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Introduction. It is known that in a compact almost-K&hlerian space an
infinitesimal isometry is almost-analytic and hence an automorphism.” On the
other hand, in a compact K-space an infinitesimal isometry is not necessarily
an automorphism.? In the 6-dimensional unit sphere with the structure given
by Fukami-Ishihara, which is an example of a compact K-space, an almost-
analytic transformation is an isometry and hence is an automorphism.®

In this paper we shall give some theorems on the automorphisms of con-
formally flat K-spaces.

In §1 we shall give definitions and well known identities. In §2 we
shall deal with a conformally flat K-space and prove that the scalar curvature
of such a space is non-negative constant. In §3 we shall obtain a theorem
on automorphisms of compact conformally flat K-spaces. The last section will
be devoted to discussions on automorphisms of K-spaces of positive constant
curvature.

1. Preliminaries. Let us consider an n-dimensional K-space M.* By
definition, M admits a tensor field ¢,* and a positive definite Riemannian
metric tensor g; such that

(LD @, = —0of,
(12) grsgpj'rgois =&ji»
1.3) ngﬁih =— i§0jh ’

where V denotes the operator of Riemannian covariant derivation.

and mean that M is an almost-Hermitian space and hence is
even dimensional and orientable.

The tensor ¢;=¢, g, is skew-symmetric by virtue of and and
so is V;p. by ¢;; is a Killing tensor of order 2 in the sense of Yano-
Bochner [6].

1) Tachibana, S., [2] The number in brackets refers to Bibliography at the end
of the paper.

2) Tachibana, S., [3].

3) Fukami, T. and S. Ishihara., [1].

4) As to the notations we follow Tachibana, S, [3] Indices run over 1,2, .., n.
Throughout the paper we assume that z > 2.
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From [1.I), (1.2) and [1.3) we see that tensors ¢,* and F;p;” are pure while
¢ and g;; are hybrid.”
As V0, is pure, we have

1.4 V=0,
(1.5) @iViPin =@V iPrn -

Let R;;* and R;;= R,;;” be Riemannian curvature tensor and Ricci tensor
respectively and put

R = (1/2)P™ Rys1;94" »
then the following identities hold good®

1.6) Vv.e =R —RNe,",
(1'7) Rji = R:’; y
(1.8) VW™ = R;i— R},

where @™ = @ g,
We know that R;; and R} are hybrid, i.e. the following relations hold

Ry ¢ = —R.9,, Riol = —Rko;.

By Ricci’s identity we have

1.9) Vs ji—VF P i = —Rys/ Poi— Rrsi' Pt »
from which we have, taking account of [(1.7),
(1.10) Q" @ =0.

For any vector field v* we define a vector N(»), by
N(v)h = (VTDS)(Vtgors)goht ’

where "= g"p,.
A vector field or an infinitesimal transformation o is called almost-analytic
if it satisfies £¢;* =0, where £ denotes the operator of Lie derivation with

respect to »’. A vector field »* is called an (infinitesimal) isometry or a Kill-
ing vector if it satisfies £g;,=0. If an isometry is almost-analytic, then it
v

is called an (infinitesimal) automorphism.
we know the following
Lemma 1. In a K-space an almost-analytic vector field v* satisfies the
Sollowing equations
rvot+RA™ =0,
2N = (Rfz— Ru 0" .

5) Tachibana, S.,
6) Tachibana, S., [3].
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2. A conformally flat K-space. In the rest of the parer we assume that
our K-space M is conformally flat. Thus the conformal curvature tensor
vanishes and we have

2.1) (n—2)Ryjin = gunR ji—&in R+ Rion & 55— R jn G
— 081 &ji— & &i) »
where
b=R/n—1), R=R;g".
From we have

(2.2) n—2)R};=2R;;—bg;:,

(2.3) (n—2)(R;;—R}) = (n—4)R;;+bgy: -

If we put R*= R}g”, then from we get R* =) and hence
2.4) R—R*=m—2)b.

On the other hand we have, by virtue of [1.8),
R—R*= @, V'¢™.
From and the last equation we get
(2.5) (n—2)b = Vi@, V'e" .
Since the right hand member of is non-negative, we see that R =0.
Now let P*” be an arbitrary pure tensor, then we have from
PR, =0
because of the fact that g;; and R,; are both hybrid.” As the tensors Ffp”
and ¢/ @’ are pure, we have
(2.6) V*¢™)Ryjin =0,
@2.7) P (V*P?) Rijin = 0.
We shall now prove a theorem which will play an essential role in the
next section.

TueoreMm 1. In an n (> 2) dimensional conformally flat K-space, the scalar
curvature R is a non-negative constant. Especially if the space is non-Kdhlerian,
then R is a positive constant.

Proor. On account of (2.5), it is sufficient to prove that the following
vector u; vanishes,

;=P WP

Since we have by Ricci’s identity

7) Tachibana, S., [4]



186 S. TACHIBANA

VjVigors = Vingors"_Rjirt¢ts_Rjist§0rt ’

we get by virtue of

;=P WF 102+ T O™ )R jiny— ' T O™) R jist

= (VigDTS)Vingors .
As Pip™ is skew-symmetric, we have
U;= —(Vigors)Vingpjs = —-(1/2)(VZ¢TS)(VZVT€DJS—VTV‘L@]S)

= (1/2)V'0" N Rir;'Pus+ Rirs' ©30) = 0
by virtue of and [2.7) Thus #; vanishes and hence R is a constant. If
R=0, then from we have F,¢,,=0 which means that the space is
Kéhlerian. Thus is proved.

3. Automorphisms of a conformally flat K-space. Let us consider a
vector field »" in an z-dimensional conformally flat K-space M. If we operate
vt =g"p; to

N(U)h = (Vrvs)(Vt¢rs)§0ht ’
we have
V"N, = P70 )V 8r)P1" +T 0 YTV Pr) P’ -
In the right hand side, the last term vanishes because of (1.10) and the first
term vanishes too because we have
O TP V"V 0 = @ (F'p Wil 0°
= (l/z)goth(Vtgpsr)(Vthvs_"Vthvs)
= (1/2)¢ '@ ) Ruri'v* = 0.

Thus we get the following

LemMma 2. In a conformally flat K-space, any vector field v¢ satisfies V:N();
=0,

In the rest of this section we prove the following

TueoreMm 2. In a compact n (> 4) dimensional conformally flat K-space, an

almost-analytic transformation is an automorphism.
Let v* be almost-analytic, then from and [2.3) we have

(3.1) Vyeot+ R =0,
(3.2) (n—HR,v,+bv;,= —2(n—2)N©); .

As R is a constant by virtue of [Theorem 1, we have F;R=0 and hence
V:R,'=0. Taking account of this fact and of we have from

(3.3 (n—4)R,Fv'+bf =0,

where
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f=ra.
On the other hand we have from
(3.4) V'V, f42R,. Vv =0
because of
PPvpt=ry vt =rryv
=PV Vo +R, Vvt
Thus from (3.3) and (3.4) we get V7, f=2bf/(n—4),b=0. Hence the theorem
is proved.

Remark. In case n =4, Theorem 2 is also true for compact conformally
flat non-Kédhlerian K-spaces, for, in this case, we have f=0 by virtue of (3.3).

4. Automorphisms of a K-space of constant curvature. In this section
we consider a K-space of positive constant curvature. In this case the
Riemannian curvature tensor takes the form

4.1) Ryjin = a(en&1i—Lin&wi) »
where
a=R/n(n—1).

Transvecting with g** we have

Rji=cgjis c=R/n.
From we have also
4.2) @7 Rysin = —2aPan Rf=agj,
“.3) R;—R}=(c—a)gji.-

Next we suppose that our space admits a non-trivial automorphism o
Then as ¢ is a Killing vector, it satisfies

4 £ {]}j} =P+ Ry =0.

Now we define a scalar function g by
(4.5) &= 9T,
80 we have
Vig=—W"v'W:@rst2a9, v,
by virtue of and [44) Let us put
uj=9;7.g,
then the vector]u; thus defined satisfies

(46) U; = —N(1)>j’—201)j .
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On the other hand, as »* is almost-analytic, we have

4.7 2N@); = —(c—a)v;
by virtue of and of (4.3). From (4.6) and we get
4.8) 2u; = (c—5a); .

From and the definition of N(x), we have

2N(u), = (c—5a)N(), .

Substituting into the right hand side and taking account of [4.8), we

have
4.9)

2N, = —(c—a)uy, .

On the other hand we have from the definition of N(u),

(4.10)

N(u)n = (Vrus)(Vtgo'rs)goht .

From we have

Vw' =V"(@*f,8) = VoW, g+¢*VV;g .

Substituting the last equation into we have

N@),, = V™YV pr)P1'Vig
= (RciﬁRz*i)?’nt &

by virtue of [1.3), (1.5) and [1.8). Thus we have

(4.11)

N(w), = (c—a)uy, .

From [(4.9) and [(4.11) we have (c—a)u, =0, where ¢c—a = (n—2)R/n(n—1) >
0. Thus we get %, =0 and from and the non-trivialness of 2* we have
c—5a=m—6)R/n(n—1)=0. Hence we obtain

Tueorem 3. An n (> 2) dimensional K-space of positive constant curvature
cannot admits a non-trivial automorphism provided that n =+ 6.
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