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It is well-known that if $R$ is a Noetherian ring or a local ring, then every
finitely generated flat R-module is projective (cf. (1), (3), $R$ need not be com-
mutative.). It is also known that if $R$ is a commutative integral domain, the
same conclusion holds (cf. (5) Appendix).

In the present paper, a fairly general sufficient condition for a commuta-
tive ring $R$ to the effect that the same conclusion holds, will be given as
Theorem 2. It will include all the mentioned results as far as they concern
commutative rings. This will be deduced from a more general result, Theo-
rem 1, which is obtained by a homological method as used in (4). We shall
add another proof of Theorem 2, which is independent from homological
method. Finally we shall examine if the converse of Theorem 2 is true. We
could not decide this problem, but proved that this is true in some special
cases.

Throughout this paper a ring means a commutative ring with unit ele-
ment. A local ring means a ring with only one maximal ideal and a semi-
local ring means a ring with a finite number of maximal ideals.

Let $R$ be a ring, $M$ be an R-module and $S$ be a multiplicatively closed
subset of $R$ . Then the quotient ring and the quotient module of $R,$ $M$ with
respect to $S$ are denoted by $R_{s},$ $M_{s}$, respectively. If $S$ is the complementary
set of a prime ideal $\mathfrak{p}$ in $R$ , then we shall use $R_{\mathfrak{p}},$ $1\psi_{\mathfrak{p}}$ instead of $R_{s},$ $M_{s}$ . We
shall denote by $T$ the set of all non-zero divisors of $R$ . Then the quotient
ring $R_{T}$ of $R$ with respect to $T$ will be called the total quotient ring of $R$

and denoted by $K$.
An R-module $M$ is called a torsion-free module if, whenever $tu=0,$ $u\in M$,

$t\in T$, we have $u=0$ . On the other hand an R-module $ j\psi$ is called a divisible
module if for any $t\in T,$ $u\in M$ there is an element $v$ of $M$ with $u=tv$ .

The other notations and terminologies are the same as in (1).

1. We begin with
LEMMA 1. Let $R$ be a ring with the total quotient ring $K$ and $1\psi$ be a finitely

generated torsion-free R-module such that $1\psi_{T}$ is K-projective. Then there exists
a finitely generated free R-module $F$ such that $F\supset M$ and $(F/M)_{T}$ is K-proiective.
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PROOF. Since $M$ is torsion-free, we may regard $M$ as an R-submodule of
$M_{T}$ . As $M_{T}$ is K-projective, there exists a finitely generated free K-module
$\overline{F}$ such that $M_{T}$ is the direct summand of it. Let $u_{1},$ $u_{2}$ , $\cdot$ ..

$u_{t}$ be a base $ofM$

over $R$ and $v_{1},$ $v_{2}$ , $\cdot$ .. , $v_{s}$ be a free base of $\overline{F^{\backslash }}$ over $K$. Then we have $u_{i}=\sum_{j=1}^{\delta}q_{ij}v_{j}$ ,

$q_{ij}\in K,$ $1\leqq i\leqq t$ . By choosing suitably a non-zero divisor $\lambda$ of $R$ , we have
$\lambda q_{ij}\in R$ for all $i$ and $j$ , and obtain

$u_{i}=\sum_{j=1}^{s}(\lambda q_{ij})(\lambda^{-1}v_{j})$ , $1\leqq i\leqq t$ .

Let $F$ be the module generated over $R$ by $\lambda^{-1}v_{1},$ $\cdots$ , $\lambda^{-1}v_{s}$ . Then $F$ is a finitely
generated free R-module containing $M$. Since $(F/M)_{T}\cong\overline{F}/M_{T},$ $(F/M)_{T}$ is K-
projective. Thus $F$ satisfies our requirements.

LEMMA 2. Let $R$ be a ring with the total quotient ring $K$ and $M,$ $F$ be flat
R-modules such that $M\subset F$ and $(F/M)_{T}$ is a flat K-module. Then we have
$Tor_{1}^{R}(N, F/M)=(O)$ for any torsion-free R-module $N$.

PROOF. As is easily seen, we have $(Tor_{1}^{R}(N, F/M))_{T}\cong Tor_{1}^{K}(N_{T}, (F/M)_{T})$ .
Since $(F/M)_{T}$ is K-flat, we have $Tor_{1}^{K}(N_{T}, (F/M)_{T})=(0)$ and so $(Tor_{1}^{R}(N, F/M))_{T}$

$=(0)$ . Therefore $Tor_{1}^{R}(N, F/M)$ is a torsion R-module. On the other hand,
since $N$ is torsion-free and $M$ is flat, we have the exact sequence

(0) $\rightarrow N\bigotimes_{R}M\rightarrow K\bigotimes_{R}N\bigotimes_{R}M\rightarrow$ .

Then $N\bigotimes_{R}M$ is also torsion-free. As $F$ is flat, $Tor_{1}^{R}(N, F/M)$ is an R-submodule

of $N\bigotimes_{R}M$. Therefore $Tor_{1}^{R}(N, F/M)$ is torsion-free. Thus we must have

$Tor_{1}^{R}(N, F/M)=(0)$ .
Now we give
THEOREM 1. Let $R$ be a ring with the total quotient ring $K$ and $M$ be a

finitely generated R-module. Then $M$ is R-projective if and only if $M$ is R-flat
and $M_{T}$ is K-projective.

The only if part of this theorem is obvious. Hence we have only to con-
sider the if part, which can be proved by using the same method as in the
proof of $(c)\subset>(a)$ in (4) Theorem 2 namely as follows.

We begin with a general remark.
Let $M,$ $N,$ $L$ be modules over a ring $R$ . We define the R-homomorphism

$\sigma$ : $Hom_{R}(N, L)\bigotimes_{R}M\rightarrow Hom_{R}(Hom_{R}(M, N),$
$L$)

by $\sigma(f\otimes u)(g)=f(g(u)),$ $u\in M,$ $f\in Hom_{R}(N, L),$ $g\in Hom_{R}(M, N)$ . The following

facts are well known.
(1) If $Mi_{3}^{\gamma}$ a finitely generated projective R-module, then $\sigma$ is an isomor-

phism ((1) VI. 5.2).
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(2) If $M$ is a finitely generated R-module and $L$ is R-injective, then $\sigma$ is
an epimorphism ((4) Lemma 2).

LEMMA 3. Let $M$ be a finitely generated flat R-module, and $N$ be a divisible
R-module. If there exists a finitely generated flat R-module $F$ such that $M\subset F$

and $(F/M)_{T}$ is a flat K-module, then $\sigma$ is a monomorphism.
PROOF. The exact sequence $(O)\rightarrow M\rightarrow F\rightarrow F/M\rightarrow(O)$ induces the following

commutative diagram with the exact top row:
$Tor_{1}^{R}(Hom_{R}(N, L),$ $F/M$) $\rightarrow Hom_{R}(N, L)\bigotimes_{R}M\rightarrow Hom_{R}(N, L)\bigotimes_{R}F$

$\downarrow\sigma$ $\downarrow\sigma$

$Hom_{R}(Hom_{R}(M, N),$ $L$)$-Hom_{R}(Hom_{R}(F, N),$ $L$).

Since $N$ is divisible, $Hom_{R}(N, L)$ is torsion-free. Then, by Lemma 2, we have
$Tor_{1}^{R}(Hom_{R}(N, L),$ $F/M$) $=(0)$ . As the homomorphism $\sigma$ of the right hand side
is an isomorphism by (1), $\sigma$ of the left hand side is a monomorphism.

The proof of the if part of Theorem 1. Suppose that $M$ is flat and $M_{T}$

is K-projective. By Lemma 1, then, $M$ satisfies the conditions in Lemma 3.
Now let $X$ be an R-module. Then there exists an injective R-module $N$ con-
taining $X$. If we put $Y=N/X$, then we have the exact sequence

(0) $\rightarrow X\rightarrow N\rightarrow Y\rightarrow(0)$ .
This yields the following exact sequence

$\rightarrow Hom_{R}(M, N)\rightarrow Hom_{R}(M, Y)\rightarrow Ext_{R}^{1}(M, X)\rightarrow(O)$ .
Let $L$ be an injective R-module. Then we have also the exact sequence

(0) $\rightarrow Hom_{R}(Y, L)\rightarrow Hom_{R}(N, L)\rightarrow Hom_{R}(X, L)\rightarrow(O)$ .
From these exact sequences we derive the following commutative diagram
with the exact rows:

$Tor_{1}^{R}(Hom_{R}(X, L),$ $M$)
$\rightarrow Hom_{R}(Y,L_{\sigma}) \bigotimes_{R,\downarrow}M\rightarrow Hom_{R}(N,L_{\sigma})\infty M\downarrow^{R}$

(0) $\rightarrow Hom_{R}(Ext_{R}^{1}(M,X),L)\rightarrow Hom_{R}(Hom_{R}(M,Y),L)\rightarrow Hom_{R}(Hom_{R}(M,N),L)$ .

Since $L,$ $N$ are injective and $Y$ is divisible, both $\sigma’ s$ are isomorphisms by (2)

and Lemma 3. As $M$ is flat, we have $Tor_{1}^{R}(Hom_{R}(X, L),$ $M$) $=(0)$ . So we have
also $Hom_{R}(Ext_{R}^{1}(M, X),$ $L$) $=(0)$ . Since $L$ is an arbitrary injective R-module,

this implies $Ext_{R}^{1}(M, X)=(0)$ . This shows that $M$ is projective. Thus the if
part is proved.

LEMMA 4. Let $Mbe$ an (finitely generated) R-module. Then $Mis$ flat if and
only if, for any maximal ideal $\mathfrak{m}$ of $R,$ $M_{\mathfrak{m}}$ is $R_{\mathfrak{m}}$ -flat (free).

PROOF. See (1), VII, Ex. 10 and 11, and (3) Prop. 9.
$CoROLLARY$ . Let $R$ be a ring with the total quotient ring $K$ and $\mathfrak{a}$ be a
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finitely generated ideal of R. If $a$ is flat and $\mathfrak{a}K$ is generated by an idempotent

of $K$, then $a$ is the direct summand of an invertible ideal of $R$ .
PROOF. By Theorem 1, $\mathfrak{a}$ is projective. If $\mathfrak{a}$ contains a non-zero divisor

of $R$ , it can be shown by using an analogous method as in (1), VII, 3.2 that cr
is invertible. Hence we may suppose that $\mathfrak{a}$ is a non-zero ideal which does
not contain any non-zero divisor of $R$ . By our assumption we can put $\mathfrak{a}K$

$=eK$ for an idempotent $e$ of $K$ different from 1 and $0$ . Put $\mathfrak{a}^{\prime}=$ (}$K_{\cap}R$ and
$b=(1-e)K\cap R$ . Then we have $\mathfrak{a}\subset \mathfrak{a}^{\prime}$ and $\mathfrak{a}^{\prime}K=eK$. Suppose $(\mathfrak{a}^{\prime}, b)R\neq R$ .
Then we have a maximal ideal $\mathfrak{m}$ of $R$ containing $\mathfrak{a}^{\prime}$ and $\mathfrak{b}$ . Since $\mathfrak{a}$ is R-
projective, $aR$. is $R_{\mathfrak{m}}$ -free by Lemma 4. So we have $aR$. $=(0)$ or $(a)$ for a
non-zero divisor $a$ of $R_{\mathfrak{m}}$ . If $\mathfrak{a}R_{\mathfrak{m}}=(O)$ , then there exists an element $s$ of
$R-\mathfrak{m}$ such that $sa=(0)$ , as $\mathfrak{a}$ is finitely generated. Then we have $s=\alpha(1-e)$ ,
$\alpha\in K$. Hence $s\in(1-e)K_{\cap}R=\mathfrak{b}\subset \mathfrak{m}$ . This is a contradiction. Thus $aR$. is
generated by a non-zero divisor of $R_{\mathfrak{m}}$ . Since ab $=(0)$ , we have $\mathfrak{b}R_{1\mathfrak{n}}=(0)$ . As
$\mathfrak{b}K=(1-e)K$, we can find an element $b$ of $\mathfrak{b}$ such that $b=\beta(1-e)$ for a unit
$\beta$ of $K$. Since $bR$. $=(0)$ , there is an element $t$ of $R-\mathfrak{m}$ such that $tb=0$ . Then
we have $tb=(O)$ . Hence $t\in eK$. Since $t\in eK_{\cap}R=\mathfrak{a}^{\prime}\subset \mathfrak{m}$ , this is also a con-
tradiction. Thus $(\mathfrak{a}^{\prime}, \mathfrak{b})R=R$ . Hence $\mathfrak{a}^{\prime}$ is the direct summand of $R$ . Since
$\mathfrak{a}^{\prime}K=eK$, we may assume $e\in R$ . Put $c=(\mathfrak{a}, 1-e)$ . Then, as $\mathfrak{a}$ is projective, $c$

is also projective. Since $c$ contains obviously a non-zero divisor of $R,$ $c$ is in-
vertible by the preceding remark. Since $\mathfrak{a}(1-e)=(O),$ $\mathfrak{a}$ is the direct summand
of an invertible ideal $c$ of $R$. This completes our proof.

2. We first give
LEMMA 5. $A$ finitely generated flat R-module $M$ is projective if and only

if, when $\varphi$ is an epimorphism of a finitely generated free R-module $F$ on $M$, the
kernel of $\varphi$ is finitely generated.

PROOF. For example, see (2), Cor. to Prop. 2.2.
Now we obtain
THEOREM 2. Let $R$ be a ring such that, for a multiplicatively closed subset

$S$ consisting of non-zero divisors of $R,$ $R_{s}$ is semi-local. Then any finitely gen-
erated flat R-module is projective.

PROOF. Let $M$ be a finitely generated flat R-module. First we assume
that $R$ itself is semi-local. Now we have the exact sequence with a finitely
generated free R-module $F$ :

$(O)\rightarrow N\rightarrow F\rightarrow M\rightarrow(O)$ .
This yields the exact sequence as $R_{\mathfrak{n}\iota}$ -modules for any maximal ideal $\mathfrak{m}$ of $R$

(0) $\rightarrow N_{\mathfrak{n}\iota}\rightarrow F_{\mathfrak{m}}\rightarrow M_{\mathfrak{n}\iota}\rightarrow(O)$ .
By Lemma 4 $M_{tl1}$ is $R_{\mathfrak{m}}$ -projective. Then $N_{m}$ is a direct summand of $F_{\mathfrak{m}}$ as $R_{m^{-}}$
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module, and so $N_{\mathfrak{m}}$ is a finitely generated R..-module. Since $R$ is semi-local,
$N$ is also finitely generated over $R$ . So, by Lemma 5, $M$ must be projective.

In the general case $M_{s}$ is $R_{S}$-flat. Since $R_{s}$ is semi-local, $M_{s}$ is $R_{s}$-projec-
tive by the above argument. So $M_{T}$ is K-projective, as $s\subset T$. Then, by
Theorem 1, $M$ must be R-projective. This completes our proof.

A Noetherian ring and an integral domain sat\’isfy, obviously, the condition
in Theorem 2. In fact, the total quotient ring of a Noetherian ring is always
semi-local and also that of an integral domain is a field.

In the above proof of Theorem 2, we applied Theorem 1 at the last step.
We can prove Theorem 2 without applying it, $i$ . $e.$ , without using the functors
$Tor$ and $Ext$ as follows.

If $R$ is semi-local, then $M$ is projective by the first part of the preceding
proof. Hence we may assume that $R$ is not semi-local. Denote by $\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$ $\cdots$ , $\mathfrak{p}_{s}$

all the maximal ideals of $R_{s}$ and put $q_{i}=\downarrow)_{t}\cap R$ for every $i$ . Then $q_{i}’ s$ are
prime ideals of $R$ and we may assume $S=\bigcap_{t=1}^{s}$ $(R-q.)$ . Let $\overline{\mathfrak{m}}_{i}$ be a maximal

ideal of $R$ containing $q_{i}$ for every $i$ and put $\overline{S}=\bigcap_{i=1}^{*}(R-\overline{\mathfrak{n}1}_{i})$ . Then $\overline{S}$ is contained

in S. Further let $\mathfrak{m}$ be a maximal ideal of $R$ different from $\overline{\mathfrak{m}}_{1}$ , $\cdot$ .. , $\overline{\mathfrak{n}1}_{S}$ and
put $S_{Ilt}=\overline{S}_{\cap}(R-\mathfrak{m})$ . Then we have also $S$. $cS$. So $R_{s}$. is a subring of $K$

and is a semi-local ring with maximal ideals $\mathfrak{m}R_{S\mathfrak{m}},$ $\overline{\mathfrak{n}\iota}_{1}R_{S\mathfrak{m}},$ $\cdots$ , $\overline{\mathfrak{m}}_{s}R_{S\mathfrak{m}}$ . Since $M$

is flat, we can regard $1\psi$ as contained in $1\psi_{s_{((\iota}}$ as an R-submodule. As $M$ is
flat, ]$\psi_{s_{(\zeta\downarrow}}$ is $R_{s_{\mathfrak{n}\iota}}$ -flat, and so, as $R_{s}$. is semi-local, $M_{s_{\iota \mathfrak{n}}}$ is $R_{s_{\mathfrak{m}}}$ -projective by the
first part of the preceding proof.

Now let $\varphi$ be the epimorphism of a finitely generated free R-module $F$ on
$M$. Then $\varphi$ can be extended naturally to the $R_{S_{1}\mathfrak{n}}$ -epimorphism of $F_{S\mathfrak{m}}$ on
$M_{s_{\mathfrak{m}}}$ , which will be denoted by the same $\varphi$ . Since $M_{s_{1It}}$ is $R_{s_{\mathfrak{m}}}$ -projective,
there exists an $R_{s}$.-homomorphism $\psi_{\mathfrak{n}\iota}$ of $M_{s_{\mathfrak{m}}}$ in $F_{s_{\}\mathfrak{n}}}$ such that $\varphi\psi_{\mathfrak{m}}$ is the
identity. Let $u_{1},$ $u_{2}$ , $\cdot$ .. , $u_{t}$ be a base of $M$ over $R$ . Then, as $R_{S\mathfrak{m}}\supset R,$ $M_{S\mathfrak{m}}\supset M$

and $F_{s_{\mathfrak{m}}}\supset F$, there exists an element $s_{\mathfrak{m}}$ of $S_{\mathfrak{m}}$ such that $\psi_{\mathfrak{m}}(u_{i})=\frac{1}{s_{\iota \mathfrak{n}}}f_{i},f_{i}\in F$,

for any $i$ . If we restrict $\psi_{\mathfrak{m}}$ on $s_{\mathfrak{m}}M$, then $\psi_{\mathfrak{m}}$ is the R-homomorphism of
$s_{m}M$ in $F$. Denote by $a$ the ideal generated by all $s_{\mathfrak{m}}’ s$ , where $\mathfrak{m}$ runs over all
maximal ideals of $R$ different from $\overline{\mathfrak{m}}_{1},$ $\cdots$ , $\overline{\mathfrak{m}}_{s}$ . Then $a$ is obviously not con-
tained in any maximal ideal of $R$ . Accordingly $a=R$ . So there exists a finite
number of $s_{\mathfrak{m}}’ s$ , say $s_{\mathfrak{m}_{1}},$ $s_{\mathfrak{m}_{2}}$ , $\cdot$ ..

$s_{\mathfrak{m}_{r}}$ such that $1=a_{1}s_{\mathfrak{n}_{1}}+\cdots+a_{r}s_{\mathfrak{m}_{r}},$ $a_{i}\in R$ . Set
$\psi(u_{i})=a_{1}\psi_{\mathfrak{m}_{1}}(s_{\mathfrak{n}\iota_{1}}u_{i})+\cdots+a_{r}\psi_{1tt\gamma}(s_{\mathfrak{m}_{r}}u_{i})$ . Since $\psi_{\mathfrak{m}_{i}}$ is a homomorphism of $s_{\mathfrak{m}_{i}}M$

in $F$ for each $i,$ $\psi$ is a homomorphism of $M$ in $F$. Obviously, $\varphi\psi$ is the identity
on $M$. This shows that $M$ is projective.

$c_{oROLLARY}$ . Let $R$ be a ring satisfying the condition in Theorem 2. Then
any finitely generated flat ideal of $R$ is a direct summand of an invertible ideal
of $R$ .
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PROOF. Let $a$ be a finitely generated flat ideal of $R$ . By Corollary to
Theorem 1, it suffices to prove that $aK$ is generated by an idempotent of $K$.
To prove this we may assume, without loss of generality, that $R$ itself is
semi-local, if we use $\mathfrak{a},$ $R$ insteads of $aR_{s},$ $R_{s}$ , respectively. Denote by $\mathfrak{m}_{1}$ ,

.
$\mathfrak{m}_{t}$ all maximal ideals of $R$ . By Lemma 4, any $aR_{\mathfrak{m}_{i}}$ is $R_{t\mathfrak{n}_{i}}$ -free, and so

$aR_{\mathfrak{m}_{i}}$ is a principal ideal of $R_{\mathfrak{m}_{i}}$ . Let $a_{i}$ be an element of $a$ for each $i$ such
that a $R_{t\mathfrak{n}_{i}}=(a_{i})R_{m_{i}}$ . Now we choose an element $\gamma_{i}$ of $R$ for each $i$ which is
not contained in $\mathfrak{m}_{i}$ but contained in $\mathfrak{m}_{1}\cap\cdots\cap \mathfrak{m}_{i-1}\cap \mathfrak{m}_{i+1}\cap\cdots\cap \mathfrak{m}_{t}$ . If we put

$a=\sum_{i=1}^{t}r_{i}a_{i}$ , then we have $\mathfrak{a}R_{\mathfrak{m}_{i}}=(a_{i})R_{\mathfrak{m}_{i}}=(a)R_{\iota \mathfrak{n}_{i}}$ for any $i$ . Let $b$ be an element

of $\mathfrak{a}$ . As $\mathfrak{a}R_{\mathfrak{m}_{i}}=(a)R_{\mathfrak{m}_{i}}$ for any $i$, we can find an element $s_{i}$ of $R-\mathfrak{m}_{i}$ such
that $s_{i}b\in(a)$ . Put $c=\{c;cb\in(a), c\in R\}$ . Then $c$ is an ideal of $R$ which is
not contained in any $\mathfrak{m}_{i}$ . Hence $c=R,$ $i$ . $e.,$ $b\in(a)$ . This shows that $a$ is gen-
erated by $a$ in $R$ . Furthermore put $\mathfrak{r}=\{r;ra=0, r\in R\}$ . As $a$ is R-projective
by Theorem 2, $\mathfrak{r}$ is a direct summand of $R$ . Therefore $\mathfrak{r}$ is generated by an
idempotent $e^{\prime}$ of $R$ . If we put $d=a+e^{\prime}$ and $e=1-e^{\prime}$ , then we have $a=de$ .
Obviously $d$ is a non-zero divisor of $R$ and $e$ is an idempotent of $R$ . Since $d$

is a unit in $K$, we have $aK=(a)K=(e)K$. This shows that $aK$ is generated
by an idempotent $e$ of $K$. This completes our proof.

3. Theorem 2 says that from the following condition (I) for a ring $R$

follows (II). (I) There is a multiplicatively closed subset $S$ consisting of non-
zero divisors in $R$ such that $R_{s}$ is semi-local. (II) Any finitely generated flat
R-module is projective.

We did not succeed in proving the converse $(II)\rightarrow(I)$ in general but could
prove this in some special cases.

First we remark that, if there is an infinite number of idempotents in $R$,
then there exists a finitely generated flat R-module which is not projective.
In fact, then, there exists an infinite number of orthogonal idempotents $\{e_{i}\}$

in $R$ . Let $\mathfrak{a}$ be the ideal generated by all $e_{i}’ s$ . Then $\mathfrak{a}$ is not finitely generated
and, for any maximal ideal $\mathfrak{m}$ of $R,$ $aR_{\iota \mathfrak{n}}$ coincides with $R_{\mathfrak{n}\iota}$ or (0). If we put
$M=R/a$ , then $M_{\mathfrak{n}\iota}$ also coincides with $R_{\mathfrak{n}\iota}$ or (0), for any maximal ideal $\mathfrak{m}$ of
$R$, and therefore $M$ is flat. It is obvious that $M$ is generated by only one
element. But, since $a$ is not finitely generated, $M$ is not projective. Thus $M$

satisfies our requirements.
By this remark, if a ring $R$ satisfies the condition (II) then $R$ has only a

finite number of idempotents. Here we shall show that the conjecture is true
for rings satisfying some additional conditions.

(A). Let $R$ be a ring such that $R_{\mathfrak{m}}$ is an integral domain for any maximal
ideal $\mathfrak{m}$ of $R$ . For such ring $R$ our conjecture is true. In fact, suppose that
any finitely generated flat R-module is projective. Then it is sufficient to
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show that the total quotient ring $K$ of $R$ is semi-local. Put $\mathfrak{p}_{\mathfrak{m}}=\{a$ ; $as=0$
for some $s$ of $R-\mathfrak{m},$ $a\in R$ } for any maximal ideal $\mathfrak{m}$ of $R$ . Let $\mathfrak{m},$

$\mathfrak{m}^{\prime}$ be dif-
ferent maximal ideals of $R$ . Then, if $\mathfrak{m}^{\prime}\supset \mathfrak{p}_{\mathfrak{m}}$ , then $\mathfrak{p}_{\mathfrak{m}}R_{t\mathfrak{n}},$ $=(0)$ and if $\mathfrak{m}^{\prime}$ ] $\mathfrak{p}_{\mathfrak{m}}$ ,

then $\mathfrak{p}_{\mathfrak{m}}R_{\mathfrak{m}/}=R_{\mathfrak{m}},$ . If we put $M=R/\mathfrak{p}_{1\mathfrak{n}}$ , then $1\psi_{\uparrow tt}$ , coincides with $R_{\mathfrak{m}}$ , or (0).

According to Lemma 4 $M$ is R-flat. Therefore, by our assumption, $M$ must
be projective. This shows also that $\mathfrak{p}_{\mathfrak{m}}$ is generated by an idempotent in $R$ .
By the preceding remark, there is only a finite number of idempotents in $R$ .
From this it follows that there is only a finite number of $\mathfrak{p}_{\mathfrak{m}}’ s$ different from
each other. This shows that $R$ is expressible as a direct sum of a finite
number of integral domains. Consequently $K$ is semi-simple, $i$ . $e.$ , it is semi-
local.

(B). Let $R$ be a ring with the total quotient ring $K$ such that any prime
ideal $\mathfrak{p}_{k}$ of $K$ is maximal in $K$ and any maximal ideal of $R$ contains only one
of $\mathfrak{p}_{k}\cap R’ s$ . For such ring $R$ our conjecture is true. Suppose that any finitely
generated flat R-module is projective. Put $a_{\mathfrak{m}}=\{a$ ; $as=0$ for some $s$ of $R-\mathfrak{m}$ ,
$a\in R\}$ for any maximal ideal $\mathfrak{m}$ of $R$ . Since any maximal ideal $\mathfrak{m}$ of $R$ con-
tains only one minimal prime ideal $\mathfrak{p}_{\mathfrak{m}}=\mathfrak{p}_{k}\cap R,$

$\mathfrak{a}_{\mathfrak{n}\tau}$ is also contained in only
one minimal prime ideal $p_{m}$ . Hence, if two maximal ideals $\mathfrak{m},$

$\mathfrak{m}^{\prime}$ of $R$ contain
the same minimal prime ideal, then we have $\mathfrak{a}_{\mathfrak{m}}=\mathfrak{a}_{\iota \mathfrak{n}}$ , and if they contain the
different minimal prime ideals, then we have $\mathfrak{a}_{\mathfrak{n}\iota}c[\mathfrak{m}^{\prime}$ and $\mathfrak{a}_{\iota \mathfrak{n}},$

$c[\mathfrak{m}$ . Then it
can be shown as in (A) that $a_{\mathfrak{n}\iota}$ is generated by an idempotent of $R$ and that
there exists only a finite number of $\mathfrak{a}_{\mathfrak{m}}’ s$ different from each other. This
shows that there exists only a finite number of maximal ideals in $K$, i. e., $K$

is semi-local.
If we replace ” finitely generated flat R-module ” by ” finitely generated

flat ideal of $R$ in the condition (II), our conjecture is false. In fact, we can
easily show an example of a ring which is regular but non-semi-simple. More
generally we obtain the following

PROPOSITION. Let $R$ be a ring with the total quotient ring $K$ in which any
prime ideal is maximal. Then any finitely generated flat ideal of $R$ is a direct
summand of an invertible ideal of $R$ .

PROOF. Let $a$ be a finitely generated flat ideal of $R$ . Then $aK$ is clearly
K-flat. Hence $\mathfrak{a}K_{\mathfrak{m}}$ is $K_{\mathfrak{m}}$ -free for any maximal ideal $\mathfrak{m}$ of $K$ by Lemma 4.
Since any non-zero divisor of $K_{\mathfrak{n}\iota}$ is a unit of $K_{\mathfrak{m}},$ $\mathfrak{a}K_{\mathfrak{n}\iota}$ must coincide with $K_{ltt}$

or (0). If we put $c=\{c;ca=0, c\in K\}$ , then an ideal $(a, c)K$ of $K$ is not con-
tained in any maximal ideal of $K$ and so we have $(\mathfrak{a}, c)K=K$. This shows
that $\mathfrak{a}K$ is generated by an idempotent of $K$. Then, according to Corollary to
Theorem 1, $a$ is a direct summand of an invertible ideal of $R$ .
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