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J. Milnor has determined the so-called J-equivalence (%-cobordism)
classes of oriented differentiable 7-manifolds having the homotopy type of the
7-sphere, and S. Smale has proved that such manifolds are homeomorphic
to the 7-sphere and the J-equivalence classes are the same as the diffeomorphic
classes in this case. Thus compact unbounded oriented differentiable 7-mani-
folds which are homotopy spheres were completely determined. There exist
precisely 28 such differentiable 7-manifolds which form a cyclic group 67
under the connected sum.

In this note we shall consider compact unbounded 2-connected oriented
differentiable 7-manifolds whose third homology groups are cyclic of order 3,
having trivial Steenrod operations. We shall show that there exist precisely
56 differentiable 7-manifolds of this homotopy type and that they are obtained
from the standard one by connected sums of elements of ®" and the orienta-
tion-reversing.

1. Let M7 be the compact unbounded 2-connected oriented (C”-) differ-
entiable 7-manifold such that H,(M"; Z)~=~ Z, and that the Steenrod operation
Py H¥M"; Z)— H'(M"; Z,) is trivial, namely, for uw = H*(M7; Z;)

P) PYu)=0.

LEMMA 1. The condition (P) is equivalent to p,(M") =0, where p,(M?) is the
first Pontvijagin class of M.
Proor. This lemma follows from the formula given by Hirzebruch [6]:

DM u = PY(u) mod 3
for we H}(M"; Z,).

LEMMA 2. M" is a n-manfold.

PROOF. Suppose that M7 is imbedded in a high dimensional Euclidean
space R™7¥, Denote by v¥ the normal bundle of M". Let K be a triangu-
lation of M". Let us define a (continuous) field of normal N-frames on M" by
stepwise extensions on the skeletons K@ (¢=0,1,---,7) of K using the ob-
struction theory in the well-known manner. Since H{M";Z)=0 (¢=1,2,3)
and 7,(SO(N))=0, we can define a field f of normal N-frames on K®. Let
c(f)eZ{(M"; Z) be the obstruction cocycle to extend f in K, Then the first
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Pontrjagin class p,(v¥) of v¥ is {2¢(f)} (Milnor-Kervaire [12]). Therefore
and the product theorem for Pontrjagin classes yield {c¢(f)}=0.
The next obstruction is in dimension 7 with values in 7, (SON))=0. Thus
v¥ is trivial. This completes the proof.

LEMMA 3. M7 bounds a compact 3-connected oviented m-manifold.

PROOF. Since the cokernel of the J-homomorphism [, : 7,(SO(N))— 77, 4(S¥)
is zero, this lemma follows from [10; Theorem 6.7 (b)].

LEMMA 4. M7 bounds a compact 3-connected oriented w-manifold.

PrOOF. Since M7 bounds a compact oriented z-manifold, we obtain a com-
pact 3-connected oriented z-manifold with boundary M" by performing a series
of surgeries (spherical modifications) (Milnor [10], [117).

Let ¢ be the compact 3-connected oriented z-manifold with boundary M.
The exactness of the homology sequence of (W38, M")

= H(M"; Z)—— H(W*; Z)—— H (W M"; Z)—— He(M" ; Z)— -
and the Poincaré-Lefschetz duality

HWS, M"; Z)~ H (W8, Z)
imply that H(W?®;Z)=0 (¢=5,6,7) and that H(W?;Z) has no torsion.

Let ¢ denote the quadratic form over the group H(W?;Z) defined by the
formula x— x-x, where x-y is the intersection number of two homology classes
x,ye H(W?;Z). The index (signature) of this form ¢ will be denoted by I(W?).

LEMMA 5. The index I(W?) modulo 2°-7 is a diffeomorphy invariant of M".

PROOF. Suppose that M7 is the boundary of two compact 3-connected ori-
ented z-manifolds W$§ and W§. Let V® be the compact unbounded oriented
differentiable 8-manifold obtained from W$ and —W$§ by pasting together the
common boundary. The exactness of the Mayer-Vietoris cohomology sequence

£3
s B Z)—s HUV Z) s HWS; Z)+ WS Z)
— HYM?; Z)—> -+
implies that V% is 3-connected and that
o H(V®; Z)— H(WS; 2)+ HA(W; 2)
is injective. Since *p(V?® =0, we have p, (V¥ =0. Therefore the index
theorem I(VS):q%(7p2(V8)—p%(V8))[V8] (Hirzebruch [7]) implies

HIVH=Tp(VOLV*],
(vsH=0 mod 7,

and the integrality of A-genus A(V%) = 27'143—(—4p2(V8)+7p%(V8))[ V#] (Atiyah

and Hirzebruch [17], Borel and Hirzebruch [2]) implies
p(VH=0 mod 2°-45.
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Thus we have

(vsH=0 mod 25-7.
Since (V&) =IW$—IW$,, we have

IWH=IWH) mod 25-7,

This completes the proof.

DEFINITION. The residue class of {W?#) mod 25-7 will be denoted by A(M7).

LEMMA 6. The determinant of the matrix of the quadratic form ¢ is +3.

PROOF. Since H(W?®;Z) has no torsion, the Poincaré-Lefschetz duality
theorem implies A, (W? M";Z) =~ Hom(H,(W?;Z),Z). The natural homomor-
phism

HW?;, Z)— HW?* M"; Z) ~ Hom(H(W?*; Z), Z)

is determined by the matrix of intersection numbers of H,(W?;Z). Thus the
lemma follows from the exactness of the homology sequence of (W3 M7") and
H(M"; Z) = Z,.

Let C and U denote matrices

/21 (01
c=({ 2) U=(] ¢)-
LEMMA 7. The index I(W?) is equal to +2 modulo 8.
PrOOF. Let

Gq(¢) — (2 ezg—i¢(w, @)
)

denote the Gauss sum of the quadratic form ¢, where the sum is extended
over all residue classes of H(W?;Z) modgq. Then the index I(W?®) satisfies

Com@)=ct ""22.8.25 V3,

where » denotes the 4 th Betti number of W?# (Braun [3; §1, (¢)]). We shall
prove that Gge(¢) is purely imaginary.

Every diagonal entry of the matrix of the quadratic form 27 ¢ is even
(Milnor [9]). Thus the matrix of the quadratic form 27 ¢ is equivalent to
diag (U, ---, U) or diag (C, U, ---, U) over the 2-adic integers [8; Theorem 33a],
which implies that G427 ¢) is a positive integer. (Compare Milnor [9].)

Since Gg.o(p) = G527 ¢)G4,(8 ¢) (Braun [3; § 2, (4)]), it is sufficient to prove
that G,,(8 ¢) is purely imaginary. According to [8; Theorem 257, there exists
a basis «a,, a,, -, a, of H(W?;Z) mod 27 such that

B ( i X0, éxzaz) = TZ ax} mod 27.

Thus we have



Differentiable 7-manifolds 295

i 2 oni o o2
Co8)=Ne ¥ ;5 i=3T[ex i
J
28 2m

= HE e e

26 _2mi

It is easy to see that if ¢=0 mod 3, e > *° is purely imaginary and that
x=0
26 omi .2 . . .
if t=0mod 3, =0 mod 9, e ¥ ** is real. Since implies
z=0
JTe; =0 mod 3, =0 mod 9,
j

it follows that if » is an even integer G,,(8¢) is purely imaginary and if 7 is
an odd integer G,,(8¢) is real. Therefore, in either case, the index I(WW?) is
an even integer, which shows that 7 is even. This completes the proof.

LEMMA 8. If the index I(W?) is equal to 2, then the matvix of the quadratic
Jorm ¢, with respect to a suitable basis, is

c
diag(C,U,---,U):( v )
U

Proor. Choosing a basis of H,(W?; 2), let us denote ¢ = Ea”xLx (ay;=ay;).

The determinant of the matrix A=/(a;;) is +3 ( Every diagonal
entry of the matrix A is even (Milnor [97]). If ¢ is a form of rank 2, then ¢
is positive definite. Therefore, according to [8; Theorem 767], the matrix A
is equivalent to C. If ¢ is a form of rank =4, then ¢ is indefinite. Accord-
ing to [8; Theorem 36], the matrices A and diag(C, U, .-, U) are equivalent
over the p-adic integers for every prime p #3. The Hasse symbols ¢,(A) and
cy(diag(C, U, ---, U)) are equal for every prime p=+3 [8; Theorem 12], which
implies ¢;(A)=c,(diag(C, U, ---,U)) [8; §12, 2]. The matrices A and diag(C,
U,---,U) are equivalent to the matrix diag(+3, +1,1,---,1) over the 3-adic
integers [8; Theorems 35, 36b], where signs are determined by the Hasse
symbol. Thus the matrices A and diag(C, U, ---, U) have the same genus.

There exists a matrix X with rational elements such that 'XAX =diag(C,
U,---,U) [8; Theorem 28]. Let L denote the lattice H(W?;Z) in H(W?;Q)
and let L’ denote the lattice L transformed by X, where @ is the field of
rational numbers. The lattices I and L’ are both maximal [4; Sidtze 9.3, 12.3].
Thus Eichler’s theorem ([4; Satz 15.27, [5; Satz 37]) implies that the matrix
A is equivalent to the matrix diag(C, U, ---, U). (See Milnor [9]). This com-
pletes the proof.

Let T be a closed tubular neighborhood of the diagonal S* in S*XS* the
product of two copies of S* with a fixed orientation. Then T is a compact
parallelizable oriented differentiable 8-manifold-with-boundary. The self-inter-
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section number of S* in T is 2. Let (7, S4 D4 n) denote the D*-bundle over
S¢. Let W$§ be the parallelizable 3-connected oriented differentiable 8-manifold-
with-boundary obtained by straightening the angle of the quotient space of
two copies ‘7T and “T of T under an identification of ‘z~(Y¢%) with “z~*("¢*) in
such a way that the images of base spaces ’‘S* and ”S* in W$§ have intersection
number 1, where ’¢* and “¢* are 4-cells of ’S* and ”S* respectively. Denote
by M7 the boundary of W§ with the orientation compatible with that of W&,
Then M7 is a compact unbounded 2-connected oriented differentiable 7-mani-
fold such that H(M?; Z)~= Z, and that p,(M?)=0. The invariant 1 of M7 is 2.

LEMMA 9. If the index I(W?) equals 2, then M" is diffeomorphic to Ms.

PrOOF. By Lemma 8, there exists a basis «, 8, &y, 81, =+, &, B, of H(W?;2)
such that

aca=8-5=2, a-f=1,
aca;=acfBi=Foa;=p°p8;=0,
aea;=p;°p;=0, ;o B;=20;.
By performing a series of surgeries (spherical modifications) on W?® (Milnor
[10; Theorem 5.67], [11; Theorem 47), we obtain a compact parallelizable 3-
connected oriented differentiable 8-manifold W’® with boundary M" such that
a and B are generators of H(W'®;Z)=Z+Z. Let
fiSt—We,  g:St—W'8

be differentiable imbeddings which represent homology classes «, [ respec-
tively. Since « - # =1, making use of the method of Whitney [15; Theorem 4],
we may assume that f(S*) and g(S*) intersect regularly at one point. Let Ny,
N, be tubular neighborhoods of f(S*), g(S*) respectively. The self-intersection
number of base space and the first Pontrjagin classes characterize a D*-bundle
over S* (see [14]). Since N;and N, are parallelizable, it follows that N, and
N, are diffeomorphic to 7. Thus we may assume that N;\J N, is diffeomor-
phic to W& The exactness of the Mayer-Vietoris homology sequence of a
proper triad (W8 ; N,\U N, W'*—Int(N,\J N,))

ree o Hyo (W' 5 2)— H(O(N; Y Ny); 2)

—— H{N; I N, ; Z)+ H{W'S—Int(N; U Np) ; Z)— Hf( W' ; Z)— -+
implies that a(N,\YN,) is a deformation retract of W’®—Int(N;\JN,). The
exactness of the homology sequence of a triple (W’8, W’s—Int(N,;\Y N,), M)

oo —— H (W —Int(N, I N, M" ; Z)— H(W's, M" ; Z)
— H (W8, We—Int(N; Y N,); Z)— Hyo (WS —Int(N;\I Np), M ; Z)—— -+
and the Poincaré-Lefschetz duality
HW? s M"; Z)= H¥W"®;2),
H(W's, We—Int(N;IN,); Z)= H " Y(N;\I N, ; Z)
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imply

H(W"—Int(N; YN, M";Z)=0 q=0,1,---,8,
which shows that M7 is a deformation retract of W’—Int(N,\J N,). Therefore
W’s—Int(N;\J N,) defines a J-equivalence (%-cobordism) between AM" and
O(N;\UN,). By a result of Smale [13; Theorem I], M7 is diffeomorphic to
O(Ny I N,). This completes the proof.

REMARK. Since A(—M7) = —A(M?), M’ with A(M")=—2 is diffeomorphic
to — M7,

Let M} denote the oriented differentiable 7-manifold homeomorphic to S’
which bounds the compact parallelizable 3-connected oriented differentiable 8-
manifold W§ with I(W§) =8 (Milnor [10; §4]). T is a generator of the
group O7.

LEMMA 10. If A(M")=2+8s, then M7 is diffeomorphic to MIEMu% - $ M{
(s-fold connected sum of M?Y). If M7= —2+8s, then M" is diffeomorphic to
(—MHEMig - & M7 {(s-fold connected sum of MYF).

PROOF. Suppose that A(M7)=2+8s. There exists a compact parallelizable
3-connected oriented differentiable 8-manifold W® with boundary M? such that
I(W?®) equals 2+8s+25-7t. We form the sum WeH(—W&+ --- +(—WSE) of W3
with the (s-+28#)-fold sum of (—W?§) in the following sense. The sum Wi+W3
will mean the compact oriented differentiable manifold-with-boundary obtained
from the disjoint union of compact oriented differentiable manifolds W7 and
W?r by identifying fi(x) with fy(x) (x= D*"), where f,: D" '—90W, (resp. f5:
D 1—39W,) is an orientation-preserving (resp. orientation-reversing) imbedding
of (n—1)-disk D*'. Then We++(— W+ --- +(—W}) is compact parallelizable 3-
connected oriented differentiable 8-manifold. Since the index of We+(—W§H-+ ---
(W8 equals 2, it follows that O(We+(—WE-+ «+ +H(—WE) =M "$(—MD% ---
E(—MD) (s+28%)-fold sum of —M7}) is diffeomorphic to M7 (Lemma 9). Thus
M7 is diffeomorphic to MIEM}E --- % M} (s-fold connected sum of M7). This
completes the proof for the case of MAM™)=2+8s. For the case of (M
= —2+48s, the proof is similar.

From Lemma 7 and Lemma 10 we have

THEOREM. There exist precisely 56 distinct compact unbounded 2-connected
oriented differentiable T-manifolds whose third homology groups are cyclic of order 3,
satisfying the condition (P). The invariant A characterizes these manifolds. All
these manifolds are homeomorphic to each other.

2. Let (B§,,s S% D7) be the D*bundle over S* with the characteristic
map 3mp-30. (For notations in this section, see [14]) Let «, be a generator of
H4(B§m,3 ; Z)=~Z. We choose the orientation of EEM,S in such a way that «, - «,
is positive. Let B, s denote the boundary of Bgm,3 with the orientation com-
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patible with that of Bgm,3. Bim,s is a compact unbounded 2-connected oriented
differentiable 7-manifold such that Hy(Bi,; Z) =~ Z, and that p,(Bi,,;) =0 (see

[14).

Let us compute the invariant 2 of Bin,s. Suppose that Bj,; bounds a

compact parallelizable 3-connected oriented differentiable 8-manifold W&. Let
V'® be the compact unbounded 2-connected oriented differentiable 8-manifold
obtained from the disjoint union of B}, ,and —W?® by identifying 9B, ; with

BW*. The index theorem I(V*)= 4= (7pV—pXV*HLV*] implies

45A—IW ) =TpLVHLV*]—22-3*2m+1)?,
I(W®) =4m(m+1)+2 mod 7.

The integrality of A-genus A(V)= gz (—dp VTV V] implies

VLV =3572m+17  mod 2545,

Hence

I(W*) = 4dm(m-+-1)—26 mod 2°.

Therefore the invariant X of Bln,s is equal to 4m(m+1)—26.
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