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Introduction

Iwasawa and Tate [8, 15] reconstructed the theory of Hecke’s L-function
as a theory of the {-function, attached to a number field %2, with a character
of the idele class group of k. Since then, it has been expected to generalize
this theory to the case of the {-function of a simple algebra over the rational
number field Q. Let A and G be the adele ring and the idele group of a
simple algebra over @ respectively. Fujisaki [2, 3] solved the problem for
the {-function with an abelian character of G. The theory of Fujisaki includes
the results of Hey and Eichler [7, 1]. Godement showed the possibility
of applying the Iwasawa-Tate method to the {-function, attached to a division
algebra, with a “ non-abelian character ” of G. Tamagawa developed the
theory of Euler product. He determined an explicit form of the local {-func-
tion, attached to a simple algebra, with a zonal spherical function. And he
proved that the ¢-function of a division algebra, defined as an infinite product
of local {-functions, satisfies a functional equation. From the theory of Maass
[9] on the Dirichlet series corresponding to a non-holomorphic automorphic
function on upper half-plane, we can extract a theory of the ¢-function, at-
tached to the total matric algebra of degree 2 over @, with a zonal spherical
function.

On the other hand, Hecke [6] gave the theory of constructing Dirichlet
series with Euler product and functional equation out of a modular form.
Shimura generalized this theory to the case of the automorphic form of
Hilbert type by means of the Iwasawa-Tate method. In other words, the (-
function of a quaternion algebra, with a spherical function, not necessarily of
class 1, was treated.

The purpose of the present paper is to prove that the {-function of a
total matric algebra over @ is defined as an infinite product of local {-func-
tions, is meromorphic on the whole z-plane and satisfies a functional equation,
if the “character” is a zonal spherical function determined by a certain
automorphic function on G (cf. § 6, Theorem).
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We shall sketch the contents of the paper. Let p be a prime number or
co. We denote by A, the completion at p of the total matric algebra over @
of degree n. The group of all invertible elements in A, is denoted by G,.

For a zonal spherical function w, on G, relative to a maximal compact
subgroup of G,, we introduce a local {-function at p, {,(z, ®,), with a certain
weight function ¢, (cf. (I.I)). The weight function ¢ is defined by

Do) = exp (—7tr(x'x)), x € A .

For the proof of the theorem, we need a trick, suggested by Shimura
(pp. 270-272). We consider another local {-function at oo with a modified
weight function of the form

Doo = Wehes, w= %} Mc,cs .
$=0
Here, the M; are real numbers, and the ¢; are the functions on A. defined by
det (x'x—T1,)= i} (—1cs(0)T3, x € A,
$=0

where T is an indeterminate.
We choose M, so that the Fourier transform of ¢ is equal to ¢». In §2,
§3 and §4, we shall show that it suffices to take

_ s s+2)! 1
Ms—“(_l) 2 (271.)8

by rather technical computations. The starting-point is cited
from Maass [10], p. 4. In §2, we reduce the problem to that of finding a

sequence N; (s=0,1, 2, ---) which satisfies the linear equations

0 Agt<m),

3 By(t, m)N, =
(—1)"N,, (t=0)

for all non-negative integers m. The- coefficients By(t, m) are defined induc-
tively, but it is difficult to express them in a simple formula by s, ¢ and m.
In §3, we calculate two auxiliary integrals. Making use of the one, we com-
pute By(m, m) in §4. On the other hand, enables
us to express in some sense the coefficients By(t, m) by By(m—I, m—I[). We
see, in [Proposition 10, that a sequence N,=(s+2)! satisfies the above equa-
tions. The other integral in §3 is a means to calculate the local ¢-function
at co with the modified weight function thus obtained (Proposition 11).

In §5, we define a function on A of type Z by (Z1), ---,(Z5). This de-
finition is analogous to that of Tate [15] except (Z5). Then, we define a
global {-function with a weight function of type Z. The condition (Z5) allows
us to apply the Iwasawa-Tate method to the global {-function, as is seen in
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[Proposition 12,

In §6, we state the theorem. For the proof, we first construct the func-
tion ¢ of type Z by the usual weight functions at p # co and by the modified
weight function at co. We deduce a functional equation of

I;I Cn(z, @p)

from that of the global {-function with the weight function ¢.

Notations

As usual, Z, @, R and C are the sets of all integers, rational numbers,
real numbers and complex numbers respectively. For a real number x, we
denote by [x] the largest integer n which satisfies n<x. For a complex
number z, Z is the complex conjugate of z.

Let p be a prime number or co. For p = co, we denote by @, the field of
all p-adic numbers, and by Z, the ring of all p-adic integers. We put Q.= R.
Let x be an element of Q,. In the case p+ oo, we denote by {x}, the main
part of the p-adic expansion of x. So, if we expand x in the form

x=ap, 0=a;=p—1, a,,+0,

iZng

then we have

{x}p - z;() aipi .

We put ord,(x)=mn, and |x|,=p™r9%p™. In the case p=-co, | x|~ means the
usual absolute value of x.

Let R be a commutative ring. We denote by M,(R) the ring of all matrices
of degree n over R. For an element x of M,(R), the symbols tr(x) and ‘x
mean the trace of the matrix x and the transposed matrix of x respectively.
If R has an identity, GL(n, R) denotes the group of all matrices in M,(R)
whose determinants are the invertible elements of R. The neutral element of
GL(n, R) is denoted by 1,.

Let S be a set, and T be a subset of S. The characteristic function of T
on S is denoted by yr,5 and sometimes by yxg, if there is no fear of confusion.
When S is a finite set, we denote by £S the number of all elements of S.

Let S be a topological space. We shall frequently use the following nota-
tions.

C(S): the set of all complex valued continuous functions on S.

L(S): the set of all functions in C(S) with compact carrier.

When the space S has a measure, L,(S) denotes the set of all complex
valued integrable functions on S.

Let A be a ring, and f a function on A. For an invertible element a of
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A, we define operators L, and R, by
(Lo =fla"x), (R HD=f(xa), x€A.

§1. Local {-functions

Let us put A,= M,(@,), and for p+ co,0,= M,(Z,). A, is a locally com-
pact topological ring, and O, is an open compact subring of A, We define
a unitary character y, of A, by

exp ey —1{tr(x)},)  (p#0c0),

()= o
L exp (—2xv —1 tr(x)) (p=c0)

for xe A,. We have y,(0,)=1. Obviously, x,(xy) = x,(yx) for every x,y < A,.
A, is self-dual by the mapping
ApX A= (x, )=y, eC.
We denote by dx a Haar measure of A,. Then, we have
d(ax)=d(xa)=|det a |3dx

for every element a of A, such that det a0. The Fourier transform of a
function ¢, in L,(A,) is denoted by &,:

eu(y) = L oy p(xy)dx  for ye A,.
p

We normalize the measure dx in such a way that the total volume of O, is
equal to 1 for p+ oo, and that dx= II dx;; for every element x=(x;;) of Ae.
i’j
We set

XOp(x) (p + OO) ’
exp (—ztr(x'x)) (p=o0)

for x& A,. Then, we have ¢,= C(4,) " Li(4,) and gzgp:gzﬁp.

Put G,=GL(n, Q,), U,=GL(n, Z,) for p+# oo and U.=0(n, R). Inducing
to G, the topology of A,, G, is a unimodular locally compact group, and U,
is a maximal compact subgroup of G,. U, isan open subset of G, for p+ .
Let Z, be the centre of G,.

We denote by du the Haar measure on U,, such that the total volume of
U, is equal to 1. A non-zero function w, in C(G,) is called zonal spherical
function relative to U,, or simply spherical function, if the condition

. $,0)=|

(1.2) IU w,(gugdu=w,(9w,g") forall g, g’ G,
D

is satisfied. For spherical functions, we refer to [5], [11], [13], [14] We

have w,(1,)=1. A spherical function w, is called positive-definite, if it satis-
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fies the condition
[[ @i ahfu @ Fdgdh =0
GpxCp
for all f, e L(G,), where dg is a Haar measure on G,. We denote by £, the
set of all spherical functions, and by £, the totality of positive-definite

spherical functions. If w, is a positive-definite spherical function, then we
have

lo(2)|=1, o 2=ow,g™ for all g G,.
Moreover, we denote by £, the set of all w, in £2, which satisfy the condition
0, (Lg)=w,(g) forall {27, g=G,.

We note that the above definitions and properties of spherical functions
are valid when G, is a general unimodular locally compact group and U, is a
compact subgroup of G,.

Spherical functions are parametrized by n complex numbers as follows.
Let T, be the set of all upper triangular matrices in G, whose diagonal ele-
ments are integral powers of p or positive numbers according as p#oo or
p=co. Every element g of G, can be written uniquely in the form:

g=ut,uc U, teT, or g=tu, teT, u,,eU,.

With » complex numbers s,, ---, s,, we associate a character as,,..s, of Tp:
n —_ -+(. 1
asl,"',Sn(t) = I]I: |t lps" =D = (tij) e Tp .
i=

The character ay,,., is extensible to a function on G, by putting

gy e ,5n(UE) = Ay e (D)

for ue Uy, teT,. Then, the function w,,,.,, on G,, defined by

W, 5,(8) = jU sy s TWAU,  GE Gy,
p

is spherical. Conversely, for every spherical function w, on G,, there exist
complex numbers sy, ---,s, such that w,=w,. . By the above definition,
we have wy,,.. s, = 5,5, and

(13) wsl,'--,sn(g) I detg ’i) = w81+z,-~-,sn+z(g) .

We denote by &, the symmetric group of degree n. Spherical functions
Wsy s, ANA @y . ¢ coincide with each other, if and only if

2av—1
logp /7

for some element ¢ of &, where 274/ —1/log p means zero for p=oco. In

Saey = Si (mod.~ i=1,--,n
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particular, wy, .., =1, if and only if

: -1 .
ey =i—1 (mod.g’ig/? , i=1, -, 1

for some ¢ € &,. The condition

I

n(n—1) (mod. 2/ —1 )

14) g‘i S 5 Tog

is necessary and sufficient for ., to be in 2, If a spherical function
Wy, .5, belongs to £2;, then we have

2nvV =1

log p )’ 1=1 -, n

1.5 S, =n—1—Szu (mod.

for some 0= &,.
We normalize the measure dg on G, so that for p=+co, the total volume
of U, is equal to 1, and that for p=oco, we have
dg = 2ndu (gl t;;dtﬁ) (y dtyy) ,

<j

where g=ut, 4 € Ue, t=(l;)) € Te.
Let w, be a spherical function on G,. Let ¢, be the function on A, as
(I1) The following proposition is a special case of a result of Tamagawa

PROPOSITION 1. If w,=wy,. s, then the integral
Lz 0p) = [ P @a(g™)] det g l3dg
P

converges for Re z>Max (Res;). The function {(z, w,) of z is continued to a

meromorphic function on the whole z-plane, which is called the local {-function
at p with weight function ¢,. We have

zﬁl(l—p”ﬂ“ (p#00),

Loz, @) = el Ty w
z * YU Z_zsi) (p=00).

i=1

Now, we ask if the infinite product IT {,(z, w,) converges in some region of
14

z-plane, if it is continued to a meromorphic function on the whole z-plane
and if it satisfies a functional equation under some assumptions on {w,} -
When 7 1, these questions shall not be solved by the immediate application
of the Iwasawa-Tate method to the idele group of M,(Q). As was suggested
by Shimura pp. 270-272, we need another local ¢-function at co, with a
slightly modified weight function, which will allow us to apply that method.
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Let X=(X;;) be an (n, n) matrix of n? indeterminates X;;; let w(X) be a
polynomial of X;; over C. We define a function w on A~ by
A x—wx)eC,
which will be called the polynomial on Aw.. The Gauss transform w* of a
polynomial w on A. is defined by
D= wet)p()dy,  xE A

The function w* is a polynomial on Aw. Put @(x)=w*(—+ —1‘x). Then, we
get easily

N

Whoo = Whoo

We adopt a modified weight function of the form we@e.
Actually, we use a polynomial of more restricted type as follows. Let T
be an indeterminate. We define a polynomial ¢; (s=0, -+, n) on A~ by

det (x'x—T1,) = i (—1)c ()T, x€ Aw.
§=0
In particular, c,(x)=(det x)?, c,(x)=1. We put

1.6) Doo = WP, w= i}) Miccs, M,eR.
Then, we have ;
Do(Uxv) = ¢Poo(x) for u,vE Us, ¥ E Aw,
Po(x)=0 for xe A, detx=0.

In the following sections, we shall seek a function ¢ of the form satisfy-
ing the requirements

i) 52'0025/)00,
i) the local {-function at co with the weight function ¢. is not identi-
cally zero.

§2. Some properties on determinants

In §2, §3 and §4, we consider only functions on Aw or G, s0 we omit
the suffix co. Let w be a polynomial on A. For integers i, ] (11, < n),
we define an operator 9/0(ij) by

ow _ ow(x)
3G = o,

, xe A.

Put 4= 3 (3/3G))
Z’]
We cite the following proposition from Maass [10], p. 4.



{-functions of a total matric algebra 381

PROPOSITION 2. For every polynomial w on A, we have

& 1

k=0

Since 4*w =0 for sufficiently large k, the right-hand side of the above relation
is a finite sum.

Put ¢,=0 for ¢ >n.

PROPOSITION 3. We have

d(erey) = 2{(r+1)%csiCs+-(s+1)%CrCop 4 ZT) (—=7r+s+2t+1)CrmiCsppar}
t=0

for integers v and s such that 0<r, s<n.

We need some preliminaries for the proof of the proposition. We denote
by I, the set of integers {l,---,n}. Let s be a non-negative integer; let
{4, -, 1s+ and {j,, ---,Js} be two indexed sets of s integers in I,.

Suppose x is an element of A. If ¢, .--,7;, are mutually different and
Ji, -+, Js are also mutually different, we denote by

dQiy - ts; J1 o J)(X)
the minor of detx formed by removing i, ---, i;-rows and j,, -+, js-columns;
we put

e(ly -+ Ts; Jy -+ J)(®) = sign (iy -+ 1) SIgN (Jy -+ J Ay -+ T55 Ji o+ Jo)(H)

If i,=15 or j,=js for different integers «, B8 such that 1=«, =5 (in parti-
cular, when s >n), we set

Ay o155y J®) =@y -+ Ts; o - J)x)=0.

From the definition of ¢,, we obtain the equality

2.1) Cs= %d(llzs; JiJs,
where 3> means >
® s i
J1<o<Jg

Suppose ;< - <1, j < - <J,. Let 7 and j be integers in [,. Put
p=#ia; lsa=ss, <1}, v=§{ja; 1=a=s, j.<j}.

Then,

(2:2) eQUiy gy JJy e J) = (=¥ d@iy e 155 Ji T8 -
Therefore, we obtain the relation

(2.3) *@)—d(zl e lsy JyoJ) = (=D e@y e dgy Jiy et Is) -

t follows from these results that
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2.4 deg=2(s+1)%¢ceq, .

Indeed, by and [2.3), we have
des= 35 3 a5y {200 -+ ds; Jy - J(— D ety - i jjy - T}

i, (s) (Z])

=2 zZ]) %) d(iiy -+ 155 jji -+ Js)®

s+1 .. . s .

=23 3 Ay g Jn e T

v =1 Aoy <y o i
1oLy — 1<J<Jp< s

=2(s+1)%Cq4y -
This completes the proof of [2.4).

We write d(x)= det x, d(@j)=d(i;j). The equality
d(irjy) - d@js)
ey ias o i) = | :
d(isjy) - d(isjs)
holds for s+0. So we have for s+0

A A

L] . . . . - .
(2.5) 21(.~1)~+vd(i”]y)e(ll e Dy dgy Jie Ty e )
=

~

= S DG D5 a5

=de(ty - is; J1 o Js)-

LEMMA 1. Let a(i,j) be a polynomial on A for every i and j in I,.

we have

dc,

7% (—1)i+ja(i’ ]) 8(1])

o

s+1 . - .
=23 2 (=D"*au j)d0 -ty dsens Joot Ju oo Jevn)

(s+1) pov=1

X d(y - Tggys J1oo Jowd)
In particular,

T4 F Al acs _
T (D) 5y = AsDdess
Proor. Making use of (2.1), (2.3) and (2.2), we get the equalities
. . Oc
I AY 2 ) s
3 (~Dat, )5

=2 Zj) (—=D"a(, j) 2 (=1)"9d@y -+ 155 Jo oo ey -+ 155 jiy -+ Js)

Then,
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s+1 )

=23 (D" B a(, DAy s Jo e JIA@E e s GGy T8
#v=1 ooty — <Gl ool
A<y 1< G g

=23 2( D (i 1y GG, - Ty Gyrs J1oo Ty o Jesr)

(s+1)
Xd(il o lggr 1ot Jee)

They give us the first part of Lemma 1. As to the second part, we put
a(i, j)=d(@j) in the first part, then the result follows readily from [2.5)
LEMMA 2. For integers a and f8 in I,, we have

= (—1)dGp)d(ag) 8(687—2d(aﬁ)dcs+1_d2(__1)a+ﬁ g(cglg) .

ProoF. From Lemma 1 and (2.5),

= (D)5

=2 2( DY d(i,8)d(@f )y -+ Ty -+ Ageas Ja o Jv o Jord)

(s+1) p,v=1

Xd(il is+1; jl "'js+1)

s+1 . . . . . . .« . . - .
=2d E Z d(a]u)g(ll rlsrrs Ju "']v—lﬁ]u "']s+1>d(ll et lsery Ja "']s+1)

(s+1) y=1
s+1 ) .
=24 3} (— 3 (=D d(ety - s Bs - Fo - o)

X d@y o+ Tggrs J1o Joer)
=2d (El)(d(aﬁ)d(il e lgy; J1oor Jee)—de(ady oo Tggy s ‘8]1 - Jsa1))

X Ay o ggrs J1 oo Jse) -
The last expression is equal to

¢4y

2d(aB)dcspy —d(—1)*+B-2CstL Fap

by (2.3). This completes the proof of Lemma 2.
LEMMA 3. Let r be a positive integer and s be a non-negative integer.
Then,
_O¢ 0 0y 0Csn
236 aap TSt Dece t B 56 " aa6))

1,f

Proor. We have first by the use of (2.1) and (2.3)
dc, Ocg
236 96
. . . e e . .\ Ocg
=23 2d@; i Juer J(D ety e by Jiy e Jr)—a—(ij .

i,j (r)
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On the other hand, when 1,

< e < 2y, 1 < o <Jpy the relations give
us the equalities
e(iiy =+ iy JJ1 o Jv)
= L ADAGy iy b B DA i Ty )
. 1 Y
*d(lJ)d(h' Ty Jue o) — o, ( D#d(7,)d(@ .9)
Xd(ll l'r: ]1 _; ]r)
Accordingly, we can convert the sum
_0Oc, Ocg
06 oG
into the sum of two expressions
.. ) e OC
. Ve - (E3 S
(26) % ZZ;d(ll lr» ]1 ]r)2( 1) jd(lj) a(l]) y
2 i+
@n ¥E %,ﬁ?‘l;}( D"*9d(i7,)dCul) 5 ; 6(11)
X (=D*d(, -

11‘: .71 "'fu "'jr)d(il o lr; jl "’jr) .
The expression is reduced, by Lemma 1|, to
4(s+1crCsey

Taking into account Lemma 2, we again devide into the sum of two
expressions:

28) 4

P R S R A A L
X d(y e tr5 Jy o n) s
I i o WU S TS SR
X dQy Ty Jyoejo)
By the relations and [2.I), we have
2.8)=—4r (;) Ay -+ 15 J1 oo J)2Cssn = —41C,Cosy
Further, gives us the relations
9= x|y s | Lo o Do P

Summing up these results, we get

T 0@ oG -
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oc,  O0cs 4, 0Crmy 0Cgyq
Z a6 oG CTHs et B 5o
This completes the proof.
PrOOF OF ProOPOSITION 3. We have
0 0
Aere)={d(e et e, de+2 T 5y aah )

g
= 2 2 _Oc¢, _0c,_
= 2{(r Dt b (Dt 55655kt

So it is enough to prove the formula

de, Ocg O
(2.10) ?‘_,J G G = 4 E(~—r+s+2t+l}cr.‘,cs+t+l ,
which we shall show by induction on 7.
We have by Lemma 1.

> ai(;f]‘?y 7%?)— =243 (_1)f+fd<ij)»-aa(§;) = 4(s+1)CoCot1 -
This is the formula for r=0. Let r=1. Suppose
5 -%L@L aa(f]%)‘ — 42 (— 7S 24201 sCorin -
We get from
500 B s Do 4SS (12D i
w7 0@ 0@ i=0

<

=4 (—r+s+2+1)crmiCorpar -

t=0

This concludes the proof of [Proposition 3.

I
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On the ground of and we next define two

sequences.

Sequence A. We shall define A¥(s) for all integers %,/ and s. For &, [, s

not satisfying #=[1=0 and s=0, we put
Af(9)=0.
For %, [, s satisfying £ =1=0 and s =0, we define Af(s) inductively by
AYs)=1
Ap () = AF(S)(h— D+ AY] <s><s+z>2+4(—k+2z+s>;§ AEN(s) .

Sequence B. We shall define B¢, m) for all integers s,t and m. For s, ¢,

m satisfying 0<s, t<m, we put
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1

By(t, m)= BEY

W ism—s { AL () + AL},

where 0;, is the Kronecker’s symbol and W,=(—1)*/k!. For s, t, m not
satisfying 0<s, t<m, we put

By(t, m)=0.

We explain the role of these sequences in the following and
PROPOSITION 4. Let s be an integer such that 0<s=<wn. For every non-
negative integer k, we have

.11 H5(eoe) = 283 AF(S)CpmiCors -
=0

In particular, 4%(c,c)=0 for k> 2n—s.
Proor. Since Aj(s)=1, (2.11) is valid for 2=0. Suppose

k-1
A" coeg) =201 12_30 AFS) Cpm1—1Csaa -

By means of Proposition 3, we devide 4%(c,c,) into the sum of the following
three expressions:

k-1 x
2% Z"‘o A ()R —1)2CmiCony = 2F z:zo AFA(S)(B—D2ChmiCsra

B-1 k
2F l;) AFUS)(SH 12 Ckm11Cs4001 = 2% 2 AT (S)(SH-D)2ChmiCssi »

=0
x-1 k=1-p
2k ZOA’;‘I(S) -4 CZ()) (—k42u+5+2t4+2)Cho1mpiCst protr -
= <

Put [ =p+1i41, then the third expression is equal to

ST 3 AL A2 ) CraCon

g0 L=+l

= 2V A(— B 2048) T Aot -
(=0 #=0
‘Thus,

A4(eoe) =2 3 LA ()= D+ AR S5+ DP+HA(— k4 2149) B A} i
2 p2

=2F ‘zk: AF (S)Cr—iCsra -
=0

Since ¢,=0 for ¢ >n, we get the second part of the proposition.
PROPOSITION 5. For real numbers N, (0= s=<mn), we have
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Pl
SNy = _ 3

0=p

{3 Bo, N ot

o=n

PrROOF. Since d%(cycs) =0 for k> 2n—s,

(Cocs)* ZZES k—‘(lli;‘t)T Ak(cocs)

2n-s k 1

- kgo 2 b !(271.)15‘ Aic (s)ck~Lcs+l

(=0

by Proposition 2 and Proposition 4. On the other hand,
d(ll is; ]1 ]s)(_\/jl‘tx) :('\/'-_T)n—sd(.h ]s: 11 18)(-75) 3
S0
cs(—V —1t%) = (—1)"%cy(x) .

Hence, we get

= E G oG
Put p=*Fk—I, 0 =s+I. Since c¢,=0 for g >n, it follows that

—

(D' = 3 B Woroms 55 e

Recalling that A4(s)=0 for a <0, we rewrite the second sum in the last ex-
pression as follows:

n -1 _ CoC
the second sum= 3} Woso-s ABLI() o ypsa~ (27;’),;‘14

o=s+1 p

il
«

CoCs

n og-1
= ags 230 P+a—sAP—d—s(s) (277:)0+¢ .

Thus, we get

/\/ 1
s Cofs < +0—3 +o—s, CoCq
D G =2 31 g, Wores (4B O+ ALyt
s - CoCq
- oz::s pg) Bs(p; 0') (27;15‘”'0

Now, Proposition 5 readily follows from this.

Thus, from Proposition 5, we shall obtain a polynomial w on A of the
form (1.6) such that @w=w, if we get a sequence N, (s=0,1, 2, ---) which
satisfies the equations
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0 1st=m),
(=D"Nyp (=0

for every non-negative integer m. But it is difficult to express the coefficients
By(t, m) in a simple formula by s, ¢, m, immediately from the definitions of

sequences A and B. We shall keep this difficulty out of the way in the fol-
lowing sections.

(2.12) 5"30 B¢, m)N, =

§3. Certain integrals

In this section, we calculate the integrals

[ e@etop@ dx, | cl@edDH(@wn (g ™)dg
for later use.

We first consider differential operators on G. Let ¢ be a differentiable
function on G. For integersiandj (1=1,j <n), we define an operator D;; by

i 0
Ds;0)(8) = X gip ¢(2) ’ g=(g)ei.
p#=1 agj”
Let s be an integer such that 0<s<n. Put k=n—s. Let L.; be a differ-
ential operator on G for every @ and 8 (1=a, f<k). We put

l ka Lm )
g : : = 3, sign (G)Laac) T La(n 1-

[4S1IA

Lllc L11
We define a differential operator D, by

D, :i1<;<ik : Digiyt1 i

PROPOSITION 6. The operator D, commutes with the translations R, and L,
for all a in G and u in U. Moveover, we have

Dy = (—2m)"cs6p .

Proor. Let g=(g;» and a=(a;;) be elements of G. Put h=ga. Let
(a™Y);,; be the (i, j) element of the matrix a~!. Then, we have

LW, 00(ge) 3y 3 (99(8)
(Dina(p)(g)_Elgi/lMa’gj/l —#Zzlgwyjl< agju >g=ha/1u.

Hence,

- Z - aSD(g) 2 a@(g) _
R 1 — ) 1 R AY-Ta — e AN -2 l ). .
(R; -DwRa§0>(g) ﬁﬂ'vél:lgw(a )d/l F N Ay = Elgw P n =( z]@)(g) .
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Thus, we get D;;R,= R,D;;, hence D;R,= R,D;.
Let u=(u;;) be an element of U. Put h=u"'g. Similarly as above, we:
have

L;'Dy;Lyp :d%iluia(Daﬁgp>uj/3 .

We consider the (n, n) matrices (D,;) and (L;'D,;L,). Then, the following rela-
tion holds:

(GR))] (L*Di;L) = u(Dpu~t.

On the other hand, we have

r do(g)
Diji - Diypn@)( @)= X Gum ** Gram -
L 1P P L i agﬂ”l ag“#l
for i, £, -+, 1, #7531 #J;. The auxiliary symbols 4;; are used instead.

of D”, to indicate by their composition the same result for every i, -, i,
] 1’ :]l

z ol
dijy o 40X @ = X ZGum " Gum
iy, 1719)( 1 i " 11 38’;;,4 agn/u

(cf. Weyl [16], p. 39). Then, we have by

L'ZL_IAiﬂlL L AuﬂcL
> P
1< ey, L;lAZk”Lu IA L

(33"

Z 41211'1 e 4721?216

11< iy

Ailcil Tt Higiy

From this relation, we can derive the result L;'D;L,= D; by the same argu-
ment as in Weyl [16], p. 40.
Next, a formal computation gives us the formula

8igiy 0 Sirdy, 0 0
: : 0811 08151
N< "5 i
8igjr " iy iy agiljk agiw'lc
En) Siip ’i E Ein 7
R : aguu ag'bk/l
n 9 '
ﬂ;l Sipr agnu ;z; i 3 (’ik”‘

So we have
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Ai1i1 o Ai;lik
DgXD= T 1 i i |8l@
: k Aikil te Azkzk
9 .9
gilfl '”gi.ljk a_giu'l ag}'kh
11< g;k gbk]l o gikjk ] __‘a A_.._.._Q__‘
agiu'k agikjk
. 8irjr " Sivjy 2
=2 3 [ T e
Ak Gagay i

=(—2m)"c(QP(Q) .

LeMMA 4. Let a,, -, a, be complex numbers. Let ¢ be a function on G

which is expressed in the form

9D(g):tﬁ1 mz fOT’ g=1u, t“‘(tw>ET uelU.
Then, for a;+ —1 (i< n),

Dyp= { 11 (=D}

11< iy,
PrOOF. We have for i =j

DX D=3 g 008) _ 5 g, 09E&

ag‘,# 5T agjﬂ
Ot%1 ... t%n Of%t ... (9
— 2 t. Yt nn_ . 1 nr_
T T Oty Yoty

In particular,
DingZO for 'L>],
Dyp=a;p.

From them, we obtain the result:

Lklk+(k 1) ‘Lk?»]_
Dp= 2 N 4

i<y |
% Dmk ............ Dy

=> {H(Dw,ﬁxx—l)}go

1<l M

3 {H(a,+e—D}p.

11< <11c u=

PROPOSITION 7. We have

> Jstorioponcm b (1 G131

q.e.d.

q.e.d.
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i) [ @l DHQwu,en(8dg

K

= 7(2(;{)2]’72;{ f{} ¢(g)wsl,...,sn(g—l)dg{ zfll Si} » 1(3}./4,_1‘#__2_{_#)

1<y p=
Jor Res;<0.
Proor. 1) Let g be an element of G. We put ¢(g)=|det g|~"*». Then,
_ - —a __n!
[ cod(ande=(det gy | det g | cid(dx= 5o (8.
On the other hand, we have by Proposition 6
DR ,¢ = R;Dsp = (—21)* R (csP) for x=G.
From these results, we get
s _nl
(=200 | el gd(gnde=— 55 (D)8,
hence
!
f e gOdr= =1y o Sy (D)L
So it is enough to prove the formula

Dsp)A) = <__1)n—-s<7§) ((rsti% ; _

We have
(@) =(ty; - tyy)™ " for g=tu, t=EpeT, usU.

Applying Lemma 4 to the function ¢, we obtain
D 11 (—n—2+p—1)}
5P _i1<;<ik {# L (—n— +p— ©®

(1P u .

=D (){ L (k3o

s (2L

=(-1~(}) G+ ?
This proves i). The proof of ii) is similar to that of i). We write w, »’ and
a’ instead of wq,,. s, @sizysp-2 ANA Ao 5,2 For Res; <0, we have

J cmdemati=rydn

= [ g™ Mgwtugdh (- g=u=h)
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= U( { Gco(g~1h>¢(h)w(h~1ug)dh) du

= (det 9w (g) | (det Ryg(ma(h=)dh

n

1x (8;-2) n —c.
— o/ 2;21° I ﬁfz_tzg
=aw'(g)r ' F( 2 )

G [ stetndn {11 s.}or()

by [1.2), Proposition 1] and the relation I'(z+1) =2zI"(z). Applying the operator
D,, we get the relation

(—2n)n~st co(h)es(Nd(Ww(h=Y)dh

— ((2 ﬂl)> [ et (h"l)dh{HS}(D (L) .

Thus, it remains to prove the formula

(Dsw/)(ln)*‘i 2 H(sl,‘ lp—2+p) .

iy p=1
We call 4 the right-hand side for brevity. Setting ¢(g)=a’(g~"), we have
e =t t3p P for g=tu, t=U)eT, uelU.
Consequently, it follows from that

Dy=_ 3 H(sm (it D+p—D}p=120.

<7’7.,
Considering L,D,= D,L,, we get
3.2) (DsLup)(g) = A Lup)(Q) -
On the other hand,

w(9={ a(g wdu={ owgdu= L.o)Xgdu.

Hence, integrating the both sides of on U, we obtain
(D;0)(g) = Aw'(g), and (Dw)(1,)=2.

§4. A self-reciprocal function on A4.

We return to the equations [2.12). The result of the preceding section
enables us to calculate the coefficient of the form By(m, m).
PROPOSITION 8. For non-negative integers s and m such that s <m, we have
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(MY 1y (DT
Bim, my=("¢)(~1ym! G

Proor. The proposition is trivial for m=0, so we suppose m=1. Pro-
position 5 gives us the relation

G| e —Txtda—/ =Ta)p()dy= 3 5 Blo, ) -25225),

where x is an element of A. Taking x=0, we get the equality

—(@g)); GNeNS()dy = (Tn].-)zT By(n, n).

The integral of the left-hand side is equal to

1 (n+2)!
o= ("G
by Proposition 7, i). From these results, we obtain readily
_(n sy (2L
By(n, n)= (s)(——l) n! G127 q.e.d.

The following proposition allows us to express in some sense the coeffi-
cients By(t, m) by By(m—I, m—1I).

PROPOSITION 9. There exist, for integers m and B (0= k=[m/2]), a se-
quence of real numbers E(m, k; 1) (=0, ---, k), and for integers m and k(0=Fk
=[(m—1)/2]), a sequence of real numbers F(m, k;1) ({=0, ---, k), which satisfy
the following conditions

E(m,k;0)=1,
(¢B)) {2 2k)' o} Bm—2k, m)

A 2k~1~2( .
=2 E(m, k; D{ 11 @m—2l—s—i)} Bm—1, m—1),
=0 =0
F(m, k;0)=—1,
4.2 { i 2k 1 } By(m—2k—1, m)
% 2k -2t .
=% Fm, k; D{ 11 @m—2l—s—i)} B(m—1, m—1I),
=0 1=0
Jor every integer s such that 0 <s=m.

LEMMA 5. For integers t and m (1 <t=m), there exists a sequence of
integers L, m; ) (¢=0,1,2, ---), which satisfies the conditions
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Lim, m; =0,
1 By(t—1, m) = —(t+m—s)By(t, m)+ X L{, m; w)By{t+p, m—p—1),
©=0

for every integer s such that 0 <s=<m.
Proor. In the case t=m, we have

—(@2m—s)B(m, m) = —Cm—8)W yp—s A2725(s)
= Wan1-s {m* A7 75(8) +m* AZ55%(s)}
=m?B,(m—1, m)

by the definitions of sequences A and B. Putting L(m, m; p)=0, we get the
proof in the case t=m. In the case 1<t<m—1, we have similarly

—(t+m—s)By(t, m)
= —(+M—=)W s { ALZT () + ARZT(9)}

= W tmeoms (AT HOH AL —Am—1) 3 A7)
p=0

AT me A () HAm—) | B A}
2

= Wirmes—:[F{ATES () ARZ"5(s)}
m-8§—1

AL (s)F AR} HAm—t) 3 Ayl
p=t=

8

= £B,(t—1, m)+ {1+, )+ Am—D)} By(t, m—1)
+-4(m—t) Z‘i By(t+p, m—p—1).
y2=

Thus, it is enough to set
L, m; 0)=—{A+06, n-)m?*+4(m—1)},
L, m; p)=—4(m—1t) for p=1.
Proor oF ProposITION 9. In the case m =0, we need only to prove the

existence of the sequence E, i.e. to put E(0,0;0)=1. In the case k=0, set
E(m,0;0=1, F(m,0; 0)=—1. The equality

m?By{(m—1, m)= —(2m—s)B(m, m)

means the validity of the proposition.

Let m=1. Assume that we have already proved the proposition in the
case 0, ---, m—1 with arbitrary . and in the case m with a fixed k. We shall
prove the proposition in the case m with k+1.

By lemma 5, we have
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(m—2k—1)2B(m—2k—2, m) = —(2m—2k—1—s)By(m—2k—1, m)
—I—ﬂéoL(m——Zk——l, m; wWB(m—2k—1+p, m—1—p).
Multiply the both sides by {m!/(m—2k—1)!}2. Put

m!(m—2k— 1+pe)‘ 2 .
M(m, k; m_{(m b D) T (m— e STy Lom—2k—1,m; ).

Then, we have

{(m 21{"2)‘}3(’" 2k—2,m)

. (m—1—m! 2
+ 3 Mon, b oy Bim—2k— 1t =110

k 2k - 2L
= —@m—2k—s=1) X F(m, k; n{ gO(Zm—zl—s—-i)}Bs(m—l, m—1)

k—p 2% —2p—1-2L
+ 3 MGm, k5 ) T E(n—1—p1, k—pt; D{ I @m—2—2p—2l—s—i)}
vz = i=

X B(m—1—p—I, m—1—p—I).

The last equality comes of the assumptions [(4.2)in the case m, k, and in
the case m—1—py, k—p. And the right-hand side is equal to the expression

k 2k+1-2L
3 —F(m, k; D IT @m—2l—s—i)}B,(m—1, m—1)
=0 i=0

+ 3 M(m, k; u)ZE(m 1—p, k—p; l—1—p)

p=0

2k +1~-2(
><{ II @m—2l~ s—-z)}B(m I, m—1y,

hence to the expression

k 2k+1-21

3 —F(m, k; D{ T @m—21—s—i)}B(m—1, m—1)
(=0 i=0

k+1

+§3{HM(mk WEm—1—p, k—p; 1-1—p)}

2k+1-20

x{ I @m—2I— s—z)}B(m I, m—1I).

We put
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—F(m, k3 D+ EJIM(m, b WEGn—1—p, b—p; I—1—p) (O<ISE),
-1

EM(m By wWEm—1—p, b—p; l—1—p) (I=Fk+1).

E(m,k+1; D=

Then, we have E(m, k+1;0)=1 and the relation [(4.1) in the case m, k1.
Similarly, by and the relation in the case m, k+1 and the
assumption in the case m—1—p, k—pu, we can prove the existence of the
required sequence F(m, k+1;[). This concludes the proof.
PROPOSITION 10. For integers t and m (0=t <m), we have

0 Ast=m),

(—D™m+2)!  (t=0).
ProOF. Put Ny=(s+2)!. By the relation (4.1), we have

3 Bt ms+2) 1= [

{i—zmr 2k)|}23(m —2k, mN;

m 2k—1-21
=§0E(m,k;l);0 { I @n—2l—s—}Bm—1, m—DN,

for integers m and & (0= k=<[m/2]). On the other hand, we get by Proposi-
tion 8 and the definition of the sequence B

("D D N s=mD),
0 (s >m—1I).

B(m—I, m—DN,=

Therefore,

é{ZkﬁZL(zm —2l—s—i)} B(n—L, m—DN,
-:g[{“ﬁz(m 20—s—i)h("™ )( 1) Jm—0) | Ny

=[ C;i;::; {m L (ms l)xzm~2z—8(—1)s}]m(m—z)uvm_,

dzk-zl

g =] D) N

{ 0 (m>2k or m=2k,[>0),
(m"Y:N,, m=2k,1=0).
Hence, recalling that E(m, k; 0)=1, we obtain

0 (m>2k),

{_'—ﬂz'!jff}z in: B(m—2k, m)N; =
(m—=20)! ] & (m )N, (m=2k).

Similarly, we have by (4.2)
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0 (m>2k+1),

{ =iy} 5 Bon—2k—1 N, = [—~(m!)2Nm (m=2k+1).

These results show that
0 A£t€m)y,

&, Bt mN, = { (—1)"N,, (¢=0).

COROLLARY. Put

Then, the function ¢ on A is self-reciprocal; i.e. we have
¢=¢.
ProOF. By and [Proposition 10,

~ (s+2)! CoCy
w= 0<p<¢7<n { 520 BS( ) 2 }"(27:_’)1).*.5
_ s (0+2)! cocs
=2, TV T e T
So, § =1 = i = we = . q.e.d.

The next task is to find an explicit expression of the local {-function at
co with the weight function ¢.
PROPOSITION 11. Put o= w;,,. s, The integral

[ ¢@w(g) detgIdg

converges for Rez>Max (Res;), and is equal to

—(—2—7%)725; {(z, co)ilf[] (z—s)(z—s;—1).
Proor. We have by (1.3)
Wsyyesn(8 D | det @ ' = @z 7Y
So it is enough to prove
fasb(g)w(g‘l)dg = TZ%)Q%"[G¢(g>w<g—l)dg ilil;)si(SHrl)
for Res; <0. Now, by proposition 7, ii), the equality

§ (1 2L9KD 5 ragdg

=g | #@otedg{ITs} 2 TL(si,iu24p)

i<l pe=
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holds for Res; <0, where #=n—s. Therefore, we need only to prove the
formula

@3 3 O=EEDL (i 2= 6.

1 <liy p=1

Let 2, be the left-hand side of [4.3). It is obvious that

A, =34+(s;—2)=s,+1.
And we show that 4,.;=A4,(Sy+1+1). Indeed,

An=g - C=EEIL o I Gs,—ia—24w)
k=0 1< <ip=n+l1 p=1
(n+3)!
2

+ g_(n;"kzﬂ{ b (50,1 —2+ﬂ)}(sn+1—n—3+k)

1i1<<ip—1=0 p=1

H (sz,l ip—2-+p)

k=1 2 1= <]~ip=n p=1

= ﬂ-%g)‘ (n_*_a‘_( Spr1—N— —2)

n+1 (n—k+3) 1
+ 2 b {1<11< 2w E (i1 —2+p¢)}(sn+1—n_3+k)
+E ﬁ;%tZL{ 11 (Sip—ia— 2t Hn—kA-3)

k=1 1= <<ip=n p=

% (71—k+2)'{ (51/1 ip— 2+#)}(5n+1+1)

1=i1<C <zksn pe=
= Zn(sn+1+l> .
This proves [(4.3).

§5. Certain global {-functions

Let 4= {2} be a set of indices. Suppose a unimodular locally compact
group G, is associated with all 4, and a compact open subgroup H; of G, is
associated with almost all . We denote by G the restricted direct product of
G, with respect to H,;. It is the set of all elements g =(g,) of 1}01 such that

g,€ Hy for almost all 4. Let S, denote the set of all indices 2 in 4 with
which the group H, is not associated. For every finite subset S of 4 contain-
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ing S,, put G‘S:szG"XzI;HA' Gs may be considered as a subgroup of G.
& S
We have G=\U Gs. Each Gy has its natural product topology and G is to-
I

pologized as the inductive limit with respect to S. Then, G is a unimodular
locally compact group.

Let f; be a function on G, for every 2. We assume that f(H;)=1 for
almost all 2. Putting f(g)= ];[f,l(g,l) for g=(g) € G, we define a function f

on G, which we denote by f:IZIfA.

Let dg; be a Haar measure on G,. We assume that the total volume of
H, is equal to 1 for almost all 4. The restricted direct product dg of dg; has
the following property:

If the above mentioned function f; further satisfies the conditions

1€ LG for all 4, TI[ | i(gn|dgi< oo,

then we have
G.D) [=Mfe L), | A@dg=1E[ fiendg:.
2 ¢} A Y6,

Of course, the infinite product of integrals converges absolutely. Further, if
fa is in C(G,) for all 4, then f:];[f,l is in C(G).

We denote by A the adele ring of 4=M,@Q); i.e. A is the restricted
direct product of A, with respect to O,. By the canonical injection, 4 may
be considered as a discrete subgroup of A. It is known that the factor group
A/4 is compact. We denote by A= the set of all elements x=(x,) of A such
that x,= 0, for all p= co. It isan open subgroup of A. We have A= A~+4.

We have y,(0,)=1 for p+#oco. We define a function x:Ippr on A. Itis

a unitary character of A. Obviously, y(xy)=yx(yx) for all x,y= A. By the
mapping
AXAS (X, N— 10 eC,

A is self-dual, and the annihilator of 4 is again 4.

Let dx, be the Haar measure on 4,, normalized as in §1. We denote by
dx the restricted direct product of dx,. There exists the canonical Haar mea-
sure dX on A/4 satisfying the relation

[ o= {5 fat&}dz

for all fe L(G). We have
(5.2) di=1.

The Fourier transform of a function ¢ in L,(A) is denoted by ¢:
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b= [ p@rtpde  for ys A,

By the above definition, we have gé(x):go(-—x), if ¢ and ¢ are in L,(A). Let
¢, be a function on A, satisfying the conditions

D ¢y b, CAINLA)  for all p,

i) =1%o, for almost all p.
We put goz{)[gop. Then, the function ¢ belongs to C(A) N L,(A), and we have

6.3 $p=10, for almost all p, $=T11¢,.
D

Let x=(x,) be an element of A. Then, detx,= Z, for almost all p. So
the element (det x,) of ITQ, is in the adele ring of Q. We write
D

det x=(det x,).

The totality of invertible elements in A is denoted by G, on which we
introduce the weakest topology, such that the mappings G=>x—x= A and
G>ox—x1e A are both continuous. Then, G is equal to the restricted direct
product of G, with respect to U,. G is called the idele group of 4= M,@Q).
By the canonical injection, /"= GL(n, @) may be considered as a discrete sub-
group of G. Put U=IIU,, then it is a maximal compact subgroup of G.

p

Let Z be the centre of G. It is equal to the restricted direct product of Z,
with respect to Z,\U,. We denote by G> the set of all elements g=(g,) of
G satisfying g, U, for all p#co. It is an open subgroup of G.

An element x of A belongs to G, if and only if det x is in the idele group
of Q. For an element g=(g,) of G, we put

I detgllzl;lldetgp Ip -

We have || detu||=1 for u< U, and | dety||=1 for yeI'. Furthermore, we
have

d(gx)=d(xg)=|| det g [[*dx
for g= G.

We denote by du, the Haar measure on U,, normalized as in §1. We
call du the direct product of du, Of course, the total measure of U is equal
to 1. Let dg, be the Haar measure on G, normalized as in §1. We write
dg the restricted direct product of dg,. There exists on the homogeneous
space G/I' the canonical invariant measure dg, such that the relation

[ f@dg={ {Zfen}dz.

holds for all f= L(G). Let L(G, U) be the set of all functions ¢ in L(G) such
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that e(ugu)=¢(g) for all u, W U and g G. For ¢ in L(G, U) and f in
C(G), we define the convolution ¢#*f by

(ex/X&)=[ plehnfdh, g=G.

We define a multiplication in L(G, U) by the convolution, then it becomes a
ring. It is known that the ring L(G, U) is commutative.

We denote by £ the set of all spherical functions on G relative to U, and
by £ the totality of positive-definite spherical functions. We have | w(g)|
=1, 0(@=w(g™") for w= 2*. We denote further by £ the set of all w in 2
such that w({g)=w(g) for all {=Z and g G. Every spherical function @
on G can be written uniquely in the form a):l’{} w,, 0, < 2, Conversely, if

w, is a spherical function on G, for every p, then the function w =T w, on
p
G is spherical. Moreover, a spherical function w = JTw, belongs to 27 (resp. 9),
»

if and only if o, belongs to 2} (resp. 2,) for all p.

A function f in C(G) will be called an automorphic function with respect
to I', if the following conditions are satisfied:

) flugr)=f(g) foralluelU, geG, yrel’,

ii) to every ¢ e L(G, U), corresponds a complex number A, satisfying the
relation ¢ % f= A,f.

For a non-zero automorphic function f, there exists a unique spherical
function w, satisfying the condition

§ faughdu=w(@sce’) for all g, g'cG.

Then, we say that f belongs to w. We consider a spherical function in 2+=
2+~ 0 to which a non-zero automorphic function belongs. The set of all such
spherical functions is called the spectrum of I" in 2%, and is denoted by s(I").

If fis a non-zero automorphic function belonging to w in the spectrum, then
there exists an element 4 of G, such that

G4 J(n) =+ 0, [ dethf=1.

In fact, we have for all {=Z and g G,

fC)= k) =fGug)=| Cugdu=w@f=Fg).

On the other hand, there exists an element g& G such that f(g)+0. We put

Cp=1, (p#0), w=] detg |™nl,, {=(,) and h=Cg. Then, we have f(h)
=f(8)+0, |deth|=]detl| x| detg|=1.
A function ¢ on A is called of type Z, if the following conditions are
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satisfied :

@) ¢, $ e CADN LA,
(Z2) Puxv)=¢P(x), {b(uxv):g@(x) for all u,ve U, x< A,
(Z3) there exists a real number o¢,, such that

JJo@detgl?ldg<eo, [ (o)l detg|”|dg<oo for o> o,

(Z4) §A¢(g(x+£)h), ;Agl(g(x—l—éf)h) converge absolutely and uniformly on
any compflct subset of eféments (g,x,h) in GXAXG,

Z5) gb(x):gﬁ(x):O for every element x of A such that det x=0.

We see that ¢ is of type Z if and only if g@ is of type Z.

For a function ¢ of type Z and a spherical function @ in s(I"), we define
a global {-function by the integral

Cue, )= [ d(@)o(g™) | det g 'dg .

We have | w(g)| =<1 for all g= G, so by (Z3), the above integral converges for
Re z > a,.

PROPOSITION 12. For every ¢ of type Z and every w in s(I), the function
Lu(z, ) is continued to an entire function. It satisfies the functional equation

Co(z, w)=Ci(n—z, w).
Proor. The “theta-formula ”

(5.5) > d(hirg)=| det hg™ |* = d(g~'rh), g, he G
rer el

holds for every ¢ of type Z. Indeed, by the formulas d(gx)=d(xg) = |det g||"dx,
we see easily that the function L,R,¢ is in C(4) ~ L,(A). The Fourier trans-

form of L,R,¢ is equal to | det hg™! llnLthgZ', by the following calculation :

§ 9trxeydr=1det hg= I"f ¢xthrg~y)dz

= det hg || PDxtxg~yh)dx
= || det hg'|"P(g~iyh).
Therefore, from (Z4) and (5.2), we get by the Poisson formula
S P(hEg)=| det hg ! ||" 3 (g ~Eh).
4 1=V

If £ I, then det (h6g) = det (g ~'&h) =0, hence by (Z5) H(h—*eg)=¢(g ~1&h)=0.
So we obtain the “ theta-formula” (5.5).
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Now, for a non-zero automorphic function f belonging to we s(I”), there

exists an element h e G such that f(h)+0, |deth]|=1 (cf. [54). By the use
of this element 7, we have for Rez > ¢,

JCu(z, )= fa¢(g)w(g‘1)f(h) | det g ||I*dg
= fU(fasb(g)f(g“luh) | det g |[ng) du
= [ ([ hg7@) | det g |*dg)du (g~ uhg™)

= | $(hg ()] det g |-*dg

ot [P
lldet gli =1 [fdet gll =1

We transform the two integrals of the right-hand side as follows:

the first integral = jlldetg|l< Dd(hg~Df(g) |l det g ||~*dg

1

= P(Df(g~h) | det g |*dg,
lldet gl 21

the second integral:fﬂ detg”Zlgb(hg*l)f (@)l det g ||-*dg
— h -1 d ~*dg
{ s gy S PBTE D | det g |dg

> dlerh A8 | det g |**dg

J'c:/r, lldet gl 21 7T

—[  Heh @)l detg |*dg
lldet g|

|z1

B j.“detg” Zl@(g)f(gh) | det g |**dg .

We applied the “theta-formula” (5.5) in the transformations of the second
integral. Consequently, we have for Re z >0,

(5.6) fiGee )= g detgldg

tgll

J i @rem] det g |"dg.
et gll 1

Similarly, considering that ¢(x)=¢(—x)=¢(x) and that w(g)=w(g-l), we
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have f(NLHz, @)= [ d(gh /(&) det g |*dg and

G FWs G, @)= P(f(g ™) | det g |"*dg

Idet gl =1

+f ldet g1 ZISZ(g)f(gh) | det g |dg

for Re z > a,.

The first integral of and the second integral of converge for
Re z >0, Since both integrals extend over |detg| =1, they converge for
all z. From this follows the convergence for all z of the second integral of

and of the first integral of [5.7). This means that the functions {¢(z, ®)
and {j(z, w) are continued to entire functions. The functional equation readily

follows from and [5.7).

§6. (-function of M, (@
With every p, we associate a spherical function on G,:

Wy = Wsy(p) e ysplpd (51(1)), Tty Sn(p) = C) .

Let {,(z, w,) be the local {-function with the weight function ¢, (cf. [LI).
We consider the spherical function o =1[ ®, on G.
»

THEOREM. We assume that the spherical function w is in the spectrum
s(I). Then, the infinite product

Lz, 0)= I} Co(z, @p)
converges absolutely for Rez>n. And the function
(e @) IT (2= s:(e2)z— (o) —1)

is continued to an entire function. The meromorphic function {(z, w) on the
whole z-plane satisfies the functional equation

((z,w)={(n—z, o).

REMARK. Since w is in s(I"), we have w, < 2,. So the relation

- _ n(n—1) 2y —1
g‘; si(p) = T (mod. “Tog b )

holds by (1.4). From this and Proposition 1, we have
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1 a—pirpoy (b0,
CP(Z’ wp) -

e :I#Ilp(fjjziﬁi'l) (p=00).

Before the proof of the theorem, we need some preliminaries. We define
a function ¢ on A. as in Corollary of Proposition 10. We put

¢p:¢p (P # ), Sb:]pIpr-

PrROPOSITION 13. The function ¢ on A is of type Z with g,=n, and 1is
self-reciprocal.
Proor. We have

A~

¢ € C(Ap) N Li(Ap), bp=0¢p

for all p. It is obvious for p = oo; and for p=oco, it follows from Proposition
7, 1) and Corollary of Proposition 10. Hence, we have by (5.3)

geCDNLD, =9,
which mean (Z1). We can easily verify (Z2) and (Z5). Furthermore, we have
Wo,1,0 n-1=1,

hence we have by Proepdsition 1 and Proposition 7, ii)

[ 1onen)detg,lzlde,=[ 19508 | @0n,ms(85) ) det g, l5dg,
Gp Gp

=T A—p1p) (p+00),

=3O b [ aedalese-)

X @1 123D | det geo |2, dges < 00 (p=o0)
for ¢ >n—1. Hence,

[ 1¢nenldet g lgldg, <o for o> n—1,
(6.1) ?
pgm(f%l Pp(gp) | det g, 151 dgp) =1 L—G—1) for o>n.

Applying (5.1) to these formulas and to the fact

dp(up) |detu, 5 =1 for all u,e U,, p+ oo,
we obtain

[ 19@l detgl?ldg <o for o>n.



406 M. KINOSHITA

This is the condition (Z3) in the case ¢,=n.

Let a=(a,) and b=(b,) be elements of G. We denote by a,(i,j) (resp.
by, 7)) the (i, j) element of a, (resp. b,). Since we have a,, b, € U, for almost
all p, we can associate with every p# oo a non-negative integer n,(a, b) satis-
fying the conditions

i) nya, b)=0 for almost all p+ oo,

i) a0l 10,3, 0 |p < pre@d for all p =+ oo.

Hence, for y,=(y,0, ) € a,0,b,, we have
| 3@, 1) |p = p2ree® .
‘We denote by a(a, b) the ideal of @ generated by the rational number TJp—2"»@D,

P
‘Then, considering that ¢, =y,, for all p+ co, the following inferences hold:

For x=(x,) € A™, g=(g,) € G*a™}, h=(h,) € b™'G> and £=(§;) € 4,
D gp(xp+Ehp) =1 for all p# oo
S xp,+E € g5'0php' = a,0,b, for all psoco
=&y lp = prore? for all p=co
=& € My(ala, b)).

From them, we get

®2) SIHEEAONI S 3 | fuleratOh)]

EE M, @(a,b

for g G~a™, he b'G™ and x= A*. We define a function 1 on A. by
A(Xe0) = €XP (-?;,l XDy Xoo=(%:}) € Ao

Then, there exists a constant X >0, such that
6.3) | Poo(Xoo) | £ KA(Xo0)

for sufficiently large | x;;|. Let a be an ideal of Q. We see easily that the
series
3 A(gooXeotE)heo)
gy @),

converges uniformly on any compact subset of elements (gw, X, fe) 1In
Goo X Aw X Gw. Therefore, (Z4) follows from (6.2), and the relation A
=4+ A>.

PrROOF OF THEOREM. By proposition 13 and [Proposition 12, the global
¢-function {4(z, w) has the following properties:

64) iz )= §@w(g ] detg ['dg  for Rez>n,

(6.5) Loz, w)=Cy(n—2z, @).
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On the other hand, we have

Oupwy(up) | detu, =1  for u,e U, p+ o,

66 | J, | 9EIwE) et g,y ldgy <o for Rez>n—1,

11 [ 19ueonesh | detg, 5] dg, <o for Rez>n,
»

and
©.7) J. dxgDwes) det g, ldg,
p

Eo(2, p) (p # o),

b e 0D T s N se)-D)  (p= e

for Rez>n—1. Indeed, since | w,(g,) | =1 for all element g, of G, the for-

mulas follow from (6.1). The formula holds for sufficiently large

Re z by [Proposition 1l and [Proposition 11. The left-hand side integral of

converges for Re z>n—1 by [6.6), so the formula holds for Re z > n—1.
Therefore, we have by [6.4), [(6.6), [(5.1) and [(6.7)

Lz, =TI [ ¢g)w,(g5)]detg,l;dg,
p YGp

= gm0 0 TTG—seNz—se)—1)
for Rez>n. And the infinite product
(=, w)= l_pI Eo(z, @p)

converges absolutely for Re z >n. Hence, we see that the function
iz, @) I = si(e2)z—s:(00)—1)
is continued to an entire function. We write in the form
{2, @) 1T (= si(eo))z—s:(c0)—1)
={(n—z, 6)i=ﬁ1 (n—z—s,(co))(n—z—s,(c0)—1).

Considering we have

i=f[1 (z—s(coN(z—s:(00)—1) = 1:1—‘[1 (n_z_m)(n_z_gi(_oo)_l) .
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Hence, we obtain the result

(1]

[2]
[3]
[4]
[5]
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[13]
[14]
[15]
[16]

C(z,0)={(n—2z, ).
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