Differentiable 7-manifolds with a certain homotopy type

By Itiro TAMURA

(Received Dec. 22, 1961) (Revised March 29, 1962)

J. Milnor [10] has determined the so-called J-equivalence (h-cobordism) classes of oriented differentiable 7-manifolds having the homotopy type of the 7-sphere, and S. Smale [13] has proved that such manifolds are homeomorphic to the 7-sphere and the J-equivalence classes are the same as the diffeomorphic classes in this case. Thus compact unbounded oriented differentiable 7-manifolds which are homotopy spheres were completely determined. There exist precisely 28 such differentiable 7-manifolds which form a cyclic group Θ^{7} under the connected sum.

In this note we shall consider compact unbounded 2-connected oriented differentiable 7-manifolds whose third homology groups are cyclic of order 3, having trivial Steenrod operations. We shall show that there exist precisely 56 differentiable 7-manifolds of this homotopy type and that they are obtained from the standard one by connected sums of elements of Θ^{7} and the orientation-reversing.

1. Let M^7 be the compact unbounded 2-connected oriented (C°) differentiable 7-manifold such that $H_3(M^7;Z)\approx Z_3$ and that the Steenrod operation $\mathcal{Q}_3^1:H^3(M^7;Z_3)\to H^7(M^7;Z_3)$ is trivial, namely, for $u\in H^3(M^7;Z_3)$

$$\mathcal{Q}_3^1(u) = 0.$$

LEMMA 1. The condition (P) is equivalent to $p_1(M^7) = 0$, where $p_1(M^7)$ is the first Pontrjagin class of M^7 .

PROOF. This lemma follows from the formula given by Hirzebruch [6]:

$$p_1(M^7) \cup u = \mathcal{Q}_3^1(u) \mod 3$$

for $u \in H^3(M^7; Z_3)$.

LEMMA 2. M^7 is a π -manifold.

PROOF. Suppose that M^7 is imbedded in a high dimensional Euclidean space R^{7+N} . Denote by ν^N the normal bundle of M^7 . Let K be a triangulation of M^7 . Let us define a (continuous) field of normal N-frames on M^7 by stepwise extensions on the skeletons $K^{(q)}$ $(q=0,1,\cdots,7)$ of K using the obstruction theory in the well-known manner. Since $H^q(M^7;Z)=0$ (q=1,2,3) and $\pi_2(SO(N))=0$, we can define a field f of normal N-frames on $K^{(3)}$. Let $c(f) \in Z^4(M^7;Z)$ be the obstruction cocycle to extend f in $K^{(4)}$, Then the first

Pontrjagin class $p_1(\nu^N)$ of ν^N is $\{2c(f)\}$ (Milnor-Kervaire [12]). Therefore Lemma 1 and the product theorem for Pontrjagin classes yield $\{c(f)\}=0$. The next obstruction is in dimension 7 with values in $\pi_6(SO(N))=0$. Thus ν^N is trivial. This completes the proof.

Lemma 3. M^{τ} bounds a compact 3-connected oriented π -manifold.

PROOF. Since the cokernel of the *J*-homomorphism $J_7: \pi_7(SO(N)) \to \pi_{7+N}(S^N)$ is zero, this lemma follows from [10; Theorem 6.7 (b)].

LEMMA 4. M^{7} bounds a compact 3-connected oriented π -manifold.

PROOF. Since M^{τ} bounds a compact oriented π -manifold, we obtain a compact 3-connected oriented π -manifold with boundary M^{τ} by performing a series of surgeries (spherical modifications) (Milnor [10], [11]).

Let W^s be the compact 3-connected oriented π -manifold with boundary M^{τ} . The exactness of the homology sequence of (W^s, M^{τ})

 $\cdots \longrightarrow H_q(M^7; Z) \longrightarrow H_q(W^8; Z) \longrightarrow H_q(W^8, M^7; Z) \longrightarrow H_{q-1}(M^7; Z) \longrightarrow \cdots$ and the Poincaré-Lefschetz duality

$$H_0(W^8, M^7; Z) \approx H^{8-q}(W^8; Z)$$

imply that $H_0(W^8; Z) = 0$ (q = 5, 6, 7) and that $H_4(W^8; Z)$ has no torsion.

Let ϕ denote the quadratic form over the group $H_4(W^s; Z)$ defined by the formula $x \to x \circ x$, where $x \circ y$ is the intersection number of two homology classes $x, y \in H_4(W^s; Z)$. The index (signature) of this form ϕ will be denoted by $I(W^s)$.

Lemma 5. The index $I(W^8)$ modulo $2^5 \cdot 7$ is a diffeomorphy invariant of M^7 .

PROOF. Suppose that M^7 is the boundary of two compact 3-connected oriented π -manifolds W_1^8 and W_2^8 . Let V^8 be the compact unbounded oriented differentiable 8-manifold obtained from W_1^8 and $-W_2^8$ by pasting together the common boundary. The exactness of the Mayer-Vietoris cohomology sequence

$$\cdots \longrightarrow H^{q-1}(M^7; Z) \longrightarrow H^q(V^8; Z) \stackrel{t^*}{\longrightarrow} H^q(W_1^8; Z) + H^q(W_2^8; Z)$$
$$\longrightarrow H^q(M^7; Z) \longrightarrow \cdots$$

implies that V^8 is 3-connected and that

$$\iota^*: H^4(V^8; Z) \longrightarrow H^4(W_1^8; Z) + H^4(W_2^8; Z)$$

is injective. Since $\iota^*p_1(V^8)=0$, we have $p_1(V^8)=0$. Therefore the index theorem $I(V^8)=\frac{1}{45}(7p_2(V^8)-p_1^2(V^8))[V^8]$ (Hirzebruch [7]) implies

$$45 I(V^8) \equiv 7 p_2(V^8) [V^8],$$

$$I(V^8) \equiv 0 \mod 7,$$

and the integrality of \hat{A} -genus $\hat{A}(V^8) = \frac{1}{2^7 \cdot 45} (-4 p_2(V^8) + 7 p_1^2(V^8)) [V^8]$ (Atiyah and Hirzebruch [1], Borel and Hirzebruch [2]) implies

$$p_2(V^8) \equiv 0 \qquad \text{mod } 2^5 \cdot 45.$$

294 I. Tamura

Thus we have

$$I(V^8) \equiv 0 \mod 2^5 \cdot 7$$
.

Since $I(V^8) = I(W_1^8) - I(W_2^8)$, we have

$$I(W_1^8) \equiv I(W_2^8) \mod 2^5 \cdot 7$$
.

This completes the proof.

DEFINITION. The residue class of $I(W^8) \mod 2^5 \cdot 7$ will be denoted by $\bar{\lambda}(M^7)$. LEMMA 6. The determinant of the matrix of the quadratic form ϕ is ± 3 .

PROOF. Since $H_4(W^8;Z)$ has no torsion, the Poincaré-Lefschetz duality theorem implies $H_4(W^8,M^7;Z)\approx \operatorname{Hom}(H_4(W^8;Z),Z)$. The natural homomorphism

$$H_4(W^8; Z) \longrightarrow H_4(W^8, M^7; Z) \approx \operatorname{Hom}(H_4(W^8; Z), Z)$$

is determined by the matrix of intersection numbers of $H_4(W^s; Z)$. Thus the lemma follows from the exactness of the homology sequence of (W^s, M^7) and $H_3(M^7; Z) \approx Z_3$.

Let C and U denote matrices

$$C = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
, $U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

LEMMA 7. The index $I(W^8)$ is equal to ± 2 modulo 8. PROOF. Let

$$G_q(\phi) = \sum_{(q)} e^{\frac{2\pi i}{q}\phi(\alpha, \alpha)}$$

denote the Gauss sum of the quadratic form ϕ , where the sum is extended over all residue classes of $H_4(W^8; Z) \mod q$. Then the index $I(W^8)$ satisfies

$$G_{8\cdot 27}(\phi) = e^{rac{\pi i}{4}I(W^8)}(2\cdot 8\cdot 27)^{rac{r}{2}}\sqrt{\ 3}$$
 ,

where r denotes the 4th Betti number of W^8 (Braun [3; §1, (ε)]). We shall prove that $G_{8\cdot 27}(\phi)$ is purely imaginary.

Every diagonal entry of the matrix of the quadratic form 27ϕ is even (Milnor [9]). Thus the matrix of the quadratic form 27ϕ is equivalent to diag (U, \dots, U) or diag (C, U, \dots, U) over the 2-adic integers [8; Theorem 33a], which implies that $G_8(27 \phi)$ is a positive integer. (Compare Milnor [9].)

Since $G_{8\cdot 27}(\phi) = G_8(27 \phi)G_{27}(8 \phi)$ (Braun [3; § 2, (4)]), it is sufficient to prove that $G_{27}(8 \phi)$ is purely imaginary. According to [8; Theorem 25], there exists a basis $\alpha_1, \alpha_2, \dots, \alpha_r$ of $H_4(W^8; Z)$ mod 27 such that

$$8\phi(\sum_{i=1}^{r} x_i \alpha_i, \sum_{i=1}^{r} x_i \alpha_i) \equiv \sum_{i=1}^{r} a_i x_i^2 \mod 27.$$

Thus we have

$$egin{align} G_{27}(8\,\phi) &= \sum e^{rac{2\pi i}{27}} \sum_{j}^{2} a_{j} x_{j}^{2} = \sum \prod_{j} e^{rac{2\pi i}{27} - a_{j}} x_{j}^{2} \ &= \prod_{j} \sum_{x=0}^{26} e^{rac{2\pi i}{27} - a_{j}} x^{2} \, . \end{split}$$

It is easy to see that if $a \equiv 0 \mod 3$, $\sum_{x=0}^{26} e^{\frac{-2\pi i}{27} - ax^2}$ is purely imaginary and that if $a \equiv 0 \mod 3$, $\equiv 0 \mod 9$, $\sum_{x=0}^{26} e^{\frac{-2\pi i}{27} - ax^2}$ is real. Since Lemma 6 implies

$$\prod_{j} a_{j} \equiv 0 \mod 3, \qquad \equiv 0 \mod 9,$$

it follows that if r is an even integer $G_{27}(8\phi)$ is purely imaginary and if r is an odd integer $G_{27}(8\phi)$ is real. Therefore, in either case, the index $I(W^8)$ is an even integer, which shows that r is even. This completes the proof.

Lemma 8. If the index $I(W^8)$ is equal to 2, then the matrix of the quadratic form ϕ , with respect to a suitable basis, is

$$\operatorname{diag}(C, U, \dots, U) = \begin{pmatrix} C & & \\ & U & \\ & & \dots & \\ & & & U \end{pmatrix}.$$

PROOF. Choosing a basis of $H_4(W^s;Z)$, let us denote $\phi = \sum_{i,j} a_{ij}x_ix_j$ $(a_{ij} = a_{ji})$. The determinant of the matrix $A = (a_{ij})$ is ± 3 (Lemma 6). Every diagonal entry of the matrix A is even (Milnor [9]). If ϕ is a form of rank 2, then ϕ is positive definite. Therefore, according to [8; Theorem 76], the matrix A is equivalent to C. If ϕ is a form of rank ≥ 4 , then ϕ is indefinite. According to [8; Theorem 36], the matrices A and $\operatorname{diag}(C, U, \dots, U)$ are equivalent over the p-adic integers for every prime $p \neq 3$. The Hasse symbols $c_p(A)$ and $c_p(\operatorname{diag}(C, U, \dots, U))$ are equal for every prime $p \neq 3$ [8; Theorem 12], which implies $c_3(A) = c_3(\operatorname{diag}(C, U, \dots, U))$ [8; § 12, 2]. The matrices A and $\operatorname{diag}(C, U, \dots, U)$ are equivalent to the matrix $\operatorname{diag}(\pm 3, \pm 1, 1, \dots, 1)$ over the 3-adic integers [8; Theorems 35, 36b], where signs are determined by the Hasse symbol. Thus the matrices A and $\operatorname{diag}(C, U, \dots, U)$ have the same genus.

There exists a matrix X with rational elements such that ${}^tXAX = \operatorname{diag}(C,U,\cdots,U)$ [8; Theorem 28]. Let L denote the lattice $H_4(W^8;Z)$ in $H_4(W^8;Q)$ and let L' denote the lattice L transformed by X, where Q is the field of rational numbers. The lattices L and L' are both maximal [4; Sätze 9.3, 12.3]. Thus Eichler's theorem ([4; Satz 15.2], [5; Satz 3]) implies that the matrix A is equivalent to the matrix A is equivalent A in the equivalent A is equival

Let T be a closed tubular neighborhood of the diagonal S^4 in $S^4 \times S^4$, the product of two copies of S^4 with a fixed orientation. Then T is a compact parallelizable oriented differentiable 8-manifold-with-boundary. The self-inter-

296 I. Tamura

section number of S^4 in T is 2. Let (T, S^4, D^4, π) denote the D^4 -bundle over S^4 . Let W^8_e be the parallelizable 3-connected oriented differentiable 8-manifold-with-boundary obtained by straightening the angle of the quotient space of two copies 'T and "T of T under an identification of ' $\pi^{-1}('\sigma^4)$ with " $\pi^{-1}(''\sigma^4)$ in such a way that the images of base spaces ' S^4 and " S^4 in W^8_e have intersection number 1, where ' σ^4 and " σ^4 are 4-cells of ' S^4 and " S^4 respectively. Denote by M^e_e the boundary of W^8_e with the orientation compatible with that of W^8_e . Then M^e_e is a compact unbounded 2-connected oriented differentiable 7-manifold such that $H_8(M^e_e;Z) \approx Z_8$ and that $p_1(M^e_e) = 0$. The invariant $\bar{\lambda}$ of M^e_e is 2.

LEMMA 9. If the index $I(W^8)$ equals 2, then M^7 is diffeomorphic to M_e^7 .

PROOF. By Lemma 8, there exists a basis α , β , α_1 , β_1 , \cdots , α_s , β_s of $H_4(W^8; Z)$ such that

$$lpha \circ lpha = eta \circ eta = 2$$
 , $lpha \circ eta = 1$, $lpha \circ lpha_i = lpha \circ eta_j = eta$, $lpha_i \circ lpha_j = eta_i \circ eta_j = 0$, $lpha_i \circ lpha_j = \delta_{ij}$.

By performing a series of surgeries (spherical modifications) on W^8 (Milnor [10; Theorem 5.6], [11; Theorem 4]), we obtain a compact parallelizable 3-connected oriented differentiable 8-manifold $W^{\prime 8}$ with boundary M^{τ} such that α and β are generators of $H_4(W^{\prime 8};Z)\approx Z+Z$. Let

$$f: S^4 \longrightarrow W^{8}, g: S^4 \longrightarrow W^{8}$$

be differentiable imbeddings which represent homology classes α , β respectively. Since $\alpha \circ \beta = 1$, making use of the method of Whitney [15; Theorem 4], we may assume that $f(S^4)$ and $g(S^4)$ intersect regularly at one point. Let N_f , N_g be tubular neighborhoods of $f(S^4)$, $g(S^4)$ respectively. The self-intersection number of base space and the first Pontrjagin classes characterize a D^4 -bundle over S^4 (see [14]). Since N_f and N_g are parallelizable, it follows that N_f and N_g are diffeomorphic to T. Thus we may assume that $N_f \cup N_g$ is diffeomorphic to W_e^8 . The exactness of the Mayer-Vietoris homology sequence of a proper triad $(W'^8; N_f \cup N_g, W'^8 - \operatorname{Int}(N_f \cup N_g))$

$$\cdots \longrightarrow H_{q+1}(W'^{8}; Z) \longrightarrow H_{q}(\partial(N_{f} \cup N_{g}); Z)$$

$$\longrightarrow H_{q}(N_{f} \cup N_{g}; Z) + H_{q}(W'^{8} - \operatorname{Int}(N_{f} \cup N_{g}); Z) \longrightarrow H_{q}(W'^{8}; Z) \longrightarrow \cdots$$

implies that $\partial(N_f \cup N_g)$ is a deformation retract of $W'^8 - \operatorname{Int}(N_f \cup N_g)$. The exactness of the homology sequence of a triple $(W'^8, W'^8 - \operatorname{Int}(N_f \cup N_g), M^7)$

$$\cdots \longrightarrow H_q(W'^8-\operatorname{Int}(N_f \cup N_g), M^7; Z) \longrightarrow H_q(W'^8, M^7; Z)$$

 $\longrightarrow H_q(W'^8, W'^8-\operatorname{Int}(N_f \cup N_g); Z) \longrightarrow H_{q-1}(W'^8-\operatorname{Int}(N_f \cup N_g), M^7; Z) \longrightarrow \cdots$ and the Poincaré-Lefschetz duality

$$H_q(W'^8, M^7; Z) \approx H^{8-q}(W'^8; Z),$$

 $H_q(W'^8, W'^8 - \text{Int}(N_f \cup N_g); Z) \approx H^{8-q}(N_f \cup N_g; Z)$

imply

$$H_q(W^{\prime 8} - \text{Int}(N_f \cup N_g), M^7; Z) = 0$$
 $q = 0, 1, \dots, 8,$

which shows that M^7 is a deformation retract of $W^{/8}-\mathrm{Int}(N_f \cup N_g)$. Therefore $W^{/8}-\mathrm{Int}(N_f \cup N_g)$ defines a J-equivalence (h-cobordism) between M^7 and $\partial(N_f \cup N_g)$. By a result of Smale [13; Theorem I], M^7 is diffeomorphic to $\partial(N_f \cup N_g)$. This completes the proof.

REMARK. Since $\bar{\lambda}(-M^{\tau}) = -\bar{\lambda}(M^{\tau})$, M^{τ} with $\bar{\lambda}(M^{\tau}) = -2$ is diffeomorphic to $-M_e^{\tau}$.

Let M_0^7 denote the oriented differentiable 7-manifold homeomorphic to S^7 which bounds the compact parallelizable 3-connected oriented differentiable 8-manifold W_0^8 with $I(W_0^8) = 8$ (Milnor [10; § 4]). M_0^7 is a generator of the group Θ^7 .

LEMMA 10. If $\overline{\lambda}(M^7) = 2 + 8s$, then M^7 is diffeomorphic to $M_e^7 \# M_0^7 \# \cdots \# M_0^7$ (s-fold connected sum of M_0^7). If $\overline{\lambda}(M^7) = -2 + 8s$, then M^7 is diffeomorphic to $(-M_e^7) \# M_0^7 \# \cdots \# M_0^7$ (s-fold connected sum of M_0^7).

PROOF. Suppose that $\bar{\lambda}(M^7) = 2 + 8s$. There exists a compact parallelizable 3-connected oriented differentiable 8-manifold W^s with boundary M^7 such that $I(W^s)$ equals $2 + 8s + 2^5 \cdot 7t$. We form the sum $W^s + (-W^s) + \cdots + (-W^s)$ of W^s with the (s+28t)-fold sum of $(-W^s)$ in the following sense. The sum $W^n_1 + W^n_2$ will mean the compact oriented differentiable manifold-with-boundary obtained from the disjoint union of compact oriented differentiable manifolds W^n_1 and W^n_2 by identifying $f_1(x)$ with $f_2(x)$ ($x \in D^{n-1}$), where $f_1:D^{n-1} \to \partial W_1$ (resp. $f_2:D^{n-1} \to \partial W_2$) is an orientation-preserving (resp. orientation-reversing) imbedding of (n-1)-disk D^{n-1} . Then $W^s + (-W^s) + \cdots + (-W^s)$ is compact parallelizable 3-connected oriented differentiable 8-manifold. Since the index of $W^s + (-W^s) + \cdots + (W^s)$ equals 2, it follows that $\partial(W^s + (-W^s) + \cdots + (-W^s)) = M^n \# (-M^n_0) \# \cdots \# (-M^n_0)$ (s+28t)-fold sum of $-M^n_0$) is diffeomorphic to M^n_0 (Lemma 9). Thus M^n is diffeomorphic to $M^n_0 \# M^n_0 \# \cdots \# M^n_0$ (s-fold connected sum of M^n_0). This completes the proof for the case of $\bar{\lambda}(M^n) = 2 + 8s$. For the case of $\bar{\lambda}(M^n) = -2 + 8s$, the proof is similar.

From Lemma 7 and Lemma 10 we have

THEOREM. There exist precisely 56 distinct compact unbounded 2-connected oriented differentiable 7-manifolds whose third homology groups are cyclic of order 3, satisfying the condition (P). The invariant $\overline{\lambda}$ characterizes these manifolds. All these manifolds are homeomorphic to each other.

2. Let $(\bar{B}^8_{3m,3}, S^4, D^4, \bar{\pi})$ be the D^4 -bundle over S^4 with the characteristic map $3m\rho+3\sigma$. (For notations in this section, see [14].) Let α_4 be a generator of $H_4(\bar{B}^8_{3m,3}; Z) \approx Z$. We choose the orientation of $\bar{B}^8_{3m,3}$ in such a way that $\alpha_4 \circ \alpha_4$ is positive. Let $B^7_{3m,3}$ denote the boundary of $\bar{B}^8_{3m,3}$ with the orientation com-

298 I. Tamura

patible with that of $\bar{B}_{3m,3}^8$. $B_{3m,3}^7$ is a compact unbounded 2-connected oriented differentiable 7-manifold such that $H_3(B_{3m,3}^7; Z) \approx Z_3$ and that $p_1(B_{3m,3}^7) = 0$ (see [14]).

Let us compute the invariant $\bar{\lambda}$ of $B_{3m,3}^7$. Suppose that $B_{3m,3}^7$ bounds a compact parallelizable 3-connected oriented differentiable 8-manifold W^8 . Let V^8 be the compact unbounded 2-connected oriented differentiable 8-manifold obtained from the disjoint union of $\bar{B}_{3m,3}^8$ and $-W^8$ by identifying $\partial \bar{B}_{3m,3}^8$ with ∂W^8 . The index theorem $I(V^8) = \frac{1}{45} (7p_2(V^8) - p_1^2(V^8))[V^8]$ implies

$$45(1-I(W^8))=7$$
 $p_2(V^8)$ [V^8] $-2^2\cdot 3^3(2m+1)^2$,
$$I(W^8)\equiv 4m(m+1)+2 \qquad \mod 7 \ .$$

The integrality of \hat{A} -genus $\hat{A}(V^8) = \frac{1}{2^7 \cdot 45} (-4p_2(V^8) + 7p_1^2(V^8))[V^8]$ implies

$$p_2(V^8)[V^8] \equiv 3^3 \cdot 7(2m+1)^2 \mod 2^5 \cdot 45$$
.

Hence

$$I(W^8) \equiv 4m(m+1)-26 \mod 2^5$$
.

Therefore the invariant $\bar{\lambda}$ of $B_{3m,3}^7$ is equal to 4m(m+1)-26.

University of Tokyo

References

- [1] M. F. Atiyah and F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc., 65 (1959), 276-281.
- [2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces III, Amer. J. Math., 82 (1960), 491-504.
- [3] H. Braun, Geschlechter quadratischer Formen, J. Reine Angew. Math., 182 (1940), 32-49.
- [4] M. Eichler, Quadratische Formen und orthogonale Gruppen, Berlin, 1952.
- [5] M. Eichler, Die Ähnlichkeitsklassen indefiniter Gitter, Math. Zeit., 55 (1952), 216-252.
- [6] F. Hirzebruch, On Steenrod reduced powers in oriented manifolds, (mimeographed), Princeton University, 1953.
- [7] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Berlin, 1956.
- [8] B.W. Jones, The arithmetic theory of quadratic forms, New York, 1950.
- [9] J. Milnor, On simply connected 4-manifolds, Topologia Algebraica, Mexico, 1958, 122-128.
- [10] J. Milnor, Differentiable manifolds which are homotopy spheres, (mimeographed), Princeton University, 1959.
- [11] J. Milnor, A procedure for killing homotopy groups of differentiable manifolds, Proceedings of the Symposium on Differential Geometry, 1961, 39-55.
- [12] J. Milnor and M. Kervaire, Bernoulli numbers, homotopy groups and a theorem of Rohlin, Proceedings of the Int. Congress of Math., Edinburgh, 1958, 454-458

- [13] S. Smale, Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math., 74 (1961), 391-406.
- [14] I. Tamura, On Pontrjagin classes and homotopy types of manifolds, J. Math. Soc. Japan, 9 (1957), 250-262.
- [15] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, Ann. of Math., 45 (1944), 220-246.