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On automorphisms of conformally flat $K$-spaces
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It is known that in a compact almost-K\"ahlerian space anIntroduction.
infinitesimal isometry is almost-analytic and hence an automorphism.1) On the
other hand, in a compact K-space an infinitesimal isometry is not necessarily
an automorphism.2) In the 6-dimensional unit sphere with the structure given
by Fukami-Ishihara, which is an example of a compact K-space, an almost-
analytic transformation is an isometry and hence is an automorphism.3)

In this paper we shall give some theorems on the automorphisms of con-
formally flat K-spaces.

In \S 1 we shall give definitions and well known identities. In \S 2 we
shall deal with a conformally flat K-space and prove that the scalar curvature
of such a space is non-negative constant. In \S 3 we shall obtain a theorem
on automorphisms of compact conformally flat K-spaces. The last section will
be devoted to discussions on automorphisms of K-spaces of positive constant
curvature.

1. Preliminaries. Let us consider an n-dimensional K-space $1M^{4)}$ By
definition, $M$ admits a tensor field $\varphi_{i^{h}}$ and a positive definite Riemannian
metric tensor $g_{ji}$ such that

(1.1) $\varphi_{i^{\gamma}}\varphi_{r^{h}}=-\delta_{i}^{h}$ ,

(1.2) $g_{rs}\varphi_{J^{r}}\varphi_{i^{S}}=g_{ji}$ ,

(1.3) $\nabla_{j}\varphi_{i^{h}}=-\nabla_{i}\varphi_{j^{h}}$ ,

where $\nabla$ denotes the operator of Riemannian covariant derivation.
(1.1) and (1.2) mean that $M$ is an almost-Hermitian space and hence is

even dimensional and orientable.
The tensor $\varphi_{ji}=\varphi_{J^{r}}g_{ri}$ is skew-symmetric by virtue of (1.1) and (1.2) and

so is $\nabla_{j}\varphi_{ih}$ by (1.3). $\varphi_{ji}$ is a Killing tensor of order 2 in the sense of YanO-
Bochner [6].

1) Tachibana, S., [2]. The number in brackets refers to Bibliography at the end
of the paper.

2) Tachibana, S., [3].
3) Fukami, T. and S. Ishihara., [1].
4) As to the notations we follow Tachibana, S., [3]. Indices run over 1, 2, $n$ .

Throughout the paper we assume that $n>2$ .
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From (1.1), (1.2) and (1.3) we see that tensors $\varphi_{i^{h}}$ and $\nabla_{j}\varphi_{i^{h}}$ are pure while
$\varphi_{ji}$ and $g_{ji}$ are hybrid.5)

As $\nabla_{j}\varphi_{ih}$ is pure, we have
(1.4) $\nabla_{r}\varphi_{i^{\gamma}}=0$ ,

(1.5) $\varphi_{j^{\gamma}}\nabla_{r}\varphi_{ih}=\varphi_{i^{\gamma}}\nabla_{j}\varphi_{rh}$ .
Let $R_{kji^{h}}$ and $R_{ji}=R_{rji}^{r}$ be Riemannian curvature tensor and Ricci tensor

respectively and put
$R_{kj}^{*}=(1/2)\varphi^{rs}R_{rstj}\varphi_{k^{t}}$ ,

then the following identities hold good6)

(1.6) $\nabla^{r}\nabla_{r}\varphi_{j^{h}}=(R_{j}^{*r}-R_{j^{\gamma}})\varphi_{r^{h}}$ ,

(1.7) $R_{ji}^{*}=R_{ij}^{*}$ ,

(1.8) $(\nabla_{j}\varphi_{rs})\nabla_{i}\varphi^{rs}=R_{jx}-R_{ji}^{*}$ ,

where $\varphi^{rs}=\varphi_{i^{S}}g^{ir}$ .
We know that $R_{ji}$ and $R_{j\dot{i}}^{*}$ are hybrid, $i$ . $e$ . the following relations hold

$R_{jr}\varphi_{i^{r}}=-R_{ri}\varphi_{j^{\gamma}}$ , $R_{jr}^{*}\varphi_{i^{\gamma}}=-R_{\dot{n}}^{*}\varphi_{J^{r}}$ .
By Ricci’s identity we have

\langle 1.9) $\nabla_{\gamma}\nabla_{s}\varphi_{ji}-\nabla_{s}\nabla_{\gamma}\varphi_{ji}=-R_{rsj^{t}}\varphi_{ti}-R_{rsi^{t}}\varphi_{jt}$ ,

from which we have, taking account of (1.7),

\langle 1.10) $\varphi^{rs}\nabla_{r}\nabla_{s}\varphi_{ji}=0$ .
For any vector field $v^{i}$ we define a vector $N(v)_{h}$ by

$N(v)_{h}=(\nabla^{r}v^{s})(\nabla_{t}\varphi_{rs})\varphi_{h}^{t}$ ,

where $\nabla^{r}=g^{ri}\nabla_{i}$ .
A vector field or an infinitesimal transformation $v^{i}$ is calIed almost-analytic

if it satisfies $S\varphi_{i^{h}}=0v$ where $Sv$ denotes the operator of Lie derivation with

respect to $v^{i}$ . A vector field $v^{i}$ is called an (infinitesimal) isometry or a Kill-
ing vector if it satisfies $Sg_{ji}v=0$ . If an isometry is almost-analytic, then it

is called an (infinitesimal) automorphism.
we know the following
LEMMA 1. In a K-space an almost-analytic vector field $v^{i}$ satisfies the

following equations
$\nabla^{r}\nabla_{r}v^{i}+R_{r}^{i}v^{r}=0$ ,

$2N(v)_{h}=(R_{hr}^{*}-R_{hr})v^{r}$ .

5) Tachibana, S., [4].
6) Tachibana, S., [3].
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In the rest of the parer we assume that2. A conformally flat $K$-space.
our K-space $M$ is conformally flat. Thus the conformal curvature tensor
vanishes and we have
(2.1) $(n-2)R_{kjih}=g_{kh}R_{ji}-g_{jh}R_{ki}+R_{kh}g_{ji}-R_{jh}g_{ki}$

$-b(g_{kh}g_{ji}-g_{jh}g_{ki})$ ,

where

$b=R/(n-1)$ , $R=R_{ji}g^{ji}$ .
From (2.1) we have

(2.2) $(n-2)R_{ji}^{*}=2R_{ji}-bg_{ji}$ ,

(2.3) $(n-2)(R_{ji}-R_{jt}^{*})=(n-4)R_{ji}+bg_{ji}$ .
If we put $R^{*}=R_{ji}^{*}g^{ji}$ , then from (2.2) we get $R^{*}=b$ and hence

(2.4) $R-R^{*}=(n-2)b$ .
On the other hand we have, by virtue of (1.8),

$R-R^{*}=(\nabla_{i}\varphi_{rs})\nabla^{i}\varphi^{rs}$ .
From (2.4) and the last equation we get

(2.5) $(n-2)b=(\nabla_{i}\varphi_{rs})\nabla^{i}\varphi^{rs}$ .
Since the right hand member of (2.5) is non-negative, we see that $R\geqq 0$ .

Now let $P^{kji}$ be an arbitrary pure tensor, then we have from (2.1)

$P^{kji}R_{kjih}=0$

because of the fact that $g_{ji}$ and $R_{ji}$ are both hybrid.7) As the tensors $\nabla^{k}\varphi^{ji}$

and $\varphi_{s^{i}}\nabla^{k}\varphi^{js}$ are pure, we have

(2.6) $(\nabla^{k}\varphi^{ji})R_{kjih}=0$ ,

(2.7) $\varphi_{s^{i}}(\nabla^{k}\varphi^{js})R_{kjih}=0$ .
We shall now prove a theorem which will play an essential role in the

next section.
THEOREM 1. In an $n(>2)$ dimensional conformally flat K-space, the scalar

curvature $R$ is a non-negative constant. Especially if the space is non-Kahlerian,

then $R$ is a positive constant.
PROOF. On account of (2.5), it is sufficient tc prove that the following

vector $u_{j}$ vanishes,

$u_{j}=(\nabla^{7}\varphi^{4S})\nabla_{J}\nabla_{i}\varphi_{rs}$ .
Since we have by Ricci’s identity

7) Tachibana, S., [4].
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$\nabla_{j}\nabla_{i}\varphi_{rs}=\nabla_{i}\nabla_{f}\varphi_{rs}-R_{jir^{t}}\varphi_{ts}-R_{jis^{t}}\varphi_{rt}$ ,

we get by virtue of (2.7)

$u_{j}=(\nabla^{i}\varphi^{rs})\nabla_{i}\nabla_{j}\varphi_{rs}+\varphi_{s^{b}}(\nabla^{i}\varphi^{rs})R_{jirt}-\varphi_{r^{t}}(\nabla^{i}\varphi^{rs})R_{jist}$

$=(\nabla^{i}\varphi^{rs})\nabla_{i}\nabla_{j}\varphi_{rs}$ .
As $\nabla^{i}\varphi^{rs}$ is skew-symmetric, we have

$u_{j}=-(\nabla^{i}\varphi^{rs})\nabla_{i}\nabla_{r}\varphi_{js}=-(1/2)(\nabla^{i}\varphi^{rs})(\nabla_{i}\nabla_{r}\varphi_{js}-\nabla_{\gamma}\nabla_{i}\varphi_{js})$

$=(1/2)(\nabla^{i}\varphi^{rs})(R_{irj^{t}}\varphi_{ts}+R_{irs^{t}}\varphi_{jt})=0$

by virtue of (2.6) and (2.7). Thus $u_{j}$ vanishes and hence $R$ is a constant. If
$R=0$ , then from (2.5) we have $\nabla_{i}\varphi_{rs}=0$ which means that the space is
Kahlerian. Thus Theorem 1 is proved.

3. Automorphisms of a conformally flat $K$-space. Let us consider a
vector field $v^{h}$ in an n-dimensional conformally flat K-space $M$. If we operate
$\nabla^{h}=g^{hi}\nabla_{i}$ to

$N(v)_{h}=(\nabla^{r}v^{s})(\nabla_{t}\varphi_{rs})\varphi_{h^{t}}$ ,

we have
$\nabla^{h}N(v)_{h}=(\nabla^{h}\nabla^{r}v^{s})(\nabla_{t}\varphi_{rs})\varphi_{h^{t}}+(\nabla^{r}v^{s})(\nabla^{h}\nabla_{t}\varphi_{rs})\varphi_{h^{t}}$ .

In the right hand side, the last term vanishes because of (1.10) and the first
term vanishes too because we have

$\varphi_{h}{}^{t}(\nabla_{t}\varphi_{rs})\nabla^{h}\nabla^{r}v^{s}=\varphi_{t^{h}}(\nabla^{t}\varphi_{s^{r}})\nabla_{h}\nabla_{r}v^{s}$

$=(1/2)\varphi_{t^{h}}(\nabla^{t}\varphi_{s^{r}})(\nabla_{h}\nabla_{r}v^{s}-\nabla_{r}\nabla_{h}v^{s})$

$=(1/2)\varphi_{c^{h}}(\nabla^{t}\varphi_{s^{r}})R_{hri^{S}}v^{i}=0$ .
Thus we get the following

LEMMA 2. In a conformally flat K-space, any vector field $v^{i}$ satisfies $\nabla^{i}N(v)_{i}$

$=0$ .
In the rest of this section we prove the following
THEOREM 2. In a compact $n(>4)$ dimensional conformally flat K-space, $an$

almost-analytic transformation is an automorphism.
Let $v^{i}$ be almost-analytic, then from Lemma 1 and (2.3) we have

(3.1) $\nabla^{r}\nabla_{r}v^{i}+R_{r}^{i}v^{r}=0$ ,

(3.2) $(n-4)R_{i^{\gamma}}v_{r}+bv_{i}=-2(n-2)N(v)_{i}$ .
As $R$ is a constant by virtue of Theorem 1, we have $\nabla_{i}R=0$ and hence
$\nabla_{i}R_{r}^{i}=0$ . Taking account of this fact and of Lemma 2 we have from (3.2)

\langle 3.3) $(n-4)R_{ri}\nabla^{r}v^{i}+bf=0$ ,

where
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$f=\nabla_{i}v^{i}$ .
On the other hand we have from (3.1)

\langle 3.4) $\nabla^{r}\nabla_{r}f+2R_{ri}\nabla^{r}v^{i}=0$

because of
$\nabla_{i}\nabla^{r}\nabla_{r}v^{i}=\nabla_{i}\nabla_{r}\nabla^{r}v^{i}=\nabla_{r}\nabla_{i}\nabla^{r}v^{i}$

$=\nabla^{r}\nabla_{r}\nabla_{i}v^{i}+R_{ri}\nabla^{r}v^{i}$ .
Thus from (3.3) and (3.4) we get $\nabla^{r}\nabla_{r}f=2bf/(n-4),$ $b\geqq 0$ . Hence the theorem
is proved.

REMARK. In case $n=4$ , Theorem 2 is also true for compact conformally
flat non-K\"ahlerian K-spaces, for, in this case, we have $f=0$ by virtue of (3.3).

4. Automorphisms of a $K$-space of constant curvature. In this section
we consider a K-space of positive constant curvature. In this case the
Riemannian curvature tensor takes the form

(4.1) $R_{kjih}=a(g_{kh}g_{ji}-g_{jh}g_{ki})$ ,

where
$a=R/n(n-1)$ .

Transvecting (4.1) with $g^{kh}$ we have

$R_{ji}=cg_{ji}$ , $c=R/n$ .
From (4.1) we have also

(4.2) $\varphi^{rs}R_{rsih}=-2a\varphi_{ih}$ , $R_{ji}^{*}=ag_{ji}$ ,

\langle 4.3) $R_{ji}-R_{ji}^{*}=(c-a)g_{ji}$ .
Next we suppose that our space admits a non-trivial automorphism $v^{t}$ .

Then as $v^{i}$ is a Killing vector, it satisfies

(4.4) $S\{j^{h_{i}}\}=\nabla_{j}\nabla_{i}v^{h}+R_{rji^{h}}v^{r}=0v$

Now we define a scalar runction $g$ by

(4.5) $g=\varphi_{s^{r}}\nabla_{r}v^{s}$ ,

so we have
$\nabla_{i}g=-(\nabla^{r}v^{s})\nabla_{i}\varphi_{rs}+2a\varphi_{i^{\gamma}}v_{r}$

by virtue of (4.2) and (4.4). Let us put

$u_{j}=\varphi_{J^{i}}\nabla_{i}g$ ,

then the $vector_{A}^{Y}u_{j}$ thus defined satisfies

\langle 4.6) $u_{j}=-N(v)_{j}-2av_{j}$ .
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On the other hand, as $v^{i}$ is almost-analytic, we have
(4.7) $2N(v)_{j}=-(c-a)v_{j}$

by virtue of Lemma 1 and of (4.3). From (4.6) and (4.7) we get
(4.8) $2u_{j}=(c-5a)v_{j}$ .
From (4.8) and the definition of $N(u)_{h}$ we have

$2N(u)_{\hslash}=(c-5a)N(v)_{h}$ .
Substituting (4.7) into the right hand side and taking account of (4.8), we
have
(4.9) $2N(u)_{h}=-(c-a)u_{h}$ .

On the other hand we have from the definition of $N(u)_{h}$

(4.10) $N(u)_{\hslash}=(\nabla^{r}u^{s})(\nabla_{t}\varphi_{rs})\varphi_{\hslash}^{t}$ .
From (4.5) we have

$\nabla^{r}u^{s}=\nabla^{r}(\varphi^{si}\nabla_{i}g)=(\nabla^{r}\varphi^{si})\nabla_{i}g+\varphi^{si}\nabla^{r}\nabla_{i}g$ .
Substituting the last equation into (4.10) we have

$N(u)_{h}=(\nabla^{i}\varphi^{rs})(\nabla_{t}\varphi_{rs})\varphi_{h}^{t}\nabla_{i}g$

$=(R_{t}^{i}-R_{t}^{*i})\varphi_{h}^{t}\nabla_{i}g$

by virtue of (1.3), (1.5) and (1.8). Thus we have

(4.11) $N(u)_{h}=(c-a)u_{h}$ .

From (4.9) and (4.11) we have $(c-a)u_{h}=0$ , where $c-a=(n-2)R/n(n-1)>$
$0$ . Thus we get $u_{h}=0$ and from (4.8) and the non-trivialness of $v^{i}$ we have
$c-5a=(n-6)R/n(n-1)=0$ . Hence we obtain

THEOREM 3. An $n(>2)$ dimensional K-space of positive constant curvature
cannot admits a non-trivial automorphism provided that $n\neq 6$ .

Ochanomizu University, Tokyo
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