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The purpose of this note is to prepare some basic theorems on reductive
algebraic groups which will be used in our subsequent papers. The results
obtained here seem more or less well-known to the mathematicians working
in this field, but we found it convenient to resume them in a paper. The
main idea in proving them is a systematic use of the notion of ”

$\Gamma$ -funda-
mental system“.

NOTATIONS AND TERMINOLOGY. In this paper, we consider exclusively
affine (hence linear) algebraic groups defined over a perfect field $k$ . For such
a group $G,$ $G_{k}$ denotes the subgroup formed of all k-rational points in G. $G^{o}$

is the connected component of $G$ containing the neutral element (except for
the notation introduced in \S 4). Since $k$ is perfect, the words ’ k-closed ’ and
’ defined over $k$ ‘ are used quite synonymously. An isomorphism (resp. an
isogeny) defined over $k$ will be called briefly a k-isomorphism (resp. a k-iso-
geny). For any field $k,$ $k^{*}$ denotes the multiplicative group of all non-zero
elements in $k$ . $G_{m},$ $G_{a}$ are the multiplicative group of all non-zero elements
in the universal domain and the additive group of the universal domain,
respectively, considered as an algebraic group of dimension 1. For a subgroup
$H$ of an (abstract) group $G,$ $N(H),$ $Z(H)$ denote the normalizer and the cen-
tralizer of $H$ in $G$ , respectively. As usual, $Z$ (resp. Q) denotes the ring of
rational integers (resp. the field of rational numbers). For any subset $1\psi$ of
a module (resp. vector space over Q), the symbol $Mz$ (resp. $M_{Q}$) represents
the submodule (resp. linear subspace over Q) generated by $1\psi$.

\S 1. Preliminaries.

1. Let $k$ be a perfect field and $G$ a connected (linear) algebraic group
defined over $k$ . It was proved by Rosenlicht [9] (cf. also [5], [10]) that the
following four conditions on $G$ are equivalent.
(T1) There exists a k-isomorphism from $G$ into $T(n)(=the$ group of all

upper triangular matrices of degree $n$).

(T2) $G$ is solvable, and all characters of $G$ ( $i$ . $e$ . morphisms from $G$ into $G_{m}$)
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are defined over $k$ .
(T3) $G$ has a composition series:

$ G=G_{0}\supset G_{1}\supset$ $\supset G_{r}=\{1\}$

such that all $G_{i}$ are defined over $k$ and that the factor groups $G_{i-1}/G_{i}$

are k-isomorphic either to $G_{m}$ or to $G_{a}$ .
(T4) If $V$ is a transformation space of $G$ , defined over $k$ , which is complete

and has a k-rational point, then $V$ has a k-rational fixed point of $G$ .
We call a connected algebraic group $G$ satisfying one of these conditions
k-trigonalizable. As is seen from (T2) or (T3), this property is invariant under
a k-isogeny. A torus $T$, defined over $k$ , is k-trigonalizable, if and only if $T$

is k-isomorphic to $(G_{m})^{l},$ $l$ denoting the dimension of $T$ ; such a torus is said
to split over $k$ or to be k-trivial (cf. [7]). On the other hand, a connected
unipotent group ( $i$ . $e$ . group consisting of only unipotent elements), defined
over $k$ , is always k-trigonalizable; we will call such a group simply a con-
nected k-unipotent group. (Note that a connected unipotent group is necessarily
nilpotent. [4], 6-10, Cor. 2.) It is known that all connected k-trigonalizable
group $G$ is a semi-direct product over $k^{1)}$ of a k-trivial torus $A$ and a con-
nected k-unipotent normal subgroup N. (This is a special case of the so-called
” Chevalley decomposition ”, and follows from Borel [1], Th. 12.2 and from
the existence of a maximal torus defined over $k$ , Rosenlicht [9], p. 45.)

2. Let $G$ be a connected algebraic group defined over a perfect field $k$ .
We call a maximal connected k-trigonalizable subgroup of $G$ a k-Borel sub-
group. The following properties of k-Borel subgroups are due to Borel (cf.
[5], [10]).
(B1) All k-Borel subgroups of $G$ are conjugate to each other with respect to

inner automorphisms defined by elements in $G_{k},$ $i$ . $e$ . if $H,$ $H^{\prime}$ are two
k-Borel subgroups of $G$ , we have $H^{\prime}=gHg^{-1}$ with $g\in G_{k}$ . Moreover, if
$H=AN,$ $H^{\prime}=A^{\prime}N^{\prime}$ are the Chevalley decompositions of $H,$ $H^{\prime}$ , respec-
tively, we have $A^{\prime}=gAg^{-1},$ $N^{\prime}=gNg^{-1}$ with $g\in G_{k}$ .

(B2) If $H$ is a k-Borel subgroup of $G$ , there exists a transformation space $V$

of $G$ , defined over $h$ , which is projective, and an injective k-morphism
from the homogeneous space $G/H$ into $V$ (with respect to the structure
of transformation space of $G$) such that $V_{k}=G_{k}\cdot\varphi(H),$ $V_{k}$ denoting the
set of all k-rational points in V. (In particular, the canonical map
$G_{k}\rightarrow(G/H)_{k}$ is surjective.)

1) An algebraic group $G$, defined over $k$ , is said to be a semi-direct product over
$k$ of closed subgroups $G_{1},$ $G_{2}$ , both defined over $k$ , if $G$ is a semi-direct product of $G_{1}$ ,
$G_{2}$ in the abstract sense and if the natural correspondence $G_{1}\times G_{2}\rightarrow G$ is a birational
(hence biregular) map defined over $k$ .
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It is clear from the definition that, if $G$ is the direct product of two
algebraic groups $G_{1},$ $G_{2}$ , both defined over $k$ , then a h-Borel subgroup $H$ of $G$

is the direct product of k-Borel subgroups $H_{i}$ of $G_{i}(i=1,2)$ , and that, if
$f:G\rightarrow G^{\prime}$ is a k-isogeny and if $H,$ $H^{\prime}$ are k-closed connected subgroups of
$G,$ $G^{\prime}$ , respectively, corresponding under $f$, then $H$ is a k-Borel subgroup of $G$

if and only if $H^{\prime}$ is a k-Borel subgroup of $G^{\prime}$ .
Now let $R^{u}$ denote the unipotent part of the radical ( $=the$ maximal con-

nected solvable normal subgroup) of $G$ , which is clearly k-closed. Then it is
clear that a closed subgroup $H$ of $G$ is a k-Borel subgroup of $G$ , if and only
if $H$ contains $R^{u}$ and $H/R^{u}$ is a k-Borel subgroup of $G/R^{u}$ . This reduces the
study of k-Borel subgroups to the case where $G$ is reductive ( $i$ . $e$ . to the case
where $R^{u}=\{1\}$ ). We recall that, if $G$ is reductive, the connected component
$C$ of the center of $G$ is a torus defined over $k$ , the derived group $S$ of $G$ is a
semi-simple k-closed normal subgroup and we have $G=S\cdot C,$ $S_{\cap}C=finite$ ; or,
in other words, $G$ is k-isogeneous to the direct product of $S$ and $C$. Notation:
$G\sim S\times C$. We call $S$ and $C$ the ‘ semi-simple’ and the ’ torus part’ of $G$ ,
respectively.

A connected algebraic group $G$ , defined over $k$ , is called of compact type
over $k$ (or briefly k-compact, by abuse of language), if k-Borel subgroups of $G$

reduce to the neutral element. From what we have mentioned above, the
k-compactness is invariant under a k-isogeny, and the direct product $G=G_{1}\times G_{2}$

is k-compact if and only if $G_{1},$ $G_{2}$ are both k-compact. A connected h-compact
algebraic group is necessarily reductive.

3. (In this paragraph, $k$ may be an arbitrary field.) Let $T$ be a torus of
dimension $l$, defined over $k$ , and let $X$ be its character module. Then there
exists a finite Galois extension $K$ of $k$ such that $T$ splits over $K$ ([7],

Prop. 1.2.1); $T$ is then K-isomorphic to $(G_{m})^{l}$ and $X$ is isomorphic (as module)

to $Z^{l}$ . Call $\Gamma$ the Galois group of $K/k$ . All $\chi\in X$ being defined over $K,$ $\Gamma$

operates in a natural manner on $X$. We consider $\Gamma$ as operating on $X$ (and

also on any objects defined over $K$) from the right, so that we have $(\chi^{\sigma})^{\tau}=\chi^{\sigma\tau}$

for all $\chi\in X,$ $\sigma,$
$\tau\in\Gamma$. $X$ has thus a structure of (right) $\Gamma$-module.

PROPOSITION 1. Let $T$ be a torus defined over $k$ . Then a maximal k-trivial
subtorus $A$ and a maximal k-compact subtorus $T_{0}$ are determined uniquely; and
we have

$T=T_{0}\cdot A$ , $T_{0}\cap A=finite$ ;

in other words, $T$ is k-isogeneous to the direct product of $T_{0}$ and $A$ .
We call $T_{0},$ $A$ the ‘ k-compact ’ and ‘ k-trivial part ’ of $T$, respectively.
PROOF. Put

(1) $X^{\Gamma}=$ { $\chi\in X|\chi^{\sigma}=x$ for all $\sigma\in\Gamma$ },
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(2) $X_{0}=\{\chi\in X|\sum_{\sigma\in\Gamma}\chi^{\sigma}=0\}$ .

It is clear that $X^{\Gamma},$ $X_{0}$ are $\Gamma$-invariant submodules of $X$ and that the factor
modules $X/X^{\Gamma},$ $X/X_{0}$ have no torsion. Hence, denoting by $T_{0},$ $A$ the annihila-
tors of $X^{\Gamma},$ $X_{0}$ in $T$, respectively, we see that $T_{0},$ $A$ are subtoruses of $T$ defined
over $k$ ([7]). Now, by definition, $T$ is k-trivial, if and only if $X^{\Gamma}=X$. Hence
a subtorus $T^{\prime}$ of $T$, defined over, $k$ , is k-trivial, if and only if the character
module $X^{\prime}$ of $T^{\prime}$ satisfies the condition $X^{\prime\tau}=X^{\prime}$ . Call $X_{1}$ the annihilator of $T^{\prime}$

in $X$ ; then, $X^{\prime}$ being identified (as $\Gamma$-module) with $X/X_{1}$ , this condition is
equivalent to saying that $\chi^{\sigma}-\chi\in X_{1}$ for all $\chi\in X,$ $\sigma\in\Gamma$ . Since $X/X_{1}$ has no
torsion, this latter is equivalent to $X_{0}\subset X_{1}$ , or $A\supset T^{\prime}$ . Thus $A$ is the biggest
k-trivial subtorus of $T$. It follows that $T$ is k-compact, if and only if $X_{0}=X$.
Hence, the notations being as above, a subtorus $T^{\prime}$ is k-compact, if and only
if $X_{0}^{\prime}=X^{\prime}$ , or, what amounts to the same, $\sum_{\sigma\in\Gamma}\chi^{\sigma}\in X_{1}$ for all $\chi\in X$ ; since $X/X_{I}$

has no torsion, this is equivalent to $X^{\Gamma}\subset X_{1}$ or $T_{0}\supset T^{\prime}$ . This proves that
$T_{0}$ is the biggest k-compact subtorus of $T$. Finally, if we denote by
$X_{Q},$ $(X^{\Gamma})_{Q},$ $(X_{0})_{Q}$ the vector spaces over $Q$ obtained from $X,$ $X^{\Gamma},$ $X_{0}$ , respectively,
by extending the coefficients from $Z$ to $Q$ , it is immediate that

(3) $X_{Q}=(X^{\Gamma})_{Q}+(X_{0})_{\zeta 1}$ (direct sum),

whence we get

[X: (X $r+X_{0})$] $<\infty,$ $X^{\Gamma}\cap X_{0}=\{0\}$ .
This implies our last statement, q. e. $d$ .

$CoROLLARY$ . A torus defined over $k$ is k-compact, if and only if it has no
character defined over $k$ .

\S 2. Maximal connected $(k,T)$-unipotent subgroups.

4. In the following, $G$ denotes a connected reductive algebraic group
defined over a perfect field $k$ . Let $A$ be a maximal k-trivial torus in $G$ . It
is then easy to see that, in $G$ , there exists a maximal torus $T$ defined over $k$

and containing A. (In fact, for a maximal torus $T$, the condition $T\supset A$ is
equivalent to $T\subset Z(A)$ . Hence it is enough to take a maximal torus, defined
over $k$ , in $Z(A)$ ([9], p. 45). Note also that $Z(A)$ is connected. [4], 6-14, Th.
6, 2).) Then, $A$ is the k-trivial part of $T$. Such a $T$ (and $A$) will be fixed in
the following once for all. Denote by $X,$ $Y$ the character modules of $T,$ $A_{r}$

respectively, and, as in $N^{o}3$ , by $X_{0}$ the annihilator of $A$ in $X;Y$ is then
identified with $X/X_{0}$ . For $\chi\in X$ the canonical image of $\chi$ in $Y,$ $i$ . $e$ . the
restriction of $\chi$ on $A$ , will be denoted by $\pi(\chi)$ .

We will often make use of a linear order (compatible with addition) in
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$X$ with the following property:

(4) If $\chi\not\in X_{0},$ $\chi>0,$ $\chi\equiv\chi^{\prime}(mod X_{0})$ , we have $\chi^{\prime}>0$ .
Suppose first that a linear order in $X$ satisfying (4) is given. Call $X_{+}$ the set
of all positive elements in $X$ and put

$X_{0+}=X_{+}\cap X_{0}$ , $Y_{+}=\pi(X_{+}-X_{0+})$ .
Then it is clear that one can define linear orders in $X_{0}$ and in $Y$, by taking
$X_{0+}$ and $Y_{+}$ as the sets of positive elements in $X_{0}$ and in $Y$, respectively.
Moreover, the linear order in $X$ is determined uniquely by those ’ induced’
(in this sense) in $X_{0}$ and in $Y$, because we have $X_{+}=X_{0+}U\pi^{-1}(Y_{+})$ . This
consideration shows also that conversely, given linear orders in $X_{0}$ and in $Y$,
there exists (uniquely) a linear order in $X$ satisfying (4) and inducing the
given linear orders in $X_{0}$ and in $Y$. If, as in $N^{o}3,$ $K$ denotes a finite Galois
extension of $k$ with Galois group $\Gamma$ such that $T$ splits over $K$, a linear order
in $X$ satisfying (4) is characterized by the property:

(4’) If $\chi\not\in X_{0},$ $\chi>0$ , we have $\chi^{\sigma}>0$ for all $\sigma\in\Gamma$ .
We call such a linear order in $X$ a $\Gamma$ -linear order.

Now let $\mathfrak{r}=\{\alpha\}\subset X$ be the “ root system” of $G$ relative to $T$. By defini-
tion, a root $\alpha$ relative to $T$ is a character of $T$ such that there exists a
(uniquely determined) connected unipotent subgroup $P_{\alpha}$ of dimension 1 in $G$

and an isomorphism $x_{\alpha}$ from $G_{a}$ onto $P_{\alpha}$ such that we have

(5) $tx_{\alpha}(\xi)t^{-1}=x_{\alpha}(\alpha(t)\xi)$ for all $t\in T,$ $\xi\in G_{a}$ .
Here $x_{\alpha}$ is uniquely determined up to a non-zero scalar multiplication in $G_{a}$

and may be taken to be defined over $K$ (if $K$ is sufficiently large), so that $P_{\alpha}$

is also defined over $K$ (see Remark on p. 229). It is known ([4], $Exp$ . $11\sim 13$ ,
16) that the set $\mathfrak{r}$ of all roots satisfies the usual conditions of root system (in
$X_{Q})$ . It is clear from the definition that $\mathfrak{r}$ is invariant under $\Gamma$ and we have

(6) $(P_{\alpha})^{\sigma}=P_{\alpha^{\sigma}}$

for all $\sigma\in\Gamma$ .
Put

(7) $\mathfrak{r}_{0}=\mathfrak{r}\cap X_{0}$ , $\overline{\mathfrak{r}}=\pi(\mathfrak{r}-\mathfrak{r}_{0})$ .
Then $\mathfrak{r}_{0}$ becomes clearly a ‘ closed ’ subsystem of $\mathfrak{r},$

$i.e$ . $(\mathfrak{r}_{0})_{Z}\cap \mathfrak{r}=\mathfrak{r}_{0}$ . An ele-
\ddagger nent of $\overline{\mathfrak{r}}$ is called a restricted root relative to A. (In fact, as is easily seen,
$\overline{\mathfrak{r}}$ does not depend on the choice of $T$, but only on $A.$) On the other hand,

given a F-linear order in $X$, we use sometimes the following notation:

$\mathfrak{r}_{+}=\mathfrak{r}\cap X_{+},$ $\mathfrak{r}_{0+}=\mathfrak{r}_{0}\cap X_{0+}$ ,
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$\overline{r}_{+}=\overline{r}\cap Y_{+}=\pi(\mathfrak{r}_{+}-\mathfrak{r}_{0+})$ .
5. For convenience, we call a connected subgroup $N$ of $G(k, T)$-unipotent,

if it is unipotent, defined over $k$ and normalized by $T$. In the case of charac-
teristic $0$ , every maximal connected k-unipotent subgroup of $G$ normalized by
$A$ can be proved to be $(k, T)$-unipotent. (See Remark 2 on p. 218) We shall
now prove the following

PROPOSITION 2. For any maximal connected $(k, T)$-unipotent subgroup $N$ of
$G$ , there exists a $\Gamma$-linear order in $X$ such that

(8)
$N=\prod_{-\alpha\in \mathfrak{r}+\mathfrak{r}_{0+}}P_{\alpha}$ .

(This means that every element in $N$ is expressed uniquely as a product of
the elements in $P_{\alpha}$ with $\alpha\in \mathfrak{r}_{+}-\mathfrak{r}_{0+},$ $\mathfrak{r}_{+}-\mathfrak{r}_{0+}$ being ordered in an arbitrary way.)

PROOF. Since $TN$ is a connected solvable subgroup of $G$ , there exists an
“ absolute Borel subgroup “ ( $i$ . $e$ . Borel subgroup $w$ . $r$ . $t$ . the universal domain)
$B$ containing $TN;N$ is then contained in the unipotent part $B^{u}$ of $B$ . There-
fore ([4], 13-05, Th. 1), if one denotes by $\mathfrak{r}_{*}$ the set of all the roots $\alpha$

such that $P_{\alpha}\subset N$, we have $N=\prod_{\alpha\in \mathfrak{r}_{*}}P_{\alpha}$ . Moreover, there exists a linear order

in $X$ such that $B^{u}=\prod_{a>0}P_{\alpha}$ . (In these $\Pi$, the order of factors may be taken

arbitrarily.) Then, from (6) and from the fact that $N$ is invariant under $\Gamma,$
$\mathfrak{r}_{*}$

is also invariant under $\Gamma$ ; therefore $\alpha\in\gamma_{*}$ implies $\alpha^{\sigma}>0$ for all $\sigma\in\Gamma$ . It
follow’s that $r_{*}$ has the following property:

$(^{*})$ Any finite sum $\sum\alpha_{i}$ of elements in $r_{*}$ is not contained in $X_{0}$ .
From this, and by using Zorn’s lemma, we infer that there exists a subset
$Y_{+}$ of $Y$ containing $\pi(\mathfrak{r}_{*})$ which is maximal with respect to the following
properties:
(i) $\eta,$

$\eta^{\prime}\in Y_{+}$ implies $\eta+\eta^{\prime}\in Y_{+}$ ,

(ii) $0\not\in Y_{+}$ .
Then it is easy to see that for any $\eta\in Y,$ $\eta\neq 0$ , we have either $\eta\in Y_{+}$ or
$-\eta\in Y_{+}$ . Therefore one can define a linear order in $Y$, by taking $Y_{+}$ as the
set of positive elements. Then, denoting by $X_{0+}$ the set of positive elements
in $X_{0}$ with respect to any linear order and taking $X_{+}=X_{0+}\cup\pi^{-1}(Y_{+})$ as the
set of positive elements in $X$, one can define a $\Gamma$-linear order in $X$, such that
one has $\mathfrak{r}_{*}\subset X_{+}$ . Therefore we may assume at the beginning that the linear
order corresponding to $B$ is a $\Gamma$-linear order. Then, the subgroup $N^{\prime}$ generated
by all the $P_{\alpha}’ s$ with $\alpha\in \mathfrak{r}_{+}-\mathfrak{r}_{0+}$ is clearly connected, unipotent, normalized by
$T$ and invariant under all $\sigma\in\Gamma$ , hence defined over $k$ . From the maximality
of $N$, we conclude that $N=N^{\prime},$ $i$ . $e$ . $\mathfrak{r}_{*}=\mathfrak{r}_{+}-\mathfrak{r}_{0+},$ $q$ . $e$ . $d$ .

COROLLARY 1. For a connected reductive group $G$ , defined over $k$ , the fol-
lowing two conditions are equivalent:
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1) A maximal k-trivial torus $A$ is contained in the center of $G$ .
2) $G$ has no connected $(k, T)$-unipotent subgroup of dimension $>0$ .

(In particular, in order that a semi-simple group $G$ , defined over a field $k$ of
characteristic $0$ , be k-compact, either one of the conditions $A=\{1\},$ $N=\{1\}$ is
necessary and sufficient.)

PROOF. It follows from the Proposition that the condition 2) is equivalent
to $\mathfrak{r}\subset X_{0}$ . On the other hand, since $G$ is generated by $T$ and the $P_{a}’ s$ and
since $P_{\alpha}$ centralizes $A$ if and only if $\alpha\in X_{0}$ , the condition $\iota\cdot\subset X_{0}$ is also
equivalent to 1), $q$ . $e$ . $d$ .

COROLLARY 2. $Z(A)$ is a connected reductive subgroup of $G$ without $con$ ’

nected $(k, T)$-unipotent subgroup of dimension $>0$ .
PROOF. Since $Z(A)$ is a connected subgroup containing $T$, of a reductive

group $G$ , it is generated by $T$ and by the $P_{a}’ s$ which are contained in it ([4],

12-07, Prop. 3, 13-05, Th. 1, $d$)), or equivalently, by $T$ and by the $P_{a}’ s$ with
$\alpha\in r_{0}$ . Since $\mathfrak{r}_{0}$ is a ’closed’ subsystem of $\iota\cdot$ , the closed subgroup $G(r_{0})$

generated by the $P_{\alpha}’ s$ with $\alpha\in \mathfrak{r}_{0}$ is semi-simple ([4], 17-02, Th. 1), and we
have $Z(A)=T_{1}\cdot G(\mathfrak{r}_{0})$ , where $T_{1}$ is the annihilator of $(\mathfrak{r}_{0})_{Q}\cap X$ in $T$. Hence
$Z(A)$ is reductive and $G(\uparrow_{0})$ is its semi-simple part. It follows from the above
Cor. 1 that $Z(A)$ contains no connected $(k, T)$-unipotent subgroup of dimen-
sion $>0$ .

PROPOSITION 3. a) For any linear order in $Y$, let $N$ be the subgroup
generated by the $P_{\alpha}’ s$ with $\pi(\alpha)>0(i$ . $e$ . the subgroup defined by (8) with respect
to a $\Gamma$ -linear order in $X$ inducing a given linear $ orde\gamma$ in $Y$ ). Then $Z(A)$ nor-
malizes $N$ and we have $N(N)=N(AN)=N(Z(A)\cdot N)=Z(A)\cdot N$.

b) The connected normalizer $N^{o}(A)$ of $A$ coincides with $Z(A)$ .
PROOF. a) To prove that $Z(A)$ normalizes $N$, it is enough to show that

the $P_{\alpha}’ s$ with $\alpha\in \mathfrak{r}_{0}$ normalize $N$. Let $\alpha\in r_{0},$ $\beta\in \mathfrak{r}_{+}-\mathfrak{r}_{0+};$ by changing the
F-linear order (in the $X_{0}$ -part) if necessary, we may assume that $\alpha>0$ . Then,
by considering the closed subgroup of $G$ corresponding to the ’ closed ‘ sub-
system $\{i\alpha+j\beta|i,j\in Z, i\alpha+j\beta\in \mathfrak{r}\}$ of $\mathfrak{r}$ , we have easily

$p_{\alpha}p_{\beta}p_{a}^{-1}p_{\beta}^{-1}\in\prod_{i,j>0}P_{ia+j\beta}$ for $p_{\alpha}\in P_{\alpha},p_{\beta}\in P_{\beta}$ ,

where the product is taken over all $(i,j)$ such that $i,j>0,$ $i\alpha+j\beta\in \mathfrak{r}$ . Now,
for $j>0$ , it is clear that $i\alpha+j\beta\in\iota_{+}-\mathfrak{r}_{0+}$ , so that we have $p_{\alpha}p_{\beta}p_{a}^{-1}p_{\overline{\beta}^{1}}\in N$, which
proves that $P_{\alpha}$ normalizes $N$. It follows that $Z(A)\cdot N$ is a connected sub-
group, defined over $k$ , of $G$ , containing an absolute Borel subgroup of $G$ .
Therefore we have $N(Z(A)\cdot N)=Z(A)\cdot N$ ([4], 12-06, Lem. 4). On the other
hand, it is clear that $Z(A)\cdot N\subset N(AN)\subset N(N)$ . Hence it remains to show
that $N(N)\subset Z(A)\cdot N$. Since $N(N)$ contains an absolute Borel subgroup, it is
connected. (This follows also from [4], loc. cit. ; see [5], 206-11.) Hence
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$N(N)$ , being a connected subgroup containing $T$ of a reductive group $G$ , is
generated by $T$ and by the $P_{\alpha}’ s$ which are contained in it. Hence it is
enough to show that $P_{\alpha}\subset N(N)$ implies $\alpha\in \mathfrak{r}_{+}\cup \mathfrak{r}_{0}$ . Now, if $P_{\alpha}\subset N(N),$ $P_{\alpha}\cdot N$

is a unipotent group. On the other hand, if $\alpha\in\in \mathfrak{r}_{+}U\mathfrak{r}_{0}$ , we have -a $\in \mathfrak{r}_{+}-\mathfrak{r}_{0+}$ ,
$i$ . $e$ . $P_{-a}\subset N$, and, as is readily seen, the closed subgroup generated by $P_{\alpha}$ ,
$P_{-\alpha}$ is semi-simple; thus the subgroup generated by $P_{\alpha}$ and $N$ can not be
unipotent. This proves our assertion.

b) Since $N^{o}(A)$ is a connected subgroup containing $T$, of a reductive
group $G$ , it is generated by $T$ and by the $P_{\alpha}’ s$ which are contained in it.
Now, if $P_{\alpha}\subset N^{o}(A)$ , we have $ap_{\alpha}a^{-1}p_{\alpha}^{-1}\in A\cap P_{\alpha}=\{1\}$ for any $a\in A,$ $p_{\alpha}\in P_{\alpha}$

i. e. $P_{\alpha}$ centralizes $A$ . Hence we have $N^{o}(A)=Z(A)$ , q. e. $d$ .
$CoROLLARY$ . In the case of characteristic $0,$ $Z(A)\cdot N$ is a semi-direct product,

over $k$ , of $Z(A)$ and $N$.
REMARK. It follows from Propositions 2 and 3, a) that the notion of

maximal connected $(k, T)$-unipotent subgroup does not depend actually on the
choice of $T$, but only on $A$ .

6. LEMMA. 1. We have $N(A)=(N(A)\cap N(T))\cdot Z(A)$ .
PROOF. Let $s\in N(A)$ . Then $sTs^{-1}$ being contained in $Z(A),$ $T,$ $sTs^{-1}$ are

both maximal toruses in $Z(A)$ . Hence there exists $s_{1}\in Z(A)$ such that
$sTs^{-1}=s_{1}Ts_{1}^{-1}$ . $Then,$ $puttings_{2}=s_{1}^{-1}s,$ $wehaves=s_{1}s_{2}withs_{1}\in Z_{(}^{\prime}A$), $s_{2}\in N(A)$

$\cap N(T)$ , as desired, $q$ . $e$ . $d$ .
THEOREM 1. a) For any linear order in $Y$, the subgroup $N$ generated by

the $P_{\alpha}’ s$ with $\pi(\alpha)>0,$ $i$ . $e$ .
$N=\prod_{\pi(\alpha)>0}P_{\alpha}$

is a maximal connected $(k, T)$-unipotent subgroup of G. Conversely, all maximal
connected $(k, T)$-unipotent subgroups of $G$ are obtained in this way.

b) The maximal connected $(k, T)$-unipotent subgroups of $G$ are conjugate to
each other with respect to inner automorphisms defined by k-rational elements in
$N(A),$ $i$ . $e$ . if $N,$ $N^{\prime}$ are two maximal connected $(k, T)$-unipotent subgroups of $G$ ,
we have $N^{\prime}=sNs^{-1}$ with $s\in N(A)_{k}$ . We have $sNs^{-1}=s^{\prime}Ns^{\prime-1}$ with $s,$ $s^{\prime}\in N(A)_{k}$ ,

if and only if $s\equiv s^{\prime}(mod Z(A)_{k})$ .
PROOF. a) It is clear that the subgroup $N$ generated by the $P_{\alpha}’ s$ with

$\pi(\alpha)>0$ is connected and $(k, T)$-unipotent. To prove its maximality, suppose
that there exists a connected $(k, T)$-unipotent subgroup $N^{\prime}$ containing $N$ pro-
perly. Then there exists a connected $(k, T)$-unipotent subgroup containing $N$

as a proper normal subgroup. In fact, it can be proved easily that there
exists a connected subgroup $N^{\prime\prime}$ such that $N^{\prime}\supset N^{\prime\prime}\supsetneqq N$, normalized by $T$ and
normalizing $N$ (cf. [4], 13-01, Lem. 1, $b$)). Then the subgroup generated
by all the conjugates of $N^{\prime\prime}$ over $k$ satisfies our requirements. Hence we may
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suppose that $N^{\prime}\subset N(N)$ . Then, since $N(N)=Z(A)\cdot N$ by Proposition 3, a), we
have $N^{\prime}=(N^{\prime}\cap Z(A))\cdot N$ and so $N^{\prime}\cap Z(A)\neq\{1\}$ , which contradicts Corollary
2 to Proposition 2. This proves the direct part in a). The converse is already
stated as Proposition 2.

b) Let $N,$ $N^{\prime}$ be two maximal connected $(k, T)$-unipotent subgroups of $G$ .
Then, since AN, $AN^{\prime}$ are connected k-trigonalizable subgroups of $G$ , there
exist two k-Borel subgroups $H,$ $H^{\prime}$ of $G$ , containing AN, $AN^{\prime}$ , respectively.
Call $\tilde{N},\tilde{N}^{\prime}$ the unipotent parts of $H,$ $H^{\prime}$ , respectively; then it is clear that
$\tilde{N},\tilde{N}^{\prime}$ are maximal connected k-unipotent subgroups of $G$ , normalized by $A$

and containing $N,$ $N^{\prime}$ , respectively. Hence by the property (B1) of k-Borel
subgroups there exists $s\in N(A)_{k}$ such that $\tilde{N}^{\prime}=s\tilde{N}s^{-1}$ . We shall infer that
$N^{\prime}=sNs^{-1}$ . In fact, $sNs^{-1}$ is a connected k-unipotent subgroup of $G$ ; it is
normalized by $T$, because by Lemma 1 we can write $s=s_{1}s_{2}$ with $s_{1}$

$\in N(A)_{\cap}N(T),$ $s_{2}\in Z(A)\subset N(N)$ , so that we have $sNs^{-1}=s_{1}Ns_{1}^{-1}$ . It follows
immediately that $sNs^{-1}$ is a maximal connected $(k, T)$-unipotent subgroup of
$G$ . Therefore, by Proposition 2 there exist two $\Gamma$ -linear orders in $X$ such
that, in denoting by $\mathfrak{r}_{+}^{\prime},$ $\mathfrak{r}_{+}^{\prime\prime}$ the corresponding sets of positive roots, we have

$N^{\prime}=\prod_{la\in \mathfrak{r}+-\mathfrak{r}_{0}}P_{\alpha}$ , $sNs^{-1}=\prod_{/\alpha\prime}P_{\alpha}$ .

Since $N^{\prime},$ $sNs^{-1}$ are both contained in a unipotent group $\tilde{N}^{\prime}$ , there is no root
$\alpha$ such that $\alpha\in \mathfrak{r}_{+}^{\prime}-\mathfrak{r}_{0},$ $-\alpha\in \mathfrak{r}_{+}^{\prime\prime}-)_{\vee}0$ This means that $\iota_{+}^{\prime}-\mathfrak{r}_{0}$ is contained in
the complement (in r) of the set { $-\alpha|$ a $\in \mathfrak{r}_{+}^{\prime\prime}-\mathfrak{r}_{0}$ }, or, what amounts to the
same, in $\mathfrak{r}_{+}^{\prime\prime}U\mathfrak{r}_{0}$ . This implies clearly that $\mathfrak{r}_{+}^{\prime}-\mathfrak{r}_{0}=\mathfrak{r}_{+}^{\prime\prime}-\mathfrak{r}_{0}$ and so $N^{\prime}=sNs^{-1}$ ,

as desired. Finally, if $sNs^{-1}=s^{\prime}Ns^{\prime-1}$ with $s,$ $s^{\prime}\in N(A)$ , we have $s^{\prime\prime}=s^{\prime-1}s$

$\in N(N)=Z(A)\cdot N$ by Proposition 3, a), and hence $s^{\prime\prime}\in(N(A)_{\cap}N)\cdot Z(A)$ . Then,
for any $a\in A$ , we have $s^{\prime\prime}as^{\prime/-1}a^{-1}\in A\cap N=\{1\},$ $i$ . $e$ . we have $s^{\prime/}\in Z(A),$ $q$ . $e$ . $d$ .

$CoROLLARY$ . Either one of the conditions 1), 2) in Corollary 1 to Proposition
2 is equivalent to the following condition:

3) $N(A)_{k}=Z(A)_{k}$ .
PROOF. It is clear that 1) implies 3). Conversely, suppose that 1) is not

satisfied. Then there exists a root $\alpha$ not contained in $X_{0}$ . Hence, for any
linear order in $Y$, the subgroups $N=\prod_{\pi(\alpha)>0}P_{\alpha},$ $N^{\prime}=\prod_{\pi(a)<0}P_{\alpha}$ are two distinct

maximal connected $(k, T)$-unipotent subgroups of $G$ . Therefore by Theorem
1, b) we must have $[N(A)_{k} : Z(A)_{k}]>1,$ $q$ . $e$ . $d$ .

REMARK 1. The number of distinct maximal connected $(k, T)$-unipotent
subgroups is equal to the index $[N(A)_{k} : Z(A)_{k}]$ , which is finite by Proposition
3, b). It will be proved in the next section that every coset in $N(A)/Z(A)$

contains a h-rational representative, so that we have $[N(A)_{k} : Z(A)_{k}]=[N(A)$ :
$Z(A)]$ .

REMARK 2. It is not known to the author whether (in the case of charac-
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teristic $\neq 0$) a maximal connected k-unipotent subgroup of $G$ normalized by
$A$ is normalized by $Z(A)$ (or equivalently, becomes a $(k,$ $T)$-unipotent subgroup)

or not.2) This would be true, if (and only if) Corollary 1 to Proposition 2
remains true when the word ” $(k, T)$-unipotent ” is replaced by ” k-unipotent ”.
A sufficient condition for this is that we have $N^{o}(P)\neq Z^{o}(P)$ for any connected
unipotent subgroup $P$ of dimension 1 of $G_{j}$ and this condition is surely
satisfied for the field of characteristic $0$ . (See Godement [5], 206-20/21.)

\S 3. Properties of $\Gamma$-fundamental systems.

7. We keep the notations $A,$ $T,$ $X,$ $\cdots$ introduced in $N^{o}4$ throughout
this section. We call a fundamental system of $\mathfrak{r}$ corresponding to a $\Gamma$-linear
order in $X$ a F-fundamental system. From what we mentioned in $N^{o}4$, a
fundamental system $\Delta$ of $\mathfrak{r}$ becomes a $\Gamma$ -fundamental system, if and only if
for $\alpha_{i}\in\Delta,$ $\not\in X_{0}$ and for all $\sigma\in\Gamma,$ $\alpha_{i}^{\sigma}$ is a positive root with respect to the
fundamental system $\Delta$ . For a $\Gamma$-fundamental system $\Delta$ , we put

(9) $\Delta_{0}=\Delta\cap X_{0}$ , $\overline{\Delta}=\pi(\Delta-\Delta_{0})$ .
and call a a restricted fundamental system of $\mathfrak{r}$ corresponding to a $\Gamma$-funda-
mental system $\Delta$ .

PROPOSITION 5. Let $\Delta$ be a $\Gamma$-fundamental system. Then
a) $\Delta_{0}$ is a fundamental system of the root system $\mathfrak{r}_{0}$ .
b) If $\overline{\Delta}=\{\gamma_{1}, \cdots , r_{v}\}$ (where the $\gamma_{i}’ s$ are assumed to be mutually distinct),

then $\gamma_{1},$
$\cdots$ , $\gamma_{\nu}$ are linearly independent and every $\gamma\in\overline{\mathfrak{r}}$ can be written uniquely

in the form
$\gamma=\pm\sum_{j=1}^{\nu}n_{j}\gamma_{j}$

with $n_{j}\in Z,$ $n_{j}\geqq 0$ .
c) Let $\Delta^{\prime}$ be another $\Gamma$-fundamental system and put $\Delta_{0}^{\prime}=\Delta^{\prime}\cap X_{0},\overline{\Delta}^{\prime}$

$=\pi(\Delta^{\prime}-\Delta_{0}^{\prime})$ . Then we have $\Delta=\Delta^{\prime}$ , if and only if we have $\Delta_{0}=\Delta_{0}^{\prime},\overline{\Delta}=\overline{\Delta}^{\prime}$ .
PROOF. a) We write $\Delta=\{\alpha_{1}$ , $\cdot$ .. $\alpha_{\iota}\},$ $\Delta_{0}=\{\alpha_{\iota-l_{0}+1}$ , $\cdot$ .. $\alpha_{\iota}\}$ , where the $\alpha_{i}’ s$

are assumed to be mutually distinct. Take $\alpha\in\iota_{0}$ and write

(10) $\alpha=\pm\sum_{i=1}^{\iota}m_{i}\alpha_{i}$

with $m_{i}\in Z,$ $m_{i}\geqq 0$ . Then
$0=\sum_{\sigma}\alpha^{\sigma}=\pm\sum_{:}m_{i}\sum_{\sigma}\alpha_{i}^{\sigma}$ .

Since $\Delta$ is a $\Gamma$-fundamental system, we have $\sum_{\sigma}\alpha_{i}^{\sigma}>0$ for $1\leqq i\leqq l-l_{0},$
$\sum_{\sigma}\alpha_{i}^{\sigma}=0$

for $l-l_{0}+1\leqq i\leqq l$. Hence we must have $m_{i}=0$ for $1\leqq i\leqq l-l_{0}$ . Therefore

2) Professor Tits has kindly informed me that this problem was already settled
affirmatively by him.
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$\Delta_{0}=\{\alpha_{l-l_{\phi}+1}$ , $\cdot$ .. $\alpha_{l}\}$ is a fundamental system of $\mathfrak{r}_{0}$ .
b) The notations being as above, let $\alpha\in \mathfrak{r}$ and write it in the form (10).

Then we have
$\pi(\alpha)=\pm\sum_{j}n_{j}\gamma_{j}$

with
$n_{j}=\sum_{\pi(\alpha_{i})=\gamma_{j}}m_{i}$

; hence $n_{j}\in Z,$ $n_{j}\geqq 0$ . It follows, in particular, that if

$\pi(\alpha_{i})=r_{J}$ , then, for any $\sigma\in\Gamma$, we have

(11) $\alpha_{i}^{\sigma}=\alpha_{i^{\prime}}+\sum_{k=l-l_{0}+1}^{\iota}c_{k}\alpha_{k}$

with $1\leqq i^{\prime}\leqq l-l_{0},$ $\pi(\alpha_{i^{\prime}})=\gamma_{j},$ $c_{k}\geqq 0$ . Let us now show that $\gamma_{1},$
$\cdots$ , $\gamma_{\nu}$ are linearly

independent (over Q). Put $E=X_{Q}$ and call $E^{*}$ the dual space of $E$ over $Q$ ;
in the notations used in the proof of Proposition 1, we may identify $Y_{Q}$ with
$(X\Gamma)_{Q}$ , so that $\pi$ may be considered as (the restriction on $X$ of) the projection
of $X_{Q}$ onto $(X\Gamma)_{Q}$ with respect to the direct decomposition (3). Since $\alpha_{1},$ $\cdots$ , $\alpha_{l}$

are linearly independent, there exist $\omega_{1},$
$\cdots$ , $\omega_{\nu}\in E^{*}$ such that $\langle\alpha_{i}, \omega_{j}\rangle=1$ for

$\alpha_{i}\in\pi^{-1}(\gamma_{j})$ and $=0$ for $\alpha_{i}\not\in\pi^{-1}(\gamma_{j})$ . Then from (11) we have $\langle\alpha_{i}^{\sigma}, \omega_{j}\rangle$

$=\langle\alpha_{i}, \omega_{j}\rangle$ for all $\sigma\in\Gamma$ . Therefore, by replacing $\omega_{j}$ by $\frac{1}{d}\sum_{\sigma\in\Gamma}\omega_{j}^{\sigma}(d=[\Gamma:1])$

if necessary, we may assume that the $\omega_{j}’ s$ are all in the annihilator of $(X_{0})_{Q}$ .
Then, we have $\langle\gamma_{j}, \omega_{k}\rangle=\langle\alpha_{i}, \omega_{k}\rangle=\delta_{jk}$ for $\gamma_{j}=\pi(\alpha_{i})$ , which proves that $r_{1},$

$\cdots$ , $\gamma_{\nu}$

are linearly independent.
c) Assume that $\Delta_{0}=\Delta_{0}^{\prime},\overline{\Delta}=\overline{\Delta}^{\prime}$ . Then, for $\alpha_{i}\in\Delta-\Delta_{0}$ , we have $\pi(\alpha_{i})\in\overline{\Delta}=\overline{\Delta}^{\prime}$ .

Hence $\alpha_{i}$ is positive in the $\Gamma$ -linear order defining the $\Gamma$ -fundamental system
$\Delta^{\prime}$ . It follows that the set of positive roots with respect to the fundamental
system $\Delta$ is contained in that with respect to $\Delta^{\prime}$ . Therefore we must have
$\Delta=\Delta^{\prime}$ , as desired. The converse is trivial, $q$ . $e$ . $d$ .

8. We denote by $W$ (resp. $W_{0}$) the Weyl group of the root system $\mathfrak{r}$ (resp.
$\mathfrak{r}_{0})$ and put

$\zeta 12)$ $W_{\Gamma}=\{w\in W|w(X_{0})=X_{0}\}$ .
In a natural manner, $W_{0}$ is regarded as a subgroup of $W_{\Gamma}$ . ( $W_{0}$ is actually
a normal subgroup of $W_{\Gamma}$, because we have $ww_{\alpha}w^{-1}=w_{w(\alpha)}$ with $w(\alpha)\in \mathfrak{r}_{0}$ for
any $\alpha\in \mathfrak{r}_{0},$ $w\in W_{\Gamma}$, where $w_{\alpha}$ denotes the reflection defined by $\alpha.$)

For $w\in W_{\Gamma}$, we denote by $\pi(w)$ (by abuse of notation) the automorphism
of $Y=X/X_{0}$ induced from $w$ ; in other words, we define $\pi(w)$ by the formula

\langle 13) $\pi(w(\chi))=\pi(w)\pi(\chi)$ for all $\chi\in X$ .
It is clear that $w\in W_{0}$ implies $\pi(w)=1$ . The converse of this is also true, as
is seen from the following Lemma 2. Thus, putting $\pi(W_{\Gamma})=\overline{W}$, we obtain a
canonical isomorphism
(14) $W_{\Gamma}/W_{0}\cong\overline{W}$ .
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LEMMA 2. Let $\Delta$ be a $\Gamma$ -fundamental system of $\iota$

. and let A be the corres-
ponding restricted fundamental system. Then, for any $w\in W_{\Gamma},$ $w(\Delta)$ is again a
$\Gamma$ -fundamental system of $\mathfrak{r}$ and $\pi(w)(\overline{\Delta})$ is the corresponding restricted fundamental
system. We have $\pi(w)(\overline{\Delta})=\overline{\Delta}$ , if and only if $w\in W_{0}$ .

PROOF. Let $X_{+}$ be the set of positive elements in $X$ with respect to the
$\Gamma$ -linear order defining the $\Gamma$ -fundamental system $\Delta$ . Then, for any $w\in W_{\Gamma}$,
by taking $w(X_{+})$ as the set of positive elements, we can define a $\Gamma$ -linear order
in $X$ which defines the fundamental system $w(\Delta)$ . Hence $w(\Delta)$ is a $\Gamma$ -funda-
mental system, and so $\pi(w(\Delta))=\pi(w)(\overline{\Delta})$ is the corresponding restricted funda-
mental system. Now to prove the second half, assume further that, $\pi(w)(\overline{\Delta})$

$=\overline{\Delta}$ . Then, $w(\Delta)\cap X_{0}=w(\Delta_{0})$ being a fundamental system of $\mathfrak{r}_{0}$ , by Proposition
5, a), there exists $w_{0}\in W_{0}$ such that $w(\Delta_{0})=w_{0}(\Delta_{0})$ . Since we have $\pi(w_{0})(\overline{\Delta})=\overline{\Delta}$ ,

it follows from Proposition 5, c) that $w(\Delta)=w_{0}(\Delta)$ and so we have $w=w_{0}$ .
The converse (‘ if ‘ part) is trivial, $q$ . $e$ . $d$ .

REMARK. By the same argument as in the above proof, one can also
prove the following Lemma which is apparently more general:

LEMMA 2 bis. Let $\overline{\Delta},\overline{\Delta}^{\prime}$ be restricted fundamental systems corresponding to
$\Gamma$ -fundamental systems $\Delta,$

$\Delta^{\prime}$ of $\mathfrak{r}$ , respectively. Then we have $\overline{\Delta}=\overline{\Delta}^{\prime}$ , if and only
if there exists $w_{0}\in W_{0}$ such that $\Delta^{\prime}=w_{0}\Delta$ .

It is known ([4], especially 11-07, Th. 2) that $W$ is canonically isomor-
phic to $N(T)/T$. (Note that $N^{o}(T)=Z(T)=T$. $[4],$ $7-01$ , Th. 1, 12-09, Th. 2,
$a).)$ More precisely, if $s\in N(T)$ , then the inner automorphism $I_{s}$ : $g\rightarrow sgs^{-1}$

defined by $s$ induces an automorphism of $T$, and so in a natural manner that
of $X$, which we denote by $w_{s}$ ; we have then $w_{s}\in W$ and the correspondence
$s\rightarrow w_{s}$ gives the isomorphism:

\langle 15) $N(T)/T\cong W$ .
By definition, we have $w_{s}={}^{t}(I_{s}|T)^{-i}$ ( $t$ denoting the ‘ dual ‘) or
(16) $w_{s}(\chi)(sts^{-1})=\chi(t)$ for all $\chi\in X,$ $t\in T$ ,

and, in particular, for $\alpha\in \mathfrak{r}$ , we have

(17) $sP_{\alpha}s^{-1}=P_{w_{s}(\alpha)}$ .
It is clear that $w_{s}\in W_{\Gamma}$ if and only if $s\in N(A)$ , and $w_{s}\in W_{0}$ if and only

if $s\in Z(A)$ (Lemma 2). Thus we have

$W_{\Gamma}\cong N(T)\cap N(A)/T$ ,
(18)

$W_{0}\cong N(T)_{\cap}Z(A)/T$ .
From (14), (18) and Lemma 1 in $N^{\circ}6$ , we obtain
(19) $\overline{W}\cong N(T)_{\cap}N(A)/N(T)_{\cap}Z(A)$

$\cong N(A)/Z(A)$ ,
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the canonical homomorphism $N(A)\ni s\rightarrow\overline{w}_{s}\in\overline{W}$ being defined by $\overline{\iota v}_{s}={}^{t}(I_{s}|A)^{\rightarrow 1}$ ,

or
(20) $\overline{w}_{s}(\eta)(sas^{-1})=\eta(a)$ for all $\eta\in Y,$ $a\in A$ .
It is clear that for $s\in N(A)_{\cap}N(T)$ we have $\overline{w}_{s}=\pi(w_{s})$, or, what is the same,

(21) $\pi(w_{s}(\chi))=\overline{w}_{s}(\pi(\chi))$ for $\chi\in X$ .
9. The Galois group $\Gamma$ operates on $W$ in a natural way, i. e. by the

formula

(22) $w^{\sigma}(\chi^{\sigma})=(w(\chi))^{\sigma}$ for all $\chi\in X,$ $\sigma\in\Gamma$ .
Denoting by $w_{\alpha}$ the reflection defined by $\alpha\in \mathfrak{r}$ , we have at once
(23) $(w_{\alpha})^{\sigma}=w_{\alpha^{\sigma}}$ for all $\alpha\in \mathfrak{r},$

$\sigma\in\Gamma$ .
In view of the fact that $X_{0},$ $\mathfrak{r}_{0}$ are invariant under $\Gamma$ , we see from definitions
that $W_{\Gamma},$ $W_{0}$ are both invariant under $\Gamma$ . On the other hand, it follows im-
mediately from (16), (22) that, in extending $\sigma\in\Gamma$ to an automorphism of the
universal domain, we have

(24) $(w_{s})^{\sigma}=w_{s^{\mathcal{O}}}$ for all $s\in N(T),$ $\sigma\in\Gamma$ .
In particular, we have $(w_{s})^{\sigma}=w_{s}$ for all $\sigma\in\Gamma$ if and only if the corresponding
coset $sT$ is k-rational. (In view of (23), this implies that all cosets in $N(T)/T$

are defined over a splitting field, $e$ . $g$ . $K$, of $T.$)

PROPOSITION 6. Let $\Delta$ be a $\Gamma$ -fundamental system of $\mathfrak{r}$ . Then for every
$\sigma\in\Gamma$ there exists a uniquely determined element $w_{\sigma}$ in $W_{0}$ such that we have

(25) $\Delta^{\sigma}=w_{\sigma}\Delta$ .
The $w_{\sigma}’ s(\sigma\in\Gamma)$ satisfy the relation

(26) $w_{\sigma}^{\tau}w_{\tau}=w_{\sigma\tau}$ .
PROOF. If $X_{+}$ is the set of positive elements in $X$ with respect to the

$\Gamma$-linear order defining the F-fundamental system $\Delta$ , it is clear that $X_{+}^{\sigma}$ defines
a $\Gamma$-linear order to which corresponds the fundamental system $\Delta^{\sigma}$ ; hence $\Delta^{\sigma}$

is a $\Gamma$-fundamental system of $\mathfrak{r}$ . Now, for every $\alpha_{i}\in\Delta-\Delta_{0}$ , we have
$\alpha_{i}^{\sigma}-\alpha_{i}\in X_{0}$ so that $\pi(\alpha_{i}^{\sigma})=\pi(\alpha_{i})$ ; hence we have $\overline{\Delta}^{\sigma}=\overline{\Delta}$ . It follows from
Lemma 2 bis that there exists (a uniquely determined) $w_{\sigma}\in W_{0}$ such that
$\Delta^{\sigma}=w_{\sigma}\Delta$ . The relation (26) follows immediately from (25).

COROLLARY. For $w\in W_{\Gamma}$ , we have $w^{\sigma}\equiv w(mod W_{0})$ for all $\sigma\in\Gamma$ .
PROOF. Take any $\Gamma$ -fundamental system $\Delta$ . Then, applying Proposition

6 to $\Delta$ and $ w\Delta$ , one can find $w_{\sigma},$ $w_{\sigma}^{\prime}\in W_{0}$ such that $\Delta^{\sigma}=w_{\sigma}\Delta,$ $(w\Delta)^{\sigma}=w_{\sigma}^{\prime}(w\Delta)$,

whence follows the relation

$w^{\sigma}w_{\sigma}w^{-1}=w_{\sigma}^{\prime}$ ,
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which proves our assertion, $q$ . $e$ . $d$ .
(This Corollary is also a direct consequence of (13), (22), Lemma 2 and the
fact that $\Gamma$ operates trivially on $Y=X/X_{0}.$)

10. We shall now prove that $\overline{\mathfrak{r}}$ is a ’ root system in a wider sense’ in
$Y_{Q}$ . By this, we mean that $\overline{\mathfrak{r}}$ is a finite subset of $Y_{Q}$ satisfying the following
conditions with respect to a suitable (positive definite) metric $\langle\rangle$ in $Y_{Q}$ .

(i) $0\not\in\overline{r}$ , and for $\gamma\in\overline{\mathfrak{r}}$ , we have $-\gamma\in\overline{\mathfrak{r}}$ .
(ii) For $r,$

$r^{\prime}\in\overline{\mathfrak{r}}$ , we have $c_{\gamma\gamma},$
$=\frac{2\langle\gamma,\gamma^{\prime}\rangle}{\langle\gamma,\gamma\rangle}\in Z$ and $\overline{w}_{\gamma}\gamma^{\prime}=\gamma^{\prime}-c_{\gamma\gamma!}\gamma\in\overline{\mathfrak{r}}$ .

(As a matter of fact, this is true if and only if the metric in $Y_{Q}$ is invariant
under $\overline{W}.$) It will follow that, for $\gamma\in\overline{\mathfrak{r}}$, we have $c\cdot\gamma\in\overline{\mathfrak{r}}(c\in Q)$ only for
$c=\pm_{2^{-}’}^{1}-\pm 1,$ $\pm 2$ . Call $\overline{\overline{\mathfrak{r}}}$ the set formed of all $r\in\overline{\mathfrak{r}}$ such $that-2-\gamma 1\not\in\overline{\mathfrak{r}}$ . Then,

it is immediate that $\overline{\overline{\mathfrak{r}}}$ becomes a $t$ root system ’ in the usual sense, called the
root system belonging to $\overline{\mathfrak{r}}$ . A fundamental system and the Weyl group of $\overline{\overline{\mathfrak{r}}}$

are called a fundamental system and the Weyl group of $\overline{r}$ , respectively.
(Note that the definition of the Weyl group of a root system is independent
of the choice of the metric intervening in the definition of root system.) In
these terminologies, we are going to prove the following

THEOREM 2. For a suitable (positive definite) metric in $Y_{Q}$ , the restricted
root system $\overline{r}$ relative to A becomes a root system in a wider sense in $Y_{Q}$ . $A$

restricted fundamental system A is a fundamental system of $\overline{r}$ and vice versa,
and the group $\overline{W}$ (defined by (14) or (19)) is identical with the Weyl group of $\overline{\iota}$ .

If $\overline{r}=\emptyset$ , we have $\mathfrak{r}\subset X_{0}$ and $Z(A)=G$ , so that (by (14) or (19)) we have
$\overline{W}=\{1\}$ . Hence the Theorem holds trivially. Therefore in the following we
will assume that $\overline{r}\neq\phi$ .

For the proof, we need the notion of ” Weyl chamber ”. Put $F=Y_{Q}$

and call $F^{*}$ the dual space of $F$ over Q. For a restricted fundamental system
$\overline{\Delta}=\{\gamma_{1}, \cdots, \gamma_{\nu}\}$ , we define the corresponding Weyl chamber by

(27) $C_{\overline{\Delta}}=$ { $\omega\in F^{*}|\langle\gamma_{i}$ . $\omega\rangle>0$ for $ 1\leqq i\leqq\nu$ }.

It is clear that, for any non-zero element $\omega_{0}$ in $C_{\overline{\Delta}}$ and for $r\in\overline{r}$ , we have
$\langle\gamma, \omega_{0}\rangle\gtrless 0$ , according as $\gamma$ is ‘ positive ’ or ‘ negative ’ with respect to a (Prop-

osition 5, $b$)). It follows first that the restricted fundamental system a is
uniquely determined by the corresponding Weyl chamber $C_{\overline{\Delta}}$ . Next, for $\eta\in F$ ,

let us denote by $H_{\eta}$ the annihilator of $\{\eta\}_{Q}$ in $F^{*}$ (‘ hyperplane ‘ defined by
$\eta)$ . Then we obtain the following relation:

(28)
$F^{*}-\bigcup_{r\in\overline{\mathfrak{r}}}H_{\gamma}=\bigcup_{\overline{\Delta}:r.f.s}.C_{\overline{\Delta}}$

.

In fact, the inclusion $\supset$ is an immediate consequence of Proposition 5, b).
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To prove the converse, take an arbitrary element $\omega$ in
$F^{*}-\bigcup_{r\in\overline{\mathfrak{r}}}H_{\gamma}$

. Then

there exists a linear order in $F$ such that, for $\eta\in F,$ $\langle\eta, \omega\rangle>0$ implies $\eta>0$ .
Call $\overline{\Delta}=\{\gamma_{1}, \cdots , \gamma_{\nu}\}$ the corresponding restricted fundamental system of $\overline{r}$ .
Then, since $\langle\gamma_{i}, \omega\rangle\neq 0$ and $\gamma_{\dot{t}}>0$ , we must have $\langle\gamma_{i}, \omega\rangle>0(1\leqq i\leqq\nu),$ $i$ . $e$ .
$\omega\in C_{\overline{\Delta}}$ , which proves our assertion.

Next we extend $\overline{w}\in\overline{W}$ to a linear transformation of $F$ in a natural man-
ner and then to that of $F^{*}$ by

(29) $\langle\overline{w}(\eta),\overline{w}(\omega)\rangle=\langle\eta, \omega\rangle$ for $\eta\in F,$ $\omega\in F^{*}$ .
Then, it is clear that we have $\overline{w}(C_{\angle l}^{-})=C_{\overline{w}(\overline{\Delta})}$ . We need also the following

LEMMA 3. Let $\gamma\in\overline{r}$ and call $Q_{\gamma}$ the connected component of the annihilator
of $\{\gamma\}_{Z}$ in A. Then, for $s\in N(A)$ , we have $s\in Z(Q_{\gamma})$ , if and only if $\overline{w}_{s}$ leaves
$H_{\gamma}$ elementwise invariant.

PROOF. Put

(30) $\hat{Y}=$ { $\omega\in F^{*}|\langle\eta,$ $\omega\rangle\in Z$ for all $\eta\in Y$};

then it is clear that $F^{*},$ $H_{\gamma}$ are obtained from $\hat{Y},$ $H_{\gamma}\cap\hat{Y}$ by extending the
coefficients from $Z$ to $Q$ , respectively, and that $\overline{w}\in\overline{W}$ leaves $\hat{Y}$ invariant.
Hence it is enough to show that we have $s\in Z(Q_{\gamma})$ if and only if $\overline{w}_{s}$ leaves
$H_{\gamma}\cap\hat{Y}$ elementwise invariant. Now, for $\omega\in\hat{Y}$, there exists a (uniquely deter-
mined) morphism $f_{\omega}$ from $G_{m}$ into $A$ such that we have

(31) $\eta(f_{\omega}(u))=u^{<\eta,\omega>}$ for $u\in G_{m},$ $\eta\in Y$

([7]). It is clear that the image of $f_{\omega}$ is contained in $Q_{\gamma}$ if and only if
$\omega\in H_{\gamma}$ ; and moreover $Q_{\gamma}$ is generated by those images of $f_{\omega}$ corresponding

to $\omega\in H_{\gamma}\cap\hat{Y}$. Hence we have $s\in Z(Q_{\gamma})$ if and only if $sf_{\omega}(u)s^{-1}=f_{\omega}(u)$ for
all $\omega\in H_{\gamma}\cap\hat{Y},$ $u\in G_{m}$ . On the other hand, for any $s\in N(A)$ and $\omega\in\hat{Y}$, we
get from (20), (31) and (29)

$\eta(sf_{\omega}(u)s^{-1})=\overline{w}_{s}^{-1}(\eta)(f_{\omega}(u))=u^{<\overline{w}_{s^{-1(\eta)\omega>}}}’=u^{<\eta}$ ’ iz $ s^{(}\omega$ ) $>$

and from this and (31) we conclude that $sf_{\omega}(u)s^{-1}=f_{\omega}(u)$ for all $u\in G_{m}$ if and
only if $\overline{w}_{s}(\omega)=\omega$ . This proves our assertion, $q$ . $e$ . $d$ .

11. PROOF OF THEOREM 2. We devide the proof in several steps.
1. It is clear from definitions $((7), $(14) $)$ that $\overline{w}\in\overline{W}$ leaves $\overline{\mathfrak{r}}$ invariant.

Now take a restricted fundamental system a of $\mathfrak{r}$ . Then, for any $\overline{w}\in\overline{W},\overline{w}(\overline{\Delta})$

is also a restricted fundamental system of $\mathfrak{r}$ and we have $\overline{w}(\overline{\Delta})=\overline{\Delta}$ , if and
only if $\overline{w}=1$ (Lemma 2). On the other hand, we see from Theorem 1 that
the set of all restricted fundamental systems of $\mathfrak{r}$ is in one-to-one correspon-
dence with the set of all maximal connected $(k, T)$-unipotent subgroups, and
that the group $N(A)_{k}/Z(A)_{k}$ , which may be identified by the canonical isomor-
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phism (19) with a subgroup of $\overline{W}$, operates on the latter set simply transi-
tively. Moreover, if a maximal connected ( $k$ , T)-unipotent subgroup $N$ cor-
responds to a restricted fundamental system $\overline{\Delta}$ and if $s\in N(A)_{k}$ corresponds
to $\overline{w}=\overline{w}_{s}\in\overline{W}$, then the maximal connected $(k, T)$-unipotent subgroup $sNs^{-1}$

corresponds to the restricted fundamental system $\overline{w}(\overline{\Delta})$ , as is readily seen
from (17) and (21). Therefore, we conclude that $\overline{W}\cong N(A)_{k}/Z(A)_{k}$ and that

$\overline{W}$ operates simply transitively on the set of all restricted fundamental sys-
tems of $\mathfrak{r}$ . It follows also that the group M7, regarded as a group of linear
transformations of $F^{*}$ , operates simply transitively on the set of all Weyl
chambers.

2. Let $\gamma\in\overline{\mathfrak{r}}$ and let the notations $Q_{\gamma}$ , $\cdot$ .. be as in Lemma 3. We infer
readily, just as in the proof of Corollary 2 to Proposition 2, that $Z(Q_{\gamma})$ is a
connected reductive subgroup, defined over $k$ , of $G$ ; it is also immediate from
the definition that $Z(Q_{\gamma})\supsetneqq Z(A)$ . It follows from Corollary to Theorem 1 that
$N(A)_{\cap}Z(Q_{\gamma})\neq Z(A),$ $i$ . $e$ . there exists an element $s\in N(A)_{\cap}Z(Q_{\gamma})$ such that
$\overline{w}=\overline{w}_{s}\neq 1$ . Then, by Lemma 3, $\overline{w}$ leaves $H_{\gamma}$ elementwise invariant. By (28)
$H_{\gamma}$ contains a ” wall ” of some Weyl chamber $C_{\overline{\Delta}}$ . Then $\overline{w}(C_{\overline{\Delta}})$ becomes a
Weyl chamber ” neighbouring ” to $C_{\overline{\Delta}}$ , and, by the same reason, we have
$\overline{w}^{2}(C_{\overline{\Delta}})=C_{\overline{\Delta}}$ , whence, by 1’, $\overline{w}^{2}=1$ . Thus we have proved that for each $r\in\overline{\mathfrak{r}}$

there exists an element $\overline{w}$ of $\overline{W}$ such that $\overline{w}\neq 1,\overline{w}^{2}=1$ and leaving $H_{\gamma}$ element-
wise invariant. If we introduce in $F$ any positive definite metric invariant
under $\overline{W}$ and identify $F^{*}$ with $F$ by means of this metric, the above $\overline{w}$ coincides
clearly with a (unique) reflection $\overline{w}_{\gamma}$ of $F$ with respect to $H_{\gamma},$

$i$ . $e$ .

(32) $\overline{w}_{\gamma}$ : $\eta\rightarrow\eta-\frac{2\langle\gamma_{i},\eta\rangle}{\langle\gamma,\gamma\rangle}\gamma$ .

3. Now we show that $\overline{\mathfrak{r}}$ is a root system in a wider sense in $Y_{Q}$ . It is
obvious from the definition that $\overline{\mathfrak{r}}$ satisfies the condition (i), and it follows
from 2’ that, for $\gamma,$

$\gamma^{\prime}\in\overline{r}$, we have $\overline{w}_{\gamma}\gamma^{\prime}=\gamma^{\prime}-c_{\gamma\gamma},\gamma\in\overline{\mathfrak{r}}$ . To prove that

$C\gamma\gamma’=\frac{2\langle\gamma,\gamma^{\prime}\rangle}{\langle\gamma,\gamma\rangle}\in Z$ , we first remark that, for $\gamma_{i}\in\Delta$ and $\eta\in Y$, we have

$\frac{2\langle\gamma_{i},\eta\rangle}{\langle\gamma_{i},\gamma_{i}\rangle}\in Z$ . In fact, it is known that, for any $\chi\in X$ and $w\in W$, we have

$w\chi-\chi\in \mathfrak{r}_{Z}$ ([4], 16-09, Cor. 1). It follows that, for any $\eta\in Y$ and $\overline{w}\in\overline{W}$, we
have $\overline{w}\eta-\eta\in\overline{\mathfrak{r}}_{Z}$ . Taking $\overline{w}$ to be $\overline{w}_{\gamma_{i}}$ , we obtain $\overline{w}_{\gamma_{i}}\eta-\eta=-\frac{2\langle\gamma_{i},\eta\rangle}{\langle\gamma_{i},\gamma_{i}\rangle}\gamma_{i}\in \mathfrak{r}_{Z}$ .
Hence our assertion follows from Proposition 5, b).

Now let $\gamma\in\overline{r}$ and call $\mathfrak{r}_{\gamma}$ the set formed of all $\alpha\in \mathfrak{r}$ such that $\pi(\alpha)$ is an
integral multiple of $\gamma$ . Then it is clear that $\mathfrak{r}_{\gamma}$ is a $\Gamma$ -invariant ’ closed ’ sub-
system of $\mathfrak{r}$ , so that ([4], 17-02, Th. 1) there corresponds a connected
semi-simple subgroup $G(\mathfrak{r}_{\gamma})$ , defined over $k$ , of $G$ . It is then clear that a
restricted fundamental system relative to $A$ of the reductive group $T\cdot G(\iota_{\gamma})$ is



226 I. SATAKE

given by $\{\gamma\}$ . Therefore, applying the above remark to this group, we con-
clude that $\frac{2\langle\gamma,\eta\rangle}{\langle\gamma,\gamma\rangle}\in Z$ for all $\eta\in Y$ and, in particular, that $c_{TT},$

$\in Z$ .
4. We now prove the second half of the Theorem. It is clear from

Proposition 5, b) that a restricted fundamental system a is a fundamental
system of $\overline{\overline{\mathfrak{r}}}$ (and hence, by definition, of r). The converse of this follows
immediately from the fact that, by (28), the Weyl chambers of $\overline{\mathfrak{r}}$ (in the usual
sense) are all given by the $ C\not\supset$ . Finally, the group $\overline{W}$ contains all reflections
$\overline{w}_{\gamma_{i}}$ with $\gamma_{i}\in\overline{\Delta}$ , by 2’, on the one hand, and $\overline{W}$ operates simply transitively
on the set of all Weyl chambers, by 1’, on the other. Therefore we conclude,
by a standard argument in such situation, that $\overline{W}$ is generated by the $w_{\gamma_{i}}s$ ,
$i$ . $e.\overline{W}$ coincides with the Weyl group of $\overline{\mathfrak{r}}$ (and hence, by definition, of $\overline{\mathfrak{r}}$),
$q.e$ . $d$ .

COROLLARY 1. Every coset in $N(A)/Z(A)$ contains a k-rational point.
COROLLARY 2. $\overline{W}$ operates simply transitively on the set of all restricted

fundamental systems.
These were established in the l-st step of the above proof.
COROLLARY 3. $W_{\Gamma}$ operates simply transitively on the set of all $\Gamma$ -funda-

mental systems.
PROOF. We know already that if $\Delta$ is a $\Gamma$ -fundamental system and if

$w\in W_{\Gamma}$, then $w(\Delta)$ is again a $\Gamma$ -fundamental system (Lemma 2). Now let
$\Delta,$

$\Delta^{\prime}$ be two $\Gamma$ -fundamental systems of $x$ and call 4 $\overline{\Delta}^{\prime}$ the corresponding
restricted fundamental systems of $\mathfrak{r}$ . Then, by Corollary 2 above, there exists
a $\overline{w}\in\overline{W}$ such that $\overline{\Delta}^{\prime}=\overline{w}(\overline{\Delta})$ . Then, for any $w\in\pi^{-1}(\overline{w})$ , the restricted funda-
mental system corresponding to $w(\Delta)$ is equal to $\overline{w}(\overline{\Delta})=\overline{\Delta}^{\prime}$ . Hence, by Lemma
2 bis, there exists a $w_{0}\in W_{0}$ such that $w_{0}w(\Delta)=\Delta^{\prime}$ , q. e. d.

COROLLARY 4. For any $r\in\hat{\mathfrak{r}}$ and $\eta\in Y$, we have $\frac{2\langle\gamma,\eta\rangle}{\langle\gamma,\gamma\rangle}\in Z$ .
This was established in the 4-th step of the above proof.
REMARK. As is seen from the above proof, if satisfies the condition (ii),

if and only if the metric in $Y_{Q}$ is invariant under $\overline{W}$. Without refering to
any metric, we can also formulate the main part of our results (Theorem 2
and Corollary 4) as follows: For each $\gamma\in\overline{\mathfrak{r}}$ , there exists a uniquely determined
element $\gamma^{*}$ in $\hat{Y}=Hom(Y, Z)$ such that $\langle\gamma, \gamma^{*}\rangle=2$ and that $\overline{W}$ contains the
reflectio $n$

(32) $\overline{w}_{\gamma}$ : $\eta\rightarrow\eta-\langle\eta, \gamma^{*}\rangle\gamma$ .

\S 4. Isomorphisms between reductive groups.

12. Let $G$ be a connected reductive algebraic group, defined over a per-
fect field $k$ , and let the notations $T,$ $A$ , $\cdot$ .. be as before. As we noted in the
proof of Corollary 2 to Proposition 2, the semi-simple part of $Z(A)$ is given
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by the subgroup $G(\mathfrak{r}_{0})$ corresponding to a closed subsystem $\mathfrak{r}_{0}=\mathfrak{r}\cap X_{0}$ of $\mathfrak{r}$ .
On the other hand, call $C_{0}$ the k-compact part of the torus part of $G$ ; and put

\langle 33) $G_{0}=G(\mathfrak{r}_{0})\cdot C_{0}$ .
Then, $G_{0}$ is a connected reductive h-closed subgroup of $G$ , containing no
k-trivial torus of dimension $>0$ ; in general, a reductive algebraic group with
this property will be called k-quasicompact3). We call $G_{0}$ the k-quasicompact
kernel of $G$ relative to $A$ . Since the maximal k-trivial toruses in $G$ are con-
jugate to each other with respect to inner automorphisms defined by elements
in $G_{k}$ , so are also the k-quasicompact kernels of $G$ .

It is clear that, if we put

(34) $T_{0}=T\cap G_{0}$ ,

$T_{0}$ is a maximal torus defined over $k$ in $G_{0}$ , and the character module $X^{0}$ of
$T_{0}$ may be identified (in the notations of the proof of Proposition 1) with the
projection of $X$ on the factor $(\mathfrak{r}_{0})_{Q}+\mathfrak{r}_{Q}^{\perp}\cap(X_{0})_{Q}$ in the direct decomposition

$x_{Q}=((\mathfrak{r}_{0})_{Q}+t_{Q}^{\lrcorner}\cap(X_{0})_{Q})+(\mathfrak{r}_{Q\cap(\mathfrak{r}_{0})_{Q}^{\perp}+\mathfrak{r}_{Q}^{\perp}\cap(X^{\Gamma})_{Q});}$

then the root system of $G_{0}$ relative to $T_{0}$ is identified with $\mathfrak{r}_{0}$ .
Next, let $\Delta$ be a $\Gamma$ -fundamental system of $\mathfrak{r}$ and, for $\sigma\in\Gamma$ , put

(35) $\overline{\varphi}_{\sigma}(\chi)=(w_{\sigma}\chi)^{\sigma^{-1}}=w_{\sigma}^{-\underline{1}}1\chi^{\sigma^{-1}}$ for all $\chi\in X$ ,

with $w_{\sigma}\in W_{0}$ defined in Proposition 6. Then it is clear that $\overline{\varphi}_{\sigma}$ is an auto-
morphism of $X$ leaving $\Delta,$ $\Delta_{0}$ invariant, or, as we call more briefly, an auto-
morphism of (X, $\Delta,$ $\Delta_{0}$), and that the correspondence $\sigma\rightarrow\overline{\varphi}_{\sigma}$ is a homomorphism
from $\Gamma$ into Aut (X, $\Delta,$ $\Delta_{0}$)($=the$ group of all automorphisms of (X, $\Delta,$ $\Delta_{0}$)).
We call (X, $\Delta,$ $\Delta_{0},$ $\{\overline{\varphi}_{\sigma}\}$ ) a system associated with $(G, T)$ .

In particular, if $G$ is k-quasicompact, we have $\Delta=\Delta_{0}$ , so that we associate
only (X, $\Delta,$ $\{\overline{\varphi}_{\sigma}\}$ ). From what we mentioned above, it follows that, if we denote
by $\overline{\varphi}_{\sigma}^{0}$ the automorphism of (X $0\Delta_{0}$ ) induced from $\overline{\varphi}_{\sigma}$ , then (X $0\Delta_{0},$ $\{\overline{\varphi}_{\sigma}^{0}\}$ ) is a
system associated with $(G_{0}, T_{0})$ . We call (X $0\Delta_{0},$ $\{\overline{\varphi}_{\sigma}^{0}\}$ ) the restriction of (X, $\Delta,$ $\Delta_{0}$ ,
$\{\overline{\varphi}_{\sigma}\})$ on $G_{0}$ .

Now let $G^{\prime}$ be another connected reductive algebraic group, defined over
$k$ , and let the symbols with a prime (such as $T^{\prime},$ $A^{\prime},$ $\cdots$ ) denote the things for
$G^{\prime}$ corresponding to those for $G$ denoted by the same symbols without prime
(such as $T,$ $A,$ $\cdots$ ); without loss of generality, we may assume that $K=K^{\prime}$

and so $\Gamma=\Gamma^{\prime}$ . Let $G_{0}^{\prime}=G^{\prime}(\mathfrak{r}_{0}^{\prime})\cdot C_{0}^{\prime}$ and (X’, $\Delta^{\prime},$ $\Delta_{0}^{\prime},$ $\{\overline{\varphi}_{\sigma}^{\prime}\}$ ) be the k-quasicompact
kernel of $G^{\prime}$ relative to $A^{\prime}$ and a system associated with $(G^{\prime}, T^{\prime})$ , respectively.

Suppose that there exists a K-isomorphism $f$ from $(G, T)$ onto $(G^{\prime}, T^{\prime})(i$ . $e$ .
K-isomorphism from $G$ onto $G^{\prime}$ such that $f(T)=T^{\prime})$ and put

3) According to the Tits’s result (footnote 2)), the prefix ’ quasi- ’ is superfluous.
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(36) $\psi={}^{t}(f|T)^{-1}$ ,

$t$ denoting the ‘ dual ‘. Then it is clear that $\psi$ is an isomorphism from (X, r)

onto $(X^{\prime}, \mathfrak{r}^{\prime})$ ( $i$ . $e$ . isomorphism from $X$ onto $X^{\prime}$ such that $\psi(\mathfrak{r})=\mathfrak{r}^{\prime}$ ). Assume
furthermore that $f$ satisfies the condition $f\cdot(A)=A^{\prime}$ , or equivalently that $\psi$

satisfies the condition $\psi(X_{0})=X_{0}^{\prime}$ . Then it is easy to see that, for any
$\Gamma$ -fundamental system $\Delta$ of $\mathfrak{r},$

$\psi(\Delta)$ becomes a $\Gamma$ -fundamental system of $\mathfrak{r}^{\prime}$ , so
that, by Corollary 3 to Theorem 2, there exists a (uniquely determined) ele-
ment $w^{\prime}$ in $W_{\Gamma}^{\prime}$ such that $\Delta^{\prime}=w^{\prime}\psi(\Delta)$ . Then we see at once that $\Delta_{0}^{\prime}=w^{\prime}\psi(\Delta_{0})$

and that

(37) $w_{\sigma}^{\prime}=w^{\prime\sigma}\psi^{\sigma}w_{\sigma}\psi^{-1}w^{\prime-1}$ on $\mathfrak{r}^{\prime}$ ,

$\psi^{\sigma}$ being defined by the formula
$\psi^{\sigma}(\chi^{\sigma})=(\psi(\chi))^{\sigma}$ for all $\chi\in X$ ,

whence we get

(38) $\overline{\varphi}_{\sigma}^{\prime}=w^{\prime}\psi\overline{\varphi}_{\sigma}\psi^{-1}w^{\prime-1}$ on $\Delta^{\prime}$

If, moreover, $f|C_{0}$ is defined over $k$ , or equivalently $\psi^{\sigma}=\psi$ on $\mathfrak{r}_{\iota}^{\perp_{4}}\cap(X_{0})_{Q}$ , we
have $\psi^{\sigma}=\psi$ on $\mathfrak{r}_{Q}^{\perp}$ , since this holds trivially on $\mathfrak{r}_{Q\cap}^{\perp}(X^{\Gamma})_{Q}$ . Hence (38) holds

also on $ X^{\prime}\cap \mathfrak{r}_{Q}^{\prime}\perp$ . Therefore, putting $\overline{\psi}=w^{\prime}\psi$ , we obtain the relations

(39) $\Delta^{\prime}=\overline{\varphi^{\prime}}(\Delta)$ , $\Delta_{0}^{\prime}=\overline{\psi}(\Delta_{0})$, $\overline{\varphi}_{\sigma}^{\prime}=\overline{\psi}\overline{\varphi}_{\sigma}\overline{\psi}^{-1}$ .
In general, when (39) holds with an isomorphism $\overline{\psi}$ from $X$ onto $X^{\prime}$ , we say
that two systems $(X, \Delta, \Delta_{0}, \{\overline{\varphi}_{\sigma}\}),$ $(X^{\prime}, \Delta^{\prime}, \Delta_{0}^{\prime}, \{\overline{\varphi}_{d}^{\prime}\})$ are congruent. The above
$\overline{\psi}=w^{\prime}\psi$ is called a congruence associated with $f$. (Here and in the following,
$\psi,\overline{\psi},$

$\cdots$ will be considered, whenever necessary, as to be extended in a natural
manner to isomorphisms (of vector space over Q) from $X_{Q}$ onto $X_{Q}^{\prime}.$)

Now this consideration is first applied to the case $G=G^{\prime}$ . Namely, in
this case, we have $T^{\prime}=gTg^{-1},$ $A^{\prime}=gAg^{-1}$ with $g\in G_{K}$ . (In fact, $A,$ $A^{\prime}$ being
both maximal k-trivial toruses in $G$ , there exists $g_{1}\in G_{k}$ such that $A^{\prime}=g_{1}Ag_{1}^{-1}$ .
Then, $g_{1}Tg_{1}^{-1},$ $T^{\prime}$ being both maximal K-trivial toruses in $Z(A^{\prime})$, there exists
$g_{2}\in Z(A^{\prime})_{K}$ such that $T^{\prime}=g_{2}g_{1}Tg_{1}^{-1}g_{2^{-1}}$ . Putting $g=g_{1}g_{2}$ , we get the assertion.)

The inner automorphism $f=I_{g}$ defined by $g$ satisfying all the above conditions,
our arguments applied to it show that the system (X, $\Delta,$ $\Delta_{0},$ $\{\overline{\varphi}_{d}\}$ ) does not
depend essentially on the choice of $T$, but is uniquely determined only by $G$ ,
up to a congruence.

Secondly, the same arguments can also be applied to any k-isomorphism
$f$ from $(G, T)$ onto $(G^{\prime}, T^{\prime})$ . In this case, $f$ induces a k-isomorphism $f_{0}$

from $(G_{0}, T_{0})$ onto $(G_{0}^{\prime}, T_{0}^{\prime})$ , and so a congruence $\overline{\psi}^{0}$ from $(X^{0}, \Delta_{0}, \{\overline{\varphi}_{\sigma}^{0}\})$ to
$(X^{\prime 0}, \Delta_{0^{\prime}}, \{\overline{\varphi}_{\sigma^{0}}^{\prime}\})$ associated with $f_{0}$ . Then, naturally, $\psi^{}$ coincides with the
restriction on $X^{0}$ of the congruence $\overline{\psi}$ associated with $f$. Now the main pur-
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pose of this section is to establish the converse of this statement. Namely,
we are going to prove the following

THEOREM 3. Let $G,$ $G^{\prime}$ be connected reductive algebraic groups, defined over
a perfect field $k$ , and $T,$ $T^{\prime}$ maximal toruses in $G,$ $G^{\prime}$ , also defined over $k,$ con-
taining maximal k-trivial toruses $A,$ $A^{\prime}$ in $G,$ $G^{\prime}$ , respectively. Call $G_{0},$ $G_{0^{\prime}}$ the
k-quasicompact kernels of $G,$ $G$ ‘ relative to $A,$ $A$ ‘, respectively, and put
$T_{0}=T_{\cap}G_{0},$ $T_{0}^{\prime}=T^{\prime}\cap G_{0}^{\prime}$ ; and let (X, $\Delta,$ $\Delta_{0},$ $\{\overline{\varphi}_{\sigma}\}$ ), $(X^{\prime}, \Delta^{\prime}, \Delta_{0^{\prime}}, \{\overline{\varphi}_{\sigma}^{\prime}\})$ be systems
associated with $(G, T),$ $(G^{\prime}, T^{\prime})$ , respectively, and let (X $0\Delta_{0},$ $\{\overline{\varphi}_{\sigma}^{0}\}$ ), $(X^{\prime 0}, \Delta_{0}^{\prime}, \{\overline{\varphi}_{\sigma^{0}}^{\prime}\})\{$

be their restrictions on $G_{0}$ , G\’o, respectively. Suppose that the following conditions
are satisfied:

(i) There exists a congruence $\overline{\psi}$ from (X, $\Delta,$ $\Delta_{0},$ $\{\overline{\varphi}_{\sigma}\}$ ) to (X’, $\Delta^{\prime},$ $\Delta_{0}^{\prime},$ $\{\overline{\varphi}_{\sigma}^{\prime}\}$ );

(ii) There exists a k-isomorphism $f_{0}$ from $(G_{0}, T_{0})$ onto $(G_{0}^{\prime}, T_{0}^{\prime})$ ;
(iii) The congruence $\overline{\psi}^{0}$ from (X $0\Delta_{0},$ $\{\overline{\varphi}_{\sigma}^{0}\}$ ) to $(X^{\prime 0}, \Delta_{0}^{\prime}, \{\overline{\varphi}_{\sigma^{0}}^{\prime}\})$ associated with

$f_{0}$ coincides with the restriction of $\overline{\psi}$ on $X^{0}$ .
Then there exists a k-isomorphism $f$ from $(G, T)$ onto $(G^{\prime}, T^{\prime})$ extending $f_{0}$ such
that $\overline{\psi}$ is a congruence associated with $f$.

13. For the proof of Theorem 3, we need a more detailed investigation
on isomorphisms between reductive algebraic groups. To begin with, let $G$

be a connected reductive algebraic group, defined over $k$ , and let the notations
be as before. Then, applying $\sigma\in\Gamma$ on the both sides of (5), we get from the
‘ uniqueness ‘ of $x_{\alpha}$ the relation

(40) $x_{\alpha}^{\sigma}(\xi)=x_{\alpha^{\sigma}}(\xi_{\sigma,\alpha}\xi)$

with $\xi_{\sigma,\alpha}\in K^{*}$ . The system $\{\xi_{\sigma,\alpha}\}$ satisfies clearly the relation

(41) $\xi_{\sigma,a}^{r}|\xi_{\tau,\alpha\sigma}=\xi_{\sigma\tau,\alpha}$ .
REMARK. Incidentally we notice that $x_{\alpha}$ may be taken to be defined over

any perfect field over which $\alpha$ is defined (hence a fortiori over any splitting
field for $T$). In fact, if we call $\Gamma_{\alpha}$ the subgroup of $\Gamma$ formed of all $\sigma\in\Gamma$

leaving $\alpha$ invariant, the system $\{\xi_{\sigma,a}(\sigma\in\Gamma_{\alpha})\}$ becomes, by (41), a l-cocycle of
$\Gamma_{\alpha}$ in $K^{*}$ . Therefore, by the Theorem 90 of Hilbert, we have $\xi_{\sigma,a}=\eta_{\alpha}^{\sigma-}$ with
$\eta_{\alpha}\in K^{*}$ . Then, putting $\overline{x}_{\alpha}(\xi)=x_{\alpha}(\eta_{\overline{\alpha}^{1}}\xi)$ , we see that $\overline{x}_{\alpha}$ is invariant under all
$\sigma\in\Gamma_{\alpha},$ $i$ . $e$ . defined over the smallest field containing $k$ over which $\alpha$ is defined.

Now let $G^{\prime}$ be another connected reductive algebraic group, defined over
$k$, and let the notations be as mentioned in $N$ ) $12$ ; in particular, we define
the system $\{\xi_{\sigma,a;}^{\prime}\}$ by means of $x_{\alpha}^{\prime}$ through a formula similar to (40). Suppose
that a K-isomorphism $f$ from $(G, T)$ onto $(G^{\prime}, T^{\prime})$ is given. Then, applying $f$

on the both sides of (5), we get again by the uniqueness of $x_{\alpha}^{\prime}$ ,

(42) $f(x_{\alpha}(\xi))=x_{\psi(\alpha)}^{\prime}(\eta_{\alpha}\xi)$

with $\psi$ defined by (36) and $\eta_{\alpha}\in K^{*}$ . Fixing $x_{\alpha}’ s$ and $x_{\alpha}^{\prime}’ s$ once for all, we
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attach $\{\psi, \eta_{\alpha}\}$ to $f$. Notation: $f\leftarrow\rightarrow\{\psi, \eta_{\alpha}\}$ . Clearly $f$ is uniquely determined
by $\{\psi, \eta_{\alpha}\}$ .

LEMMA 4. a) The notations being as above, we have

$f^{\sigma}\leftarrow\rightarrow\{\psi^{\sigma},$
$\eta_{\alpha^{\sigma-1}}^{\sigma}\frac{\xi_{\sigma,\psi(\alpha^{\sigma-I_{)}}}^{\prime}}{\xi_{\sigma,a^{\sigma-1}}}\}$

for all $\sigma\in\Gamma$ . In particular, $f$ is defined over $k$ , if and only if the following
conditions are satisfied:
(43) $\psi^{\sigma}=\psi$ ,

(44) $\xi_{\sigma,\psi(\alpha)}^{\prime}=\xi_{\sigma,\alpha}\frac{\eta_{\alpha^{\sigma}}}{\eta_{a}^{\sigma}}$

for all $\sigma\in\Gamma,$ $\alpha\in \mathfrak{r}$ .
b) The notations being as above, let $G^{\prime\prime}$ be a third connected reductive alge-

braic group, defined over $k$ , and $T^{\prime\prime}$ a maximal torus in $G^{\prime\prime}$ , also defined $over_{\{}k$

and split over $K$, and let $f^{\prime}$ be a K-isomorphism from $(G^{\prime}, T^{\prime})$ onto $(G^{\prime\prime}, T^{\prime\prime})$. If
$f^{\prime}\leftarrow\rightarrow\{\psi^{\prime}, \eta_{\alpha}^{\prime}’\}$ in the above sense, we have

$f^{\prime}\circ f\leftarrow\rightarrow\{\psi^{\prime}\circ\psi, \eta_{\psi(a)}^{\prime}\eta_{a}\}$ .
The proof of this Lemma is straightforward.
LEMMA 5. Let $\Delta$ be any fundamental system of $\mathfrak{r}$ . If $f\leftarrow\rightarrow\{\psi, \eta_{\alpha}\},$ $f$ is

uniquely determined by $\psi$ and by the $\eta_{\alpha}’ s$ for $\alpha\in\Delta$ .
By Lemma 4, b), the proof is reduced to the case, where $f$ is a K-auto-

morphism of $(G, T)$, the case which was already established in [4], 17-08/09.

For convenience, we call a system $\{\eta_{\alpha}(\alpha\in \mathfrak{r})\}$ coherent with respect to $\psi$ , if
there exists an isomorphism $f\leftrightarrow\{\psi, \eta_{\alpha}\}$ . Then, Lemma 5 may be stated as
follows: A coherent system $\{\eta_{\alpha}(\alpha\in \mathfrak{r})\}$ with respect to an isomorphism $\psi$ :
(X, $\mathfrak{r}$) $\rightarrow(X^{\prime}, \mathfrak{r}^{\prime})$ is uniquely determined by the $\eta_{\alpha}’ s$ corresponding to $\alpha\in\Delta$ .

REMARK 1. In the case of characteristic $0$ , we have more explicitly the
following result. Namely, we have $x_{\alpha}(\xi)=\exp(\xi E_{\alpha})$ with an element $E_{\alpha}$ in
the Lie algebra of $G$ ; and, if $\alpha,$ $\beta,$ $\alpha+\beta\in \mathfrak{r}$ , we have

$[E_{\alpha}, E_{\beta}]=N_{\alpha,\beta}E_{\alpha+\beta}$

with $N_{\alpha,\beta}\in K^{*}$ (which we may take in Z). Then, for a suitable $\{E_{\alpha}\}$ (so-called
’ Weyl basis ‘), we obtain the following relations characterizing a coherent
system:

(45) $\left\{\begin{array}{l}\eta_{\alpha+\beta}=\eta_{\alpha}\eta_{\beta^{\frac{N_{\psi(\alpha),\psi(\beta)}}{N_{\alpha,\beta}}}},\\\eta_{-\alpha}=\eta_{\overline{a}^{1}}.\end{array}\right.$

Even in the case of characteristic $\neq 0$ , similar formulas may be obtained, by
using a method of Chevalley [3]. But no such explicit formulas will be
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needed in the following.
REMARK 2. Applying Lemma 5 to $f^{-1}\circ f^{\sigma}$, we see that in the statement

of Lemma 4, a) the word ‘for all $\alpha\in \mathfrak{r}$ may be replaced by ‘for all $\alpha\in\Delta$ .
LEMMA 6. If $I_{t}$ denotes the inner automorphism of $(G, T)$ determined by

$t\in T$, we have
$I_{t}\leftarrow\rightarrow\{1, \alpha(t)\}$ .

Conversely, if $\Psi\in Aut(G, T)$ is such that $\Psi\leftarrow\rightarrow\{1, *\},$

. we have $\Psi=I_{t}$ with some
$t\in T$. $I_{t}$ is defined over $K$, if and only if $\alpha(t)\in K^{*}for$ all $\alpha\in \mathfrak{r}$ , or, what
amounts to the same, $t(mod. Z)$ is K-rational (as an element in $T/Z$), $Z$ denot-
ing the center of $G$ .

The first and the third assertions are obvious, and the second follows from
the first and Lemma 5.

LEMMA 5 bis. For any isomorphism $\psi$ from (X, r) onto (X’, $\mathfrak{r}^{\prime}$ ) and for any
$\eta_{\alpha}\in K^{*}(\alpha\in\Delta)$ , there exists (uniquely) a system $\{\eta_{\alpha}(\alpha\in \mathfrak{r})\}$ in $K^{*}$ coherent with
respect to $\psi$ , (provided $K$ is sufficiently large).

By the main result of Chevalley [4] $(Exp. 18\sim 24)$ , there exists, for any $\psi$ ,

at least one K-isomorphism $f$ from $(G, T)$ onto $(G^{\prime}, T^{\prime})$ such that $f\leftarrow\rightarrow\{\psi, *\}$ , if
$K$ is taken sufficiently large (depending on $\psi$ , for the moment). The Lemma
then follows from Lemmas 4, b) and 6. It will be ascertained afterwards (by

Corollary 2 to Theorem 3) that it is not necessary to extend $K$.
14. PROOF OF THEOREM 3. It is enough to show that there exists a

K-isomorphism $f$ from $(G, T)$ onto $(G^{\prime}, T^{\prime}),$ ($K$ being taken sufficiently large),

such that $f\leftarrow\rightarrow\{\psi, \eta_{\alpha}\}$ , in the notations of $N^{o}13$ , with $\{\psi, \eta_{\alpha}\}$ satisfying the
following conditions:

a) (43), (44) hold;
b) $f_{0}\leftarrow\rightarrow\{\psi^{0}, \eta_{\alpha}(\alpha\in\iota_{0})\}$ (with respect to the $x_{\alpha}’ s(\alpha\in \mathfrak{r}_{0})$ and the $x_{a}^{\prime},$ $s$

$(\alpha^{\prime}\in \mathfrak{r}_{0}^{\prime}))$ with $\psi^{0}=\psi|X^{0}$ ;
c) $\overline{\psi}=w^{\prime}\psi$ with $w^{\prime}\in W_{\Gamma}^{\prime}$ .
To start with, let $f_{0}\leftarrow\rightarrow\{\psi^{0}, \eta_{\alpha}(\alpha\in \mathfrak{r}_{0})\}$ . By definition, we have $\overline{\psi}^{0}=w^{\prime}\psi^{0}$

with $w^{\prime}\in W_{0^{\prime}}$ , and $\overline{\psi}^{0}(\Delta_{0})=\Delta_{0}^{\prime}$ . Put

$\psi=w^{\prime-1}\circ\psi^{-}$ .
Then, it is clear that $\psi$ is an isomorphism from $(X, r)$ onto (X’, $\mathfrak{r}^{\prime}$ ) such that
$\psi(X^{0})=X^{\prime 0}$ and $\psi|X^{0}=\psi^{0}$ , by the condition (iii). We now assert that $\psi$

satisfies the relation (43), $i$ . $e$ . $\psi^{\sigma}=\psi$ for all $\sigma\in\Gamma$ . In fact, since $X_{Q}=(X^{0})_{Q}$

$+(X^{0})_{Q}^{\perp}$ , it is enough to show that this relation holds both on $(X0)_{Q}$ and on
$(X^{0})_{Q}^{\perp}$ . First, since $f_{0}$ is a k-isomorphism, we have $\psi^{0^{\sigma}}=\psi^{0}$ for all $\sigma\in\Gamma$ , i.e.
(43) holds on $(X0)_{Q}$ . On the other hand, since $w_{\sigma}\in W_{0},$ $w_{d}^{\prime},$ $w^{\prime}\in W_{0^{\prime}}$ and since
$\mathfrak{r}_{0}\subset X^{0},$ $\mathfrak{r}_{\acute{0}}\subset X^{ro}$ , we have
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$\overline{\varphi}_{\sigma}(\chi)=x^{\sigma^{-1}}$ , $\overline{\psi}(\chi)=\psi(\chi)$ for all $\chi\in(X^{0})_{Q}^{\perp}$ ,

$\overline{\varphi}_{a}^{\prime}(\chi^{\prime})=x^{\prime_{\sigma^{-1}}}$ for all $\chi^{\prime}\in(X^{\gamma 0})_{Q}^{\perp}$ ,

so that (the third equality in) (39) implies that (43) holds on $(X0)_{Q}^{\perp}$ . This
proves our assertion.

It remains to show that $\{\eta_{\alpha}(\alpha\in \mathfrak{r}_{0})\}$ can be extended to a system
$\{\eta_{\alpha}(\alpha\in \mathfrak{r})\}$ coherent with respect to $\psi$ and satisfying (44). For each $\alpha_{i}\in\Delta-\Delta_{0}$ ,

denote by $\mathfrak{r}^{(i)}$ the subsystem of $\mathfrak{r}$ formed of all roots which are linear com-
binations of $\alpha_{i}$ and of the roots in $\mathfrak{r}_{0}$ , and denote by $\overline{\Gamma}_{a_{i}}$ the subgroup of $\Gamma$

formed of all $\sigma\in\Gamma$ such that $\overline{\varphi}_{\sigma}(\alpha_{i})=\alpha_{i}$ . Then the closed subgroup $G(\mathfrak{r}^{(i)})$ of
$G$ corresponding to the closed subsystem $\mathfrak{r}^{(i)}$ of $\mathfrak{r}$ is clearly invariant under $\overline{\Gamma}_{\alpha_{i}}$

so that defined over the intermediate field of $K/k$ corresponding to $\overline{\Gamma}_{\alpha_{i}}$ . We
shall first show that $\{\eta_{\alpha}(\alpha\in \mathfrak{r}_{0})\}$ can be extended to a coherent system
$\{\eta_{\alpha}(\alpha\in \mathfrak{r}^{(i)})\}$ (with respect to the restriction of $\psi$ on $\mathfrak{r}_{\grave{Q}^{i)}}^{\prime}$ ) satisfying (44) for all

$o\in\overline{\Gamma}_{\alpha_{i}}$ . In fact, taking $\eta_{\alpha_{i}}\in K^{*}$ arbitrarily, $\{\eta_{\alpha}(\alpha\in \mathfrak{r}_{0}), \eta_{\alpha_{i}}\}$ can be extended
(uniquely) to a coherent system { $\eta_{\alpha}$ (a $\in \mathfrak{r}^{(i)})$ } (Lemma 5 bis). Let $f^{(i)}\leftarrow\rightarrow\{\psi|\mathfrak{r}_{Q}^{(t)}$ ,
$\eta_{\alpha}(\alpha\in \mathfrak{r}^{(i)})\}$ . It follows from Lemma 4 and the relation (43) that we have

$f^{(i)-1}\circ f^{(i)}\sigma\leftarrow\rightarrow\{1, \zeta_{\sigma,\alpha^{\sigma^{-1}}}\}$

with

$\zeta_{\sigma,\alpha}=\underline{\xi}_{\xi^{\sigma}’}^{\prime}\frac{\psi_{(a)}\eta_{a}^{\sigma}}{\sigma,\alpha\eta_{\alpha^{\sigma}}}$ for $\alpha\in \mathfrak{r}^{(i)},$ $\sigma\in\overline{\Gamma}_{\alpha_{i}}$ .

Therefore, in view of Lemma 6, we get

$\zeta_{\sigma,\alpha}^{\tau}\zeta_{\tau,\alpha^{\sigma}}=\zeta_{\sigma\tau,\alpha}$ ,

$\zeta_{\sigma,a}\zeta_{\sigma,\beta}=\zeta_{\sigma,\alpha+\beta}$ , $\zeta_{\sigma,-\alpha}=\zeta_{\sigma,\alpha}^{-1}$ ;

moreover, since $f^{(i)}|G(\mathfrak{r}_{0})$ is defined over $k,$ $\zeta_{\sigma,\alpha}$ depends only on the class of
$\alpha$ modulo $\mathfrak{r}_{oQ}$ . It follows that for $\sigma\in\overline{\Gamma}_{\alpha_{i}}$ we have $\zeta_{\tau,\alpha_{\iota^{\sigma}}}=\zeta_{\tau,\varphi_{\sigma^{w_{\sigma}}-1^{(\alpha}i^{)}}^{-1-1}}=\zeta_{\tau,\alpha_{i}}$ ,

so that $\{\zeta_{\sigma,\alpha_{i}}(\sigma\in\overline{\Gamma}_{\alpha_{i}})\}$ forms a l-cocycle of $T_{a_{i}}$ in $K^{*}$ . Hence by the Theorem
90 of Hilbert, we can find $\omega\in K^{*}$ such that $\zeta_{\sigma,\alpha_{i}}=\omega^{\sigma-1}$ for all $\sigma\in\overline{\Gamma}_{\alpha_{j}}$ . Then,
replacing $\eta_{\alpha_{i}}$ by $\omega^{-1}\eta_{a_{i}}$ , we obtain $\zeta_{\sigma,\alpha_{i}}=1$ , hence $\zeta_{\sigma,\alpha}=1$ for all $\alpha\in \mathfrak{r}^{(i)},$ $\sigma\in F_{\alpha_{i}}$ ,
which proves our assertion. For convenience, we say that $\eta_{\alpha_{i}}$ is ‘ properly’
chosen if we have $\zeta_{\sigma,\alpha_{i}}=1$ for all $\sigma\in F_{\alpha_{i}}$ . Now we divide $\Delta-\Delta_{0}$ into orbits
of $\{\overline{\varphi}_{\sigma}(\sigma\in\Gamma)\}$ and call $\Delta_{i}(1\leqq i\leqq r)$ the totality of the orbits. For each $i$,
take a representative $\alpha_{k_{i}}$ in $\Delta_{i}$ and choose $\eta_{\alpha_{ki}}$

‘ properly ‘ ; and then extend
$\{\eta_{\alpha}(\alpha\in \mathfrak{r}_{0}), \eta_{\alpha_{kt}}\}$ to a coherent system $\{\eta_{\alpha}(\alpha\in \mathfrak{r}^{(k_{i}}‘)\}$ . For every $\alpha_{f}\in\Delta_{t}$ , there
exists $\sigma\in\Gamma$ such that $\alpha_{j}=\overline{\varphi}_{\sigma}(\alpha_{k_{i}})=(w_{\sigma}(\alpha_{k_{i}}))^{\sigma^{-1}}$ . We define $\eta_{\alpha_{f}}$ by

$\eta_{\alpha_{j}}=\eta_{w\sigma}^{\sigma-1_{(\alpha_{k_{i})\frac{\xi_{\sigma^{-1}}^{\prime}\psi_{(w_{\sigma}(\alpha_{k_{i}}))}}{\xi_{\sigma}-J_{w_{\sigma}(\alpha_{k_{i}})}}}}}$ .

Then, from our choice of the $\eta_{\alpha_{k_{i}}}$ and from the relation (41) for $\{\xi_{\sigma.\alpha}\},$ $\{\xi_{\sigma.\iota\iota^{l_{l}}}^{\prime}$,
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we see immediately that this definition of $\eta_{\alpha_{j}}$ does not depend on the choice
of $\sigma\in\Gamma$ such that $\alpha_{j}=\overline{\varphi}_{\sigma}(\alpha_{k_{t}})$ . This means that, with $\eta_{\alpha_{j}}$ thus defined, the
relation (44) is satisfied for $\alpha=\alpha_{j}$ and for all $\sigma\in\Gamma$ such that $\alpha_{j}=\overline{\varphi}_{\sigma}(\alpha_{k_{i}})$ .
Now, starting from the given $\eta_{\alpha_{j}}(\alpha_{j}\in\Delta_{0})$ and the $\eta_{\alpha_{j}}(\alpha_{j}\in\Delta-\Delta_{0})$ thus defined,
we extend the definition of $\eta_{\alpha}$ to a system $\{\eta_{\alpha}(\alpha\in \mathfrak{r})\}$ coherent with respect
to $\psi$ . Then, it is easy to see that (44) is satisfied for all $\alpha\in\Delta$ and $\sigma\in\Gamma$ ;
hence also for all $\alpha\in \mathfrak{r}$, as we remarked in Remark 2 after Lemma 5, $q$ . $e$ . $d$ .

15. We add here several consequences of Theorem 3. First, in the
special case where $G_{0},$ $G_{0^{\prime}}$ reduce to the neutral element, the condition (ii), (iii)
becoming void, we obtain the following

COROLLARY 1. Let $G,$ $G^{\prime}$ be connected reductive algebraic groups defined
over a perfect field $k$ , such that $G_{0}$ , G\’o reduce to the neutral element. In the
nolation of Theorem 3, suppose that there exists a congruence $\overline{\psi}from$ $(X, \Delta, \phi, \{\overline{\varphi}_{\sigma}\})$

to (X’, $\Delta^{\prime},$ $\phi,$ $\{\overline{\varphi}_{\sigma}^{\prime}\}$ ). Then there exists a k-isomorphism $f$ from $(G, T)$ onto $(G^{\prime}, T^{\prime})$

such that $\overline{\psi}$ is associated with $f$.
It is well-known that there exists no quasicompact semi-simple algebraic

group, of dimension $>0$ , over a finite field. Therefore Corollary 1 can be
applied for any connected semi-simple algebraic groups $G,$ $G^{\prime}$ , defined over a
finite field $k$ . On the other hand, another special case where Corollary 1
applies, is the case of so-called groups of Chevalley type. Namely, we call
connected reductive algebraic group $G$ , defined over $k$ , of Chevalley type over
$k$ , if it has a k-trivial maximal torus $T$, or, in our notation, if $T=A$ ; if this
is the case, we have surely $G_{0}=\{1\}$ . Hence we obtain from Corollary 1 the
following ‘ uniqueness ‘ of groups of Chevalley type.

COROLLARY 2. Let $G,$ $G^{\prime}$ be connected reductive algebraic groups of Chevalley
type over a perfect field $k$ . In the notation of $N^{0}12$ , if there exists an isomor $\cdot$

phism $\psi$ from (X, r) onto $(X^{\prime}, \mathfrak{r}^{\prime})$ , then there exists a k-isomorphism $f$ from $(G, T)$

onto $(G^{\prime}, T^{\prime})$ such that $\psi={}^{t}(f|T)^{-1}$ .
Finally we make some remarks on the classification theory of semi-simple

algebraic groups over a perfect field $k$ . First of all, the results of Chevalley
([3], supplemented by Ono [6], and [4], supplemented by Corollary 2 above)
give a complete classification of groups of Chevalley type over $k$ . More pre-
cisely, the isomorphism classes of connected semi-simple algebraic groups $G$ of
Chevalley type over $k$ are in one-to-one correspondence with the isomorphism
classes of the pairs (X, r) formed of a free submodule $X$ of the maximal rank
in a metric vector space $E$ over $Q$ and of a root system $\mathfrak{r}$ in $E$ (in the usual

sense) satisfying the conditions $\mathfrak{r}\subset X$ and that $\frac{2\langle\alpha,\chi\rangle}{\langle\alpha,\alpha\rangle}\in Z$ for all $\alpha\in \mathfrak{r},$ $\chi\in X$.
Therefore, in order to classify all connected semi-simple algebraic groups over
$k$ , it is enough to fix a finite Galois extension $K/k$ and a connected semi-
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simple group $\tilde{G}$ of Chevalley type over $K$, and to classify all “ k-forms ‘’ $G$ of
$\tilde{G}$ over $K$ ( $i$ . $e$ . algebraic groups, defined over $k$ , which are K-isomorphic to $\tilde{G}$)

such that $G$ contains a K-trivial maximal torus $T$, defined over $k$ , containing
a maximal k-trivial torus $A$ . When $\tilde{G}$ is corresponding to (X, r), we say that
such a pair $(G, T)$ belongs to $K/k,$ $X,$ $\mathfrak{r}$ . Now, by Theorem 3, our problem is
reduced to the following two problems:

PROBLEM 1. For given $K/k,$ $X^{0},$ $r_{0}$ , classify all k-quasicompact pairs $(G_{0}, T_{0})$

belonging to them up to k-isomorphisms.
PROBLEM 2. For given $K/k,$ $X,$ $\mathfrak{r},$ $\mathfrak{r}_{0}=\mathfrak{r}\cap X_{0}$ and a k-isomorphism class of

k-quasicompact pair $(G_{0}, T_{0})$ belonging to $K/k,$ $X^{0},$ $\mathfrak{r}_{0},$ ($X^{0}$ denoting the orthogonal
projection of $X$ on $(r_{0})_{Q})$, classify all ‘ admissible ‘ systems (X, $\Delta,$ $\Delta_{0},$ $\{\overline{\varphi}_{\sigma}\}$ ) $(i$ . $e$ .
systems associated actually with a pair $(G, T)$ belonging to $K/k,$ $X,$ $\mathfrak{r}$ and such
that $G_{0}=G(\mathfrak{r}_{0}))$ , up to congruences (compatible with k-isomorphisms of $G_{0}$).

Moreover, it is easy to see that Problem 2 can be reduced further to the
‘ absolutely irreducible ‘ case of ‘ rank 1 ’ ( $i$ . $e$ . the case where $\Delta$ is connected
and $\{\overline{\varphi}_{\sigma}\}$ operates transitively on $\Delta-\Delta_{0}$). In this way, we can actually achieve
a complete classification over a finite field and over the real number field4)5).
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