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1. Introduction

In his previous paper [2], the author has proved that a theorem of
Planchrel and Polya [3], which contains the theorem of Paley and Wiener in
one-dimensional form, can be extended to the case in which distribution is
involved.

In this paper, we shall give an extension of Stein’s theorem [5] in a
completely general form by modifying his method.

Our aim is to show that all distributions whose Fourier transforms vanish
outside a given compact symmetric and convex domain in #-space are charac-
terized in a one-dimensional form. It is another generalization of the theorem
of Paley and Wiener, through the removal of the imposed condition of bound-
edness on f(x), which gives an extension of a theorem due to Stein [5] It is
my pleasure to thank Professor G.F.D. Duff for taking the trouble to read
over this manuscript.

2. Stein’s theorem

Adopting Stein’s notations, we shall denote by E, the euclidean #-space,
and by x=(x, ---,x,) a generic point in it. E™ will denote the dual euclidean
n-space by the inner product

Xy :¢=21 XY -
The Fourier transform of f(x) = L¥E,) is given by

FLAAN=1/@r)* [ e=ur(x)dx.

Let 2 be a compact, convex and symmetric domain in £, and let 2*={xe F,;
[x-y]<1 for all y= 2}. By c(x) we mean the characteristic function of £2%.
Define

U fXx) =1 * cx)

where f(x) is a locally integrable function and c¢,(x)=¢"c(x/t).

1) The helpful suggestions of the referee are gratefully acknowledged.
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UfXx) is the means of the f(x) taken with respect to the domain 2%
Then Stein’s theorem can be stated as follows:

THEOREM. Let f(x) e LA(E,), f(x) bounded. Then a necessary and sufficient
condition that F[ f1y) vanishes outside a compact, convex and symmetvic domain
82, is that U(f)x) is, for each fixed x, an analytic function of exponential type
=1lint.

3. Extension of Stein’s theorem

Now we state the extension of Stein’s theorem which we shall prove, by
the following. As an additional notation we use

(S, 0> =<T, F[¢D),
for the Fourier transform 7= Z[S] of S where S (&) and ¢ = (8).

THEOREM 1. Let S be a distribution =(8') and let F[S)= T the Fourier trans-
form of S. Then a necessary and sufficient condition that T vanishes outside a
compact, convex and symmetric domain 2, is that {e™*'S, U (@)} is, for each fixed
o (S) and a fixed h< E™, an analytic function of exponential tvpe = 14 o(h)
in t, wheve U(@)=c,* ¢ and p(h):lhlggg*l x|

REMARK. We note that the following two conditions are equivalent when
S=S(x) e L¥F,) and bounded.

(1) (U, (S), ¢ is, for each fixed ¢ (S), an analytic function of exponen-
tial type =1 in ¢.

(2) U(S)x) is, for each fixed x € E,, an analytic function of exponential
type <1 in 7.

The equivalence follows from the next lemma, which is known.

LEMMA A. Let f,(2) be analytic functions of exponential type =o and
LD S M for v=1,2,---. Then there exist an analytic function f(z) of expo-
nential type =o and a subsequence {fv(xX)} of {f/(xX)} such that f.(x)— f(x) uni-
Sformly on every finite interval.

In fact, assume the condition (1) is fulfilled. Let a(x) = (9) and IE a(x)dx
=1. We form the convolutions *

UL(S) * C\f;,(.%') - <U5(S), Tz:au>

where «,(x) =y "a(vx) and r, is the translation operator defined by z,a(x’)
=a(x’—zx). It is well known that UJ(S)x* «,— U(S) in L¥E,) for each fixed
¢, when y—co,

On the other hand, for each fixed x & E, we can find by the above lemma
an analytic function f,(¢) of exponential type <1 in ¢ and a subsequence
{ULS)* «,,} of {U(S)*a,} such that /&)= U(S) * a,(x)—f,(#) uniformly on
every finite interval of ¢#, since the fX#) are analytic, of exponential type =1
in ¢ for each fixed x = E,, and sup | 2@ | < w*|| S| where w* is the volume of
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£*  Hence we have f,(8)=U(S)x) for a.e. x= FE, which means that (1)
implies (2).

Conversely, let the condition (2) be satisfied. Then from the above lemma
it easily follows that for each fixed ¢ = (),

ULS), 9> = | UASXx)e(x)dx

is analytic, of exponential type <1 in #, using the fact that U/(S)x) is bounded
for x€ FE, and real £. Furthermore, letting ¢,(x) € (D) approach ¢(x) < (S) in
L¥E,), we conclude that (2) implies (1).
First we shall prove the following lemmas which are used for proving the
necessity of the condition in our theorem.
alail

LEMMA 1. Let Cg(y) = g"[cz:l(y) and Dy = ‘aj;dl"_” aydh“
1 n
Then there exists a neighborhood 2. of 8 such that if y € 2.,
[ Dyfhct(y) I — K| t lldle(lJrP(h)—%e)\tl

and let € >0, be given.

where K is a constant independent of v.
PrROOF. Let .,={ysE™;|x-y|=<1+¢cfor all x= £*}. We shall show £,
has the required property. Now we fix a y= £,. The Fourier transform of

Cyy g[czj iS
Cs)=@m) F =y, ey =@m) [ _etovar,

Since the right hand side of the above equality is the integration over a
bounded domain £%, C(y) is analytic in # for each fixed y, and so is z,C(¥).
Furthermore, by differentiating under the integral sign, we have:

which shows that D,r,C; is also analytic in ¢, for each fixed y. Let the ex-
pansion of D,z,C(») in ¢ be as follows:

o tm
DyT)LCL(y) — mz__oam(y: h) %T .

To estimate the coefficients -ﬁ’%}’,ﬁz of the expansion, we calculate
by, 1) = ;ai:b,_ z“‘“f eitx-(y—h)xadx] .
o™ o+ t=0

It is evident that the &,(v, 4) vanish for all m < |« |. Since

0" ity 1y — (M _ =
o ! [ e o ran=3 (7 )lal - (al—p+ s

X j [Zx . (y;]l)]m—peitx-(y—h)dx
0%
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if m=|al, and since | @n(y, /)| =(27) | ba(y, &) |, we have, for all y& £,

| by, ) | = KGE{{EKW— (14 o(h)+&)ym'

noting that |x - (y—A) | =1+ p(h)+e.
Thus we have the inequality:

> 1 m—|a n
| DyeiCl(y) | = ngﬂ n—|a )T A+p(l)+eym'e] ¢ |

=K|t ||a[m2.:0 ‘(1“}‘;0(}2_?;5) |¢]

— Kl t lldle(l+0(h)+e)lt|
for all y € 2., which proves Lemma 1l
LEMMA 2. Let f(¥) be a continuous function supported by a compact set C 2..
Then A®)= [ [D,0,CNI Gy is analstic in t.
PrROOF. Setting

v tk
fv(yr h) :f<y)1§oak(yr h) _m* ]
it is clear that for each fixed y and ¢

[ fly, ) | = K [ ¢ etHomToll| £(y) |
and that

5£r5fu(y, 1) = F(9)DytaC(y) -

Therefore we observe for each fixed ¢

AO=E{ aity, Gy dy

which proves Lemma 2.

PROOF OF NECESSITY :

Let ¢>0 be arbitrary, and define £, as in Lemma 1. Then T is repre-
sented by a finite sum of derivatives of continuous functions as follows:

l
T= ngigi

where g; are continuous functions vanishing outside 2. ([4]).
For simplicity we set T'=D,g. Since, by the definition of Fourier trans-
form of distribution,

™S, Ulp)) =<z, T, ;D)
=<D, g, 7_(CD)}

= (=D Y (5 ) <& DyeiCie0) .

f=a
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We have, by Lemma 1,

|5, Uk 1= 3, (G ) Kalt1% [ 1D Hy—m)] dyxeecomts

B=a

é Kl t Ilaleltl(l-i—ﬂ(h)-l—a)

where F[¢p]=0®. It follows from the above equalities, by that
™S, Ufp))y is analytic in £. Thus we have proved the necessity.

To prove the sufficiency we assume Bernstein’s theorem as in [5]:

LEMMA B. (Bernstein’s theorem) Let F(z) be an analytic function of ex-
ponential type = o in z and bounded on the real line. Then [|[F/(x)||-» =< o|| F(x)]| .

Now consider the ease where S=(s8”) and F[S]1=T is a locally square
integrable function T(y). Then we have the following lemma :

LEMMA 3. Supp. TC 2. if {S,c.* @) is analytic of exponential type <1--¢
for each fixed ¢ € (S).

ProOOF. If y'e& L., there exists a x'< £* such that |[x'-y']|>1+¢ and
therefore we can find compact neighborhoods U(xY) and V(»') and a number
0 >1-+e satisfying |x-y|=0d for all x= U) N\ £2* and y= V(y'). On the
other hand, from the analyticity of C,(y) in ¢ and the symmetry of the domain
£2*% we have

Cy) = (2x)” o j Q*em-ydx

i 7(: ()’) F2m

2%
where 7.(3)= [% Ct(y)]t:o

Differentiation under the integral sign in the above equality shows, for
y< V(yh)

| 79 | = 27) 7 m(UG) A 25)5%

where m(-) denotes Lebesgue measure on E,.
Let @ € (9Dy 1) satisfy

lol3=[lomrar=| TGy
vyl
and set
px)=FLO](x).
Then, F()=<ULS), ¢> is bounded on the real line. In fact,

F@)= | GO (D) dy
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and

| Cy) | < @) F oo
therefore we obtain:

| F(O) | = @r)” 2 o* || T (%
where | Tltvqn= [, 1T()Fdy.
Hence, Lemma B is applicable to F(¢) repeatedly :
| P | = 2m) 2 o | TPy q1(L+e)F.
Since by
t2lc
FO)= D | DTG0 dy

we obtain
! _n
| Fo00) | =| [ 7T (DOG) dy | £ @o) T x| Tyl
Now let @(y) approach 7'(y) in L* norm. Then from the fact that

FQ) = ff G PTGI00) dedy

Qex vyl

Hj‘f!z*xrf(yl)(x I T [P dxdy

it is obvious that
M, | T|I2wy1>52":f a1 T 1P dy
Y(yl)
= M| T*y (1 +€)*

where we set M1:(27r)7‘g_m(U(x1)m!2*), M= (27) 2 ok,
2k
Therefore, noting that (—1%) —oo with %2 we have T(y)=0 a.e. in

V(»Y) and also in (2. which establishes supp. 7’C £.. Thus we completed the
proof. Now we pass to the proof of sufficiency.

PROOF OF SUFFICIENCY :

Suppose <{e**"S, U(p)y be analytic, of exponential type <1+4p0(%) in ¢, for
each ¢ =(S) and each Ze F,.

It is sufficient to show that {«S,c;* ¢> is analytic, of exponential type
=1+po() in ¢t for an arbitrary a < (S) with supp. Fla]C K, where Ky,
={y;lyl=|nrl}

For, then, [aS]= [a]* T is a C=-function and hence by Lemma 3, we
have supp. F[aS]1C £2,4;5. Taking a sequence of functions «, €(S) such that
lim Fla,]=26 in (&), we can conclude supp. 7C £. In fact, because of the con-

vexity of £., there holds for a =(S) with supp. Fla]C K,
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supp. FlalxTC L.

where by A we mean the convex closure of A and ¢, =¢ (sug. [zt Asis
re 2+
well known, the theorem on supports shows

supp. #La]+supp. T'=supp. Z[aS].
Therefore we have

supp. 7C £2.

for all ¢ >0, which proves supp. TC £ :90525.

Now we note that for T=(S") and r =(9D)

7 *T'=Ilim Za"JT’LwT in (&) (filtre convergence)

where 4, € supp. 7 [(4). T

Then there holds

aS, ¢ % ¢y =<F[a]* T, COD)
= Iign VZ, ay; T, z-_h,,j(Ctd)»

=lim D a, (e™i”S, U(p) .
J vy

This implies that there exists a j, such that for all j >7j,
| Za,, ™S, Ulp)) | = 1+ {asS, Ulp) | .
vj

Since |<asS,c,* @) J:(Zn)“g’a)*f | F[aS] - ®(y) | dy on the real line in ¢ and

since the integration on the right hand side exists, it is clear that S;¢)

Zanj@i"Vj’”S, Ule)> are uniformly bounded on the real line for all j>j,.
vy

Since also S;(¢) are analytic, of exponential type =< 14¢ when supp. F[a]C K.,,

by assumption Lemma A implies that there exists a function S(#) which is

analytic, of exponential type =< 14¢ in ¢ such that

lim Sy(8) = S()

uniformly on every finite interval of £ It is obvious that S¢) = <{asS, U(p)).
Thus we have proved our theorem completely. If we take the convex
domain £ to be the sphere of radius ¢ with center origin, we can obtain the
theorem in the following form:
COROLLARY. Let S=(S") and let F[S]1=T. Then a necessary and sufficient
condition that T vanish outside the sphere of radius o and center origin, is that

| Sxe(n)dy
lyl=t

be, for each fixed ¢ =(S), an analytic function of exponential type <o in t.

University of Toronto
Waseda University
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