On the ζ -functions of a total matric algebra over the field of rational numbers

By Moto-o KINOSHITA

(Received Jan. 28, 1965)

Introduction

Iwasawa and Tate [8, 15] reconstructed the theory of Hecke's L-function as a theory of the ζ -function, attached to a number field k, with a character of the idele class group of k. Since then, it has been expected to generalize this theory to the case of the ζ -function of a simple algebra over the rational number field Q. Let A and G be the adele ring and the idele group of a simple algebra over Q respectively. Fujisaki [2, 3] solved the problem for the ζ -function with an abelian character of G. The theory of Fujisaki includes the results of Hey and Eichler [7, 1]. Godement [4] showed the possibility of applying the Iwasawa-Tate method to the ζ-function, attached to a division algebra, with a "non-abelian character" of G. Tamagawa [14] developed the theory of Euler product. He determined an explicit form of the local ζ -function, attached to a simple algebra, with a zonal spherical function. And he proved that the ζ -function of a division algebra, defined as an infinite product of local ζ-functions, satisfies a functional equation. From the theory of Maass [9] on the Dirichlet series corresponding to a non-holomorphic automorphic function on upper half-plane, we can extract a theory of the ζ-function, attached to the total matric algebra of degree 2 over Q, with a zonal spherical function.

On the other hand, Hecke [6] gave the theory of constructing Dirichlet series with Euler product and functional equation out of a modular form. Shimura [12] generalized this theory to the case of the automorphic form of Hilbert type by means of the Iwasawa-Tate method. In other words, the ζ -function of a quaternion algebra, with a spherical function, not necessarily of class 1, was treated.

The purpose of the present paper is to prove that the ζ -function of a total matric algebra over Q is defined as an infinite product of local ζ -functions, is meromorphic on the whole z-plane and satisfies a functional equation, if the "character" is a zonal spherical function determined by a certain automorphic function on G (cf. § 6, Theorem).

We shall sketch the contents of the paper. Let p be a prime number or ∞ . We denote by A_p the completion at p of the total matric algebra over Q of degree p. The group of all invertible elements in A_p is denoted by G_p .

For a zonal spherical function ω_p on G_p relative to a maximal compact subgroup of G_p , we introduce a local ζ -function at p, $\zeta_p(z, \omega_p)$, with a certain weight function ϕ_p (cf. (1.1)). The weight function ϕ_{∞} is defined by

$$\phi_{\infty}(x) = \exp(-\pi t r(x^t x)), x \in A_{\infty}$$
.

For the proof of the theorem, we need a trick, suggested by Shimura [12] (pp. 270-272). We consider another local ζ -function at ∞ with a modified weight function of the form

$$\psi_{\infty} = w\phi_{\infty}, \qquad w = \sum_{s=0}^{n} M_s c_0 c_s$$
.

Here, the M_s are real numbers, and the c_s are the functions on A_{∞} defined by

$$\det\left(x^tx-T1_n\right)=\sum_{s=0}^n\left(-1\right)^sc_s(x)T^s$$
, $x\in A_\infty$,

where T is an indeterminate.

We choose M_s so that the Fourier transform of ψ_{∞} is equal to ψ_{∞} . In § 2, § 3 and § 4, we shall show that it suffices to take

$$M_s = (-1)^s \frac{(s+2)!}{2} \frac{1}{(2\pi)^s}$$

by rather technical computations. The starting-point is Proposition 2, cited from Maass [10], p. 4. In § 2, we reduce the problem to that of finding a sequence N_s ($s = 0, 1, 2, \cdots$) which satisfies the linear equations

$$\sum_{s=0}^{m} B_{s}(t, m) N_{s} = \left\{ egin{array}{ll} 0 & (1 \leq t \leq m) \ (-1)^{m} N_{m} & (t=0) \end{array}
ight.$$

for all non-negative integers m. The coefficients $B_s(t,m)$ are defined inductively, but it is difficult to express them in a simple formula by s, t and m. In § 3, we calculate two auxiliary integrals. Making use of the one, we compute $B_s(m,m)$ in Proposition 8, § 4. On the other hand, Proposition 9 enables us to express in some sense the coefficients $B_s(t,m)$ by $B_s(m-l,m-l)$. We see, in Proposition 10, that a sequence $N_s=(s+2)!$ satisfies the above equations. The other integral in § 3 is a means to calculate the local ζ -function at ∞ with the modified weight function thus obtained (Proposition 11).

In § 5, we define a function on A of type Z by $(Z1), \dots, (Z5)$. This definition is analogous to that of Tate [15] except (Z5). Then, we define a global ζ -function with a weight function of type Z. The condition (Z5) allows us to apply the Iwasawa-Tate method to the global ζ -function, as is seen in

Proposition 12.

In § 6, we state the theorem. For the proof, we first construct the function ϕ of type Z by the usual weight functions at $p \neq \infty$ and by the modified weight function at ∞ . We deduce a functional equation of

$$\prod_{p} \zeta_{p}(z, \omega_{p})$$

from that of the global ζ -function with the weight function ϕ .

Notations

As usual, Z, Q, R and C are the sets of all integers, rational numbers, real numbers and complex numbers respectively. For a real number x, we denote by [x] the largest integer n which satisfies $n \le x$. For a complex number z, \bar{z} is the complex conjugate of z.

Let p be a prime number or ∞ . For $p \neq \infty$, we denote by \mathbf{Q}_p the field of all p-adic numbers, and by \mathbf{Z}_p the ring of all p-adic integers. We put $\mathbf{Q}_{\infty} = \mathbf{R}$. Let x be an element of \mathbf{Q}_p . In the case $p \neq \infty$, we denote by $\{x\}_p$ the main part of the p-adic expansion of x. So, if we expand x in the form

$$x = \sum_{i \geq n_0} a_i p^i$$
, $0 \leq a_i \leq p-1$, $a_{n_0} \neq 0$,

then we have

$$\{x\}_p = \sum_{i < 0} a_i p^i$$
.

We put $\operatorname{ord}_p(x) = n_0$ and $|x|_p = p^{-\operatorname{ord}_p(x)}$. In the case $p = \infty$, $|x|_{\infty}$ means the usual absolute value of x.

Let R be a commutative ring. We denote by $M_n(R)$ the ring of all matrices of degree n over R. For an element x of $M_n(R)$, the symbols tr(x) and tx mean the trace of the matrix x and the transposed matrix of x respectively. If R has an identity, GL(n,R) denotes the group of all matrices in $M_n(R)$ whose determinants are the invertible elements of R. The neutral element of GL(n,R) is denoted by 1_n .

Let S be a set, and T be a subset of S. The characteristic function of T on S is denoted by $\chi_{T,S}$, and sometimes by χ_{T} , if there is no fear of confusion. When S is a finite set, we denote by $\sharp S$ the number of all elements of S.

Let S be a topological space. We shall frequently use the following notations.

C(S): the set of all complex valued continuous functions on S.

L(S): the set of all functions in C(S) with compact carrier.

When the space S has a measure, $L_1(S)$ denotes the set of all complex valued integrable functions on S.

Let A be a ring, and f a function on A. For an invertible element a of

 A_{\bullet} we define operators L_a and R_a by

$$(L_a f)(x) = f(a^{-1}x), \qquad (R_a f)(x) = f(xa), \qquad x \in A.$$

§ 1. Local ζ-functions

Let us put $A_p = M_n(\mathbf{Q}_p)$, and for $p \neq \infty$, $O_p = M_n(\mathbf{Z}_p)$. A_p is a locally compact topological ring, and O_p is an open compact subring of A_p . We define a unitary character χ_p of A_p by

$$\chi_p(x) = \begin{cases} \exp(2\pi\sqrt{-1}\{tr(x)\}_p) & (p \neq \infty), \\ \exp(-2\pi\sqrt{-1}tr(x)) & (p = \infty) \end{cases}$$

for $x \in A_p$. We have $\chi_p(O_p) = 1$. Obviously, $\chi_p(xy) = \chi_p(yx)$ for every $x, y \in A_p$. A_p is self-dual by the mapping

$$A_p \times A_p \ni (x, y) \rightarrow \chi_p(xy) \in \mathbf{C}$$
.

We denote by dx a Haar measure of A_n . Then, we have

$$d(ax) = d(xa) = |\det a|_n^n dx$$

for every element a of A_p such that det $a \neq 0$. The Fourier transform of a function φ_p in $L_1(A_p)$ is denoted by $\widehat{\varphi}_p$:

$$\hat{\varphi}_p(y) = \int_{A_p} \varphi_p(x) \chi_p(xy) dx$$
 for $y \in A_p$.

We normalize the measure dx in such a way that the total volume of O_p is equal to 1 for $p \neq \infty$, and that $dx = \prod_{i,j} dx_{ij}$ for every element $x = (x_{ij})$ of A_{∞} .

(1.1)
$$\phi_p(x) = \begin{cases} \chi_{op}(x) & (p \neq \infty), \\ \exp(-\pi t r(x^t x)) & (p = \infty) \end{cases}$$

We set

for $x \in A_p$. Then, we have $\phi_p \in C(A_p) \cap L_1(A_p)$ and $\hat{\phi}_p = \phi_p$.

Put $G_p = GL(n, \mathbf{Q}_p)$, $U_p = GL(n, \mathbf{Z}_p)$ for $p \neq \infty$ and $U_\infty = O(n, \mathbf{R})$. Inducing to G_p the topology of A_p , G_p is a unimodular locally compact group, and U_p is a maximal compact subgroup of G_p . U_p is an open subset of G_p for $p \neq \infty$. Let Z_p be the centre of G_p .

We denote by du the Haar measure on U_p , such that the total volume of U_p is equal to 1. A non-zero function ω_p in $C(G_p)$ is called zonal spherical function relative to U_p , or simply spherical function, if the condition

(1.2)
$$\int_{U_p} \omega_p(g u g') du = \omega_p(g) \omega_p(g') \quad \text{for all } g, g' \in G_p$$

is satisfied. For spherical functions, we refer to [5], [11], [13], [14]. We have $\omega_p(1_n) = 1$. A spherical function ω_p is called positive-definite, if it satis-

fies the condition

$$\iint_{G_p \times G_p} \omega_p(gh^{-1}) f_p(g) \overline{f_p(h)} dg dh \ge 0$$

for all $f_p \in L(G_p)$, where dg is a Haar measure on G_p . We denote by Ω_p the set of all spherical functions, and by Ω_p^+ the totality of positive-definite spherical functions. If ω_p is a positive-definite spherical function, then we have

$$|\omega_p(g)| \leq 1$$
, $\overline{\omega_p(g)} = \omega_p(g^{-1})$ for all $g \in G_p$.

Moreover, we denote by $\tilde{\Omega}_p$ the set of all ω_p in Ω_p which satisfy the condition

$$\omega_p(\zeta g) = \omega_p(g)$$
 for all $\zeta \in Z_p$, $g \in G_p$.

We note that the above definitions and properties of spherical functions are valid when G_p is a general unimodular locally compact group and U_p is a compact subgroup of G_p .

Spherical functions are parametrized by n complex numbers as follows. Let T_p be the set of all upper triangular matrices in G_p whose diagonal elements are integral powers of p or positive numbers according as $p \neq \infty$ or $p = \infty$. Every element p of p can be written uniquely in the form:

$$g = ut$$
, $u \in U_p$, $t \in T_p$, or $g = t_1u_1$, $t_1 \in T_p$, $u_1 \in U_p$.

With n complex numbers s_1, \dots, s_n , we associate a character α_{s_1, \dots, s_n} of T_p :

$$\alpha_{s_1,\cdots,s_n}(t) = \prod_{i=1}^n |t_{ii}|_p^{-s_i+(i-1)}, \ t = (t_{ij}) \in T_p.$$

The character α_{s_1,\dots,s_n} is extensible to a function on G_p by putting

$$\alpha_{s_1,\dots,s_n}(ut) = \alpha_{s_1,\dots,s_n}(t)$$

for $u \in U_p$, $t \in T_p$. Then, the function ω_{s_1,\dots,s_n} on G_p , defined by

$$\omega_{s_1,\cdots,s_n}(g) = \int_{U_n} \alpha_{s_1,\cdots,s_n}(g^{-1}u)du, \qquad g \in G_p$$
,

is spherical. Conversely, for every spherical function ω_p on G_p , there exist complex numbers s_1, \dots, s_n such that $\omega_p = \omega_{s_1, \dots, s_n}$. By the above definition, we have $\overline{\omega_{s_1, \dots, s_n}} = \omega_{\overline{s_1}, \dots, \overline{s_n}}$ and

(1.3)
$$\omega_{s_1,\dots,s_n}(g) \mid \det g \mid_n^z = \omega_{s_1+z,\dots,s_n+z}(g).$$

We denote by \mathfrak{S}_n the symmetric group of degree n. Spherical functions ω_{s_1,\dots,s_n} and $\omega_{s_1',\dots,s_n'}$ coincide with each other, if and only if

$$s_{\sigma(i)} \equiv s_i' \pmod{\frac{2\pi\sqrt{-1}}{\log p}}, \quad i = 1, \dots, n$$

for some element σ of \mathfrak{S}_n , where $2\pi\sqrt{-1}/\log p$ means zero for $p=\infty$. In

particular, $\omega_{s_1,\dots,s_n}=1$, if and only if

$$s_{\sigma(i)} \equiv i-1 \pmod{\frac{2\pi\sqrt{-1}}{\log p}}, \quad i=1, \dots, n$$

for some $\sigma \in \mathfrak{S}_n$. The condition

(1.4)
$$\sum_{i=1}^{n} s_i \equiv \frac{n(n-1)}{2} \pmod{\frac{2\pi\sqrt{-1}}{\log p}}$$

is necessary and sufficient for ω_{s_1,\cdots,s_n} to be in $\tilde{\mathcal{Q}}_p$. If a spherical function ω_{s_1,\cdots,s_n} belongs to \mathcal{Q}_p^+ , then we have

(1.5)
$$\overline{s}_i \equiv n - 1 - s_{\sigma(i)} \left(\text{mod.} \frac{2\pi\sqrt{-1}}{\log p} \right), \quad i = 1, \dots, n$$

for some $\sigma \in \mathfrak{S}_n$.

We normalize the measure dg on G_p so that for $p \neq \infty$, the total volume of U_p is equal to 1, and that for $p = \infty$, we have

$$dg = 2^n du \left(\prod_{i=1}^n t_{ii}^{-i} dt_{ii}\right) \left(\prod_{i < j} dt_{ij}\right)$$
 ,

where g = ut, $u \in U_{\infty}$, $t = (t_{ij}) \in T_{\infty}$.

Let ω_p be a spherical function on G_p . Let ϕ_p be the function on A_p as (1.1). The following proposition is a special case of a result of Tamagawa [14].

PROPOSITION 1. If $\omega_p = \omega_{s_1, \dots, s_n}$, then the integral

$$\zeta_p(z, \omega_p) = \int_{\mathcal{G}_p} \phi_p(g) \omega_p(g^{-1}) |\det g|_p^z dg$$

converges for $\operatorname{Re} z > \operatorname{Max}_i(\operatorname{Re} s_i)$. The function $\zeta_p(z, \omega_p)$ of z is continued to a meromorphic function on the whole z-plane, which is called the local ζ -function at p with weight function ϕ_p . We have

$$\zeta_{p}(z, \omega_{p}) = \begin{cases}
\prod_{i=1}^{n} (1-p^{s_{i}}p^{-z})^{-1} & (p \neq \infty), \\
\pi^{-\frac{n}{2}z + \frac{1}{2}\sum\limits_{i=1}^{n} s_{i}} \prod\limits_{i=1}^{n} \Gamma\left(\frac{z-s_{i}}{2}\right) & (p = \infty).
\end{cases}$$

Now, we ask if the infinite product $\prod_p \zeta_p(z, \omega_p)$ converges in some region of z-plane, if it is continued to a meromorphic function on the whole z-plane and if it satisfies a functional equation under some assumptions on $\{\omega_p\}_{p\leq\infty}$. When $n\neq 1$, these questions shall not be solved by the immediate application of the Iwasawa-Tate method to the idele group of $M_n(Q)$. As was suggested by Shimura [12] pp. 270-272, we need another local ζ -function at ∞ , with a slightly modified weight function, which will allow us to apply that method.

Let $X = (X_{ij})$ be an (n, n) matrix of n^2 indeterminates X_{ij} ; let w(X) be a polynomial of X_{ij} over C. We define a function w on A_{∞} by

$$A_{\infty} \ni x \rightarrow w(x) \in \mathbf{C}$$
,

which will be called the polynomial on A_{∞} . The Gauss transform w^* of a polynomial w on A_{∞} is defined by

$$w^*(x) = \int_{A_{\infty}} w(x+y)\phi_{\infty}(y)dy, \quad x \in A_{\infty}.$$

The function w^* is a polynomial on A_{∞} . Put $\tilde{w}(x) = w^*(-\sqrt{-1}^t x)$. Then, we get easily

$$\widehat{w\phi}_{\infty} = \widetilde{w}\phi_{\infty}$$
.

We adopt a modified weight function of the form $w\phi_{\infty}$.

Actually, we use a polynomial of more restricted type as follows. Let T be an indeterminate. We define a polynomial c_s $(s=0,\cdots,n)$ on A_{∞} by

$$\det(x^t x - T1_n) = \sum_{s=0}^n (-1)^s c_s(x) T^s, \quad x \in A_\infty.$$

In particular, $c_0(x) = (\det x)^2$, $c_n(x) = 1$. We put

(1.6)
$$\psi_{\infty} = w\phi_{\infty}, \quad w = \sum_{s=0}^{n} M_s c_0 c_s, \quad M_s \in \mathbf{R}.$$

Then, we have

$$\left\{egin{array}{ll} \phi_{\infty}(uxv)=\phi_{\infty}(x) & ext{for} \quad u,\,v\in U_{\infty},\,\,x\in A_{\infty}\,, \ \ \phi_{\infty}(x)=0 & ext{for} \quad x\in A_{\infty},\,\,\det x=0\,. \end{array}
ight.$$

In the following sections, we shall seek a function ϕ_{∞} of the form (1.6) satisfying the requirements

- i) $\hat{\phi}_{\infty} = \phi_{\infty}$,
- ii) the local ζ -function at ∞ with the weight function ϕ_∞ is not identically zero.

§ 2. Some properties on determinants

In § 2, § 3 and § 4, we consider only functions on A_{∞} or G_{∞} , so we omit the suffix ∞ . Let w be a polynomial on A. For integers i, j $(1 \le i, j \le n)$, we define an operator $\partial/\partial(ij)$ by

$$\frac{\partial w}{\partial (ij)}(x) = \frac{\partial w(x)}{\partial x_{ij}}, \quad x \in A.$$

Put
$$\Delta = \sum_{i,j} (\partial/\partial(ij))^2$$
.

We cite the following proposition from Maass [10], p. 4.

Proposition 2. For every polynomial w on A, we have

$$w^* = \sum_{k=0}^{\infty} \frac{1}{(4\pi)^k k!} \Delta^k w$$
.

Since $\Delta^k w = 0$ for sufficiently large k, the right-hand side of the above relation is a finite sum.

Put $c_{\mu} = 0$ for $\mu > n$.

Proposition 3. We have

$$\Delta(c_r c_s) = 2\{(r+1)^2 c_{r+1} c_s + (s+1)^2 c_r c_{s+1} + 4 \sum_{t=0}^{r} (-r+s+2t+1) c_{r-t} c_{s+t+1}\}$$

for integers r and s such that $0 \le r$, $s \le n$.

We need some preliminaries for the proof of the proposition. We denote by I_n the set of integers $\{1, \dots, n\}$. Let s be a non-negative integer; let $\{i_1, \dots, i_s\}$ and $\{j_1, \dots, j_s\}$ be two indexed sets of s integers in I_n .

Suppose x is an element of A. If i_1, \dots, i_s are mutually different and j_1, \dots, j_s are also mutually different, we denote by

$$d(i_1 \cdots i_s; j_1 \cdots j_s)(x)$$

the minor of $\det x$ formed by removing i_1, \cdots, i_s -rows and j_1, \cdots, j_s -columns; we put

$$e(i_1 \cdots i_s; j_1 \cdots j_s)(x) = \operatorname{sign}(i_1 \cdots i_s) \operatorname{sign}(j_1 \cdots j_s) d(i_1 \cdots i_s; j_1 \cdots j_s)(x)$$
.

If $i_{\alpha} = i_{\beta}$ or $j_{\alpha} = j_{\beta}$ for different integers α , β such that $1 \leq \alpha$, $\beta \leq s$ (in particular, when s > n), we set

$$d(i_1 \cdots i_s; j_1 \cdots j_s)(x) = e(i_1 \cdots i_s; j_1 \cdots j_s)(x) = 0$$
.

From the definition of c_s , we obtain the equality

$$(2.1) c_s = \sum_{(s)} d(i_1 \cdots i_s; j_1 \cdots j_s)^2,$$

where $\sum_{(s)}$ means $\sum_{\substack{i_1 \leq \dots \leq i_s \\ i_1 \leq \dots \leq i_s}}$.

Suppose $i_1 < \cdots < i_s$, $j_1 < \cdots < j_s$. Let i and j be integers in I_n . Put

$$\mu = \sharp \{i_{\alpha}; \ 1 \leq \alpha \leq s, \ i_{\alpha} < i\}$$
, $\nu = \sharp \{j_{\alpha}; \ 1 \leq \alpha \leq s, \ j_{\alpha} < j\}$.

Then,

(2.2)
$$e(ii_1 \cdots i_s; jj_1 \cdots j_s) = (-1)^{\mu_+ \nu} d(ii_1 \cdots i_s; jj_1 \cdots j_s).$$

Therefore, we obtain the relation

(2.3)
$$\frac{\partial}{\partial(ij)}d(i_1\cdots i_s; j_1\cdots j_s) = (-1)^{i+j}e(ii_1\cdots i_s; jj_1\cdots j_s).$$

t follows from these results that

$$\Delta c_s = 2(s+1)^2 c_{s+1}.$$

Indeed, by (2.1) and (2.3), we have

$$\begin{split} \varDelta c_s &= \sum_{i,j} \sum_{(s)} \frac{\partial}{\partial (ij)} \{ 2d(i_1 \cdots i_s \, ; \, j_1 \cdots j_s) (-1)^{i+j} e(ii_1 \cdots i_s \, ; \, jj_1 \cdots j_s) \} \\ &= 2 \sum_{i,j} \sum_{(s)} d(ii_1 \cdots i_s \, ; \, jj_1 \cdots j_s)^2 \\ &= 2 \sum_{\substack{\mu,\nu=1 \\ j_1 < \dots < i_{\mu-1} < i < i_{\mu} < \dots < i_s \\ j_1 < \dots < j_{\nu-1} < j < j_{\nu} < \dots < j_s}} d(ii_1 \cdots i_s \, ; \, jj_1 \cdots j_s)^2 \\ &= 2 (s+1)^2 c_{s+1} \, . \end{split}$$

This completes the proof of (2.4).

We write $d(x) = \det x$, d(ij) = d(i; j). The equality

$$e(i_1 \cdots i_s; j_1 \cdots j_s) = \frac{1}{d^{s-1}} \begin{vmatrix} d(i_1 j_1) \cdots d(i_1 j_s) \\ \vdots & \vdots \\ d(i_s j_1) \cdots d(i_s j_s) \end{vmatrix}$$

holds for $s \neq 0$. So we have for $s \neq 0$

(2.5)
$$\sum_{\mu=1}^{s} (-1)^{\mu+\nu} d(i_{\mu}j_{\nu}) e(i_{1} \cdots \hat{i}_{\mu} \cdots i_{s}; j_{1} \cdots \hat{j}_{\nu} \cdots j_{s})$$

$$= \sum_{\nu=1}^{s} (-1)^{\mu+\nu} d(i_{\mu}j_{\nu}) e(i_{1} \cdots \hat{i}_{\mu} \cdots i_{s}; j_{1} \cdots \hat{j}_{\nu} \cdots j_{s})$$

$$= de(i_{1} \cdots i_{s}; j_{1} \cdots j_{s}).$$

LEMMA 1. Let a(i,j) be a polynomial on A for every i and j in I_n . Then, we have

$$\sum_{i,j} (-1)^{i+j} a(i,j) \frac{\partial c_s}{\partial (ij)}$$

$$= 2 \sum_{(s+1)} \sum_{\mu,\nu=1}^{s+1} (-1)^{\mu+\nu} a(i_{\mu},j_{\nu}) d(i_1 \cdots \hat{i}_{\mu} \cdots i_{s+1}; j_1 \cdots \hat{j}_{\nu} \cdots j_{s+1})$$

$$\times d(i_1 \cdots i_{s+1}; j_1 \cdots j_{s+1}).$$

In particular,

$$\sum_{i,j} (-1)^{i+j} d(ij) \frac{\partial c_s}{\partial (ij)} = 2(s+1) dc_{s+1}.$$

PROOF. Making use of (2.1), (2.3) and (2.2), we get the equalities

$$\begin{split} & \sum_{i,j} (-1)^{i+j} a(i,j) \frac{\partial c_s}{\partial (ij)} \\ &= 2 \sum_{i,j} (-1)^{i+j} a(i,j) \sum_{(s)} (-1)^{i+j} d(i_1 \cdots i_s \; ; \; j_1 \cdots j_s) e(ii_1 \cdots i_s \; ; \; jj_1 \cdots j_s) \end{split}$$

$$= 2 \sum_{\mu,\nu=1}^{s+1} (-1)_{\substack{i_1 < \dots < i_{\mu-1} < i < i_{\mu} < \dots < i_{s} \\ j_{1} < \dots < j_{\nu-1} < j < j_{\nu} < \dots < j_{s}}} \sum_{\substack{i_1 < \dots < i_{\mu-1} < i < i_{\mu} < \dots < i_{s} \\ j_{1} < \dots < j_{\nu} < \dots < j_{s}}} a(i,j)d(i_1 \cdots i_s; j_1 \cdots j_s)d(ii_1 \cdots i_s; jj_1 \cdots j_s)$$

$$= 2 \sum_{(s+1)} \sum_{\mu,\nu=1}^{s+1} (-1)^{\mu+\nu} a(i_{\mu}, j_{\nu})d(i_1 \cdots \hat{i}_{\mu} \cdots i_{s+1}; j_1 \cdots \hat{j}_{\nu} \cdots j_{s+1})$$

$$\times d(i_1 \cdots i_{s+1}; j_1 \cdots j_{s+1}).$$

They give us the first part of Lemma 1. As to the second part, we put a(i, j) = d(ij) in the first part, then the result follows readily from (2.5).

LEMMA 2. For integers α and β in I_n , we have

$$\sum_{i,j} (-1)^{i+j} d(i\beta) d(\alpha j) \frac{\partial c_s}{\partial (ij)} = 2d(\alpha \beta) dc_{s+1} - d^2(-1)^{\alpha+\beta} \frac{\partial c_{s+1}}{\partial (\alpha \beta)}.$$

PROOF. From Lemma 1 and (2.5),

$$\begin{split} &\sum_{i,j} (-1)^{i+j} d(i\beta) d(\alpha j) \frac{\partial c_s}{\partial (ij)} \\ &= 2 \sum_{(s+1)} \sum_{\mu,\nu=1}^{s+1} (-1)^{\mu+\nu} d(i_{\mu}\beta) d(\alpha j_{\nu}) d(i_1 \cdots \hat{i}_{\mu} \cdots i_{s+1}; \ j_1 \cdots \hat{j}_{\nu} \cdots j_{s+1}) \\ &\qquad \qquad \times d(i_1 \cdots i_{s+1}; \ j_1 \cdots j_{s+1}) \\ &= 2d \sum_{(s+1)} \sum_{\nu=1}^{s+1} d(\alpha j_{\nu}) e(i_1 \cdots i_{s+1}; \ j_1 \cdots j_{\nu-1}\beta j_{\nu} \cdots j_{s+1}) d(i_1 \cdots i_{s+1}; \ j_1 \cdots j_{s+1}) \\ &= 2d \sum_{(s+1)} (-\sum_{\nu=1}^{s+1} (-1)^{1+\nu+1} d(\alpha j_{\nu}) e(i_1 \cdots i_{s+1}; \ \beta j_1 \cdots \hat{j}_{\nu} \cdots j_{s+1})) \\ &\qquad \qquad \times d(i_1 \cdots i_{s+1}; \ j_1 \cdots j_{s+1}) \\ &= 2d \sum_{(s+1)} (d(\alpha \beta) d(i_1 \cdots i_{s+1}; \ j_1 \cdots j_{s+1}) - de(\alpha i_1 \cdots i_{s+1}; \ \beta j_1 \cdots j_{s+1})) \\ &\qquad \qquad \times d(i_1 \cdots i_{s+1}; \ j_1 \cdots j_{s+1}). \end{split}$$

The last expression is equal to

$$2d(\alpha\beta)dc_{s+1}-d^2(-1)^{\alpha+\beta} \frac{\partial c_{s+1}}{\partial(\alpha\beta)}$$

by (2.3). This completes the proof of Lemma 2.

LEMMA 3. Let r be a positive integer and s be a non-negative integer. Then,

$$\sum_{i,j} \frac{\partial c_r}{\partial (ij)} \frac{\partial c_s}{\partial (ij)} = 4(-r+s+1)c_r c_{s+1} + \sum_{i,j} \frac{\partial c_{r-1}}{\partial (ij)} \frac{\partial c_{s+1}}{\partial (ij)}.$$

PROOF. We have first by the use of (2.1) and (2.3)

$$\sum_{i,j} \frac{\partial c_r}{\partial (ij)} \frac{\partial c_s}{\partial (ij)}$$

$$= 2 \sum_{i,j} \sum_{(r)} d(i_1 \cdots i_r; j_1 \cdots j_r) (-1)^{i+j} e(ii_1 \cdots i_r; jj_1 \cdots j_r) \frac{\partial c_s}{\partial (ij)}.$$

On the other hand, when $i_1 < \cdots < i_r$, $j_1 < \cdots < j_r$, the relations (2.5) give us the equalities

$$\begin{split} &e(ii_{1}\cdots i_{r}\,;\,jj_{1}\cdots j_{r})\\ &=\frac{1}{d}d(ij)d(i_{1}\cdots i_{r}\,;\,j_{1}\cdots j_{r})+\frac{1}{d}\sum_{\nu=1}^{r}(-1)^{\nu}d(ij_{\nu})e(i_{1}\cdots i_{r}\,;\,jj_{1}\cdots \hat{j_{\nu}}\cdots j_{r})\\ &=\frac{1}{d}d(ij)d(i_{1}\cdots i_{r}\,;\,j_{1}\cdots j_{r})-\frac{1}{d^{2}}\sum_{\mu,\nu=1}^{r}(-1)^{\mu+\nu}d(ij_{\nu})d(i_{\mu}j)\\ &\qquad \qquad \times d(i_{1}\cdots \hat{i}_{\mu}\cdots i_{r}\,;\,j_{1}\cdots \hat{j_{\nu}}\cdots j_{r})\,. \end{split}$$

Accordingly, we can convert the sum

$$\sum_{i,j} \frac{\partial c_r}{\partial (ij)} \frac{\partial c_s}{\partial (ij)}$$

into the sum of two expressions:

$$(2.6) \qquad \frac{2}{d} \sum_{(r)} \sum_{i,j} d(i_1 \cdots i_r; j_1 \cdots j_r)^2 (-1)^{i+j} d(ij) \frac{\partial c_s}{\partial (ij)},$$

$$(2.7) \qquad -\frac{2}{d^2} \sum_{(r)} \sum_{\mu,\nu=1}^{r} \sum_{i,j} (-1)^{i+j} d(ij_{\nu}) d(i_{\mu}j) \frac{\partial c_s}{\partial (ij)}$$

$$\times (-1)^{\mu+\nu} d(i_1 \cdots \hat{i}_{\mu} \cdots i_r; j_1 \cdots \hat{j}_{\nu} \cdots j_r) d(i_1 \cdots i_r; j_1 \cdots j_r).$$

The expression (2.6) is reduced, by Lemma 1, to

$$4(s+1)c_rc_{s+1}$$
.

Taking into account Lemma 2, we again devide (2.7) into the sum of two expressions:

(2.8)
$$-\frac{4}{d} \sum_{(r)} \sum_{\mu,\nu=1}^{r} d(i_{\mu} j_{\nu}) c_{s+1} (-1)^{\mu+\nu} d(i_{1} \cdots \hat{i}_{\mu} \cdots i_{r}; j_{1} \cdots \hat{j}_{\nu} \cdots j_{r})$$

$$\times d(i_{1} \cdots i_{r}; j_{1} \cdots j_{r}),$$

(2.9)
$$2 \sum_{(r)} \sum_{\mu,\nu=1}^{r} (-1)^{\mu+\nu} (-1)^{i_{\mu}+j_{\nu}} \frac{\partial c_{s+1}}{\partial (i_{\mu}j_{\nu})} d(i_{1} \cdots \hat{i}_{\mu} \cdots i_{r}; j_{1} \cdots \hat{j}_{\nu} \cdots j_{r})$$

$$\times d(i_{1} \cdots i_{r}; j_{1} \cdots j_{r}) .$$

By the relations (2.5) and (2.1), we have

$$(2.8) = -4r \sum_{(s)} d(i_1 \cdots i_r; j_1 \cdots j_r)^2 c_{s+1} = -4r c_r c_{s+1}.$$

Further, Lemma 1 gives us the relations

$$(2.9) = \sum_{i,j} (-1)^{i+j} \left\{ (-1)^{i+j} \frac{\partial c_{s+1}}{\partial (ij)} \right| \frac{\partial c_{r-1}}{\partial (ij)} = \sum_{i,j} \frac{\partial c_{r-1}}{\partial (ij)} \frac{\partial c_{s+1}}{\partial (ij)}.$$

Summing up these results, we get

$$\sum_{i,j} \frac{\partial c_r}{\partial (ij)} \frac{\partial c_s}{\partial (ij)} = 4(-r+s+1)c_r c_{s+1} + \sum_{i,j} \frac{\partial c_{r-1}}{\partial (ij)} \frac{\partial c_{s+1}}{\partial (ij)}.$$

This completes the proof.

Proof of Proposition 3. We have

$$\begin{split} \varDelta(c_rc_s) &= \left\{ \varDelta(c_r)\,c_s + c_r\varDelta(c_s) + 2\sum_{i,j} \frac{\partial\,c_r}{\partial(ij)} \frac{\partial\,c_s}{\partial(ij)} \right\} \\ &= 2 \left\{ (r+1)^2 c_{r+1} c_s + (s+1)^2 c_r c_{s+1} + \sum_{i,j} \frac{\partial\,c_r}{\partial(ij)} \frac{\partial\,c_s}{\partial(ij)} \right\}. \end{split}$$

So it is enough to prove the formula

(2.10)
$$\sum_{i,j} \frac{\partial c_r}{\partial (ij)} \frac{\partial c_s}{\partial (ij)} = 4 \sum_{t=0}^r (-r + s + 2t + 1) c_{r-t} c_{s+t+1},$$

which we shall show by induction on r.

We have by Lemma 1.

$$\sum_{i,j} \frac{\partial c_0}{\partial (ij)} \frac{\partial c_s}{\partial (ij)} = 2d \sum_{i,j} (-1)^{i+j} d(ij) \frac{\partial c_s}{\partial (ij)} = 4(s+1)c_0 c_{s+1}.$$

This is the formula (2.10) for r = 0. Let $r \ge 1$. Suppose

$$\sum_{i,j} \frac{\partial c_{r-1}}{\partial (ij)} \frac{\partial c_s}{\partial (ij)} = 4 \sum_{t=0}^{r-1} (-r+s+2t+2) c_{r-1-t} c_{s+t+1}.$$

We get from Lemma 3

$$\sum_{i,j} \frac{\partial c_r}{\partial (ij)} \frac{\partial c_s}{\partial (ij)} = 4(-r+s+1)c_r c_{s+1} + 4\sum_{t=0}^{r-1} (-r+s+2t+3)c_{r-1-t} c_{s+t+2}$$
$$= 4\sum_{t=0}^{r} (-r+s+2t+1)c_{r-t} c_{s+t+1}.$$

This concludes the proof of Proposition 3.

On the ground of Proposition 3 and Proposition 2, we next define two sequences.

Sequence A. We shall define $A_l^k(s)$ for all integers k, l and s. For k, l, s not satisfying $k \ge l \ge 0$ and $s \ge 0$, we put

$$A_{I}^{k}(s) = 0$$
.

For k, l, s satisfying $k \ge l \ge 0$ and $s \ge 0$, we define $A_l^k(s)$ inductively by

$$\left\{ \begin{array}{l} A_0^0(s) = 1 \\ A_l^k(s) = A_l^{k-1}(s)(k-l)^2 + A_{l-1}^{k-1}(s)(s+l)^2 + 4(-k+2l+s) \sum\limits_{\mu=0}^{l-1} A_{\mu}^{k-1}(s) \, . \end{array} \right.$$

Sequence B. We shall define $B_s(t, m)$ for all integers s, t and m. For s, t, m satisfying $0 \le s$, $t \le m$, we put

$$B_{s}(t, m) = \frac{1}{1 + \delta_{t,m}} W_{t+m-s} \{ A_{t-s}^{t+m-s}(s) + A_{m-s}^{t+m-s}(s) \} ,$$

where $\delta_{t,m}$ is the Kronecker's symbol and $W_k = (-1)^k/k!$. For s, t, m not satisfying $0 \le s$, $t \le m$, we put

$$B_s(t, m) = 0$$
.

We explain the rôle of these sequences in the following Proposition 4 and Proposition 5.

PROPOSITION 4. Let s be an integer such that $0 \le s \le n$. For every nonnegative integer k, we have

(2.11)
$$\Delta^{k}(c_{0}c_{s}) = 2^{k} \sum_{l=0}^{k} A_{l}^{k}(s) c_{k-l}c_{s+l}.$$

In particular, $\Delta^k(c_0c_s)=0$ for k>2n-s.

PROOF. Since $A_0^0(s) = 1$, (2.11) is valid for k = 0. Suppose

$$\Delta^{k-1}(c_0c_s) = 2^{k-1} \sum_{l=0}^{k-1} A_l^{k-1}(s) c_{k-1-l} c_{s+l}.$$

By means of Proposition 3, we devide $\Delta^k(c_0c_s)$ into the sum of the following three expressions:

$$\begin{split} &2^k \sum_{l=0}^{k-1} A_l^{k-1}(s)(k-l)^2 c_{k-l} c_{s+l} = 2^k \sum_{l=0}^k A_l^{k-1}(s)(k-l)^2 c_{k-l} c_{s+l} \;, \\ &2^k \sum_{l=0}^{k-1} A_l^{k-1}(s)(s+l+1)^2 c_{k-1-l} c_{s+l+1} = 2^k \sum_{l=0}^k A_{l-1}^{k-1}(s)(s+l)^2 c_{k-l} c_{s+l} \;, \\ &2^k \sum_{l=0}^{k-1} A_l^{k-1}(s) \cdot 4 \sum_{l=0}^{k-1-\mu} (-k+2\mu+s+2t+2) c_{k-1-\mu-t} c_{s+\mu+t+1} \;. \end{split}$$

Put $l = \mu + t + 1$, then the third expression is equal to

$$\begin{split} &2^k \sum_{\mu=0}^{k-1} \sum_{l=\mu+1}^k A_{\mu}^{k-1}(s) \cdot 4(-k+2l+s) c_{k-l} c_{s+l} \\ &= 2^k \sum_{l=0}^k 4(-k+2l+s) \sum_{\mu=0}^{l-1} A_{\mu}^{k-1}(s) c_{k-l} c_{s+l} \,. \end{split}$$

Thus,

$$\begin{split} \varDelta^k(c_0c_s) &= 2^k \sum_{l=0}^k \left\{ A_l^{k-1}(s)(k-l)^2 + A_{l-1}^{k-1}(s)(s+l)^2 + 4(-k+2l+s) \sum_{\mu=0}^{l-1} A_\mu^{k-1}(s) \right\} c_{k-l}c_{s+l} \\ &= 2^k \sum_{l=0}^k A_l^k(s)c_{k-l}c_{s+l} \; . \end{split}$$

Since $c_{\mu} = 0$ for $\mu > n$, we get the second part of the proposition.

Proposition 5. For real numbers N_s ($0 \le s \le n$), we have

$$\widehat{\sum_{s=0}^{n}(-1)^{s}N_{s}\frac{c_{0}c_{s}}{(2\pi)^{s}}} = \sum_{0 \leq \rho \leq \sigma \leq n} \left\{ \sum_{s=0}^{\sigma} B_{s}(\rho, \sigma)N_{s} \right\} \frac{c_{\rho}c_{\sigma}}{(2\pi)^{\rho+\sigma}}.$$

PROOF. Since $\Delta^k(c_0c_s)=0$ for k>2n-s,

$$(c_0c_s)^* = \sum_{k=0}^{2n-s} \frac{1}{k!(4\pi)^k} \Delta^k(c_0c_s)$$

$$= \sum_{k=0}^{2n-s} \sum_{l=0}^k \frac{1}{k!(2\pi)^k} A_l^k(s) c_{k-l}c_{s+l}$$

by Proposition 2 and Proposition 4. On the other hand,

$$d(i_1 \cdots i_s; j_1 \cdots j_s)(-\sqrt{-1}^t x) = (\sqrt{-1})^{n-s} d(j_1 \cdots j_s; i_1 \cdots i_s)(x)$$

S0

$$c_s(-\sqrt{-1}^t x) = (-1)^{n-s}c_s(x)$$
.

Hence, we get

$$\overbrace{(-1)^s \frac{c_0 c_s}{(2\pi)^s}} = \sum_{k=0}^{2n-s} \sum_{l=0}^k \frac{(-1)^k}{k!} A_l^k(s) \frac{c_{k-l} c_{s+l}}{(2\pi)^{k+s}}.$$

Put $\rho = k - l$, $\sigma = s + l$. Since $c_{\mu} = 0$ for $\mu > n$, it follows that

$$\widehat{(-1)^s} \frac{c_0 c_s}{(2\pi)^s} = \sum_{\rho=0}^n \sum_{\sigma=s}^n W_{\rho+\sigma-s} A_{\sigma-s}^{\rho+\sigma-s}(s) \frac{c_\rho c_\sigma}{(2\pi)^{\rho+\sigma}}
= \sum_{\sigma=s}^n \sum_{\rho=0}^\sigma + \sum_{\rho=s+1}^n \sum_{\sigma=s}^{\rho-1}.$$

Recalling that $A_{\alpha}^{\beta}(s) = 0$ for $\alpha < 0$, we rewrite the second sum in the last expression as follows:

the second sum =
$$\sum_{\sigma=s+1}^{n} \sum_{\rho=s}^{\sigma-1} W_{\rho+\sigma-s} A_{\rho-s}^{\rho+\sigma-s}(s) \frac{c_{\rho} c_{\sigma}}{(2\pi)^{\rho+\sigma}}$$
$$= \sum_{\sigma=s}^{n} \sum_{\rho=0}^{\sigma-1} W_{\rho+\sigma-s} A_{\rho-s}^{\rho+\sigma-s}(s) \frac{c_{\rho} c_{\sigma}}{(2\pi)^{\rho+\sigma}}.$$

Thus, we get

$$(-1)^{s} \frac{c_{0}c_{s}}{(2\pi)^{s}} = \sum_{\sigma=s}^{n} \sum_{\rho=0}^{\sigma} \frac{1}{1+\delta_{\rho,\sigma}} W_{\rho+\sigma-s} \{A_{\rho-s}^{\rho+\sigma-s}(s) + A_{\sigma-s}^{\rho+\sigma-s}(s)\} \frac{c_{\rho}c_{\sigma}}{(2\pi)^{\rho+\sigma}}$$

$$= \sum_{\sigma=s}^{n} \sum_{\rho=0}^{\sigma} B_{s}(\rho, \sigma) \frac{c_{\rho}c_{\sigma}}{(2\pi)^{\rho+\sigma}}.$$

Now, Proposition 5 readily follows from this.

Thus, from Proposition 5, we shall obtain a polynomial w on A of the form (1.6) such that $\tilde{w}=w$, if we get a sequence N_s ($s=0,1,2,\cdots$) which satisfies the equations

(2.12)
$$\sum_{s=0}^{m} B_{s}(t, m) N_{s} = \begin{cases} 0 & (1 \leq t \leq m), \\ (-1)^{m} N_{m} & (t=0) \end{cases}$$

for every non-negative integer m. But it is difficult to express the coefficients $B_s(t, m)$ in a simple formula by s, t, m, immediately from the definitions of sequences A and B. We shall keep this difficulty out of the way in the following sections.

§ 3. Certain integrals

In this section, we calculate the integrals

$$\int_{A} c_0(x) c_s(x) \phi(x) \, dx, \quad \int_{G} c_0(g) c_s(g) \phi(g) \omega_{s_1, \dots, s_n}(g^{-1}) dg$$

for later use.

We first consider differential operators on G. Let φ be a differentiable function on G. For integers i and j $(1 \le i, j \le n)$, we define an operator D_{ij} by

$$(D_{ij}\varphi)(g) = \sum_{\mu=1}^n g_{i\mu} \frac{\partial \varphi(g)}{\partial g_{i\mu}}, \quad g = (g_{ij}) \in G.$$

Let s be an integer such that $0 \le s \le n$. Put k = n - s. Let $L_{\alpha\beta}$ be a differential operator on G for every α and β $(1 \le \alpha, \beta \le k)$. We put

$$\begin{vmatrix} L_{kk} \cdots L_{k1} \\ \vdots & \vdots \\ L_{1k} \cdots L_{11} \end{vmatrix} = \sum_{\sigma \in \mathfrak{S}_k} \operatorname{sign}(\sigma) L_{\sigma(k) k} \cdots L_{\sigma(1) 1}.$$

We define a differential operator D_s by

$$D_s = \sum_{i_1 < \dots < i_k} \left| egin{array}{c} D_{i_k i_k} + (k-1) \dots D_{i_k i_1} \ dots & D_{i_2 i_2} + 1 \ dots \ D_{i_1 i_k} & \dots D_{i_1 i_1} \end{array}
ight|.$$

PROPOSITION 6. The operator D_s commutes with the translations R_a and L_u for all a in G and u in U. Moreover, we have

$$D_s\phi = (-2\pi)^{n-s}c_s\phi$$
.

PROOF. Let $g = (g_{ij})$ and $a = (a_{ij})$ be elements of G. Put h = ga. Let $(a^{-1})_{i,j}$ be the (i,j) element of the matrix a^{-1} . Then, we have

$$(D_{ij}R_a\varphi)(g) = \sum_{\mu=1}^n g_{i\mu} \frac{\partial \varphi(ga)}{\partial g_{j\mu}} = \sum_{\mu=1}^n g_{i\mu} \sum_{\nu=1}^n \left(\frac{\partial \varphi(g)}{\partial g_{j\nu}}\right)_{g=h} a_{\mu\nu}.$$

Hence,

$$(R_a^{-1}D_{ij}R_a\varphi)(g) = \sum_{\mu,\nu,\sigma=1}^n g_{i\sigma}(a^{-1})_{\sigma\mu} \frac{\partial \varphi(g)}{\partial g_{j\nu}} a_{\mu\nu} = \sum_{\nu=1}^n g_{i\nu} \frac{\partial \varphi(g)}{\partial g_{j\nu}} = (D_{ij}\varphi)(g).$$

Thus, we get $D_{ij}R_a = R_aD_{ij}$, hence $D_sR_a = R_aD_s$.

Let $u = (u_{ij})$ be an element of U. Put $h = u^{-1}g$. Similarly as above, we have

$$L_u^{-1}D_{ij}L_u\varphi = \sum_{\alpha,\beta=1}^n u_{i\alpha}(D_{\alpha\beta}\varphi)u_{j\beta}.$$

We consider the (n, n) matrices (D_{ij}) and $(L_u^{-1}D_{ij}L_u)$. Then, the following relation holds:

$$(3.1) (L_u^{-1}D_{ij}L_u) = u(D_{ij})u^{-1}.$$

On the other hand, we have

$$(D_{i_lj_l}\cdots D_{i_1j_1}\varphi)(g) = \sum_{\mu_1,\cdots,\mu_l=1}^n g_{i_l\mu_l}\cdots g_{i_1\mu_1} \frac{\partial^l \varphi(g)}{\partial g_{j_l\mu_l}\cdots \partial g_{j_1\mu_1}}$$

for $i_1 \neq j_2, \dots, i_1 \neq j_l$; \dots ; $i_{l-1} \neq j_l$. The auxiliary symbols Δ_{ij} are used instead of D_{ij} , to indicate by their composition the same result for every $i_1, \dots, i_{l-1}, \dots, j_l$:

$$(\Delta_{i_1j_1}\cdots\Delta_{i_1j_1}\varphi)(g) = \sum_{\mu_1,\cdots,\mu_l=1}^n g_{i_l\mu_l}\cdots g_{i_1\mu_1} \frac{\partial^l \varphi(g)}{\partial g_{j_l\mu_l}\cdots\partial g_{j_1\mu_1}}$$

(cf. Weyl [16], p. 39). Then, we have by (3.1)

$$\sum_{i_1 < \cdots < i_k} \left| \begin{array}{c} L_u^{-1} \varDelta_{i_1 i_1} L_u \cdots L_u^{-1} \varDelta_{i_1 i_k} L_u \\ \vdots \\ L_u^{-1} \varDelta_{i_k i_1} L_u \cdots L_u^{-1} \varDelta_{i_k i_k} L_u \end{array} \right| = \sum_{i_1 < \cdots < i_k} \left| \begin{array}{c} \varDelta_{i_1 i_1} \cdots \varDelta_{i_1 i_k} \\ \vdots \\ \varDelta_{i_k i_1} \cdots \varDelta_{i_k i_k} \end{array} \right|$$

From this relation, we can derive the result $L_u^{-1}D_sL_u=D_s$ by the same argument as in Weyl [16], p. 40.

Next, a formal computation gives us the formula

$$\sum_{j_1 < \cdots < j_k} \begin{vmatrix} g_{i_1 i_1} \cdots g_{i_1 j_k} \\ \vdots & \vdots \\ g_{i_k j_1} \cdots g_{i_k j_k} \end{vmatrix} \begin{vmatrix} \frac{\partial}{\partial g_{i_1 j_1}} \cdots \frac{\partial}{\partial g_{i_k j_1}} \\ \vdots & \vdots \\ \frac{\partial}{\partial g_{j_1 j_k}} \cdots \frac{\partial}{\partial g_{i_k j_k}} \end{vmatrix}$$

$$= \begin{vmatrix} \sum_{\mu=1}^n g_{i_1 \mu} \frac{\partial}{\partial g_{i_1 \mu}} \cdots \sum_{\mu=1}^n g_{i_1 \mu} \frac{\partial}{\partial g_{i_k \mu}} \\ \vdots & \vdots \\ \sum_{\mu=1}^n g_{i_k \mu} \frac{\partial}{\partial g_{i_1 \mu}} \cdots \sum_{\mu=1}^n g_{i_k \mu} \frac{\partial}{\partial g_{i_k \mu}} \end{vmatrix}.$$

So we have

$$(D_{s}\phi)(g) = \sum_{i_{1} < \cdots < i_{k}} \left\{ \begin{vmatrix} \Delta_{i_{1}i_{1}} & \cdots & \Delta_{i_{1}i_{k}} \\ \vdots & \vdots & \vdots \\ \Delta_{i_{k}i_{1}} & \cdots & \Delta_{i_{k}i_{k}} \end{vmatrix} \phi \right\} (g)$$

$$= \sum_{\substack{i_{1} < \cdots < i_{k} \\ j_{1} < \cdots < j_{k} \end{vmatrix}} \begin{vmatrix} g_{i_{1}j_{1}} & \cdots & g_{i_{1}j_{k}} \\ \vdots & \vdots & \vdots \\ g_{i_{k}j_{1}} & \cdots & g_{i_{k}j_{k}} \end{vmatrix} \cdot \left\{ \begin{vmatrix} \frac{\partial}{\partial g_{i_{1}j_{1}}} & \cdots & \frac{\partial}{\partial g_{i_{k}j_{1}}} \\ \frac{\partial}{\partial g_{i_{1}j_{k}}} & \cdots & \frac{\partial}{\partial g_{i_{k}j_{k}}} \\ \frac{\partial}{\partial g_{i_{1}j_{k}}} & \cdots & \frac{\partial}{\partial g_{i_{k}j_{k}}} \end{vmatrix} \phi(g) \right\}$$

$$= (-2\pi)^{k} \sum_{\substack{i_{1} < \cdots < i_{k} \\ j_{1} < \cdots < j_{k} \end{vmatrix}} \begin{vmatrix} g_{i_{1}j_{1}} & \cdots & g_{i_{1}j_{k}} \\ \vdots & \vdots & \vdots \\ g_{i_{k}j_{1}} & \cdots & g_{i_{k}j_{k}} \end{vmatrix}^{2} \phi(g)$$

$$= (-2\pi)^{n-s} c_{s}(g)\phi(g). \qquad q. e. d.$$

LEMMA 4. Let $\alpha_1, \dots, \alpha_n$ be complex numbers. Let φ be a function on G which is expressed in the form

$$\varphi(g)=t_{11}^{\alpha_1}\cdots t_{nn}^{\alpha_n} \ for \ g=tu, \ t=(t_{ij})\in T, \ u\in U.$$
 Then, for $\alpha_i\neq -1$ $(l\leqq i\leqq n)$,

$$D_s \varphi = \sum_{i_1 < \dots < i_k} \left\{ \prod_{\mu=1}^k (\alpha_{i_\mu} + \mu - 1) \right\} \varphi$$
.

PROOF. We have for $i \ge j$

$$(D_{ij}\varphi)(g) = \sum_{\mu} g_{i\mu} \frac{\partial \varphi(g)}{\partial g_{j\mu}} = \sum_{\sigma,\tau,\mu} g_{i\sigma} u_{\tau\sigma} u_{\tau\mu} \frac{\partial \varphi(g)}{\partial g_{j\mu}}$$
$$= \sum_{\tau} t_{i\tau} \frac{\partial t_{11}^{\alpha_1} \cdots t_{nn}^{\alpha_n}}{\partial t_{i\tau}} = t_{ij} \frac{\partial t_{11}^{\alpha_1} \cdots t_{nn}^{\alpha_n}}{\partial t_{ij}}.$$

In particular,

$$D_{ij}arphi=0$$
 for $i>j$, $D_{ii}\,arphi=lpha_iarphi$.

From them, we obtain the result:

$$\begin{split} D_{s}\varphi &= \sum_{i_{1} < \cdots < i_{k}} \left| \begin{array}{c} D_{i_{k}i_{k}} + (k-1) \cdots D_{i_{k}i_{1}} \\ \vdots & \ddots & \vdots \\ D_{i_{1}i_{k}} & \cdots & D_{i_{1}i_{1}} \end{array} \right| \varphi \\ &= \sum_{i_{1} < \cdots < i_{k}} \left\{ \prod_{\mu=1}^{k} (D_{i_{\mu}i_{\mu}} + \mu - 1) \right\} \varphi \\ &= \sum_{i_{1} < \cdots < i_{k}} \left\{ \prod_{\mu=1}^{k} (\alpha_{i_{\mu}} + \mu - 1) \right\} \varphi \ . \end{split} \qquad \text{q. e. d.}$$

Proposition 7. We have

i)
$$\int_{A} c_0(x)c_s(x)\phi(x)dx = \frac{1}{(2\pi)^{2n-s}} {n \choose s} n! \frac{(n+2)!}{(s+2)!}$$
,

ii)
$$\int_{G} c_0(g)c_s(g)\phi(g)\omega_{s_1,\dots,s_n}(g^{-1})dg$$

$$= \frac{(-1)^s}{(2\pi)^{2n-s}} - \int_{G} \phi(g) \omega_{s_1,\dots,s_n}(g^{-1}) dg \left\{ \prod_{i=1}^n s_i \right\} \sum_{i_1 < \dots < i_k} \prod_{\mu=1}^k (s_{i_\mu} - i_\mu - 2 + \mu)$$

$$for \quad \text{Re } s_i < 0.$$

PROOF. i) Let g be an element of G. We put $\varphi(g) = |\det g|^{-(n+2)}$. Then,

$$\int_{A} c_0(x) \phi(gx) dx = (\det g)^{-2} | \det g |^{-n} \quad \int_{A} c_0(x) \phi(x) dx = \frac{n!}{(2\pi)^n} \varphi(g).$$

On the other hand, we have by Proposition 6

$$D_s R_x \phi = R_x D_s \phi = (-2\pi)^{n-s} R_x (c_s \phi)$$
 for $x \in G$.

From these results, we get

$$(-2\pi)^{n-s}\int_{A}c_0(x)c_s(gx)\phi(gx)dx = \frac{n!}{(2\pi)^n}(D_s\varphi)(g),$$

hence

$$\int_{A} c_0(x) c_s(x) \phi(x) dx = (-1)^{n-s} \frac{n!}{(2\pi)^{2n-s}} (D_s \varphi) (1_n).$$

So it is enough to prove the formula

$$(D_s\varphi)(1_n) = (-1)^{n-s} \binom{n}{s} \frac{(n+2)!}{(s+2)!}$$

We have

$$\varphi(g) = (t_{11} \cdots t_{nn})^{-(n+2)}$$
 for $g = tu$, $t = (t_{ij}) \in T$, $u \in U$.

Applying Lemma 4 to the function φ , we obtain

$$D_{s}\varphi = \sum_{i_{1} < \dots < i_{k}} \left\{ \prod_{\mu=1}^{k} (-n-2+\mu-1) \right\} \varphi$$
$$= (-1)^{k} {n \choose k} \left\{ \prod_{\mu=1}^{k} (n+3-\mu) \right\} \varphi$$
$$= (-1)^{n-s} {n \choose s} \frac{(n+2)!}{(s+2)!} \varphi.$$

This proves i). The proof of ii) is similar to that of i). We write ω , ω' and α' instead of ω_{s_1,\dots,s_n} , $\omega_{s_1-2,\dots,s_{n-2}}$ and $\alpha_{s_1-2,\dots,s_{n-2}}$. For Re $s_i < 0$, we have

$$\int_{G} c_0(h)\phi(gh)\omega(h^{-1})dh$$

$$= \int_{G} c_0(g^{-1}h)\phi(h)\omega(h^{-1}ug)dh \quad (h \to g^{-1}u^{-1}h)$$

$$= \int_{U} \left(\int_{G} c_{0}(g^{-1}h)\phi(h)\omega(h^{-1}ug) dh \right) du$$

$$= (\det g)^{-2}\omega(g) \int_{G} (\det h)^{2}\phi(h)\omega(h^{-1}) dh$$

$$= \omega'(g)\pi^{\frac{1}{2}\sum_{i=1}^{n}(s_{i}-2)} \prod_{i=1}^{n} \Gamma\left(\frac{-s_{i}+2}{2}\right)$$

$$= \frac{(-1)^{n}}{(2\pi)^{n}} \int_{G} \phi(h)\omega(h^{-1}) dh \left\{ \prod_{i=1}^{n} s_{i} \right\} \omega'(g)$$

by (1.2), Proposition 1 and the relation $\Gamma(z+1) = z\Gamma(z)$. Applying the operator D_s , we get the relation

$$(-2\pi)^{n-s} \int_{G} c_0(h) c_s(h) \phi(h) \omega(h^{-1}) dh$$

$$= \frac{(-1)^n}{(2\pi)^n} \int_{G} \phi(h) \omega(h^{-1}) dh \left\{ \prod_{i=1}^n s_i \right\} (D_s \omega') (1_n) .$$

Thus, it remains to prove the formula

$$(D_s\omega')(1_n) = \sum_{i_1 < \dots < i_k} \prod_{\mu=1}^k (s_{i_{\mu}} - i_{\mu} - 2 + \mu).$$

We call λ the right-hand side for brevity. Setting $\varphi(g) = \alpha'(g^{-1})$, we have

$$\varphi(g) = t_{11}^{s_1-2} \cdots t_{nn}^{s_{n-(n+1)}} \text{ for } g = tu, \ t = (t_{ij}) \in T, \ u \in U.$$

Consequently, it follows from Lemma 4 that

$$D_s \varphi = \sum_{i_1 < \dots < i_k} \left\{ \prod_{\mu=1}^k (s_{i_\mu} - (i_\mu + 1) + \mu - 1) \right\} \varphi = \lambda \varphi$$
 .

Considering $L_uD_s=D_sL_u$, we get

$$(3.2) (D_s L_u \varphi)(g) = \lambda(L_u \varphi)(g).$$

On the other hand,

$$\omega'(g) = \int_{U} \alpha'(g^{-1}u) du = \int_{U} \varphi(u^{-1}g) du = \int_{U} (L_{u}\varphi)(g) du.$$

Hence, integrating the both sides of (3.2) on U, we obtain

$$(D_s\omega')(g) = \lambda\omega'(g)$$
, and $(D_s\omega')(1_n) = \lambda$.

$\S 4$. A self-reciprocal function on A.

We return to the equations (2.12). The result of the preceding section enables us to calculate the coefficient of the form $B_s(m, m)$.

Proposition 8. For non-negative integers s and m such that $s \leq m$, we have

$$B_s(m, m) = {m \choose s} (-1)^s m! \frac{(m+2)!}{(s+2)!}$$
.

PROOF. The proposition is trivial for m=0, so we suppose $m \ge 1$. Proposition 5 gives us the relation

$$\frac{(-1)^s}{(2\pi)^s} \int_A c_0(-\sqrt{-1} t x + y) c_s(-\sqrt{-1} t x + y) \phi(y) dy = \sum_{\sigma=s}^n \sum_{\rho=0}^{\sigma} B_s(\rho, \sigma) \frac{c_{\rho}(x) c_{\sigma}(x)}{(2\pi)^{\rho+\sigma}},$$

where x is an element of A. Taking x = 0, we get the equality

$$\frac{(-1)^s}{(2\pi)^s} \int_A c_0(y) c_s(y) \phi(y) dy = \frac{1}{(2\pi)^{2n}} B_s(n, n).$$

The integral of the left-hand side is equal to

$$\frac{1}{(2\pi)^{2n-s}} \binom{n}{s} n! \frac{(n+2)!}{(s+2)!}$$

by Proposition 7, i). From these results, we obtain readily

$$B_s(n, n) = {n \choose s} (-1)^s n! \frac{(n+2)!}{(s+2)!}.$$
 q. e. d.

The following proposition allows us to express in some sense the coefficients $B_s(t, m)$ by $B_s(m-l, m-l)$.

PROPOSITION 9. There exist, for integers m and k $(0 \le k \le \lfloor m/2 \rfloor)$, a sequence of real numbers E(m, k; l) $(l = 0, \dots, k)$, and for integers m and $k(0 \le k \le \lfloor (m-1)/2 \rfloor)$, a sequence of real numbers F(m, k; l) $(l = 0, \dots, k)$, which satisfy the following conditions

$$(4.1) E(m, k; 0) = 1,$$

$$\left\{\frac{m!}{(m-2k)!}\right\}^{2} B_{s}(m-2k, m)$$

$$= \sum_{l=0}^{k} E(m, k; l) \left\{\prod_{i=0}^{2k-1-2l} (2m-2l-s-i)\right\} B_{s}(m-l, m-l),$$

$$F(m, k; 0) = -1,$$

$$\left\{\frac{m!}{(m-2k-1)!}\right\}^{2} B_{s}(m-2k-1, m)$$

$$= \sum_{l=0}^{k} F(m, k; l) \left\{\prod_{i=0}^{2k-2l} (2m-2l-s-i)\right\} B_{s}(m-l, m-l),$$

for every integer s such that $0 \le s \le m$.

LEMMA 5. For integers t and m $(1 \le t \le m)$, there exists a sequence of integers $L(t, m; \mu)$ $(\mu = 0, 1, 2, \cdots)$, which satisfies the conditions

$$L(m, m; \mu) = 0 ,$$

$$t^2 B_s(t-1, m) = -(t+m-s) B_s(t, m) + \sum_{\mu \ge 0} L(t, m; \mu) B_s(t+\mu, m-\mu-1) ,$$

for every integer s such that $0 \le s \le m$.

PROOF. In the case t = m, we have

$$-(2m-s)B_s(m, m) = -(2m-s)W_{2m-s}A_{m-s}^{2m-s}(s)$$

$$= W_{2m-1-s}\{m^2A_{m-s}^{2m-1-s}(s) + m^2A_{m-1-s}^{2m-1-s}(s)\}$$

$$= m^2B_s(m-1, m)$$

by the definitions of sequences A and B. Putting $L(m, m; \mu) = 0$, we get the proof in the case t = m. In the case $1 \le t \le m - 1$, we have similarly

$$\begin{split} &-(t+m-s)B_{s}(t,m)\\ &=-(t+m-s)W_{t+m-s}\{A_{t-s}^{t+m-s}(s)+A_{m-s}^{t+m-s}(s)\}\\ &=W_{t+m-s-1}\{m^{2}A_{t-s}^{t+m-s-1}(s)+t^{2}A_{t-s-1}^{t+m-s-1}(s)-4(m-t)\sum_{\mu=0}^{t-s-1}A_{\mu}^{t+m-s-1}(s)\\ &+t^{2}A_{m-s}^{t+m-s-1}(s)+m^{2}A_{m-s-1}^{t+m-s-1}(s)+4(m-t)\sum_{\mu=0}^{m-s-1}A_{\mu}^{t+m-s-1}(s)\}\\ &=W_{t+m-s-1}[t^{2}\{A_{t-1-s}^{t-1+m-s}(s)A_{m-s}^{t-1+m-s}(s)\}\\ &+m^{2}\{A_{t-s}^{t+m-1-s}(s)+A_{m-1-s}^{t+m-1-s}(s)\}+4(m-t)\sum_{\mu=t-s}^{m-s-1}A_{\mu}^{t+m-s-1}(s)]\\ &=t^{2}B_{s}(t-1,m)+\{(1+\delta_{t,m-1})m^{2}+4(m-t)\}B_{s}(t,m-1)\\ &+4(m-t)\sum_{\mu\geq 1}B_{s}(t+\mu,m-\mu-1)\,. \end{split}$$

Thus, it is enough to set

$$\left\{ \begin{array}{l} L(t,\,m\,;\,0) = -\{(1+\delta_{t,m-1})m^2 + 4(m-t)\}\;, \\ \\ L(t,\,m\,;\,\mu) = -4(m-t) \quad \text{ for } \quad \mu \geqq 1\;. \end{array} \right.$$

PROOF OF PROPOSITION 9. In the case m=0, we need only to prove the existence of the sequence E, i.e. to put E(0,0;0)=1. In the case k=0, set E(m,0;0)=1, F(m,0;0)=-1. The equality

$$m^2B_s(m-1, m) = -(2m-s)B_s(m, m)$$

means the validity of the proposition.

Let $m \ge 1$. Assume that we have already proved the proposition in the case $0, \dots, m-1$ with arbitrary k and in the case m with a fixed k. We shall prove the proposition in the case m with k+1.

By lemma 5, we have

$$(m-2k-1)^{2}B_{s}(m-2k-2, m) = -(2m-2k-1-s)B_{s}(m-2k-1, m) + \sum_{\mu\geq 0} L(m-2k-1, m; \mu)B_{s}(m-2k-1+\mu, m-1-\mu).$$

Multiply the both sides by $\{m!/(m-2k-1)!\}^2$. Put

$$M(m, k; \mu) = \left\{ \frac{m! (m-2k-1+\mu)!}{(m-2k-1)! (m-1-\mu)!} \right\}^2 L(m-2k-1, m; \mu).$$

Then, we have

$$\left\{\frac{m!}{(m-2k-2)!}\right\}^{2} B_{s}(m-2k-2, m)$$

$$= -(2m-2k-s-1) \left\{\frac{m!}{(m-2k-1)!}\right\}^{2} B_{s}(m-2k-1, m)$$

$$+ \sum_{\mu \geq 0} M(m, k; \mu) \left\{\frac{(m-1-\mu)!}{(m-2k-1+\mu)!}\right\}^{2} B_{s}(m-2k-1+\mu, m-1-\mu)$$

$$= -(2m-2k-s-1) \sum_{l=0}^{k} F(m, k; l) \left\{\prod_{i=0}^{2k-2l} (2m-2l-s-i)\right\} B_{s}(m-l, m-l)$$

$$+ \sum_{\mu \geq 0} M(m, k; \mu) \sum_{l=0}^{k-\mu} E(m-1-\mu, k-\mu; l) \left\{\prod_{i=0}^{2k-2\mu-1-2l} (2m-2-2\mu-2l-s-i)\right\}$$

$$\times B_{s}(m-1-\mu-l, m-1-\mu-l).$$

The last equality comes of the assumptions (4.2) in the case m, k, and (4.1) in the case $m-1-\mu$, $k-\mu$. And the right-hand side is equal to the expression

$$\sum_{l=0}^{k} -F(m, k; l) \left\{ \prod_{i=0}^{2k+1-2l} (2m-2l-s-i) \right\} B_{s}(m-l, m-l)$$

$$+ \sum_{\mu=0}^{k} M(m, k; \mu) \sum_{l=\mu+1}^{k+1} E(m-1-\mu, k-\mu; l-1-\mu)$$

$$\times \left\{ \prod_{i=0}^{2k+1-2l} (2m-2l-s-i) \right\} B_{s}(m-l, m-l) ,$$

hence to the expression

$$\sum_{l=0}^{k} -F(m, k; l) \left\{ \prod_{i=0}^{2k+1-2l} (2m-2l-s-i) \right\} B_{s}(m-l, m-l)$$

$$+ \sum_{l=1}^{k+1} \left\{ \prod_{\mu=0}^{l-1} M(m, k; \mu) E(m-1-\mu, k-\mu; l-1-\mu) \right\}$$

$$\times \left\{ \prod_{i=0}^{2k+1-2l} (2m-2l-s-i) \right\} B_{s}(m-l, m-l) .$$

We put

$$E(m, k+1; l) = \begin{cases} -F(m, k; l) + \sum_{\mu=0}^{l-1} M(m, k; \mu) E(m-1-\mu, k-\mu; l-1-\mu) & (0 \leq l \leq k), \\ \sum_{\mu=0}^{l-1} M(m, k; \mu) E(m-1-\mu, k-\mu; l-1-\mu) & (l=k+1). \end{cases}$$

Then, we have E(m, k+1; 0) = 1 and the relation (4.1) in the case m, k+1.

Similarly, by Lemma 5 and the relation (4.1) in the case m, k+1 and the assumption (4.2) in the case $m-1-\mu$, $k-\mu$, we can prove the existence of the required sequence F(m, k+1; l). This concludes the proof.

PROPOSITION 10. For integers t and m $(0 \le t \le m)$, we have

$$\sum_{s=0}^{m} B_s(t, m)(s+2)! = \begin{cases} 0 & (1 \le t \le m), \\ (-1)^m (m+2)! & (t=0). \end{cases}$$

PROOF. Put $N_s = (s+2)!$. By the relation (4.1), we have

$$\left\{\frac{m!}{(m-2k)!}\right\}^{2} \sum_{s=0}^{m} B_{s}(m-2k, m) N_{s}$$

$$= \sum_{l=0}^{k} E(m, k; l) \sum_{s=0}^{m} \left\{\prod_{i=0}^{2k-1-2l} (2m-2l-s-i)\right\} B_{s}(m-l, m-l) N_{s}$$

for integers m and k ($0 \le k \le \lfloor m/2 \rfloor$). On the other hand, we get by Proposition 8 and the definition of the sequence B

$$B_s(m-l, m-l)N_s = \begin{cases} \binom{m-l}{s} (-1)^s (m-l)! N_{m-l} & (s \leq m-l), \\ 0 & (s > m-l). \end{cases}$$

Therefore,

$$\sum_{s=0}^{m} \left\{ \prod_{i=0}^{2k-1-2l} (2m-2l-s-i) \right\} B_{s}(m-l, m-l) N_{s}$$

$$= \sum_{s=0}^{m-l} \left[\left\{ \prod_{i=0}^{2k-1-2l} (2m-2l-s-i) \right\} {m-l \choose s} (-1)^{s} \right] (m-l) ! N_{m-l}$$

$$= \left[\frac{d^{2k-2l}}{dx^{2k-2l}} \left\{ \sum_{s=0}^{m-l} {m-l \choose s} x^{2m-2l-s} (-1)^{s} \right\} \right]_{x=1} (m-l) ! N_{m-l}$$

$$= \left[\frac{d^{2k-2l}}{dx^{2k-2l}} \left\{ x^{m-l} (x-1)^{m-l} \right\} \right]_{x=1} (m-l) ! N_{m-l}$$

$$= \left\{ 0 \qquad (m > 2k \text{ or } m = 2k, l > 0), \right.$$

$$(m !)^{2} N_{m} \qquad (m = 2k, l = 0).$$

Hence, recalling that E(m, k; 0) = 1, we obtain

$$\left\{\frac{m!}{(m-2k)!}\right\}^{2} \sum_{s=0}^{m} B_{s}(m-2k, m) N_{s} = \left\{\begin{array}{ll} 0 & (m>2k), \\ (m!)^{2} N_{m} & (m=2k). \end{array}\right.$$

Similarly, we have by (4.2)

$$\left\{\frac{m!}{(m-2k-1)!}\right\}^{2} \sum_{s=0}^{m} B_{s}(m-2k-1, m) N_{s} = \left\{\begin{array}{cc} 0 & (m>2k+1), \\ -(m!)^{2} N_{m} & (m=2k+1). \end{array}\right.$$

These results show that

$$\sum_{s=0}^m B_s(t,m) N_s = \left\{ egin{array}{ll} 0 & (1 \leq t \leq m) \ , \\ (-1)^m N_m & (t=0) \ . \end{array}
ight.$$

COROLLARY. Put

$$\psi = w\phi$$
, $w = \sum_{s=0}^{m} (-1)^s \frac{(s+2)!}{2} \frac{c_0 c_s}{(2\pi)^s}$.

Then, the function ϕ on A is self-reciprocal; i.e. we have

$$\hat{\psi} = \psi$$
.

PROOF. By Proposition 5 and Proposition 10,

$$\tilde{w} = \sum_{0 \le \rho \le \sigma \le n} \left\{ \sum_{s=0}^{\sigma} B_s(\rho, \sigma) \frac{(s+2)!}{2} \right\} \frac{c_{\rho} c_{\sigma}}{(2\pi)^{\rho+\sigma}}$$

$$= \sum_{0 \le \sigma \le n} (-1)^{\sigma} \frac{(\sigma+2)!}{2} \frac{c_{0} c_{\sigma}}{(2\pi)^{\sigma}} = w.$$

So,
$$\hat{\phi} = \widehat{w\phi} = \widehat{w\phi} = w\phi = \psi$$
.

q. e. d.

The next task is to find an explicit expression of the local ζ -function at ∞ with the weight function ϕ .

PROPOSITION 11. Put $\omega = \omega_{s_1, \dots, s_n}$. The integral

$$\int_{\mathcal{G}} \psi(g) \omega(g^{-1}) | \det g |^{z} dg$$

converges for $\operatorname{Re} z > \operatorname{Max}_{i}(\operatorname{Re} s_{i})$, and is equal to

$$\frac{1}{(2\pi)^{2n}} \zeta(z, \omega) \prod_{i=1}^{n} (z-s_i)(z-s_i-1).$$

PROOF. We have by (1.3)

$$\omega_{s_1,\dots,s_n}(g^{-1}) \mid \det g \mid^z = \omega_{s_1-z,\dots,s_n-z}(g^{-1}).$$

So it is enough to prove

$$\int_{G} \phi(g) \omega(g^{-1}) dg = \frac{1}{(2\pi)^{2n}} \int_{G} \phi(g) \omega(g^{-1}) dg \prod_{i=0}^{n} s_{i}(s_{i}+1)$$

for Re $s_i < 0$. Now, by proposition 7, ii), the equality

$$\int_{G} (-1)^{s} \frac{c_{0}(g)c_{s}(g)}{(2\pi)^{s}} \phi(g)\omega(g^{-1})dg$$

$$= \frac{1}{(2\pi)^{2n}} \int_{G} \phi(g)\omega(g^{-1})dg \left\{ \prod_{i=1}^{n} s_{i} \right\} \sum_{i_{1} < \dots < i_{k}} \prod_{\mu=1}^{n} (s_{i_{\mu}} - i_{\mu} - 2 + \mu)$$

holds for Re $s_i < 0$, where k = n - s. Therefore, we need only to prove the formula

(4.3)
$$\sum_{k=0}^{n} \frac{(n-k+2)!}{2} \sum_{i_1 < \dots < i_k} \prod_{\mu=1}^{k} (s_{i\mu} - i_{\mu} - 2 + \mu) = \prod_{i=1}^{n} (s_i + 1).$$

Let λ_n be the left-hand side of (4.3). It is obvious that

$$\lambda_1 = 3 + (s_1 - 2) = s_1 + 1$$
.

And we show that $\lambda_{n+1} = \lambda_n(s_{n+1}+1)$. Indeed,

$$\begin{split} \lambda_{n+1} &= \sum_{k=0}^{n+1} \frac{(n-k+3)!}{2} \sum_{1 \leq i_1 < \dots < i_k \leq n+1} \prod_{\mu=1}^k (s_{i_\mu} - i_\mu - 2 + \mu) \\ &= \frac{(n+3)!}{2} \\ &+ \sum_{k=1}^{n+1} \frac{(n-k+3)!}{2} \left\{ \sum_{1 \leq i_1 < \dots < i_{k-1} \leq n} \prod_{\mu=1}^{k-1} (s_{i_\mu} - i_\mu - 2 + \mu) \right\} (s_{n+1} - n - 3 + k) \\ &+ \sum_{k=1}^{n} \frac{(n-k+3)!}{2} \sum_{1 \leq i_1 < \dots < i_k \leq n} \prod_{\mu=1}^{k} (s_{i_\mu} - i_\mu - 2 + \mu) \\ &= \frac{(n+3)!}{2} + \frac{(n+2)!}{2} (s_{n+1} - n - 2) \\ &+ \sum_{k=2}^{n+1} \frac{(n-k+3)!}{2} \left\{ \sum_{1 \leq i_1 < \dots < i_{k-1} \leq n} \prod_{\mu=1}^{k-1} (s_{i_\mu} - i_\mu - 2 + \mu) \right\} (s_{n+1} - n - 3 + k) \\ &+ \sum_{k=1}^{n} \frac{(n-k+2)!}{2} \left\{ \sum_{1 \leq i_1 < \dots < i_k \leq n} \prod_{\mu=1}^{k} (s_{i_\mu} - i_\mu - 2 + \mu) \right\} (n-k+3) \\ &= \frac{(n+2)!}{2} (s_{n+1} + 1) \\ &+ \sum_{k=1}^{n} \frac{(n-k+2)!}{2} \left\{ \sum_{1 \leq i_1 < \dots < i_k \leq n} \prod_{\mu=1}^{k} (s_{i_\mu} - i_\mu - 2 + \mu) \right\} (s_{n+1} + 1) \\ &= \lambda_n (s_{n+1} + 1) \,. \end{split}$$

This proves (4.3).

§ 5. Certain global \(\zefarctions \)

Let $\Lambda = \{\lambda\}$ be a set of indices. Suppose a unimodular locally compact group G_{λ} is associated with all λ , and a compact open subgroup H_{λ} of G_{λ} is associated with almost all λ . We denote by G the restricted direct product of G_{λ} with respect to H_{λ} . It is the set of all elements $g = (g_{\lambda})$ of $\prod_{\lambda} G_{\lambda}$ such that $g_{\lambda} \in H_{\lambda}$ for almost all λ . Let S_{0} denote the set of all indices λ in Λ with which the group H_{λ} is not associated. For every finite subset S of Λ contain-

ing S_0 , put $G_S = \prod_{\lambda \in S} G_\lambda \times \prod_{\lambda \in S} H_\lambda$. G_S may be considered as a subgroup of G. We have $G = \bigcup_S G_S$. Each G_S has its natural product topology and G is topologized as the inductive limit with respect to S. Then, G is a unimodular locally compact group.

Let f_{λ} be a function on G_{λ} for every λ . We assume that $f_{\lambda}(H_{\lambda})=1$ for almost all λ . Putting $f(g)=\prod_{\lambda}f_{\lambda}(g_{\lambda})$ for $g=(g_{\lambda})\in G$, we define a function f on G, which we denote by $f=\prod_{\lambda}f_{\lambda}$.

Let dg_{λ} be a Haar measure on G_{λ} . We assume that the total volume of H_{λ} is equal to 1 for almost all λ . The restricted direct product dg of dg_{λ} has the following property:

If the above mentioned function f_{λ} further satisfies the conditions

$$f_{\lambda} \in L_1(G_{\lambda})$$
 for all λ , $\prod_{\lambda} \int_{G_{\lambda}} |f_{\lambda}(g_{\lambda})| dg_{\lambda} < \infty$,

then we have

(5.1)
$$f = \prod_{\lambda} f_{\lambda} \in L_{1}(G), \quad \int_{G} f(g) dg = \prod_{\lambda} \int_{G_{\lambda}} f_{\lambda}(g_{\lambda}) dg_{\lambda}.$$

Of course, the infinite product of integrals converges absolutely. Further, if f_{λ} is in $C(G_{\lambda})$ for all λ , then $f = \prod_{i} f_{\lambda}$ is in C(G).

We denote by A the adele ring of $\Delta = M_n(Q)$; i.e. A is the restricted direct product of A_p with respect to O_p . By the canonical injection, Δ may be considered as a discrete subgroup of A. It is known that the factor group A/Δ is compact. We denote by A^{∞} the set of all elements $x = (x_p)$ of A such that $x_p \in O_p$ for all $p \neq \infty$. It is an open subgroup of A. We have $A = A^{\infty} + \Delta$.

We have $\chi_p(O_p) = 1$ for $p \neq \infty$. We define a function $\chi = \prod_p \chi_p$ on A. It is a unitary character of A. Obviously, $\chi(xy) = \chi(yx)$ for all $x, y \in A$. By the mapping

$$A \times A \ni (x, y) \rightarrow \gamma(xy) \in \mathbf{C}$$
.

A is self-dual, and the annihilator of Δ is again Δ .

Let dx_p be the Haar measure on A_p , normalized as in §1. We denote by dx the restricted direct product of dx_p . There exists the canonical Haar measure $d\bar{x}$ on A/Δ satisfying the relation

$$\int_{A} f(x)dx = \int_{A/A} \left\{ \sum_{\xi \in A} f(x+\xi) \right\} d\bar{x}$$

for all $f \in L(G)$. We have

$$\int_{A/\Delta} d\bar{x} = 1.$$

The Fourier transform of a function φ in $L_1(A)$ is denoted by $\hat{\varphi}$:

$$\hat{\varphi}(y) = \int_{A} \varphi(x) \chi(xy) dx$$
 for $y \in A$.

By the above definition, we have $\hat{\varphi}(x) = \varphi(-x)$, if φ and $\hat{\varphi}$ are in $L_1(A)$. Let φ_p be a function on A_p satisfying the conditions

- i) φ_p , $\hat{\varphi}_p \in C(A_p) \cap L_1(A_p)$ for all p,
- ii) $\varphi_p = \chi_{O_p}$ for almost all p.

We put $\varphi = \prod_{p} \varphi_{p}$. Then, the function φ belongs to $C(A) \cap L_{1}(A)$, and we have

(5.3)
$$\hat{\varphi}_p = \chi_{O_p}$$
 for almost all p , $\hat{\varphi} = \prod_p \hat{\varphi}_p$.

Let $x = (x_p)$ be an element of A. Then, $\det x_p \in \mathbb{Z}_p$ for almost all p. So the element $(\det x_p)$ of $\prod_p \mathbb{Q}_p$ is in the adele ring of \mathbb{Q} . We write

$$\det x = (\det x_n)$$
.

The totality of invertible elements in A is denoted by G, on which we introduce the weakest topology, such that the mappings $G \ni x \to x \in A$ and $G \ni x \to x^{-1} \in A$ are both continuous. Then, G is equal to the restricted direct product of G_p with respect to U_p . G is called the idele group of $A = M_n(Q)$. By the canonical injection, $\Gamma = GL(n,Q)$ may be considered as a discrete subgroup of G. Put $U = \prod_p U_p$, then it is a maximal compact subgroup of G. Let G be the centre of G. It is equal to the restricted direct product of G with respect to G with respect to G we denote by G the set of all elements G of G satisfying G for all G for all G is an open subgroup of G.

An element x of A belongs to G, if and only if det x is in the idele group of G. For an element $g = (g_p)$ of G, we put

$$\parallel \det g \parallel = \prod_p |\det g_p|_p$$
 .

We have $\|\det u\|=1$ for $u\in U$, and $\|\det\gamma\|=1$ for $\gamma\in\Gamma$. Furthermore, we have

$$d(gx) = d(xg) = \| \det g \|^n dx$$

for $g \in G$.

We denote by du_p the Haar measure on U_p , normalized as in §1. We call du the direct product of du_p . Of course, the total measure of U is equal to 1. Let dg_p be the Haar measure on G_p , normalized as in §1. We write dg the restricted direct product of dg_p . There exists on the homogeneous space G/Γ the canonical invariant measure $d\bar{g}$, such that the relation

$$\int_{G} f(g) dg = \int_{G/F} \left\{ \sum_{\gamma \in F} f(g\gamma) \right\} d\bar{g}.$$

holds for all $f \in L(G)$. Let L(G, U) be the set of all functions φ in L(G) such

that $\varphi(ugu') = \varphi(g)$ for all $u, u' \in U$ and $g \in G$. For φ in L(G, U) and f in C(G), we define the convolution $\varphi * f$ by

$$(\varphi * f)(g) = \int_G \varphi(gh^{-1})f(h)dh, \quad g \in G.$$

We define a multiplication in L(G, U) by the convolution, then it becomes a ring. It is known that the ring L(G, U) is commutative.

We denote by Ω the set of all spherical functions on G relative to U, and by Ω^+ the totality of positive-definite spherical functions. We have $|\omega(g)| \leq 1$, $\overline{\omega(g)} = \omega(g^{-1})$ for $\omega \in \Omega^+$. We denote further by $\widetilde{\Omega}$ the set of all ω in Ω such that $\omega(\zeta g) = \omega(g)$ for all $\zeta \in Z$ and $g \in G$. Every spherical function ω on G can be written uniquely in the form $\omega = \prod_p \omega_p$, $\omega_p \in \Omega_p$. Conversely, if ω_p is a spherical function on G_p for every p, then the function $\omega = \prod_p \omega_p$ on G is spherical. Moreover, a spherical function $\omega = \prod_p \omega_p$ belongs to Ω^+ (resp. $\widetilde{\Omega}$), if and only if ω_p belongs to Ω^+ (resp. $\widetilde{\Omega}_p$) for all p.

A function f in C(G) will be called an automorphic function with respect to Γ , if the following conditions are satisfied:

- i) $f(ug\gamma) = f(g)$ for all $u \in U$, $g \in G$, $\gamma \in \Gamma$,
- ii) to every $\varphi \in L(G, U)$, corresponds a complex number λ_{φ} satisfying the relation $\varphi * f = \lambda_{\varphi} f$.

For a non-zero automorphic function f, there exists a unique spherical function ω , satisfying the condition

$$\int_{U} f(gug')du = \omega(g)f(g') \quad \text{for all } g, g' \in G.$$

Then, we say that f belongs to ω . We consider a spherical function in $\tilde{\Omega}^+ = \Omega^+ \cap \tilde{\Omega}$ to which a non-zero automorphic function belongs. The set of all such spherical functions is called the spectrum of Γ in $\tilde{\Omega}^+$, and is denoted by $s(\Gamma)$.

If f is a non-zero automorphic function belonging to ω in the spectrum, then there exists an element h of G, such that

(5.4)
$$f(h) \neq 0$$
, $\| \det h \| = 1$.

In fact, we have for all $\zeta \in Z$ and $g \in G$,

$$f(\zeta g) = f(u\zeta g) = f(\zeta ug) = \int_{U} f(\zeta ug) du = \omega(\zeta) f(g) = f(g).$$

On the other hand, there exists an element $g \in G$ such that $f(g) \neq 0$. We put $\zeta_p = 1_n$ $(p \neq \infty)$, $\zeta_\infty = \| \det g \|^{-\frac{1}{n}} 1_n$, $\zeta = (\zeta_p)$ and $h = \zeta_g$. Then, we have $f(h) = f(g) \neq 0$, $\| \det h \| = \| \det \zeta \| \times \| \det g \| = 1$.

A function ϕ on A is called of type Z, if the following conditions are

402

satisfied:

- (Z1) ψ , $\hat{\psi} \in C(A) \cap L_1(A)$,
- (Z2) $\psi(uxv) = \psi(x), \ \hat{\psi}(uxv) = \hat{\psi}(x) \text{ for all } u, v \in U, x \in A,$
- (Z3) there exists a real number σ_0 , such that

$$\int_G \mid \phi(g) \parallel \det g \parallel^{\sigma} \mid dg < \infty, \quad \int_G \mid \hat{\phi}(g) \parallel \det g \parallel^{\sigma} \mid dg < \infty \quad \text{for } \sigma > \sigma_0$$

- (Z4) $\sum_{\xi \in \mathcal{A}} \psi(g(x+\xi)h)$, $\sum_{\xi \in \mathcal{A}} \hat{\psi}(g(x+\xi)h)$ converge absolutely and uniformly on any compact subset of elements (g, x, h) in $G \times A \times G$,
 - (Z5) $\psi(x) = \hat{\psi}(x) = 0$ for every element x of A such that det x = 0.

We see that ϕ is of type Z if and only if $\hat{\phi}$ is of type Z.

For a function ϕ of type Z and a spherical function ω in $s(\Gamma)$, we define a global ζ -function by the integral

$$\zeta \phi(z, \omega) = \int_{G} \psi(g) \omega(g^{-1}) \| \det g \|^{z} dg.$$

We have $|\omega(g)| \le 1$ for all $g \in G$, so by (Z3), the above integral converges for $\text{Re } z > \sigma_0$.

PROPOSITION 12. For every ψ of type Z and every ω in $s(\Gamma)$, the function $\xi_{\psi}(z,\omega)$ is continued to an entire function. It satisfies the functional equation

$$\zeta_{\psi}(z, \omega) = \zeta_{\hat{\psi}}(n-z, \bar{\omega})$$
.

PROOF. The "theta-formula"

(5.5)
$$\sum_{\gamma \in \Gamma} \phi(h^{-1}\gamma g) = \| \det h g^{-1} \|^n \sum_{\gamma \in \Gamma} \hat{\phi}(g^{-1}\gamma h), g, h \in G$$

holds for every ψ of type Z. Indeed, by the formulas $d(gx) = d(xg) = \|\det g\|^n dx$, we see easily that the function $L_h R_g \psi$ is in $C(A) \cap L_1(A)$. The Fourier transform of $L_h R_g \psi$ is equal to $\|\det h g^{-1}\|^n L_g R_h \hat{\psi}$, by the following calculation:

$$\int_{A} \phi(h^{-1}xg)\chi(xy)dx = \|\det hg^{-1}\|^{n} \int_{A} \phi(x)\chi(hxg^{-1}y)dx$$

$$= \|\det hg^{-1}\|^{n} \int_{A} \phi(x)\chi(xg^{-1}yh)dx$$

$$= \|\det hg^{-1}\|^{n} \hat{\phi}(g^{-1}yh).$$

Therefore, from (Z4) and (5.2), we get by the Poisson formula

$$\sum_{\xi \in \mathcal{A}} \psi(h^{-1}\xi g) = \| \det h g^{-1} \|^n \sum_{\xi \in \mathcal{A}} \hat{\psi}(g^{-1}\xi h) .$$

If $\xi \in \Gamma$, then $\det(h^{-1}\xi g) = \det(g^{-1}\xi h) = 0$, hence by (Z5) $\psi(h^{-1}\xi g) = \hat{\psi}(g^{-1}\xi h) = 0$. So we obtain the "theta-formula" (5.5).

Now, for a non-zero automorphic function f belonging to $\omega \in s(\Gamma)$, there exists an element $h \in G$ such that $f(h) \neq 0$, $\| \det h \| = 1$ (cf. (5.4)). By the use of this element h, we have for $\operatorname{Re} z > \sigma_0$

$$f(h)\zeta_{\psi}(z, \omega) = \int_{G} \psi(g)\omega(g^{-1})f(h) \| \det g \|^{z}dg$$

$$= \int_{U} \left(\int_{G} \psi(g)f(g^{-1}uh) \| \det g \|^{z}dg \right) du$$

$$= \int_{U} \left(\int_{G} \psi(hg^{-1})f(g) \| \det g \|^{-z}dg \right) du \quad (g \to uhg^{-1})$$

$$= \int_{G} \psi(hg^{-1})f(g) \| \det g \|^{-z}dg$$

$$= \int_{\|\det g\| \leq 1} + \int_{\|\det g\| \geq 1} \cdot$$

We transform the two integrals of the right-hand side as follows:

the first integral
$$= \int_{\|\det g\| \leq 1} \varphi(hg^{-1})f(g) \| \det g \|^{-z} dg$$

$$= \int_{\|\det g\| \geq 1} \varphi(g)f(g^{-1}h) \| \det g \|^{z} dg,$$
the second integral
$$= \int_{\|\det g\| \geq 1} \varphi(hg^{-1})f(g) \| \det g \|^{-z} dg$$

$$= \int_{G/\Gamma, \|\det g\| \geq 1} \sum_{\gamma \in \Gamma} \varphi(h\gamma g^{-1})f(g) \| \det g \|^{-z} d\bar{g}$$

$$= \int_{G/\Gamma, \|\det g\| \geq 1} \sum_{\gamma \in \Gamma} \hat{\varphi}(g\gamma h^{-1})f(g) \| \det g \|^{n-z} d\bar{g}$$

$$= \int_{\|\det g\| \geq 1} \hat{\varphi}(gh^{-1})f(g) \| \det g \|^{n-z} dg$$

$$= \int_{\|\det g\| \geq 1} \hat{\varphi}(g)f(gh) \| \det g \|^{n-z} dg.$$

We applied the "theta-formula" (5.5) in the transformations of the second integral. Consequently, we have for $\text{Re }z>\sigma_0$

(5.6)
$$f(h)\zeta_{\psi}(z, \omega) = \int_{\|\det g\| \ge 1} \psi(g) f(g^{-1}h) \| \det g \|^{z} dg$$
$$+ \int_{\|\det g\| \ge 1} \hat{\psi}(g) f(gh) \| \det g \|^{n-z} dg.$$

Similarly, considering that $\hat{\psi}(x) = \psi(-x) = \psi(x)$ and that $\overline{\omega(g)} = \omega(g^{-1})$, we

have $f(h)\zeta\hat{\psi}(z,\bar{\omega}) = \int_{\mathcal{G}} \hat{\psi}(gh^{-1})f(g) \parallel \det g \parallel^z dg$ and

(5.7)
$$f(h)\zeta\hat{\varphi}(z,\bar{\omega}) = \int_{\|\det g\| \ge 1} \psi(g)f(g^{-1}h) \|\det g\|^{n-z}dg$$

$$+\int_{\|\det g\| \ge 1} \hat{\psi}(g) f(gh) \|\det g\|^z dg$$

for Re $z > \sigma_0$.

The first integral of (5.6) and the second integral of (5.7) converge for $\text{Re }z > \sigma_0$. Since both integrals extend over $\|\det g\| \ge 1$, they converge for all z. From this follows the convergence for all z of the second integral of (5.6) and of the first integral of (5.7). This means that the functions $\zeta_{\psi}(z,\omega)$ and $\zeta_{\psi}(z,\overline{\omega})$ are continued to entire functions. The functional equation readily follows from (5.6) and (5.7).

$\S 6. \quad \zeta$ -function of $\mathbf{M}_n(Q)$

With every p, we associate a spherical function on G_p :

$$\omega_p = \omega_{s_1(p), \dots, s_n(p)}$$
 $(s_1(p), \dots, s_n(p) \in \mathbf{C})$.

Let $\zeta_p(z, \omega_p)$ be the local ζ -function with the weight function ϕ_p (cf. (1.1)). We consider the spherical function $\omega = \prod \omega_p$ on G.

Theorem. We assume that the spherical function ω is in the spectrum $s(\Gamma)$. Then, the infinite product

$$\zeta(z, \omega) = \prod_{p} \zeta_{p}(z, \omega_{p})$$

converges absolutely for $\operatorname{Re} z > n$. And the function

$$\zeta(z,\omega)\prod_{i=1}^n(z-s_i(\infty))(z-s_i(\infty)-1)$$

is continued to an entire function. The meromorphic function $\zeta(z,\omega)$ on the whole z-plane satisfies the functional equation

$$\zeta(z,\omega) = \zeta(n-z,\bar{\omega})$$
.

REMARK. Since ω is in $s(\Gamma)$, we have $\omega_p \in \tilde{\Omega}_p$. So the relation

$$\sum_{i=1}^{n} s_i(p) \equiv \frac{n(n-1)}{2} \pmod{\frac{2\pi\sqrt{-1}}{\log p}}$$

holds by (1.4). From this and Proposition 1, we have

$$\zeta_{p}(z, \omega_{p}) = \begin{cases} \prod_{i=1}^{n} (1 - p^{s_{i}(p)} p^{-z})^{-1} & (p \neq \infty), \\ \pi^{-\frac{n}{2}z + \frac{n(n-1)}{4}} \prod_{i=1}^{n} \Gamma\left(\frac{z - s_{i}(\infty)}{2}\right) & (p = \infty). \end{cases}$$

Before the proof of the theorem, we need some preliminaries. We define a function ϕ_{∞} on A_{∞} as in Corollary of Proposition 10. We put

$$\phi_p = \phi_p \ (p \neq \infty), \ \phi = \prod_p \phi_p \ .$$

PROPOSITION 13. The function ψ on A is of type Z with $\sigma_0 = n$, and is self-reciprocal.

Proof. We have

$$\psi_p \in C(A_p) \cap L_1(A_p), \quad \hat{\psi}_p = \psi_p$$

for all p. It is obvious for $p \neq \infty$; and for $p = \infty$, it follows from Proposition 7, i) and Corollary of Proposition 10. Hence, we have by (5.3)

$$\phi \in C(A) \cap L_1(A), \quad \hat{\phi} = \phi,$$

which mean (Z1). We can easily verify (Z2) and (Z5). Furthermore, we have

$$\omega_{0,1,...,n-1}=1$$
,

hence we have by Proposition 1 and Proposition 7, ii)

$$\begin{split} \int_{G_p} |\psi_p(g_p)| \det g_p |_p^{\sigma} |dg_p &= \int_{G_p} |\psi_p(g_p)| |\omega_{0,1,\cdots,n-1}(g_p^{-1})| \det g_p |_p^{\sigma} dg_p \\ &= \prod_{i=1}^n (1-p^{i-1}p^{-\sigma})^{-1} & (p \neq \infty), \\ &\leq \sum_{s=0}^n \frac{(s+2)!}{2} \frac{1}{(2\pi)^s} \int_{G_\infty} c_0(g_\infty) c_s(g_\infty) \phi_\infty(g_\infty) \\ &\times \omega_{0,1,\cdots,n-1}(g_\infty^{-1}) |\det g_\infty |_\infty^{\sigma} dg_\infty < \infty \qquad (p = \infty) \end{split}$$

for $\sigma > n-1$. Hence,

$$(6.1) \qquad \left\{ \begin{aligned} & \int_{G_p} |\, \psi_p(g_p) \,|\, \det g_p \,|_p^\sigma \,|\, dg_p < \infty & \quad \text{for } \sigma > n-1 \text{ ,} \\ & \prod_{p \neq \infty} \left(\int_{G_p} |\, \psi_p(g_p) \,|\, \det g_p \,|_p^\sigma \,|\, dg_p \right) = \prod_{i=1}^n \zeta(\sigma - (i-1)) & \quad \text{for } \sigma > n \text{ .} \end{aligned} \right.$$

Applying (5.1) to these formulas and to the fact

$$\psi_p(u_p) \mid \det u_p \mid_p^{\sigma} = 1$$
 for all $u_p \in U_p$, $p \neq \infty$,

we obtain

$$\int_{G} |\phi(g)| |\det g||^{\sigma} |dg < \infty \quad \text{for } \sigma > n.$$

This is the condition (Z3) in the case $\sigma_0 = n$.

Let $a=(a_p)$ and $b=(b_p)$ be elements of G. We denote by $a_p(i,j)$ (resp. $b_p(i,j)$) the (i,j) element of a_p (resp. b_p). Since we have $a_p, b_p \in U_p$ for almost all p, we can associate with every $p \neq \infty$ a non-negative integer $n_p(a,b)$ satisfying the conditions

- i) $n_p(a, b) = 0$ for almost all $p \neq \infty$.
- ii) $|a_p(i,j)|_p$, $|b_p(i,j)|_p \leq p^{n_p(a,b)}$ for all $p \neq \infty$.

Hence, for $y_p = (y_p(i, j)) \in a_p O_p b_p$, we have

$$|y_p(i,j)|_p \leq p^{2n_p(a,b)}$$
.

We denote by a(a, b) the ideal of Q generated by the rational number $\prod_{n \neq \infty} p^{-2np(a,b)}$.

Then, considering that $\psi_p = \chi_{O_p}$ for all $p \neq \infty$, the following inferences hold: For $x = (x_p) \in A^{\infty}$, $g = (g_p) \in G^{\infty}a^{-1}$, $h = (h_p) \in b^{-1}G^{\infty}$ and $\xi = (\xi_{ij}) \in \mathcal{A}$,

$$\begin{aligned} \psi_p(g_p(x_p+\xi)h_p) &= 1 & \text{for all } p \neq \infty \\ \Leftrightarrow x_p+\xi &\in g_p^{-1}O_ph_p^{-1} = a_pO_pb_p & \text{for all } p \neq \infty \\ \Rightarrow |\xi_{ij}|_p &\leq p^{2n_p(a,b)} & \text{for all } p \neq \infty \\ \Rightarrow \xi &\in M_n(a(a,b)). \end{aligned}$$

From them, we get

$$(6.2) \qquad \sum_{\xi \in \mathcal{A}} |\psi(g(x+\xi)h)| \leq \sum_{\xi \in \mathcal{M}_{\mathcal{D}}(a(a,b))} |\psi_{\infty}(g_{\infty}(x_{\infty}+\xi)h_{\infty})|$$

for $g \in G^{\infty}a^{-1}$, $h \in b^{-1}G^{\infty}$ and $x \in A^{\infty}$. We define a function λ on A_{∞} by

$$\lambda(x_{\infty}) = \exp\left(-\sum_{i,j} |x_{ij}|\right), \quad x_{\infty} = (x_{ij}) \in A_{\infty}.$$

Then, there exists a constant K > 0, such that

$$(6.3) | \phi_{\infty}(x_{\infty}) | \leq K \lambda(x_{\infty})$$

for sufficiently large $|x_{ij}|$. Let a be an ideal of Q. We see easily that the series

$$\sum_{\xi \in M_n(\mathfrak{a})} \lambda(g_{\infty}(x_{\infty} + \xi)h_{\infty})$$

converges uniformly on any compact subset of elements $(g_{\infty}, x_{\infty}, h_{\infty})$ in $G_{\infty} \times A_{\infty} \times G_{\infty}$. Therefore, (Z4) follows from (6.2), (6.3) and the relation $A = A + A^{\infty}$.

PROOF OF THEOREM. By proposition 13 and Proposition 12, the global ζ -function $\zeta_{\psi}(z,\omega)$ has the following properties:

(6.4)
$$\zeta_{\psi}(z, \omega) = \int_{a} \psi(g) \omega(g^{-1}) \| \det g \|^{z} dg \quad \text{for } \operatorname{Re} z > n ,$$

(6.5)
$$\zeta_{\psi}(z,\,\omega) = \zeta_{\psi}(n-z,\,\bar{\omega}).$$

On the other hand, we have

$$(6.6) \qquad \begin{cases} \psi_p(u_p)\omega_p(u_p^{-1}) \mid \det u_p \mid_p^z = 1 & \text{for } u_p \in U_p, \ p \neq \infty \text{,} \\ \\ \int_{\mathcal{G}_p} |\psi_p(g_p)w_p(g_p^{-1})| \det g_p \mid_p^z |dg_p < \infty & \text{for } \operatorname{Re} z > n-1 \text{,} \\ \\ \prod_p \int_{\mathcal{G}_p} |\psi_p(g_p)\omega_p(g_p^{-1})| \det g_p \mid_p^z |dg_p < \infty & \text{for } \operatorname{Re} z > n \text{,} \end{cases}$$

and

(6.7)
$$\int_{G_p} \psi_p(g_p) \omega_p(g_p^{-1}) | \det g_p |_p^z dg_p$$

$$= \begin{cases} \zeta_p(z, \omega_p) & (p \neq \infty), \\ \frac{1}{(2\pi)^{2n}} \zeta_\infty(z, \omega_\infty) \prod_{i=1}^n (z - s_i(\infty))(z - s_i(\infty) - 1) & (p = \infty) \end{cases}$$

for Re z > n-1. Indeed, since $|\omega_p(g_p)| \le 1$ for all element g_p of G_p , the formulas (6.6) follow from (6.1). The formula (6.7) holds for sufficiently large Re z by Proposition 1 and Proposition 11. The left-hand side integral of (6.7) converges for Re z > n-1 by (6.6), so the formula (6.7) holds for Re z > n-1.

Therefore, we have by (6.4), (6.6), (5.1) and (6.7)

$$\zeta_{\psi}(z, \omega) = \prod_{p} \int_{G_p} \psi_p(g_p) \omega_p(g_p^{-1}) |\det g_p|_p^z dg_p$$

$$= \frac{1}{(2\pi)^{2n}} \prod_{p} \zeta_p(z, \omega_p) \prod_{i=1}^n (z - s_i(\infty)) (z - s_i(\infty) - 1)$$

for Re z > n. And the infinite product

$$\zeta(z, \omega) = \prod_{p} \zeta_{p}(z, \omega_{p})$$

converges absolutely for Re z > n. Hence, we see that the function

$$\zeta(z,\omega)\prod_{i=1}^n(z-s_i(\infty))(z-s_i(\infty)-1)$$

is continued to an entire function. We write (6.5) in the form

$$\zeta(z, \omega) \prod_{i=1}^{n} (z - s_i(\infty))(z - s_i(\infty) - 1)$$

$$= \zeta(n - z, \overline{\omega}) \prod_{i=1}^{n} (n - z - \overline{s_i(\infty)})(n - z - \overline{s_i(\infty)} - 1).$$

Considering (1.5), we have

$$\prod_{i=1}^{n} (z-s_i(\infty))(z-s_i(\infty)-1) = \prod_{i=1}^{n} (n-z-\overline{s_i(\infty)})(n-z-\overline{s_i(\infty)}-1).$$

Hence, we obtain the result

$$\zeta(z, \omega) = \zeta(n-z, \bar{\omega})$$
.

Waseda University

References

- [1] M. Eichler, Allgemeine Kongruenzklasseneinteilungen der Idealen einfacher Algebren über algebraischen Zahlkörpern und ihrer L-Reihen, J. Reine Angew. Math., 179 (1938), 227-251.
- [2] G. Fujisaki, On the zeta-functions of the simple algebra over the field of rational numbers, J. Fac. Sci. Univ. Tokyo. Sect. I, 7 (1958), 567-604.
- [3] G. Fujisaki, On the *L*-functions of the simple algebra over the field of rational numbers, J. Fac. Sci. Univ. Tokyo. Sect. I, 9 (1962), 293-311.
- [4] R. Godement, Les fonctions ζ des algèbres simples, I, II, Séminaire Bourbaki, 1958/1959, Exposée, p. 171, 176.
- [5] Harish-Chandra, Spherical functions on a semi-simple Lie group, I, II, Amer. J. Math., 80 (1958), 241-310, 553-613.
- [6] E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung, I, II, Math. Ann., 114 (1937), 1-28, 316-351.
- [7] K. Hey, Analytische Zahlentheorie in System hyperkomplexer Zahlen, Diss., Hamburg, 1929.
- [8] K. Iwasawa, A note on L-functions, Proc. Int. Congress. Math. Cambr. Mass. U.S. A., 1950, p. 322.
- [9] H. Maass, Über eine neue Art von nicht analytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichung, Math. Ann., 121 (1949), 141-183.
- [10] H. Maass, Zetafunktionen mit Grössencharakteren und Kugelfunktionen, Math. Ann., 134 (1957), 1-32.
- [11] I. Satake, Theory of spherical functions on reductive algebraic groups over padic fields, Publications Mathematiques, No. 18, 1963.
- [12] G. Shimura, On the Dirichlet series and abelian varieties attached to automorphic forms, Ann. of Math., 72 (1962), 237-294.
- [13] T. Tamagawa, On Selberg's trace formula, J. Fac. Sci. Univ. Tokyo Sect. I, 8 (1960), 363-386.
- [14] T. Tamagawa, On the ζ-functions of a division algebra, Ann. of Math., 77 (1963), 387-405.
- [15] J. Tate, Fourier analysis in number fields and Hecke's zeta-functions, Thesis, Princeton Univ., 1950.
- [16] H. Weyl, Classical groups, Princeton Univ. Press, 1939.