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Introduction

Let K be an algebraic number field of finite degree and {x(s) be the
Dedekind zeta-function of K. Then {x(s) has an expansion of the form

Cx($) = A-1/(s— D)+ A+ Ay(s—D+ -+

Here A_,, the residue of {x(s) at s=1, was determined by Dirichlet and Dede-
kind for any algebraic number field K. However, little is known about the
constant term A,, in spite of its importance. As far as the author knows, A,
has been investigated only in the cases where K is either a cyclotomic field
or a quadratic field. The determination of A, for imaginary quadratic fields
is known as “ Kronecker’s limit formula”. The purpose of this paper is to
consider this problem for any totally imaginary quadratic extension K of a
totally real algebraic number field .. The main results are as follows. For
any absolute ideal class & in K, let {x(s; &) denote the zeta-function of the
class ®. Let n be the degree of k.. We shall show that, in the expansion

C(s; &) = a_,/(s—D+a,ta(s—=1)+ -,

the constant a, can be expressed as a special value of log ¥ (z®, --- 2™ ; m, n)
with a certain analytic function ¥, defined on the product of n-copies
of complex upper half-planes (Theorem 1.2). This function is a generali-
zation of Dedekind’s #-function. But this function cannot be a Hilbert’s
modular form. This fact was kindly mentioned to me by Professor Siegel.
As an application we shall obtain a formula for the quotient of the class
number of the absolute class field over K divided by the class number of K
(Theorem 3).

Here the author wishes to express his hearty thanks to Professor C.L.
Siegel.
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Notation

We denote by Z, @, R and C, the ring of rational integers, the rational
nuztoer field, the real number field, and the complex number field respectively.
Let €™ be the product of n-copies of the complex number field. Its element
will be denoted by (Z©, ---, Z%)., For a totally real algebraic number field &
we shall mean by 4> 0, (A€ k) that 2 is totally positive.

§1. Reduction of the problem

Let k be a totally real algebraic number field of degree n and K be a
totally imaginary quadratic extension of k. Let d, (resp. dx) be the absolute
value of the discriminant of % (resp. of K), @k, the relative different of the
extension of K/k, and b the different of the field 2. Let o and © be the ring
of algebraic integers in £ and K respectively. We shall denote by a,b, m, 1, ---,
the ideals in 2 and by %, %, --- the ideals in K.

Let & be an absolute ideal class in K and

Culs; &) = 2 1/NxQD*,
AER

be the zeta function of the ideal class &, where the summation extends over
all integral ideals in ®. It is well known that the function x(s; &) has the
following property :
(A) The function {x(s; &), as a function of s, can be continued holomorphic-
ally to the whole s-plane except for s=1. At s=1, {x(s; &) has a simple
pole with the residue equal to a_, = ~(~2-7I>n{35
weV dg
of the field K and wx the number of roots of unity contained in K.
Therefore the function {x(s; &) has the expansion of the form at s=1

2 Cx(s; ®)=a_,/(s—D+a,+a(s—D+ -,

where the constant a_, depends only on K and not on & Our main purpose
is to obtain the constant term a, in terms of &.

Let A be an integral ideal in K. Then % is torsion free and of rank 2
regarded as an o-module. Hence there exist two integral ideals m, n in 2 and
two numbers 2, € m™O and £2, e n 'O such that A=m,+n2, is the direct
sum of two o-modules m{2, and nf2,. In particular, if we can choose m=n=np,
A is said to have a relative basis. It follows immediately :

(B) Let A and B be the equivalent integral ideals in K. If A =mQ,+n2, for
some integral ideals m, n in 2 and Q,em 1O, 2,1, then there exist
2iemO and 2 n 1O such that B=mQ{+n2;

For two integral ideals m and n in %, we shall denote by f(m, n) the group

, where Ry denotes the regulator
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consisting of all matrices <g 3) such that i) a, b, ¢, d lie in £ and ad—bc is

a totally positive unit in %, ii) a by fixes the lattice (n, m) i.e., (i1, m)- a b
c d ¢ d

=, m). Clearly we obtain:

PROPOSITION 1. Let N be an integral ideal in K such that W=mL,+unl,
for 2, €m0 and 2, 1O where Q7'Q2, has totally positive imaginary part.
Then the ideal W can be written as m{+n&,, for Qem O and Ljsn O
where Q712% has totally positive imaginary part, if and only if there exists a

matrix <Z 3) in F(m, n) such that

; a b\ /2
= HE)

Let A=mO,+nQ, be as above. Then, by multiplying a suitable unit in
k, we may always assume that the number £7182, has totally positive imaginary
part. The ideals m and n are not uniquely determined by ¥, but they depend
on the choice of 2,, 2,. We shall now consider this problem. Throughout
this paper, we consider the ideal classes in & in a wide sense (i.e., two ideals
m and n are equivalent if and only if m~'n is principal). Let 4 be a number
in 2 such that K=~k(+~/'4) and let (~/4) be the principal ideal in K generated
by ~/4. Considering prime ideal factors of Dgi(v' 4) we can conclude that
the ideal Dgl(v/'4) is of the form aD for some ideal a in k. The ideal a de-
pends on the choice of v/ 4 such that K=Fk(~/'4), but the ideal class of &
containing a does not depend on the choice of /4. We shall denote by f,
the ideal class containing a.

PROPOSITION 2. Let N be an integral ideal in K. Then the relative norm
N lies in the ideal class of the form af,, ua being an integral ideal in k, if
and only if there exist 2, a 'O and 2, O such that A =af2,+082,. In parti-
cular, an integral ideal N has a relative basis if and only if its relative norm
lies in f,.

For a proof of this proposition see C. Chevalley [1].

Let a,, -+, a; be a complete set of representatives of the ideal classes in
k such that each ideal class a;f; contains the relative norm of an ideal in K.
We may assume that the ideals ay, ---,a, be integral. Then each integral
ideal A in K can be written as a;2,+082, for some 1, 2, €a;'© and 2, O.
For each absolute ideal class & in K, we choose once for all a representative
&, such that %, is integral and belongs to £ '. Let ¢ be the index of the
unit group of k in the unit group of K. We call two pairs of integers {g, v}
and {g/,v’} in k are associated with respect to the unit group of %, if there
exists a unit » in % such that g/ =pun, v’=yn. Let & be an ideal such that
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Lo=0a,0Q,+082 for 2, a,710, 2, O where 27'2, has totally positive imaginary
part. When % runs over all integral ideals in & the ideal ALy runs over all
principal ideals (1) such that =0 mod.&,. Therefore we have
st =5 Ne@e S et
3
=1 Nu@yy X N 2B O

yeaz y( Q

&

Here the summation extends over all pairs {g, v} # {0,0} which are not as-
sociated one another with respect to the unit group of k; the numbers A, B
and C are given by A=0,027,2B= 0,025 +82,2, and C= 2,027 and the quadratic
form Q(u, v)= Au?+2Buv--Cv? is totally positive definite, where z denotes the
generator of the galois group of K/k.

§2. Limit formula

In this section we shall consider a generalization of the Kronecker’s limit
formula for the zeta-function of a totally positive definite quadratic form.

Let % be a totally real algebraic number field of degree n and let o,(=1),
--,0, be the n distinct isomorphisms of % into R. Then such o, can be
extended to an isomorphism of R into k®R which we shall denote again by

o, Foreachdin Rweput AP=2»1<p=n), NO=TI 2‘1’3 and SQA)=23 12“”
p=1 b=
If 21 lies in k, these notations coincide with usual ones and we shall write

Ny, S; instead of N and S. We call a quadratic form Q(u, v) = Au?+2Buv+Cv*
with coefficients in R totally positive definite if Q®(u, v)=A®Pu?+2BPyv4CPv*
are positive definite form for all p=1, ---, n.

Let Q(u, v)= Au*+2Buv-+Cv? be a totally positive definite quadratic form
with coefficients in R. For two integral ideals m and n in 2 we define

@ Z(s;mu; Q) ::{ Z}N(Aﬁ—kZByv—l—C»z)“"’ for Re(s)>1,
sy

where the summation extends over all non-associated pairs {g, v} # {0, 0}
(pem, vyen) with respect to the unit group of & and N(Ap*+2Bpv-+Cv?)

= ﬁ(A@)‘u@‘z—|~2B<p>;z<p’u<p>+C‘”v‘mz). For this function we have:
=1

PROPOSITION 3. The series Z(s; m, n; Q) converges absolutely for Re(s)>1,
uniformly for Re(s)=1+40(0 > 0) and hence Z(s; m,n; Q) is a holomorphic func-
tion of s in Re(s)>1.

PrOOF. Since Q(u, v) is totally positive definite, there exist positive real
numbers 4, -+, A, such that Q®(u, v)=2,(u2+u?) A<p=<n). Put s=o+ it’
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The series (4) is majorized by cl(Z’}N,c()uZ—l—xﬂ)"":c1 (Z}’ > Ni(p?+v%)~? where
17194 p) ven

¢, depends only on @ and the summation Z;’ extends over all principal ideals
(e

(1) +0 with g=em. For every p in m, we have

+o0 +00 dt® ... ™
J’_oomj_oof(p“’z—f—t“’)“ S (U )T
+oo dt® ... ™

1 +00
= *TN;@')*‘%;E* f_oo r 5._ o T (t(‘i)zﬁ:l__’i")w_ . (t(n)’ziaffi’)” .

Thus, for g+ 0and ¢ > %A, the series > Ni(¢?4-v?)~° converges absolutely and
pen
(4) is majorized by

, 1 e arw - dt™
const. UZ‘) V/I_N;Glﬂw;l f_oo j_m (th—{—l)“ (t(n)2+1)6
pem

for o >1.
This completes the proof.
For our later use we need a few lemmas.
LEMMA 1. (Poisson’s summation formula) Let f(xy, -, x,) be a continuous
Junction on R™ such that the seriesm Em Sflx,+my, -+, x,-+m,) converges uni-
L

formly for 0= x, =1, --,0=x,=<1. Then we have

<+ 00
®) > S +my, -, mx,+m,)
MY, My = =00
+ o0 +o0 oo
= > e«zni(k1x1+~-.+7cna:n>f f f(tl’ T l’h)e27‘l’i(k151+...+kntn;dt1.”dtn ]
—C0 — 00

Kty = =0
A proof of this lemma for n=1 is in Siegel and the general case’is
proved by induction.
The following lemma is well known.
LEMMA 2. Let ay, -+, o, be a Z-basis of the ideal m in k. If we put

a%l)’ e a;l) -1 Ail)’ T Ain)
( ) - (Ag): Tty A;ln))
then (AP, -, AL) is a Z-basis for the ideal m™1D1,
LEMMA 3. Let w0 be a real number and C a compact set in the domain
of complex s-plane Res=0 (0 >0). Put e=sgnw and let I'* be the contour in

ain)’ e, a’(n.n)

the complex [-plane composed of the circle C:ei—l—r—%—e“’ O=9p=27) and the
half line {=eiyp <~g’,~§ 77§00>. Then for any s, and s, in C, we have

et

oo o2Tiwé . L
(©) I e %= e %
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and

5«00 ezm’m&

(7) df)< —n.[wlfoo< _}_i,)—zaezmwmd <40
o GHFL-E—iy2 = ) T2 7 ’

where the constant ¢ depends only on C.
PrOOF. When » >0, considering integrals on contour in the figure (1)
and tending R—oco0, we can show (6) and (7). When w <0, considering the

reflection of the figure (1) with respect to the real axis, we can show them
similarly.

iR

Y

ey

Put H,=H X - XH={z2=0ED, .-, 2"); 2P = C, Imz?>0,1<p=<n}. By
our assumptions on Q(u,v), A and Dy=AC—B? are totally positive real
numbers. Put x® = B®/A® y»=/DP/AP and zP =xP4iy®»  Then the
point z={(z©, ---, z™) lies in 4, and APu?4-2BPyy+CPy? = DPyD=1(y{-z®P)
(u+vz?), Therefore we get

Zs;mu; Q)= — NN S | NGutva) |

Ny i
_ONOY o« NGY 1
VNDg & T Ny %3 2 NG P
puEmM
Thus
® w5 Q)= 1\,((33 S N s K
NG g, 1

VNDY B TNy

yen

where the summation 3 (resp., 3/) extends over all principal ideal (1) (resp.,
@) 7



Kronecker's limit formula 417

non-zero A), and ¥(a) means the ideal class in 2 which contains a. In (8) the
function {,(2s; f(a~!)) can be continued analytically to the whole s-plane holo-

morphically in Re(s) > —%—. Therefore to obtain the analytic continuation of

Z(s;m,n; (@), we have only to investigate the second term of (8).

Let ay, --,a, be a Z-basis for the ideal m. Let z=(2"®, ---,2"™) be a
point in 4%, and let x® = x,a®+ -+ +x,a?, where zP =xP4Ly® 1=p<n).
For every Z=(2, ---, z™) in 4,, define

Sy, o x) =11 xpafP+ -+ +x,aP41y® |72 for Res>1.
p=1

As y» >0 for p=1, ---, n, f(x,, -+, x,,) is continuous in R". Let p=ma;+ -
+m,a, (m, € Z) be an integer in m. Then the series

Em Sy +my, -, xn+mn)=ﬂ§ | No(pe+2) |72°,

ml,n'!

converges absolutely for Re (s) >1 and uniformly for Re (s)=1+40(0 >0) when

0<x<1,-,0<x,=<1. Hence we can apply lemma 1 to the function f(x,
Ty xn) and we get
2 SINp+2) 2= 3 e #mEmt tharw
pEM Klroikn
Foo e p2mEILLY - +hntn)
Sl NGa S ha iy G A

whenever the right hand side converges. Here we denote
Nhar+ - +taaatin) = TT (a4 - 4-t,aP+iy®) .
) p=1

Now we shall prove the absolute convergence of the right hand side of (9) in
Re(s) >~ %7. Let AP, ..., AD be a Z-basis of the ideal m~®~! given by lemma

2. Consider the linear transformation (¢,, ---, ¢,)— ({®, «--, {™) defined by
y<1>c<n ap, -, a® t
<y(1;)cm)‘) <a§.m: Tty C.Ygzn))( tn) ‘

LD, -, E™)/0(Ly, -, t,) = NV d, Ny(m),

Then we have

and

ki,= 3 BPyPLD  for BB =k AP+ - +h, AP 1= p=n)

1 p=

INE

—

¢

B®xP for x® =x,a{P+ - +x,a? A1Z<Hp=<n).

]

e

9
2 k?.xf =
=1

P

i

Therefore the right hand side of (9) is transformed as follows;
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_ 1 o +00 +00 ezmS(z/Bc)dC(l). . .dC(n)
1~28 - 2miS(Bx) — > —
an  NOY Gy B Sl ety gy

Let ¢ denote a compact set contained in the complex s-plane with Re(s)=d
(0<0). Let B+0 be a number in m®*! and e=(e?, ---, &™) be the set of

signatures of (8%, ---, ™) defined by &®=sgn » for p=1,---,n. Then,
applying lemma 3 to the integral (10), we have, for any 8+ 0 in m™®™*;

+00 + oo eZmS(ﬁ’yC) " |
an | j e j L Ty Az .. g

+ o0 ) 1 -20 1 -20
< ¢, o-TUBDWD g gy 7 ( W ,,) ( I __)
== "1 5‘0 j‘O 77 + 2 7] + 2

><e-zn(]ﬁ(l)ly(l)v(l)-g-..--l-|ﬁ(n)[y(n)>7(n))d77(1) vee d”(n)

< (:2e—"(Iﬁ(1>ly(1>+--~+lﬁ(")lttl(")) 1

N N(B) [

1
< — o= TUBMDIY D) e | BRIy (1))
=C N(y)—2 e s
where the constants C;, C, and C, depend only on €. This tells us that each
term of (10) with 80 is an entire function of s. On the other hand the
series
Z/ e‘n(|f3(1)|y(1)+- 18y (1Y) ,
8
converges absolutely, where the summation extends over all 0 in m™ D™
Therefore the summation over all 80 in (10) converges and defines an entire

function of s in the whole s-plane. Next, we consider the term S8=0 in (10).
‘We have

o dr L1y #T(=3)
a2 oty =8(zs—9)=—71m

where B(a, b) denotes the Bessel function. Therefore the series (10) converges

absolutely for Re(s) > —%—, uniformly for Re(s)= ~%——|—5(5 >0) and defines a

holomorphic function of s in the domain Res > é-. Thus, in view of (6), we

get;
n 1 n
13) S N(ut2) |72 = N(y)r-2—— 1 j-z F<S_*2—)
we Vs Ny

rey
B NQ)_I._ZAL_ , S ) _€2m's<ﬁyc>dccn dC(n)
TV N ﬁe,;nz“lm-f J e’ J recy (P21 - ™1y
#0
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where e=(e", .., ¢™) denotes the set of signatures of (%, .-, f™), Sub-
stituting (13) in (8), we have

W  Zs;mn; Q)= %ﬁ,&) Ny, @s ; n-2)

NGy ()
Ny NN ey SMes— L)

N)+-* 1 / -2miS(VBz)
e e
TN (Dgy*v d;; Ni(m) o N ﬁem??“’

yen

ezm'scvﬁyodccn e dg®
f]’e(l)'"jrs(n) (CD2L 1) - (@2 Ty

where the summation > extends over all principal ideals (v) such that v is
)

totally positive integers in n. Clearly the first term of (14) is continued an-

alytically to the whole s-plane, holomorphically in Res>——%*. By a similar

way as in (11), we can show that the third term of (14) is an entire function
of s in the whole s-plane. Now the function {;(s;¥(n™')) is continued analy-
tically to the whole s-plane such that {(s;¥(m1))—k/(s—1) is holomorphic.
Here we put x£=2""'R,/+/d, and R, is the regulator of k. Therefore

{(2s—1;¥(n~*)—k/2(s—1) is holomorphic in Res>—1-A. On the other hand

73T <s—%)n-F(s)‘" is continued analytically to the whole s-plane, holomor-

phically in Res>~:12a and non-zero at s=1. Consequently, the function
Z(s;m;n; Q) is continued analytically to the whole s-plane, holomorphically
in Res> f%f except for s=1. At s=1, Z(s;m,n; Q) has a simple pole with
the residue

_ ' i

15 A,

From the above considerations, the function Z(s;m, n; Q)—A_,/(s—1) has
the expansion of the form; A,+A,(s—1)+ --- at s=1. We consider the con-
stant term A,. The first and the third terms of the right hand side of (14)
are holomorphic at s=1. By (14) and (15) we have;

1

A0 o= g N2 OO sy o
ELiVE

V' N(Dg)
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n 1\"
72 I (s—
ZQ@ﬁ >7 Lu@s—1; tuD)

X lim{(v/N(Dg) NN

n
K 1 ’ 1 / o 2mis( vRx)

T2 p+ x/N'(D’Ji;Nk(m)Jg Nk(”)ﬁ;“;gzj}?“’

e2m’S(Vﬁy5)dC(l) dC(l)
X jrsm' i yre(n)71ﬁ5'2+ 1) .. .)(z@)z”_*_'l‘)’* .

As F(s+—é~) -I(s)=+/m-22.'(2s) and I'(s) has expansion of the form

1+ a(s—D+ - : F(s——%)” [(s)y" =z 7 9ma=5 . ['(2s—1)" . ['(s)~*"

— 77 201 L pb(s—1)2 ---) .
Since we have;

VNDNOINm'=* - 73 T (s—5-) T Cu2s—1; Kn)

— 77 (2( N(DQ N2 N(y))  }3mt=0 25 — 1" (s)2"C (25— 1 ; K(n~"))
= 7{1—2n log (v NMD@N@*N(») *)(s— D)t -} {14 nb(s— 1)+ ---}
X {*2(;:_17 +r (1) } .

It follows immediately ;

—_ N 3¢ (9 {1

n

4 T -1 N(D, 2 T
F D dN {(ro(n)—ne log 2)—k log (v N(DINN(») * }

1 4 1 ’ —2miS(vPx)
— e
T ’\/N(Do) . dek(m) (ZL)“ Nk(l)) 8= mﬁ-;l(;;;)—'l
V>0

eﬂm'SWﬁyC)dC(l) dC‘"’
e S oDy @Dy

where we denote by e=(e®, ---, ¢™) the set of signatures of (8%, ..., f™).
By our assumptions y® >0 and v® >0 (1< p=n), we have

(18) dc(p) — ﬂe—zmwnﬁ(mw(m (1 é p § T’L) .

pnt V(PIBPYy(PIe(P)
j‘ e

(C(P)2+1)

For any set of signatures ¢ =(¢?, ..., ¢™) and z=(2, ---, z™) in 4, put
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2 if e» =1
g-2=(eWzW, ...  MzM) ¢MzP — A=Zp=mn).
_3® if e»—__1

Clearly, z—¢ - z defines a transformation of 4, onto itself and we have

(19 N(Y) =yD ... ym = (Zi)‘" ST ez L gz
(e)
and
(20) E/ o 2mIS(VBT)—2mSWIBlY) — E 2/ e‘zmS(uB-sz) s
pem—ip—1 () BEm~lp—1
B#0 >0

for any z=(2W, ..., z™) (2P = x®+4yP?) in K,. In the above, the summation

> extends over the set of 2" operators ¢ = (e, ---, e™) with ¢ = -+1 and we
(e)

n

denote by S(B-e2)= 3 v@PRPe@z  Then, in view of (17), [I8), (19),

p=1
we get

T

*T VN(Dy) - dN(mm)

21) A (k™D —nk log 2)

"k

"~ N NDy) - dNy(mm)

log {(«/N(_DQ_ )N(n)ZN(y))él ngk(s<1>zc1),. e g®z®m )},

where log ¥',(z; m, n) is defined formally by ;

@ —log T, o, 2@ m = 0 N 2 et 2
_Nk(_n)_ . 1AW ’ omiS(VB2)
T B NG et
:)ég p»o

Consequently we have obtained:

THEOREM 1. Let k be a totally real algebraic number field of degree n and
o,, -+, 0, be the n injections of R into k@R which are extensions of the iso-
morphisms of k into R (o,=1). Let Q(u, b):Au2+ZBuv+Cv2 be a totally posi-
tive definite quadratic form in R with respect to the injections oy, -, 0, We
denote by z=(2®, .-, zV) (2P =xP+iyP) the point in I, such that Q¥ (u, v)
=+/ DDy -1y uz®)u+vz?) for Dg= AC—B? (p=1, ---, n). For two integral
ideals m and n in k, put
(23) Z(s;mn; Q) :{ >V } N(Ap*+-2Bpy+Cy?)~° .

#,v}#{0,0
pEmM,YEN

Then the function Z(s;m,n, Q) can be continued analytically to the whole s-plane,

holomorphically in Res>«1— except for s=1. At s=1,Z(s;mn;Q) has a
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simple pole with the residue
A, = TF
T 24/ N(Dg)di N(mmm)
where £ =2""R,//d, and R, is the regulator of k. Moreover in the expansion
Z(s;mu; Q)= A_/s—D+ A+ A(s—1)+ -+, the constant term A, is given by

— " -1y _
A= \/NZDEN;C(TTIU) (k™) —nk log 2)

—_— ,7_,*71-7”’?7 2 71 LW ., n) (n).
'\/N(DQ) . d]‘; Nk(ml‘l) log{(\/N(DQ)Nk(n) N(y)) ‘I}wk(s Z, y €727, m, n)}
where the product TI extends over the set of 2" operators e= (g, .-+, ™), and

(e)
log ¥ (z; m,n) is given by

—log ¥y (2™, -, 2™ ; m, n) = -‘(Z‘Q%ﬁg{;%ck@ ; 1))z ® ... 2™

_f_ﬂ&(}i ’ 1 1 gRmiSWpD)

K o Ny pEm—1p—1
>0 £»o
yen

Here we denote by ¥(a) the ideal class in k containing a and k,(a) is given by
Li(s ; ¥@) = k/(s—1D)+r(@)+r,(s—1)+ - .

In theorem 1, if we consider ¥ (z®, ..., z™:m, n) as a function of
(2®, -+, z™) on 4, for the fixed integral ideals m and n, ¥, is nothing but
a generalization of Dedekind’s »-function. But this function ¥, is not a
Hilbert’s modular form. For, by the definition of ¥, this function is every-
‘where # 0, so that ¥;* (s being positive real number) is everywhere regular.
Now from Theorem (17) and its corollaries in page 280 of [5], ¥, cannot be
.2 modular form.

Let K be a totally imaginary quadratic extension of a totally real alge-
braic number field of degree n. We shall use the same notations as in §1.
Let & be an absolute ideal class in K and 8,=a,2,-+082, be the integral ideal
in &L If A=pR,+v0, (p=sq;, veo) lie in &, and Ngg(D) = Ap2+2Buv+Cr?,
‘then from the fact
25

4D-———4Ac—432:|g1 s 2we have v Ny(D)=(2"Ny(a,)d) 'V dxNg(Ls) .
2

“Therefore, in view of (3) and theorem 1, in the expansion;

Ex(s s )= "Nu(Ea) - Ne(@e)"™ 7 Ni(Ap-+2Bpv-Co)~
Moy

= L Ne(@)1-+1ogNy(@e)- (=Dt H A/ (=Dt Ayt Als—Drk -}

e
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=L Ne@){ - 27+ (At Ailog Ne(@a)+ -}

we have

A= Qu)evV d 2V dx Nx(8e )7,

_ @y
A= Ny o0 log 2)
@Cr)* A/ di e Nx(2e) 1 -
= Ve oe{ (R sd NP ¥ ez a0 0)}

for z=x+iy=0272,. Consequently we obtain:

THEOREM 2. Let K be a totally imaginary quadratic extension of a totally
real algebraic number field k of degree n. Let R be an absolute ideal class in
K and La=0a;2,+082, be the integral ideal in & (as defined in §1). Put
z=x+1y=07'Q2,. Then we have:

@) Gl =N AL B @ log Ve

1
+x log 7{\7((3 3) FHYWZ®, -, e®2 5, 0}

+(higher terms in (s—l)) .

1
REMARK. In Theorem 2, the absolute value }( ]C.I (((3;)) 2’(1‘{ Vilez; a;,0) ‘
E\Me €

in fact a class invariant of R.

§4. An application of Kronecker’s limit formula

As an application of theorem 2, we consider in this section the relative
class number formula of the absolute class field F over K.

The notations being the same as in the previous sections. Let F be the
absolute class field over K, i.e. the maximal unramified abelian extension of
K, and & be the absolute class number of K. It follows from class field theory
that ;

(25) Cr(s) = Cx(s) };&IIL(S 32

where the product ] extends over h—1 non-principal ideal class characters
x#1

of K. The absolute value of the discrimiant of F is d} and F is a totally
imaginary extension of degree h over K. Thus, comparing the residues at
s=1 on both sides of (25), we have
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where hp, Rp and w, denote, the class number of F, regulator of F and the
number of roots of unity in F respectively. On the other hand we have

@27 Lis; )= >93 X(®)Cx(s ; &)

Put 8¢ =a,Q2,+00Q, and z=x+iy=0Q7,. As the absolute value

| (N " NOW? T ¥ aez s 0 0) |

is a class invariant of &, we shall denote it by J(§). Then, by (24) and
we get;
27)" kA d
(28) L p=-CDY de sy @) log J()
e/ dx 0

Thus we obtained finally :

THEOREM 4. Let K be a totally imaginary quadratic extension of a totally
real algebraic number field k of degree n, F the absolute class field over K.

Denote hyp, Rp and wyg the absolute class number of F, regulator of F and the
number of roots of unity in F. Then the quotient hph™* is given by

Chp _ wer"'di" R
@9 = e T T (= 3 () log J(RY).
Osaka University
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