## On automorphisms of conformally flat K-spaces

## By Shun-ichi TACHIBANA

(Received Nov. 24, 1960)

**Introduction.** It is known that in a compact almost-Kählerian space an infinitesimal isometry is almost-analytic and hence an automorphism.<sup>1)</sup> On the other hand, in a compact K-space an infinitesimal isometry is not necessarily an automorphism.<sup>2)</sup> In the 6-dimensional unit sphere with the structure given by Fukami-Ishihara, which is an example of a compact K-space, an almost-analytic transformation is an isometry and hence is an automorphism.<sup>3)</sup>

In this paper we shall give some theorems on the automorphisms of conformally flat K-spaces.

In §1 we shall give definitions and well known identities. In §2 we shall deal with a conformally flat K-space and prove that the scalar curvature of such a space is non-negative constant. In §3 we shall obtain a theorem on automorphisms of compact conformally flat K-spaces. The last section will be devoted to discussions on automorphisms of K-spaces of positive constant curvature.

1. **Preliminaries.** Let us consider an *n*-dimensional K-space  $M^{(4)}$  By definition, M admits a tensor field  $\varphi_i^h$  and a positive definite Riemannian metric tensor  $g_{ji}$  such that

$$\varphi_{i}{}^{r}\varphi_{r}{}^{h}=-\delta_{i}^{h},$$

$$g_{rs}\varphi_{j}^{r}\varphi_{i}^{s}=g_{ji},$$

$$\nabla_{i}\varphi_{i}{}^{h} = -\nabla_{i}\varphi_{j}{}^{h},$$

where V denotes the operator of Riemannian covariant derivation.

(1.1) and (1.2) mean that M is an almost-Hermitian space and hence is even dimensional and orientable.

The tensor  $\varphi_{ji} = \varphi_j^r g_{ri}$  is skew-symmetric by virtue of (1.1) and (1.2) and so is  $\nabla_j \varphi_{ih}$  by (1.3).  $\varphi_{ji}$  is a Killing tensor of order 2 in the sense of Yano-Bochner [6].

<sup>1)</sup> Tachibana, S., [2]. The number in brackets refers to Bibliography at the end of the paper.

<sup>2)</sup> Tachibana, S., [3].

<sup>3)</sup> Fukami, T. and S. Ishihara., [1].

<sup>4)</sup> As to the notations we follow Tachibana, S., [3]. Indices run over 1, 2,  $\cdots$ , n. Throughout the paper we assume that n > 2.

From (1.1), (1.2) and (1.3) we see that tensors  $\varphi_i^h$  and  $\nabla_j \varphi_i^h$  are pure while  $\varphi_{ji}$  and  $g_{ji}$  are hybrid.<sup>5)</sup>

As  $\nabla_i \varphi_{ih}$  is pure, we have

$$\nabla_r \varphi_i^{\ r} = 0 \,,$$

$$\varphi_{i}{}^{r}\nabla_{r}\varphi_{ih} = \varphi_{i}{}^{r}\nabla_{i}\varphi_{rh} .$$

Let  $R_{kji}^h$  and  $R_{ji} = R_{rji}^r$  be Riemannian curvature tensor and Ricci tensor respectively and put

$$R_{ki}^* = (1/2)\varphi^{rs}R_{rsti}\varphi_k^t$$
,

then the following identities hold good<sup>6)</sup>

$$\nabla^r \nabla_r \varphi_j^h = (R_j^{*r} - R_j^r) \varphi_r^h,$$

$$(1.7) R_{ii}^* = R_{ii}^*,$$

$$(7.8) \qquad (\nabla_i \varphi_{rs}) \nabla_i \varphi^{rs} = R_{ii} - R_{ii}^*,$$

where  $\varphi^{rs} = \varphi_i^{\ s} g^{\ ir}$ .

We know that  $R_{ji}$  and  $R_{ji}^*$  are hybrid, i.e. the following relations hold

$$R_{jr}\varphi_i^r = -R_{ri}\varphi_j^r$$
,  $R_{jr}^*\varphi_i^r = -R_{ri}^*\varphi_j^r$ .

By Ricci's identity we have

$$(1.9) V_r V_s \varphi_{ji} - V_s V_r \varphi_{ji} = -R_{rsj}{}^t \varphi_{ti} - R_{rsi}{}^t \varphi_{jt},$$

from which we have, taking account of (1.7),

$$\varphi^{rs} \nabla_r \nabla_s \varphi_{ii} = 0.$$

For any vector field  $v^i$  we define a vector  $N(v)_h$  by

$$N(v)_h = (\nabla^r v^s)(\nabla_t \varphi_{rs})\varphi_h^{\ t}$$
 ,

where  $\nabla^r = g^{ri} \nabla_i$ .

A vector field or an infinitesimal transformation  $v^i$  is called almost-analytic if it satisfies  $\underset{v}{\mathfrak{L}} \varphi_i^{\ h} = 0$ , where  $\underset{v}{\mathfrak{L}}$  denotes the operator of Lie derivation with respect to  $v^i$ . A vector field  $v^i$  is called an (infinitesimal) isometry or a Killing vector if it satisfies  $\underset{v}{\mathfrak{L}} g_{ji} = 0$ . If an isometry is almost-analytic, then it is called an (infinitesimal) automorphism.

we know the following

Lemma 1. In a K-space an almost-analytic vector field  $v^i$  satisfies the following equations

$$abla^r 
abla_r v^i + R_r{}^i v^r = 0$$
 ,

$$2N(v)_h = (R_{hr}^* - R_{hr})v^r$$
.

<sup>5)</sup> Tachibana, S., [4].

<sup>6)</sup> Tachibana, S., [3].

2. A conformally flat K-space. In the rest of the parer we assume that our K-space M is conformally flat. Thus the conformal curvature tensor vanishes and we have

(2.1) 
$$(n-2)R_{kjih} = g_{kh}R_{ji} - g_{jh}R_{ki} + R_{kh}g_{ji} - R_{jh}g_{ki} - b(g_{kh}g_{ji} - g_{jh}g_{ki}),$$

where

$$b = R/(n-1)$$
,  $R = R_{ji}g^{ji}$ .

From (2.1) we have

$$(2.2) (n-2)R_{ji}^* = 2R_{ji} - bg_{ji},$$

$$(2.3) (n-2)(R_{ii}-R_{ii}^*) = (n-4)R_{ii}+bg_{ii}.$$

If we put  $R^* = R_{ii}^* g^{ii}$ , then from (2.2) we get  $R^* = b$  and hence

$$(2.4) R-R^* = (n-2)b.$$

On the other hand we have, by virtue of (1.8),

$$R-R^* = (V_i \varphi_{rs}) V^i \varphi^{rs}$$
.

From (2.4) and the last equation we get

$$(2.5) (n-2)b = (\nabla_i \varphi_{rs}) \nabla^i \varphi^{rs}.$$

Since the right hand member of (2.5) is non-negative, we see that  $R \ge 0$ . Now let  $P^{kji}$  be an arbitrary pure tensor, then we have from (2.1)

$$P^{kji}R_{kjih} = 0$$

because of the fact that  $g_{ji}$  and  $R_{ji}$  are both hybrid.<sup>7)</sup> As the tensors  $\nabla^k \varphi^{ji}$  and  $\varphi_s^{\ i} \nabla^k \varphi^{js}$  are pure, we have

$$(2.6) (\nabla^k \varphi^{ji}) R_{kjih} = 0,$$

$$\varphi_s{}^i(\nabla^k\varphi^{js})R_{kjih}=0.$$

We shall now prove a theorem which will play an essential role in the next section.

Theorem 1. In an n > 2 dimensional conformally flat K-space, the scalar curvature R is a non-negative constant. Especially if the space is non-Kählerian, then R is a positive constant.

Proof. On account of (2.5), it is sufficient to prove that the following vector  $u_j$  vanishes,

$$u_i = (\nabla^i \varphi^{rs}) \nabla_i \nabla_i \varphi_{rs}$$
.

Since we have by Ricci's identity

<sup>7)</sup> Tachibana, S., [4].

$$V_j V_i \varphi_{rs} = V_i V_j \varphi_{rs} - R_{jir}{}^t \varphi_{ts} - R_{jis}{}^t \varphi_{rt}$$
 ,

we get by virtue of (2.7)

$$\begin{split} u_j &= (\nabla^i \varphi^{rs}) \nabla_i \nabla_j \varphi_{rs} + \varphi_s^t (\nabla^i \varphi^{rs}) R_{jirt} - \varphi_r^t (\nabla^i \varphi^{rs}) R_{jist} \\ &= (\nabla^i \varphi^{rs}) \nabla_i \nabla_j \varphi_{rs} \; . \end{split}$$

As  $\nabla^i \varphi^{rs}$  is skew-symmetric, we have

$$\begin{split} u_j &= -(\mathcal{V}^i \varphi^{rs}) \mathcal{V}_i \mathcal{V}_r \varphi_{js} = -(1/2) (\mathcal{V}^i \varphi^{rs}) (\mathcal{V}_i \mathcal{V}_r \varphi_{js} - \mathcal{V}_r \mathcal{V}_i \varphi_{js}) \\ &= (1/2) (\mathcal{V}^i \varphi^{rs}) (R_{irj}{}^t \varphi_{ts} + R_{irs}{}^t \varphi_{jt}) = 0 \end{split}$$

by virtue of (2.6) and (2.7). Thus  $u_j$  vanishes and hence R is a constant. If R=0, then from (2.5) we have  $V_i\varphi_{rs}=0$  which means that the space is Kählerian. Thus Theorem 1 is proved.

3. Automorphisms of a conformally flat K-space. Let us consider a vector field  $v^h$  in an *n*-dimensional conformally flat K-space M. If we operate  $V^h = g^{hi}V_i$  to

$$N(v)_h = (\nabla^r v^s)(\nabla_t \varphi_{rs})\varphi_h^t$$
,

we have

$$\nabla^h N(v)_h = (\nabla^h \nabla^r v^s)(\nabla_t \varphi_{rs}) \varphi_h^{\ t} + (\nabla^r v^s)(\nabla^h \nabla_t \varphi_{rs}) \varphi_h^{\ t}$$
.

In the right hand side, the last term vanishes because of (1.10) and the first term vanishes too because we have

$$\begin{split} \varphi_h{}^t ( \overline{\mathcal{V}}_t \varphi_{rs} ) \overline{\mathcal{V}}^h \overline{\mathcal{V}}^r v^s &= \varphi_t{}^h ( \overline{\mathcal{V}}^t \varphi_s{}^r ) \overline{\mathcal{V}}_h \overline{\mathcal{V}}_r v^s \\ &= (1/2) \varphi_t{}^h ( \overline{\mathcal{V}}^t \varphi_s{}^r ) ( \overline{\mathcal{V}}_h \overline{\mathcal{V}}_r v^s - \overline{\mathcal{V}}_r \overline{\mathcal{V}}_h v^s ) \\ &= (1/2) \varphi_t{}^h ( \overline{\mathcal{V}}^t \varphi_s{}^r ) R_{h\tau i}{}^s v^i = 0 \; . \end{split}$$

Thus we get the following

Lemma 2. In a conformally flat K-space, any vector field  $v^i$  satisfies  $\nabla^i N(v)_i = 0$ .

In the rest of this section we prove the following

Theorem 2. In a compact n > 4 dimensional conformally flat K-space, an almost-analytic transformation is an automorphism.

Let  $v^i$  be almost-analytic, then from Lemma 1 and (2.3) we have

$$\nabla^r \nabla_r v^i + R_r^i v^r = 0,$$

$$(3.2) (n-4)R_i^r v_r + bv_i = -2(n-2)N(v)_i.$$

As R is a constant by virtue of Theorem 1, we have  $\nabla_i R = 0$  and hence  $\nabla_i R_r^i = 0$ . Taking account of this fact and of Lemma 2 we have from (3.2)

$$(3.3) (n-4)R_{ri}\nabla^{r}v^{i} + bf = 0,$$

where

$$f = \nabla_i v^i$$
.

On the other hand we have from (3.1)

$$\nabla^r \nabla_r f + 2R_{ri} \nabla^r v^i = 0$$

because of

$$egin{aligned} 
aligned & 
alig$$

Thus from (3.3) and (3.4) we get  $\nabla^r \nabla_r f = 2bf/(n-4)$ ,  $b \ge 0$ . Hence the theorem is proved.

Remark. In case n=4, Theorem 2 is also true for compact conformally flat non-Kählerian K-spaces, for, in this case, we have f=0 by virtue of (3.3).

4. Automorphisms of a K-space of constant curvature. In this section we consider a K-space of positive constant curvature. In this case the Riemannian curvature tensor takes the form

$$(4.1) R_{kiih} = a(g_{kh}g_{ii} - g_{ih}g_{ki}),$$

where

$$a = R/n(n-1)$$
.

Transvecting (4.1) with  $g^{kh}$  we have

$$R_{ji} = cg_{ji}$$
,  $c = R/n$ .

From (4.1) we have also

$$\varphi^{rs}R_{rsih} = -2a\varphi_{ih}, \qquad R_{ii}^* = ag_{ii},$$

$$(4.3) R_{ii} - R_{ii}^* = (c - a)g_{ii}.$$

Next we suppose that our space admits a non-trivial automorphism  $v^i$ . Then as  $v^i$  is a Killing vector, it satisfies

(4.4) 
$$\mathcal{L}_{ij} \left\{ \begin{array}{l} h \\ ij \end{array} \right\} = \nabla_{j} \nabla_{i} v^{h} + R_{rji}^{h} v^{r} = 0.$$

Now we define a scalar function g by

$$g = \varphi_s^r \nabla_r v^s,$$

so we have

$$\nabla_i g = -(\nabla^r v^s) \nabla_i \varphi_{rs} + 2a \varphi_i^r v_r$$

by virtue of (4.2) and (4.4). Let us put

$$u_j = \varphi_j^i \nabla_i g$$
,

then the vector  $\mathbf{I}u_j$  thus defined satisfies

$$(4.6) u_j = -N(v)_j - 2av_j.$$

On the other hand, as  $v^i$  is almost-analytic, we have

$$(4.7) 2N(v)_j = -(c-a)v_j$$

by virtue of Lemma 1 and of (4.3). From (4.6) and (4.7) we get

$$(4.8) 2u_j = (c - 5a)v_j.$$

From (4.8) and the definition of  $N(u)_h$  we have

$$2N(u)_h = (c-5a)N(v)_h.$$

Substituting (4.7) into the right hand side and taking account of (4.8), we have

$$(4.9) 2N(u)_h = -(c-a)u_h.$$

On the other hand we have from the definition of  $N(u)_h$ 

$$(4.10) N(\mathbf{u})_h = (\nabla^r \mathbf{u}^s)(\nabla_t \varphi_{rs}) \varphi_h^t.$$

From (4.5) we have

$$\nabla^r u^s = \nabla^r (\varphi^{si} \nabla_i \varphi) = (\nabla^r \varphi^{si}) \nabla_i \varphi + \varphi^{si} \nabla^r \nabla_i \varphi$$
.

Substituting the last equation into (4.10) we have

$$\begin{aligned} N(u)_h &= (\nabla^i \varphi^{rs}) (\nabla_i \varphi_{rs}) \varphi_h^{\ t} \nabla_i g \\ &= (R_t^{\ i} - R_t^{*i}) \varphi_h^{\ t} \nabla_i g \end{aligned}$$

by virtue of (1.3), (1.5) and (1.8). Thus we have

$$(4.11) N(u)_h = (c-a)u_h.$$

From (4.9) and (4.11) we have  $(c-a)u_h=0$ , where c-a=(n-2)R/n(n-1)>0. Thus we get  $u_h=0$  and from (4.8) and the non-trivialness of  $v^i$  we have c-5a=(n-6)R/n(n-1)=0. Hence we obtain

Theorem 3. An  $n \ (> 2)$  dimensional K-space of positive constant curvature cannot admits a non-trivial automorphism provided that  $n \neq 6$ .

Ochanomizu University, Tokyo

## **Bibliography**

- [1] Fukami, T. and S. Ishihara, Almost Hermitian structure on S<sup>6</sup>, Tôhoku Math. J. 7(1955), 151-156.
- [2] Tachibana, S., On almost-analytic vectors in almost-Kählerian manifolds, Tô-hoku Math. J., 11(1959) 247-265.
- [3] Tachibana, S., On almost-analytic vectors in certain almost-Hermitian manifolds, Tôhoku Math. J., 11(1959), 351-363.
- [4] Tachibana, S., Analytic tensor and its generalization, Tôhoku Math. J., 12(1960), 208-221.
- [5] Tachibana, S., On automorphisms of compact certain almost-Hermitian spaces, to appear in Tôhoku Math. J.
- [6] Yano, K. and S. Bochner., Curvature and Betti numbers, Ann. of Math. Studies, 32, 1953.