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§1. Introduction.

Let G be a compact connected Lie group and H a closed connected sub-
group of G. We shall denote by »(G) and »(H) the ranks of G and H respec-
tively. In the present note, we shall prove that, if »(H)<7(G), then the index
©(G/H) of G/H (in the sense of Thom) vanishes; and that, if »(H)=r(G),
then the index can be expressed as the integral of some central function
on H over the group manifold . The precise statement will be given by
which we shall obtain at the end of §3.

In the latter case, Borel-Hirzebruch [1] gave a formula which expresses
the index 7(G/H) in terms of roots of G and those of H. They computed
actually the L-genus which, as the index theorem of Thom-Hirzebruch asserts,
coincides with the index. In §4 we evaluate the integral in to
derive the formula of Borel-Hirzebruch. Here we do not make use of the
index theorem. Thus our result can be regarded as providing a new proof of
the index theorem for the space G/H with r(H)=#(G).

§2. The index ©(G/H).

Let g be the Lie algebra of G andl Y be the Lie subalgebra of g correspond-
ing to the analytic subgroup H. There exists a subspace m of g which is
complementary to § and is invariant under the adjoint representation of H.
We shall denote by A the exterior algebra of m and by A* the exterior algebra
of the dual m* of the vector space m. The adjoint representation of H on m
extends to representations of 4 on A and on A* in the standard fashion. Let
us denote by A7 and A*# the subalgebras of 4 and A* respectively consisting
of elements fixed under all operations of H. The algebra A*¥ may be canoni-
cally identified with the algebra of G-invariant differential forms on G/H, and,
as such, carries a differential operator 4. The real cohomology ring H*(G/H, R)
is then the derived ring of A*# with respect to d.

Let e be a non zero element of A® where A" denotes the zn-th exterior
product of m, and #=dim m=dim G/H. Since H is compact and connected, e
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is invariant under H and therefore belongs to A¥. Since the vector spaces
A% and A*¥ are duals of each other, ¢ determines uniquely an element e* of
A¥" C A*2 guch that <{e,e*)=1. The cohomology class & of ¢* is also non zero.
The class ¢ determines an orientation of the manifold G/H. The element e
determines an orientation of the vector space m which is identified with the tan-
gent space at the coset H to the coset space G/H. Translating this orientation
by g= G on the tangent space at gH, we define an orientation of G/H, which
is just the orientation determined by e.

Since A*# is a Poincaré ring with a differentiation, its index relative to
e* is equal, in virtue of Lemma 4 of [2], to the index of the derived ring
H*(G/H, R) relative to e, that is, to the index of the manifold G/H relative
to the orientation determined by e. (We refer to for the notions of
Poincaré ring and its index.)

The algebra A% is isomorphic (but not canonically) to the algebra A*7 by
an isomorphism which sends ¢ to ¢*. Thus we have proved the following

PROPOSITION 2.1. Let an ovientation of G/H be determined by a mnon zero
element e of A" as above. Then the index ©(G/H) relative to this orientation is
equal to the index t(AR) relative to e of the Poincaré ring AY.

The index z(A¥) is obtained as follows. If dimm=#0mod4, then (4%) is
zero. If dimm=4k, and if {x, -, xy} is a basis of (A%*)Z such that

X N\ X =¢&0€, &==x1, I=47=N)

N
then (A%)=Ye,.

i=1

Introduce an H-invariant inner product ( , ) on m. This inner product ex-
tends to an H-invariant inner product (, ) on A%, p=1,---,n. If X; A - A X,
Yin--ANY,edl, X;, Y;&m, then we have by definition
(G A ANXp, YN - AYp)=det((Xy, Y)) -

Orient m by a base e A" such that (¢,e)=1. Denote by w,: A?— A""? the
star operation of Hodge with respect to this inner product and to e. The
linear map w, is characterized by the formula

(@), =& Ay e), x4’ ye AP,

Let {X,, -+, X,} be an orthonormal basis of m. Then we have X, A -+ A X,
=ae with a==+1. If (G, ,ip 75, -+ ,ju—p) IS @ permutation of (1, ---,n) with
4y < e <ip, §1 < o0 <Ju-p, then w, is also given by the formula

0 (X A oo /\Xip):asgn Gy o s ips 1y o )X A o /\Xjn~p‘
We have the following identities:

@) Oy 0y = (1D,

(2.3) (0p(®), o (N =(x,9), xyecA,
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where the right hand side of means the scalar multiplication by (—1)?®-»
on A%,

Hereafter we assume that »=dimm is a multiple of 4; n=4%.

To abbreviate write  for the endomorphism w,; which is an involutive
orthogonal transformation by and Let V. be the eigenspace of
with eigenvalue +1 and V_ be the eigenspace of w with eigenvalue —1. The
vector space A% decomposes into direct sum of V, and V.. V, and V. are
orthogonal to each other. Since the inner product is H-invariant, operations
of H commute with . In particular V, and V_ are H-invariant subspaces of
A%, and we have

(2.4) (AP =V 2+ V_HE  (direct sum),

where V+H — (Azk)H A Vi V.H = (Azk)H A V..
LEMMA 25. Let {x;} be an orthonormal basis of V. and {y;} be an ortho-
normal basis of V_. Then we have
1) %A x;=0;e,
i) yiAy;=—0ye,
i) x;Ay;=0.
In fact we have
055 = (%3, %;) = (@(x), %) = (x; \ %, €) .
Hence x; A x;=0;e.
Similarly we have

0;5= (¥ yj) =(—a(y), yi)=—(3: Ny e).

Hence B ZAN ;= _61;]'8.
2 ANy;=0 follows from

0= (x5, y5) = (@), y) =@ Ayj €.
The following proposition is an immediate consequence of and
Lemma 2.5
PROPOSITION 2.6. We have

(AT =dim V,F—dim V_%.
We shall denote by U, the complexification of a real vector space U.
The representation of A on V., (respectively on V_) extends in an obvious
way to a complex representation of H on (V,); (respectively on (V_),), which
we call also the adjoint representation of H on (V,); (respectively on (V_)y).
The complex vector space (V.#), (respectively (V_H),) is then canonically
identified with (V,):# (respectively (V_)/#). We have

complex dim (V,),Z =dim V, 2,
@ p (Ve +

complex dim (V_).# =dim V_#,



Index of coset spaces of compact Lie group 29

Let y, and y_ be the characters of the repesentations of A on (V,), and
(V)¢ respectively. By a formula of Weyl we have

complex dim (V) :j X+DPm
H
(2.8)
complex dim (V_).# = _f YWDy,
H

where wy denotes the Haar measure on H with total measure f wg=1.
H
Combining (2.6), (2.7) and (2.8), we get
PROPOSITION 2.9.

(U= Gro—r-don.

§3. Calculation of y,—y_.

We identify A, with the exterior algebra A over the complex vector space
mg, and denote by &: A% — A% the complexification of . The spaces (V,)o
and (V_), are identified with eigenspaces U, and U. of & with eigenvalues
+1 and —1 respectively. We extend the inner product on A4 to a hermitian
inner product on A if x,ye A? and «,b are complex numbers, then the pro-
duct (ax, by) on A? is given by the formula

(ax, by) = ab(x, y) .

The map & is characterised by the formula

(@), )= NAF,e), xyeclF,
where 7 denotes the conjugate of y in 4= A,.

If {X,, -, X} is an orthonormal basis of my with X; A -+ A Xy =ae, |«
=1, and if (3}, -, i 71+, Jox) IS @ permulation of (1, .-+, 4k) with i, < - <iy,
71 < - <ju, then we have
@B Xy A o N X )= asgn iy, = g jus -+ 5 5 Xy A o0 A Xy -

Let T be a maximal torus of H. The adjoint representation of 7 on m
decomposes m into a direct sum of 7-invariant subspaces m, and m;, i=1, -, 7,
orthogonal to each other, such that m, is the largest subspace on which T
acts trivially and dimm; =2, 1<i<#,.

Note that »n,=dimm, vanishes if and only if »(H)=7(G), that is, if and
only if T is also a maximal tours of G.

Let {F,, -+, F,,} be an orthonormal basis of m,, and {X; Y;} be an ortho-
normal basis of m;, 1<i=<#n,. Then we have

Ad (9)X;=cos 2n2(£)X;—sin 2z2(2)Y;,
Ad (g) Yl =sin Zﬁli(g)Xi+COS ZEZZ(g)Yz )

@.2)
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for g= T, where A;: T— R/Z is a continuous homomorphism.
Let t be the Lie algebra of 7. To a continuous homomorphism 1: T—R/Z
there corresponds a unique integral linear form « on t such that

eV =1 Aexp X) — e2z~/Ta(X), Xet.
We write e¥(g)=e™Y-11@, If @ and # are integral forms on , then ¢*+f(g)=
e(2)eP(g) and e *(g)=¢"(g). Let a; be the form corresponding to 1, If
r(H)=r(G), then the linear forms +«; are the roots of G complementary to

those of A [1].
We put

EL:T/IZT(XL—F\/—?I Yl)) izl;"'!nl'
E; and Ei:T/l*z:(Xi~V:T Y;) form a basis of m,;, We have by (3.2) that

Ad(Q)E;=emV-Th@F, = ¢%i( g)E;,
3.3)
Ad(QE;=e V- Th@F, = *(Q)E;,, g=T.
We orient m by e € A* defined by
e=F N NFu NXiANYIN - ANXpy AN Yy
==L DI DR N s AFg g AELA -+ NEgy, ANELN -+ NE,, .
If vy(H)=7»(G), then we have #,=0, n, =»n/2 =2k, so that
(34) e=E N NEsxANE; N o A Ey.
Consider the basis of A% consisting of elements of the form
Fy N ANFyNEj N NENEq N - NEyy,,  (r+s+t=2k),
with 7, < - <4, 7, < - <jsand k&, < - <k, We put
{1, = sing=o} = AL, oy moy —{iy, o000}, i< <oy
{70 s dng=st = AL oy =gy 00t 71 < o <Unyess
{kf, - kp ey = A1, b —{ky - R}, BRI <Ry
We put also
(s ey ={gn o dsk N Aku s ks <o <lhe
{vi, vadd =il s dn=sk ARG S Ramed s v <o <wyg
(v s dsmey = Un oo sdsd={t s e}, 11 < o <Jomes
(B, - Boeey =By By — {10 -+, U}, by < oo <lpe.

Note that we have

{k;{x Tt k;ll—ﬁ}_{yli Tty Vd} - {:7—:1: R :;s—c} 5
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{]{: yj;zl—s}_{yh e, Va) = {El! Tt Et-—c} 5

and #, =s+t—c+d.

Using it is easily checked that that effect of @ on elements of the
basis above is given by
(3.5) GEF, N - NFyy NEjy N -+ NEj N Ey N+ Egy)

- 6Fi/1 FANEREIVAN Fi’no—r A\ Ek’l FANERTIVAN Ek’n;—t A\ E_jll FANERTIVAN Ej’nl—s N

where &=(v—1)"(—1)m-n G+t +m=nsdn 0 -De(e(e(k), (), () and &k) de-
noting the signs of permutations (i, -, 2,81, =+, ing-r)y (J1s o+ 5 75r 71 == s Jny—s) @nd

(kyy - ko kY, o+, kny—e) TESDECEiVELY.
But we have

(3.6) Fy N oo NFy NEGN - NEj,NE N« N Ey,
=+Fy A ANFy, NEjy A - NEj_,
A —131 ANA EFz~c NEpy A E—m N e NEy N E—.ﬂc ,
and
3.7 Fiy Ao A Fyp oy NEigy N o+ N By g NEjiy Ao NEjiy
=+Fu A AFuy_, NEj N = NEj_ o NERy N -+ N Eg,_,
ANEy, NE N NELNE,,.
It follows from (3.3) and (3.6) that, for the element
x=Fy N AFy, NEj A+ NEju N Eg A\ - A Ey,,
we have
Ad(gx=e(g9)x, g€<T,
where
3.8) r=og+ o oy e — gy, -

It follows also from (3.3), (3.5) and that, for the same x, we have
Ad(g)d(x)=e(g)d(x), gT.

We note also that x and &(x) is linearly dependent if and only if #,=0

(i' €., 7(H):7(G)) and {jly e :js} M {klx Tty kt} :(b' If 7’L0:0 and {jly o :js} N
{ky, -+, k) = ¢, then we have, by (3.5) and that

GEj N NEjgNEg N - NEg)=%E; A+ NEj; AN Eg N -+ N Ey,.
It is easily checked that the sign =1 is given by (—1)°. Thus, in this case,
GEN < NEjgNEg A - NE)=(—1YEj A - NEj, N Eg, A - N Ey,.
We have thereby proved the following facts.
Suppose that »(H)=v(G). Then, there exists a set of linearly independent
elements x,, -+, x5 of A% such that
i) U, has a basis consisting of elements x;-+@(x;), 1={=< N, together with
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EjfN-o NE;NEG N - A Ekt, {70, 7st N {ky, -+, B} = ¢, s being even;

ii) U- has a basis consisting of elements x,—a&(x;), 1 <i< N, together with
Ejf N NEGNEg A AN Exy {703 N ko, k) =¢, s being odd ;

iii) for g= T, we have

Ad (&) x:+3(x)) = e"i(g)xi+ (),
Ad (@) — () = e"i(g)x— (%)),

where 7; is a linear form on the Lie algebra of 7.

Suppose that »(H) <r(G). Then, there exists a set of linearly independent
elements x,, ---, xy of 4%* such that

i) U, bas a basis consisting of elements x;-+@(x;), 1<i< N,
ii) U- has a basis consisting of elements x,—a@(x,), 1<i< N,
iii) Ad (gXa;+a(x) = e"i(g)x;+d(x,)) ,

Ad (g)xi—d(x)) = e"(g)xi—d(x)), g<T.

Taking the trace of Ad(g) with respect to the basis given above of U,
and U_ respectively we get the values of y, and y_ on g. By subtracting and
using we find the following formulas.

If »(H)=7r(G), then

o= 2-XQ) =L (—Dernivraismab ==y g),  g&T,

where the summation is extended over all permutations (jy, -, 7, k1, -+, k) of
Q,--,2k) with 7, < -+ <js, By < - <kyand 0=s=<2k. Or

3.9 (X+—x-)(g)Zlég%(e“f—e""‘i)(g), geT.
If v(H)<7(G), then
(3.10) (x+—x-X2)=0.

Since a central function on H is determined completely by its values on
T, formulas [(3.9) and [(3.10) determine y,—y_.

Combining with (2.1) and (2.9), we have

THEOREM 1. If v(H)=7v(G), then we have

(G/H)={ I (@,

where TI(e“i—e %) denotes the centval function on H whose value on g€ T is
given by TI(e*i—e™iXg). If v(H) <r(G), then we have
o(G/H)=0.

REMARK. Let H be a compact connected Lie group and p a real represen-
tation of A on a real vector space m of dimension 2%’. We may suppose that
m is endowed with an H-invariant inner product. Let ®,: A?(m)— A?*~P(m) be
the Hodge operation with respect to the inner product and to an orientation of
m. Let &: A¥(m,)— A¥(my) be the complexification of w,, multiplied by v/ —1
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if £/ is odd. We have a direct sum decomposition A*(my;)= V .+ V_ such that
&|V,.=1 and &|V_.=—1. We denote by y, (respectively by yx_) the char-
acter of the representation A, (respectively 1) of H on V., (respectively on

V_.). Let xa,, -, tar be the weights of the complexification of the repre-
sentation o (possibly some of «; may be zero). From the argument in this
section it follows that

Xe—x-==x TI (e"i—e ™).
IsisK

To get this fact more quickly we may proceed as follows. Via inner
product on m we may regard p as a homomorphism H— SO(2k’), so that we
have only to prove (3.11) when H coincides with SO(2k") and o is the natural
representation of SO(2%k’) on R*’. But in this case (3.11) holds since A,—i_=
+(4,QR4,—4_-R4_) where 4, and 4_ are half spinor representations of
Spin 2%") (cf. M. Atiyah-F. Hirzebruch, Bull. Soc. math. France, 87 (1959),
383-396; §4.1, Formula (5)).

§4. Formula of Borel-Hirzebruch.

In this section we assume 7(H)=7r(G), dim G/H=2n, not being assumed
to be a multiple of 4.

We will denote by Xy (respectively by 2y) the set of all roots of H (respec-
tively of G) with respect to T'; ¥y 3, Elements of 33;—25y are roots of G
complementary to those of . A subset © of X (respectively of 2¢) is called
a system of positve roots of H (respectively of G) if there exists an ordering
of the Lie algebra of T such that @ consists of all roots of H (respectively of
G) which are positive relative to the ordering [1] We denote by By (respec-
tively by $3¢) the set of all systems of positive roots of H (respectively of G).

Let ¥ = {«a;} be a subset of 3;—2y which contains for each complementary
root «a exactly one of the roots a, —a. Let ©® € By According to Borel-
Hirzebruch we define k%(G/H; ¥,©0) as the number of those elements @ of P,
such that 1) ®C ® and 2) ® N ¥ consists of (#,—p) roots (or equivalently @
(—¥) consists of p roots).

THEOREM 2.

IT (e7¥i—e™ Dy = Zl (—1PEYG/H; ¥,0).

H a; ¥ 0=p=n,
We denote by Wy and W, the Weyl groups of A and G with respect to
T. Og and Oy denote the orders of Wy and Wy respectively.
is a special case of
THEOREM 2’.
[ 3 o I A-tyeiXl—eoy

dEWy ai;s¥
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= 2 (—~y)” k"(G/H v,0),

=p=n,

where vy is an independent variable.

Let @, and 6, be any two systems of positive roots of /. There exists a
unique element = of Wy such that (6,)=0,. r transforms the set of systems
of positive roots of G which contain @, onto the set of systems of positive
roots of G which contain @, in one to one fashion. The transformation ¢ is
induced by an automorphism g—Agh™ of T where £ is an appropriate element
of H. Then Ad(%) permutes among themselves the vector spaces m;, 1=<i=<#,.
If «(a;)=r¢;a;, then the determinant of Ad(%) considered as an automorphism
of m is equal to IIe;. But % is an element of a connected group A which
operates on m via adjoint operation. Therefore T]e; must be equal to 1.

Let ¥/U6O, be a system of positive roots of G which contains p roots of
—¥. Suppose that the transformed system «(%’'\V0,)=¥")\J6O, contains ¢
roots of —¥, then we have (—1)?=]]¢=1.

It follows that

2 (—DPRAG/H; ¥,00=_3 (=1PkNG/H; ¥, 6,).

0<p<nx 0=p=n,
Hence [Theorem 2 reduces to[Theorem 2 for y=1.
ProorP oF THEOREM 2’. Fix an ordering of the Lie algebra of 7 and let
Bi, -+, Bm (respectively B, -+, Bm, 0, -+, 0,,) be the system of positive roots of
H (respectively of G) with respect to the ordering. Let @y and @4 be the
operators defined by

Q= 2 (sgno)o, Qg= X (sgno)-o.

cEWy oEWg
Set AH:1 II (e%Pi—¢38%) and AGW (e%‘B@—e 380y TI (e¥di—e~199). We have
=is=m =1 1<z<nl
= QuledPBrr+Bmyy A= Q et Prr-+Bmtort-tiny

Note that we have
A =TI(e 3Pi—e+3Piy,
Ao =TI (e 3P —g+1B) [T (e~ 301 —eth00)
where ~ denotes the conjugate operation.

Let w; be the Haar measure on 7" with j wp=1.
r
By a formula of Weyl we have

I= Z a(H(l+ye “Y1—e“i))wgy

H o<

= O § 1,3, S0V yor.
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Hence

D I= oo . = oL S o yei—eudior.

T tEWg oEWH

Since the coefficient of y* in ro{II(1+ye *X1—e*)dydy} is divisible by
4., and since

> >t E o(JT(A+ye*i)(1— e“7'>AHAH)}/AG

TS =Wy

is Wg-antisymmetric, we may write [3]

4.2) > 2 o(TT (L +ye~s)(1— em‘)AHAH)}—EaA oyPQgedt0dy

TEWg oEWg

where o=- ~(5 A+ oo +0,,+ B+ -+ +B,) and the sum is extended over a finite

number of dominant integral forms 4.
Compare in the coefficients of y?. At the left hand side, the coefficient
of y? is
> o 3 o(Demnmip(l—e) o (L—e“m)dudn)} .

TeWg oEWH

The highest term in this expression is

4.3) (__l)m(__1)711—pbpem+-'-+§n;+ﬁ1+---+5m
where b, is equal to the number of (r,0) & Wy X Wy such that there exists a
system @ = {—a;, -+, =y, Qs Qjpmps €181 s P} (6= £1) of positive

roots of G such that zo transforms @ in {8, -+, 0n;, B1, =+, Bt Now if O &Py
then there is a unique element ¢/ of Wy such that '@ = {d,, -+, 0., 81, =, Bu}-
Therefore the number of elements (z,0) of W, X Wy such that 7o sends @ to
{01, -+, Onys By, =+, Bm} is equal to Oy, Thus

4.4) b,=0y 3 kNG/H;¥,0).

6'cpy
On the other hand, at the right hand side of the highest term in
the coefficient of y? is

(4.5) (_1)m+n1aAp peAp+peo — (___l)m+nja‘4’],peA;)+51+~"+§711+B1+~~+ﬁm

where A, is the highest form among A’s for which a4, # 0.
Since and must be equal, we have 4,=0,

a/lp,p:(—l)pbp:(_—l)poﬂ'@ Zm ENG/H; ¥,0") and a4,=0 for A+0.
= b4

Therefore from we get the following formula

(46) > of 3 oI 4ye X1 —e*)dydn)}

T€EWg cEWH

=0pg- E(_J’)p kp(G/H v,0’ )AGAG
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Consequently we have
1 -
I=5—{ Aedsor S(—yP SEAG/H; ¥,6").
G YT I3 o’

Since bLf dgdgwr=1 by Wely’s formula, we have
G T
I=3(—y) > kXG/H;¥,0").
I3 o'sPy

REMARK. If we assume that G/H admits an invariant almost complex

structure and that ¥ is the set of roots of an invariant almost complex structure
on G/H [1], then we have

KXG/H; ¥,0)=kAG/H; ¥, 6))

for any systems ©,, ©, of positive roots of 7. Thus, under the above assump-
tion, reduces to the formula

o, 3 oIL (s A—e"on= 3 (~3)k*G/H; ¥, 6).

HoeEWH «iS

University of Tokyo
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