Pseudo-uniform reducibility

By Raymond M. SMULLYAN

(Received June 16, 1962)

1. Introduction

In [1] we showed:

THEOREM A. If every recursive set is representable in a theory (T) then (T) is undecidable.

THEOREM B. If every recursive set is definable in (T) and if (T) is consistent, then the set T_0 of Gödel numbers of the provable sentences of (T) is recursively inseparable from the set R_0 of Gödel numbers of the refutable sentences of (T).

The above propositions combine notions of recursive function theory with those of mathematical logic—i.e. with the concept of a “first order theory”. In this note we obtain generalizations of these propositions which are purely recursive function theoretic in nature. We also show that the conclusions of Theorems A and B hold under still weaker hypotheses.

2. Pseudo-uniform reducibility

The word “number” shall mean natural number. We use “A”, “B”, “α”, “β” for sets of natural numbers. A set A is (many-one) reducible to α if there is a recursive function $g(\varphi)$ (called a (many-one) reduction of A to α) such that $A = g^{-1}(\alpha)$—i.e. for each number i, $i \in A \iff g(i) \in \alpha$. Consider now a collection Σ of recursively enumerable sets. The collection Σ is uniformly reducible to α (as defined in [2]) if there is a recursive function $g(x,y)$ (called a uniform reduction of Σ to α) such that for every i for which $\omega_i \in \Sigma$, the function $g(i,y)$ (as a function of the one variable y) is a reduction of ω_i to Σ.

Thus, if Σ is uniformly reducible to α, then not only is every element of Σ reducible to α, but given any such element ω_i (in the sense of given its index i) we can effectively find a reduction of it to α.

It is trivial to verify that if some non-recursive set is reducible to α,

1) This research was supported in part by a grant from the Air Force Office of Scientific Research.
2) By ω_i, we mean the set of all numbers x satisfying the condition $(\exists y) T_1(i, x, y)$ where $T_1(x, x, y)$ is the predicate of Kleene's enumeration theorem [3]
then α is non-recursive. Hence, it follows that if every recursively enumerable set is reducible to α, then α is non-recursive (since there exists a recursively enumerable set which is not recursive). This fact is well known. Suppose that every recursive set is reducible to α; does it follow that α is non-recursive? Clearly not, for if α is any non-empty set whose complement is also non-empty, then every recursive set A is reducible to α (just take an element a_1 of α and an element a_2 of $\bar{\alpha}$ and define $g(x) = a_1$ if $x \in A$; $g(x) = a_2$ if $x \notin A$). Since A is recursive, $g(x)$ is a recursive function, and clearly a reduction of A to α. Suppose that the collection of all recursive sets is uniformly reducible to α; does it follow that α is non-recursive? In [2], we showed that this hypothesis implies not only that α is non-recursive, but that the complement of α is productive. Thus, to establish the non-recursivity of a set α, the hypothesis that all recursive sets be reducible to α is too weak, and the hypothesis of uniform reducibility is stronger than necessary. We now consider a notion which is of intermediate strength.

We shall say that Σ is pseudo-uniformly reducible to α if there is a recursive function $g(x, y)$ (called a pseudo-uniform reduction of Σ to α) such that for every set $A \in \Sigma$, there is a number a such that $g(a, y)$ (as a function of the one variable y) is a reduction of A to α. We note that this definition (unlike that of uniform reducibility) does not require that such a number a be an index of the set A, nor that there be a recursive function $\varphi(x)$ which assigns to any index of A such a number a. If there were such a recursive function $\varphi(x)$, then Σ would indeed be uniformly reducible to α under the function $g(\varphi(x), y)$. We shall soon see that a sufficient condition for α to be non-recursive is that the collection of all recursive sets be pseudo-uniformly reducible to α. And in light of our next proposition, we feel that this fact constitutes the mathematical essence of [Theorem] A.

The notion of pseudo-uniform reducibility arises naturally in connection with metamathematics in the following way. Suppose we have a theory (T) with standard formalizations (cf. [4]). Let $F_1, F_2, \ldots, F_n, \ldots$ be an effective enumeration of all the formulas with exactly one free variable; let A_i be the numeral designating the natural number i; let g be an effective Gödel numbering of all closed sentences; let T be the set of all provable (closed) sentences and R the set of all (closed) sentences whose negation is provable; let T_0, R_0 respectively be the set of Gödel numbers of the provable, refutable sentences of (T); let $\varphi(i, j)$ be the Gödel number of $F_i(A_j)$. Under the usual requirements of "effectiveness" of the Gödel numbering and of the sequence $A_0, A_1, A_2, \ldots, A_i$, the function $\varphi(x, y)$ is (general) recursive.

A formula $F(x)$ is said to represent the set of all numbers n for which $F(A_n) \in T$. We pointed out in [2] that if a set A is representable in (T), then
A is (many-one) reducible to T_α. We now note the following stronger fact:

PROPOSITION 1. If each element of a collection Σ is representable in (T), then the collection Σ is pseudo-uniformly reducible to T_α.

PROOF. For each element A of Σ there is, by hypothesis, a formula $F_i(x)$ which represents A in (T). Then for every number $i,j \in A \leftrightarrow F_i(A) \in T \leftrightarrow \varphi(i,j) \in T_\alpha$. Thus $\varphi(x,y)$ is a pseudo-uniform reduction of Σ to T_α.

We now show

THEOREM 1. If the collection of all recursive sets is pseudo-uniformly reducible to α, then α is not recursive.

We actually show Theorem 1 in the following stronger form.

THEOREM 1'. Each of the following conditions implies the next.

(a) The collection of recursive sets is pseudo-uniformly reducible to α.

(b) There is a recursive function $g(x)$ such that for every recursive set A, there is a number i such that $i \in A \rightarrow g(i) \in \alpha$.

(c) α is not recursive.

PROOF. Suppose (a); let $f(x,y)$ be such a uniform reduction. Define $g(x) = f(x,x)$. Then $g(x)$ is recursive. Let A be any recursive set. By hypothesis there is a number i such that for every number $y, i \in A \rightarrow f(i,y) \in \alpha$. Setting $y = i, i \in A \rightarrow f(i,i) \in \alpha \cdot i \in A \rightarrow g(i) \in \alpha$. Thus (a)$\Rightarrow$(b).

Suppose (b). We must show that α is not recursive. Suppose it were. Then $\bar{\alpha}$ would be recursive. Then $g^{-1}(\bar{\alpha})$ is recursive $[g^{-1}(\bar{\alpha}) = \{\varphi \rightarrow \varphi(i) \in \alpha\}$ the set of all i such that $g(i) \in \bar{\alpha}$]. Then there is a number i such that $i \in g^{-1}(\bar{\alpha}) \rightarrow g(i) \in \alpha$. But $i \in g^{-1}(\bar{\alpha}) \rightarrow g(i) \in \bar{\alpha}$. Hence $g(i) \in \bar{\alpha} \rightarrow g(i) \in \alpha$, which is impossible.

In view of Proposition 1, Theorem 1 is indeed a generalization of Theorem A.

We also note that the statement (b)\Rightarrow(c) of Theorem 1' is a stronger statement than Theorem 1, and implies the following stronger form of Theorem A (by setting $g(i) = \varphi(i,i)$).

THEOREM A'. If for every recursive set A, there is a number i such that $i \in A \rightarrow f(A) \in T$, then T_α is non-recursive.

The hypothesis of Theorem A' is obviously weaker than that of Theorem A, for the latter says that for any recursive set A there is a number i such that for every j (whether equal to i or not), $j \in A \rightarrow f(A) \in T$.

3. Pseudo-uniform reducibility of ordered pairs

Let A, B, α, β be number sets. A recursive function $f(x)$ is a (many-one) reduction of the ordered pair (A,B) to the ordered pair (α, β) (as defined in [2]) if $f(x)$ is simultaneously a reduction of A to α and of B to β.—i.e. for every number i: (1) $i \in A \rightarrow f(i) \in \alpha$; (2) $i \in B \rightarrow f(i) \in \beta$.

Consider now a collection Σ of ordered pairs of number sets. We shall
say that \(\Sigma \) is pseudo-uniformly reducible to a pair \((\alpha, \beta)\) if there is a recursive function \(f(x, y) \) (which we will call a pseudo-uniform reduction of \(\Sigma \) to \((\alpha, \beta)\)) such that for every pair \((A, B)\) in \(\Sigma \), there is a number \(i \) such that \(f(i, y) \) (as a function of the one variable \(y \)) is a reduction of \((A, B)\) to \((\alpha, \beta)\).

The obvious analogue of [Proposition 1] is

Proposition 2. Let \(S \) be a collection of sets and let \(\Sigma \) be the collection of all ordered pairs \((A, \tilde{A})\) such that \(A \in S \). Then if every element of \(S \) is definable in \((T)\), and if \((T)\) is consistent, then \(\Sigma \) is pseudo-uniformly reducible to the pair \((T_0, R_0)\).

Proof. As in the proof of Proposition 1, let \(\varphi(i, j) \) be the Gödel number of \(F(\Delta_j) \). Let \(A \in S \). Then for some number \(i, F(x) \) defines \(A \) in \((T)\). Thus for all \(j, j \in A \Rightarrow F(\Delta_j) \in T \) and \(j \in \tilde{A} \Rightarrow F(\Delta_j) \in R \). Since \((T)\) is consistent, then \(j \in A \Rightarrow F(\Delta_j) \in T \) and \(j \in \tilde{A} \Rightarrow F(\Delta_j) \in R \). [For \(F(\Delta_j) \in T \Rightarrow F(\Delta_j) \in R \Rightarrow j \in \tilde{A} \Rightarrow j \in A \). Similarly \(F(\Delta_j) \in R \Rightarrow j \in \tilde{A} \Rightarrow j \in A \).] Thus \(f(i, y) \) is a reduction of \((A, \tilde{A})\) to \((T_0, R_0)\).

We now show

Theorem 2. Let \(\Sigma_R \) be the collection of all complementary pairs of recursive sets and let \(\alpha, \beta \) be disjoint. Then if \(\Sigma_R \) is pseudo-uniformly reducible to \((\alpha, \beta)\), then \((\alpha, \beta)\) is recursively inseparable.

We in fact shall show the stronger fact:

Theorem 2'. Each of the following conditions implies the next:

(a) \(\Sigma_R \) is pseudo-uniformly reducible to \((\alpha, \beta)\) \([\alpha, \beta \text{ are disjoint}].

(b) There is a recursive function \(g(x) \) such that for each pair \((A, \tilde{A}) \in \Sigma \), there is a number \(i \) such that \(i \in A \leftrightarrow g(i) \in \alpha \) and \(i \in \tilde{A} \leftrightarrow g(i) \in \beta \).

(c) The pair \((g^{-1}(\alpha), g^{-1}(\beta))\) is recursively inseparable.

(d) The pair \((\alpha, \beta)\) is recursively inseparable—in fact, the subset \(gg^{-1}\alpha \) of \(\alpha \) is recursively inseparable from the subset \(gg^{-1}\beta \) of \(\beta \).

Proof. (1) (a) \(\Rightarrow \) (b). Let \(f(x, y) \) be a pseudo-uniform reduction of \(\Sigma_R \) to \((\alpha, \beta)\). As in the proof of Theorem 1', let \(g(x) \) be the recursive function \(f(x, x) \). Let \((A, \tilde{A}) \in \Sigma \) and let \(i \) be such that \(f(i, y) \) is a reduction of \((A, \tilde{A})\) to \((\alpha, \beta)\). Since \(f(i, y) \) is a reduction of \(A \) to \(\alpha \), then (by the argument in the proof of Theorem 1') \(i \in A \Leftrightarrow g(i) \in \alpha \). Similarly, since \(f(i, y) \) is a reduction of \(\tilde{A} \) to \(\beta \), then \(i \in \tilde{A} \Leftrightarrow g(i) \in \beta \).

(2) (b) \(\Rightarrow \) (c). Suppose \(g(x) \) is as in (b). Suppose \((g^{-1}(\alpha), g^{-1}(\beta))\) were

3) Again, this notion is midway in strength between the notions: (1) every element of \(\Sigma \) is reducible to \((\alpha, \beta)\); (2) \(\Sigma \) is uniformly reducible to \((\alpha, \beta)\), as defined in [2]. The latter says that given indices \(i, j \) of \(A, B \) where \((A, B) \in \Sigma \), we can effectively find a number \(i \) such that \(f(i, y) \) is a reduction of \((A, B)\) to \((\alpha, \beta)\).

4) A pair is called recursively inseparable if there is no recursive superset of one disjoint from the other.
Pseudo-uniform reducibility

133

to recursively separable. Then there is a recursive superset A of $g^{-i}(\beta)$ disjoint from $g^{-i}(\alpha)$. Hence, $g^{-i}(\beta) \subseteq A$; $g^{-i}(\alpha) \subseteq \tilde{A}$. By the hypothesis of (b), there is an i such that $i \in A \rightarrow g(i) \in \alpha$ and $i \in \tilde{A} \rightarrow g(i) \in \beta$. Hence, $i \in A \Rightarrow g(i) \in \alpha \Leftrightarrow i \in g^{-i}(\alpha) \Rightarrow i \in \tilde{A}$, and $i \in \tilde{A} \Rightarrow g(i) \in \beta \Rightarrow i \in g^{-i}(\beta) \Rightarrow i \in A$.

Thus $i \in A \lhd i \in \tilde{A}$, which is impossible. Hence $g^{-i}(\alpha), g^{-i}(\beta)$ are recursively inseparable.

(3) (c) \Rightarrow (d). We have shown in [2] (p. 62, Proposition 4, Ch. II) that if (A_1, A_2) is recursively inseparable and if (A_1, A_2) is reducible to (B_1, B_2) (or even if there is a recursive function which maps A_1 into B_1 and A_2 into B_2) then (B_1, B_2) is in turn recursively inseparable. But clearly g maps $g^{-i}(\alpha)$ into $g g^{-i} \alpha$ and $g^{-i}(\beta)$ into $g g^{-i} \beta$.

Theorem 2 and Proposition 2 clearly imply Theorem B. But again, the statement (b) \Rightarrow (d) of Theorem 2' is stronger than Theorem 2, and implies the following stronger form of Theorem B.

Theorem B'. A sufficient condition for the nuclei (T_0, R_0) of a consistent theory (T) to be recursively inseparable is that for every recursive set A there exists a number i such that $i \in A \rightarrow F_i(A) \in T$ and $i \in \tilde{A} \rightarrow F_i(A) \in R$.

Princeton University
Yeshiva University

References