(E)$ appears in $E$ by
$\psi^{-1}$ and its multiplicity in $a(E)$ is the same as in $E$ . From the fact that $\psi$

induces an isomorphism of the function fields we have

$\dim|E|=\dim|\mathfrak{a}(E)|$ .
Therefore $\dim|F+lD|=\dim|\mathfrak{a}(D^{\prime})+(l-m)C|$ . For sufficiently large $l|\mathfrak{a}(D^{\prime})$
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$+(l-m)C|$ is ample and by the theorem of R.-R.-Hirzebruch we have

$\dim|\mathfrak{a}(D^{\prime})+(l-m)C|=\frac{1}{2}l^{2}C^{2}+\alpha_{1}l+\alpha_{0}$

where $\alpha_{t}$ is a constant. Consequently we obtain

$\dim|F+lD|\leqq\frac{1}{2}l^{2}C^{2}+\alpha_{1}l+\alpha_{0}\cdots\cdots\cdots\cdots\cdots\cdots(1)$

Let $K$ be the canonical line bundle of $M^{\prime}$ and $c_{1}$ (resp. d) be the first Chern
class of $M^{\prime}$ (resp. $[D]$). Clearly we have

$d^{3}[M^{\prime}]=D^{3}=0$ .
Hence by the theorem of R.-R.-Hirzebruch ([1])

$\dim|nK+lD|=\frac{1}{4}(1-2n)l^{2}d^{2}c_{1}[M^{\prime}]+\alpha_{1}^{\prime}l+\alpha_{0}^{\prime}$

$+\sum_{i=1}^{3}(-1)^{i-1}\dim H^{i}(M^{\prime}, \Omega(nK+lD))$ . . . . . . . . (2)

where $n$ is an arbitrary integer aud $\alpha_{1}^{\prime}$ is some constant. Considering Pro-
position 3 and Lemma 4, we have from (1) and (2)

$(1-2n)d^{2}c_{1}[M^{\prime}]\leqq 2C^{2}$ . $\cdot$ (3)

By a theorem of Hirzebruch [6] the arithmetic genus $\alpha(D^{2})$ of $D^{2}$ is
$-[d^{3}-\frac{1}{2}c_{1}d^{2}][M^{\prime}]$ . Hence if the the genus of a general fibre of $\psi$ is $g$ , we
have

$\frac{1}{2}c_{1}d^{2}[M^{\prime}]=C^{2}(1-g)$ .

Inserting this into (3) we obtain

$($1–2 $n)(1-g)\leqq 2$ ,

from which we infer immediately that

$g=1$ .

Rikkyo University
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