Generalization of a theorem of Paley and Wiener

By Takao KAKITA¹⁾

(Received May 6, 1961) (Revised Jan. 8, 1962)

1. Introduction

In his previous paper [2], the author has proved that a theorem of Planchrel and Polya [3], which contains the theorem of Paley and Wiener in one-dimensional form, can be extended to the case in which distribution is involved.

In this paper, we shall give an extension of Stein's theorem [5] in a completely general form by modifying his method.

Our aim is to show that all distributions whose Fourier transforms vanish outside a given compact symmetric and convex domain in n-space are characterized in a one-dimensional form. It is another generalization of the theorem of Paley and Wiener, through the removal of the imposed condition of boundedness on f(x), which gives an extension of a theorem due to Stein [5]. It is my pleasure to thank Professor G. F. D. Duff for taking the trouble to read over this manuscript.

2. Stein's theorem

Adopting Stein's notations, we shall denote by E_n the euclidean *n*-space, and by $x = (x_1, \dots, x_n)$ a generic point in it. E^n will denote the dual euclidean *n*-space by the inner product

$$x \cdot y = \sum_{i=1}^{n} x_i y_i$$
.

The Fourier transform of $f(x) \in L^2(E_n)$ is given by

$$\mathcal{F}[f](y) = 1/(2\pi)^{\frac{n}{2}} \int_{E_n} e^{-ix \cdot y} f(x) \, dx.$$

Let Ω be a compact, convex and symmetric domain in E^n , and let $\Omega^* = \{x \in E_n; |x \cdot y| \le 1 \text{ for all } y \in \Omega\}$. By c(x) we mean the characteristic function of Ω^* . Define

$$U_t(f)(x) = f * c_t(x)$$

where f(x) is a locally integrable function and $c_t(x) = t^{-n}c(x/t)$.

¹⁾ The helpful suggestions of the referee are gratefully acknowledged.

352 T. Kakita

 $U_t(f)(x)$ is the means of the f(x) taken with respect to the domain Ω^* . Then Stein's theorem can be stated as follows:

THEOREM. Let $f(x) \in L^2(E_n)$, f(x) bounded. Then a necessary and sufficient condition that $\mathfrak{T}[f](y)$ vanishes outside a compact, convex and symmetric domain Ω , is that $U_t(f)(x)$ is, for each fixed x, an analytic function of exponential type ≤ 1 in t.

3. Extension of Stein's theorem

Now we state the extension of Stein's theorem which we shall prove, by the following. As an additional notation we use

$$\langle S, \varphi \rangle = \langle T, \overline{\mathcal{F}} \lceil \varphi \rceil \rangle$$
,

for the Fourier transform $T = \mathcal{F}[S]$ of S where $S \in (S')$ and $\varphi \in (S)$.

THEOREM 1. Let S be a distribution $\in (S')$ and let $\mathcal{F}[S] = T$ the Fourier transform of S. Then a necessary and sufficient condition that T vanishes outside a compact, convex and symmetric domain Ω , is that $\langle e^{-ix \cdot h}S, U_t(\varphi) \rangle$ is, for each fixed $\varphi \in (S)$ and a fixed $h \in E^n$, an analytic function of exponential type $\leq 1 + \rho(h)$ in t, where $U_t(\varphi) = c_t * \varphi$ and $\rho(h) = |h| \sup_{S \in \Omega} |x|$.

REMARK. We note that the following two conditions are equivalent when $S = S(x) \in L^2(E_n)$ and bounded.

- (1) $\langle U_t(S), \varphi \rangle$ is, for each fixed $\varphi \in (S)$, an analytic function of exponential type ≤ 1 in t.
- (2) $U_t(S)(x)$ is, for each fixed $x \in E_n$, an analytic function of exponential type ≤ 1 in t.

The equivalence follows from the next lemma, which is known.

LEMMA A. Let $f_{\nu}(z)$ be analytic functions of exponential type $\leq \sigma$ and $|f_{\nu}(x)| \leq M$ for $\nu = 1, 2, \cdots$. Then there exist an analytic function f(z) of exponential type $\leq \sigma$ and a subsequence $\{f_{\nu_k}(x)\}$ of $\{f_{\nu}(x)\}$ such that $f_{\nu_k}(x) \to f(x)$ uniformly on every finite interval.

In fact, assume the condition (1) is fulfilled. Let $\alpha(x) \in (\mathcal{D})$ and $\int_{E_n} \alpha(x) dx = 1$. We form the convolutions

$$U_t(S) * \alpha_{\nu}(x) = \langle U_t(S), \tau_x \alpha_{\nu} \rangle$$

where $\alpha_{\nu}(x) = \nu^{-n}\alpha(\nu x)$ and τ_x is the translation operator defined by $\tau_x \alpha(x') = \alpha(x'-x)$. It is well known that $U_t(S) * \alpha_{\nu} \to U_t(S)$ in $L^2(E_n)$ for each fixed t, when $\nu \to \infty$.

On the other hand, for each fixed $x \in E_n$ we can find by the above lemma an analytic function $f_x(t)$ of exponential type ≤ 1 in t and a subsequence $\{U_t(S)*\alpha_{\nu'}\}$ of $\{U_t(S)*\alpha_{\nu}\}$ such that $f_x^{\nu'}(t)=U_t(S)*\alpha_{\nu'}(x)\to f_x(t)$ uniformly on every finite interval of t, since the $f_x^{\nu}(t)$ are analytic, of exponential type ≤ 1 in t for each fixed $x \in E_n$ and $\sup |f_x^{\nu}(t)| \leq \omega^* \|S\|_{\infty}$ where ω^* is the volume of

 \mathcal{Q}^* . Hence we have $f_x(t) = U_t(S)(x)$ for a.e. $x \in E_n$ which means that (1) implies (2).

Conversely, let the condition (2) be satisfied. Then from the above lemma it easily follows that for each fixed $\varphi \in (\mathcal{D})$,

$$\langle U_t(S), \varphi \rangle = \int_{F_n} U_t(S)(x) \varphi(x) dx$$

is analytic, of exponential type ≤ 1 in t, using the fact that $U_t(S)(x)$ is bounded for $x \in E_n$ and real t. Furthermore, letting $\varphi_{\nu}(x) \in (\mathcal{D})$ approach $\varphi(x) \in (\mathcal{S})$ in $L^2(E_n)$, we conclude that (2) implies (1).

First we shall prove the following lemmas which are used for proving the necessity of the condition in our theorem.

LEMMA 1. Let $C_t(y) = \overline{\mathcal{F}}[c_t](y)$ and $D_y = \frac{\partial^{|\alpha|}}{\partial y_1^{\alpha_1} \cdots \partial y_n^{\alpha_n}}$ and let $\varepsilon > 0$, be given. Then there exists a neighborhood Ω_{ε} of Ω such that if $y \in \Omega_{\varepsilon}$,

$$|D_{u}\tau_{h}C_{t}(y)| = K|t|^{|\alpha|}e^{(1+\rho(h)+\varepsilon)|t|}$$

where K is a constant independent of y.

PROOF. Let $\mathcal{Q}_{\epsilon} = \{y \in E^n ; |x \cdot y| \leq 1 + \epsilon \text{ for all } x \in \mathcal{Q}^*\}$. We shall show \mathcal{Q}_{ϵ} has the required property. Now we fix a $y \in \mathcal{Q}_{\epsilon}$. The Fourier transform of c_t , $\overline{\mathcal{F}}[c_t]$ is

$$C_t(y) = (2\pi)^{-\frac{n}{2}} \langle e^{ix\cdot y}, c_t(x) \rangle = (2\pi)^{-\frac{n}{2}} \int_{O^*} e^{itx\cdot y} dx$$
.

Since the right hand side of the above equality is the integration over a bounded domain Ω^* , $C_t(y)$ is analytic in t for each fixed y, and so is $\tau_h C_t(y)$. Furthermore, by differentiating under the integral sign, we have:

$$D_y C_t(y-h) = (2\pi)^{-\frac{n}{2}} (it)^{|\alpha|} \int_{\alpha_*} x^{\alpha} e^{itx \cdot (y-h)} dx$$

which shows that $D_y \tau_h C_t$ is also analytic in t, for each fixed y. Let the expansion of $D_y \tau_h C_t(y)$ in t be as follows:

$$D_y \tau_h C_t(y) = \sum_{m=0}^{\infty} a_m(y, h) \frac{t^m}{m!}$$
.

To estimate the coefficients $\frac{a_m(y,h)}{m!}$ of the expansion, we calculate

$$b_m(y,h) = \left[\frac{\partial^m}{\partial t^m} t^{|\alpha|} \int_{\Omega^*} e^{itx \cdot (y-h)} x^{\alpha} dx\right]_{t=0}.$$

It is evident that the $b_m(y, h)$ vanish for all m < |a|. Since

$$\frac{\partial^{m}}{\partial t^{m}} t^{|\alpha|} \int_{\mathcal{Q}^{*}} x^{\alpha} e^{itx \cdot (y-h)} dx = \sum_{p=0}^{|\alpha|} {m \choose p} |\alpha| \cdots (|\alpha|-p+1) t^{|\alpha|-p}$$

$$\times \int_{\mathcal{Q}^{*}} [ix \cdot (y-h)]^{m-p} e^{itx \cdot (y-h)} dx$$

354 T. KAKITA

if $m \ge |\alpha|$, and since $|a_m(y,h)| = (2\pi)^{-\frac{n}{2}} |b_m(y,h)|$, we have, for all $y \in \Omega_{\varepsilon}$,

$$|b_m(y,h)| = K \frac{m!}{(m-|\alpha|)!} (1+\rho(h)+\varepsilon)^{m-|\alpha|}$$

noting that $|x \cdot (y-h)| \le 1 + \rho(h) + \varepsilon$.

Thus we have the inequality:

$$|D_{y}\tau_{h}C_{t}(y)| \leq K \sum_{m=|\alpha|}^{\infty} \frac{1}{(m-|\alpha|)!} (1+\rho(h)+\varepsilon)^{m-|\alpha|} |t|^{m}$$

$$= K |t|^{|\alpha|} \sum_{m=0}^{\infty} \frac{(1+\rho(h)+\varepsilon)^{m}|t|^{m}}{m!}$$

$$= K |t|^{|\alpha|} e^{(1+\rho(h)+\varepsilon)|t|}$$

for all $y \in \Omega_{\epsilon}$, which proves Lemma 1.

LEMMA 2. Let f(y) be a continuous function supported by a compact set $\subset \Omega_{\varepsilon}$. Then $A(t) = \int [D_y \tau_h C_t(y)] f(y) dy$ is analytic in t.

Proof. Setting

$$f_{\nu}(y,h) = f(y) \sum_{k=0}^{\nu} a_{k}(y,h) \frac{t^{k}}{k!}$$

it is clear that for each fixed y and t

$$|f_{\nu}(y,h)| \leq K_1 |t|^{|\alpha|} e^{(1+\rho(h)+\varepsilon)|t|} |f(y)|$$

and that

$$\lim_{y\to\infty} f_{\nu}(y,h) = f(y)D_y \tau_h C_t(y).$$

Therefore we observe for each fixed t

$$A(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \int a_k(y, h) f(y) dy$$

which proves Lemma 2.

PROOF OF NECESSITY:

Let $\varepsilon > 0$ be arbitrary, and define Ω_{ε} as in Lemma 1. Then T is represented by a finite sum of derivatives of continuous functions as follows:

$$T = \sum_{i=1}^{l} D_i g_i$$

where g_i are continuous functions vanishing outside Ω_{ε} ([4]).

For simplicity we set $T = D_y g$. Since, by the definition of Fourier transform of distribution,

$$\langle e^{ihx}S, U_t(\varphi) \rangle = \langle \tau_h T, C_t \Phi \rangle$$

 $= \langle D_y g, \tau_{-h}(C_t \Phi) \rangle$
 $= (-1)^{|\alpha|} \sum_{\beta \leq \alpha} {\alpha \choose \beta} \langle g, D_y(\tau_{-h}C_t \tau_{-h}\Phi) \rangle.$

We have, by Lemma 1,

$$|e^{ihx}S, U_t(\varphi)| \leq \sum_{\beta \leq \alpha} {\alpha \choose \beta} K_{\beta} |t|^{|\beta|} \int_{\mathcal{Q}_{\varepsilon}} |g(y)D^{\alpha-\beta}(y-h)| dy \times e^{|t|(1+\rho(h)+\varepsilon)}$$

$$\leq K |t|^{|\alpha|} e^{|t|(1+\rho(h)+\varepsilon)}$$

where $\overline{\mathcal{F}}[\varphi] = \Phi$. It follows from the above equalities, by Lemma 2, that $\langle e^{ihx}S, U_t(\varphi) \rangle$ is analytic in t. Thus we have proved the necessity.

To prove the sufficiency we assume Bernstein's theorem as in $\lceil 5 \rceil$:

LEMMA B. (Bernstein's theorem) Let F(z) be an analytic function of exponential type $\leq \sigma$ in z and bounded on the real line. Then $||F'(x)||_{\infty} \leq \sigma ||F(x)||_{\infty}$.

Now consider the ease where $S \in (S')$ and $\mathcal{F}[S] = T$ is a locally square integrable function T(y). Then we have the following lemma:

Lemma 3. Supp. $T \subset \Omega_{\varepsilon}$ if $\langle S, c_t * \varphi \rangle$ is analytic of exponential type $\leq 1+\varepsilon$ for each fixed $\varphi \in (S)$.

PROOF. If $y^1 \in \mathcal{Q}_{\epsilon}$, there exists a $x^1 \in \mathcal{Q}^*$ such that $|x^1 \cdot y^1| > 1 + \epsilon$ and therefore we can find compact neighborhoods $U(x^1)$ and $V(y^1)$ and a number $\delta > 1 + \epsilon$ satisfying $|x \cdot y| \ge \delta$ for all $x \in U(x^1) \cap \mathcal{Q}^*$ and $y \in V(y^1)$. On the other hand, from the analyticity of $C_t(y)$ in t and the symmetry of the domain \mathcal{Q}^* we have

$$C_t(y) = (2\pi)^{-\frac{n}{2}} \int_{\mathcal{Q}^*} e^{itx \cdot y} dx$$
$$= \sum_{k=0}^{\infty} \frac{\gamma_{2k}(y)}{(2k)!} t^{2m}$$

where
$$\gamma_{2k}(y) = \left[\frac{\partial^{2k}}{\partial t^{2k}} C_t(y)\right]_{t=0}$$
.

Differentiation under the integral sign in the above equality shows, for $y \in V(y^1)$

$$\mid \gamma_{2k}(y) \mid \geq (2\pi)^{-\frac{n}{2}} m(U(x^1) \cap \Omega^*) \delta^{2k}$$

where $m(\cdot)$ denotes Lebesgue measure on E_n .

Let $\Phi \in (\mathcal{D}_{V(y^1)})$ satisfy

$$\| \Phi \|_{2}^{2} = \int | \Phi(y) |^{2} dy \leq \int_{V(y^{1})} |T(y)|^{2} dy$$

and set

$$\varphi(x) = \mathcal{F} \lceil \Phi \rceil(x)$$
.

Then, $F(t) = \langle U_t(S), \varphi \rangle$ is bounded on the real line. In fact,

$$F(t) = \int C_t(y) T(y) \Phi(y) dy$$

356 T. Kakita

and

$$|C_t(y)| \leq (2\pi)^{-\frac{n}{2}} \omega^*$$

therefore we obtain:

$$|F(t)| \le (2\pi)^{-\frac{n}{2}} \omega^* ||T||^2_{V(y^1)}$$

where $||T||^2_{V(y^1)} = \int_{V(y^1)} |T(y)|^2 dy$.

Hence, Lemma B is applicable to F(t) repeatedly:

$$|F^{(k)}(t)| \leq (2\pi)^{-\frac{n}{2}} \omega^* ||T||^2_{V(y^1)} (1+\varepsilon)^k$$
.

Since by Lemma 2

$$F(t) = \sum \frac{t^{2k}}{(2k)!} \int \gamma_{2k}(y) T(y) \Phi(y) dy$$

we obtain

$$|F^{(2k)}(0)| = \left| \int \gamma_{2k}(y) T(y) \Phi(y) dy \right| \le (2\pi)^{-\frac{n}{2}} \omega^* ||T||^2_{V(y^1)} (1+\varepsilon)^{2k}.$$

Now let $\Phi(y)$ approach $\overline{T(y)}$ in L^2 norm. Then from the fact that

$$|F^{(2k)}(0)| = \left| \iint_{\mathcal{Q}^* \times V(y^1)} (x \cdot y)^{2k} T(y) \Phi(y) \, dx \, dy \right|$$

$$\to \iint_{\mathcal{Q}^* \times V(y^1)} (x \cdot y)^{2k} |T(y)|^2 \, dx \, dy$$

it is obvious that

$$egin{align} M_1 \, \| \, T \, \|^2_{\,_{oldsymbol{V}(y^1)}} \delta^{2k} &= \int_{\,_{oldsymbol{V}(y^1)}} | \, \gamma_{\,2k}(y) \, | \, \cdot \, | \, \, T(y) \, |^2 \, \, dy \ &= M \, \| \, T \, \|^2_{\,_{oldsymbol{V}(y^1)}} (1 + arepsilon)^{2k} \ \end{aligned}$$

where we set $M_1 = (2\pi)^{-\frac{n}{2}} m(U(x_1) \cap \Omega^*), M = (2\pi)^{-\frac{n}{2}} \omega^*.$

Therefore, noting that $\left(\frac{\delta}{1+\varepsilon}\right)^{2k} \to \infty$ with k, we have T(y)=0 a.e. in $V(y^1)$ and also in Ω_{ε} which establishes supp. $T \subset \Omega_{\varepsilon}$. Thus we completed the proof. Now we pass to the proof of sufficiency.

PROOF OF SUFFICIENCY:

Suppose $\langle e^{ixh}S, U_t(\varphi) \rangle$ be analytic, of exponential type $\leq 1 + \rho(h)$ in t, for each $\varphi \in (\mathcal{S})$ and each $h \in E_n$.

It is sufficient to show that $\langle \alpha S, c_t * \varphi \rangle$ is analytic, of exponential type $\leq 1 + \rho(h)$ in t for an arbitrary $\alpha \in (\mathcal{S})$ with supp. $\mathcal{F}[\alpha] \subset K_{|h|}$ where $K_{|h|} = \{y; |y| \leq |h|\}$.

For, then, $\mathscr{F}[\alpha S] = \mathscr{F}[\alpha] * T$ is a C^{∞} -function and hence by Lemma 3, we have supp. $\mathscr{F}[\alpha S] \subset \mathscr{Q}_{\rho(h)}$. Taking a sequence of functions $\alpha_{\nu} \in (\mathcal{S})$ such that $\lim_{\nu} \mathscr{F}[\alpha_{\nu}] = \delta$ in (\mathcal{E}) , we can conclude supp. $T \subset \mathscr{Q}$. In fact, because of the convexity of $\mathscr{Q}_{\varepsilon}$, there holds for $\alpha \in (\mathcal{S})$ with supp. $\mathscr{F}[\alpha] \subset K_{\varepsilon_1}$

$$\overline{\operatorname{supp}. \mathscr{F}[\alpha] * T} \subset \Omega_{\varepsilon}$$

where by \overline{A} we mean the convex closure of A and $\epsilon_1 = \epsilon (\sup_{x \in \Omega^*} |x|)^{-1}$. As is well known, the theorem on supports shows

$$\overline{\operatorname{supp.} \mathcal{F}[\alpha]} + \overline{\operatorname{supp.} T} = \overline{\operatorname{supp.} \mathcal{F}[\alpha S]}.$$

Therefore we have

$$\overline{\operatorname{supp.} T} \subset \Omega_{\varepsilon}$$

for all $\epsilon > 0$, which proves supp. $T \subset \Omega = \bigcap_{\epsilon > 0} \Omega_{\epsilon}$.

Now we note that for $T \in (S')$ and $\gamma \in (\mathcal{D})$

$$\gamma * T = \lim_{j} \sum_{\nu_j} a_{\nu_j} \tau_{h_{\nu_j}} T$$
 in (S') (filtre convergence)

where $h_{\nu} \in \text{supp. } \gamma$ ([4]).

Then there holds

$$\langle \alpha S, c_t * \varphi \rangle = \langle \mathcal{F}[\alpha] * T, C_t \Phi \rangle$$

$$= \lim_{j} \sum_{\nu_j} a_{\nu_j} \langle T, \tau_{-h_{\nu_j}}(C_t \Phi) \rangle$$

$$= \lim_{j} \sum_{\nu_j} a_{\nu_j} \langle e^{ih_{\nu_j} x} S, U_t(\varphi) \rangle.$$

This implies that there exists a j_0 such that for all $j > j_0$

$$|\sum_{
u_j} a_{
u_j} \langle e^{ih_{
u_j}x} S, U_t(\varphi) \rangle | \leq 1 + |\langle \alpha S, U_t(\varphi) \rangle|.$$

Since $|\langle \alpha S, c_t * \varphi \rangle| = (2\pi)^{-\frac{n}{2}} \omega * \int |\mathfrak{T}[\alpha S] \cdot \mathfrak{O}(y)| dy$ on the real line in t and since the integration on the right hand side exists, it is clear that $S_j(t) = \sum_{\nu_j} a_{\nu_j} \langle e^{ih_{\nu_j}x} S, U_t(\varphi) \rangle$ are uniformly bounded on the real line for all $j > j_0$. Since also $S_j(t)$ are analytic, of exponential type $\leq 1+\varepsilon$ when supp. $\mathfrak{T}[\alpha] \subset K_{\varepsilon_1}$, by assumption Lemma A implies that there exists a function S(t) which is analytic, of exponential type $\leq 1+\varepsilon$ in t such that

$$\lim_{j} S_{j}(t) = S(t)$$

uniformly on every finite interval of t. It is obvious that $S(t) = \langle \alpha S, U_t(\varphi) \rangle$.

Thus we have proved our theorem completely. If we take the convex domain Ω to be the sphere of radius σ with center origin, we can obtain the theorem in the following form:

COROLLARY. Let $S \in (S')$ and let $\mathcal{F}[S] = T$. Then a necessary and sufficient condition that T vanish outside the sphere of radius σ and center origin, is that

$$t^{-n} \int_{|y| \le t} S * \varphi(y) \, dy$$

be, for each fixed $\varphi \in (S)$, an analytic function of exponential type $\leq \sigma$ in t.

University of Toronto Waseda University 358 T. Kakita

References

- [1] R.P. Boas, Entire functions, Academic Press, New York 1954.
- [2] T. Kakita, Two theorems on Fourier transform, Proc. Japan Acad., 34, (1958), 22-27.
- [3] I. L. Lions, Supports de produits de composition, C. R. Acad. Sci. Paris, 232 (1951).
- [4] M. Planchrel and G. Polya, Fonctions entières et intégrales de Fourier multiples, Comment. Math. Helv., 9 (1937), 224-248.
- [5] L. Schwartz, Théorie des distributions, I, II, Paris Hermann 1950-1951.
- [6] E.M. Stein, Functions of exponential type, Ann. of Math. 65 (1957), 582-592.