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On a smoothing operator for the wave equation.
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1. Introduction. The Cauchy problem for the classical wave equation

$\coprod_{n}u=(\frac{\partial^{2}}{\partial x_{0^{2}}}-\sum_{i=1}^{n-1}\frac{\partial^{2}}{\partial x_{i^{2}}})u=f(x)$

has been the subject of many investigations for more than half a century.
During this time several formulas have been deduced for the solution of this
problem with the Cauchy data given on the plane $x_{0}=0$ . The difficulties in
obtaining explicit formulas all center around the fact that the direct methods
of integration lead to singular integrals. These difficulties have been over-
come by various methods which either avoid singular integrals or select the
appropriate “ part “ of such integrals. Among the latter methods the best
known is that introduced by Hadamard and developed in his lectures on the
Cauchy problem [6] (numbers in brackets refer to the bibliography at the
end of the paper). This work has been extended by Bureau in a number of
papers (see, for example, [7], [8]). Among the methods which seek to avoid
singular integrals the most recent seem to be those of Weinstein [9], Diaz
and Martin [10] and M. Riesz [1]. The work of Riesz on the wave equation
has been extended by Garding [2] to the class of linear hyperbolic equations
with constant coefficients. This method depends on the analytic continuation
of certain integrals with respect to a complex parameter. Subsequently Leray
[3] generalizing the Riesz-Garding method, showed that smoothing operators
could be introduced in order to avoid singular integrals and re-derived the
Riesz formulas for the wave equation.

In this paper we shall show that a suitable smoothing operator for the
wave equation is simply $\partial^{m}/\partial x_{0}^{m}$ for $m$ properly chosen and derive new for-
mulas for the solution of the Cauchy problem with data given on the plane
$x_{0}=0$ . At the same time we shall show that it is not difficult to construct a
solution of the equation
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nesota for several stimulating conversations on this subject which resulted in the
successful completion of the work.
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(1) $\frac{\partial^{m}}{\partial x_{0}^{m}}\coprod_{n}u=f(x)$

for all values of $m$ and $n$ . It seems likely that a wide class of hyperbolic
operators may be treated in a similar way by using the same smoothing
operator. The present method appears to be simpler than the other devices
known to the author.

2. The Riesz kernel for (1). In the remainder of this paper we shall
use the following notation. A fixed point $x$ in space-time, at which we are
computing the solution of the Cauchy problem will be written $x=(x_{0},$ $x_{1},$

$\cdots$ ,
$x_{n-1})$ while a variable space time point will be written $y=(y_{0}, y_{1}, \cdots, y_{n-1}),$ $y_{0}$

corresponding to the time variable and $y_{1},$
$\cdots$ , $y_{n-1}$ to the space variables.

The retrograde light cone from the point $x$ will be written $D^{x}$. The spacial
part of any point will be written $Px$ or $Py,$ $i$ . $e$ . we shall sometimes write
$x=(x_{0}, Px)$ or $y=(y_{0}, Py)$ . The symbol $\gamma_{x}$ will mean $(\sum_{i=1}^{n-1}x_{i^{2}})^{1/2}$ and $r$ will mean

$(\sum_{i=1}^{n-1}(x_{t}-y_{i})^{2})^{1/2}$ .
Suppose $\nu$ is an arbitrary complex number satisfying the inequality $\mathfrak{R}(\nu)$

$>n$ , then the Riesz kernel for the wave equation is a function $k(x, \nu)$ with
the following properties:
(a) $\coprod_{n}k(x, \nu)=k(x, \nu-1)$ ,
(b) $k(x, \nu)$ vanishes on the surface of the forward light cone with vertex at
the origin and everywhere outside.
To construct a Riesz kernel for equation (1) we seek a function $W(x, \mu, \nu)$ (pa

and $\nu$ complex numbers with $\mathfrak{R}(\nu)>n)$ with the following properties:

$(a^{\prime})$

$\frac{\partial^{m}}{\partial x_{m^{m}},\partial^{0}}\coprod_{n}W(x, \mu, \nu)=W(x, /t-1, \nu-1)$

,

$(b^{\prime})$

$-\partial\overline{x_{0}^{m}}W(x, \mu, \nu)=W(x, /x-1, \nu)$ ,

$(c^{\prime})$ $\coprod_{n}W(x, \mu, \nu)=W(x, \mu, \nu-1)$ ,
$(d^{\prime})$ $W(x, \mu, \nu)$ vanishes on the surface and outside of the forward light
cone with vertex at the origin. Now, the light cone with vertex at the
origin is described by the inequality $x_{0^{\backslash }}\lrcorner-r_{x}^{\underline{o}}\geqq 0$ , the equation $x_{0}^{2}-r_{x}^{2}=0$

giving its surface. We define

(2) $ W(x, /x, \nu)=\frac{1}{\Gamma(m\mu)}\int_{-\infty}^{x_{0}}(x_{0}-\tau)^{m\mu^{-1}}k(\tau, Px, \nu)d\tau$ .

This is the classical Riemann-Liouville integral applied to the Riesz kernel
for the wave equation. By making use of the properties of the Riemann-
Liouville integral, some rather routine computations show that $(a^{\prime}),$ $(b^{\prime})$ , and
$(c^{\prime})$ are satisfied by $W(x, \mu, \nu)$ as defined by (2). We next introduce the Riesz
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kernel for the wave equation in the following form:

$k(\tau, P\chi, \nu)=\{\overline{\pi^{(n^{\frac{\tau^{2}}{-1}\frac{-r_{x}^{2})^{\nu-n/2}\Gamma(\nu+1/2)}{)/2\Gamma(2\nu)\Gamma(\nu+1-n/2)}}}}$

.

inside the light cone,

Let $H_{n}(\nu)=\pi^{(n-1)/2}\Gamma(2\nu)\Gamma(\nu+1-n/2)/\Gamma(\nu+1/2)$ , then we compute (2) for $x_{0}\underline’-x_{x}$
’

$\geqq 0,$ $x_{0}>0$ and find

(3) $\Gamma(m\mu)H_{n}(\nu)W(x, \mu, \nu)=\int_{r_{x}^{x_{0}}}(x_{0}-\tau)^{m_{/t^{-1}}}(\tau^{2}-\gamma_{x}^{2})^{\nu-n/Q}- d\tau$ .

In order to evaluate the integral in (3), make the substitution $v=(x_{0}-\tau)/$

$(x_{0}-r_{x})$ . Then, after some computation, one finds [4]

$\Gamma(m\mu)H_{n}(\nu)W(x, \mu, \nu)=(x_{0}-r_{x})^{\gamma}(x_{0}+\gamma_{x})^{-\alpha}$

$\times\int_{0^{1}}v^{\beta-}(1-v)^{-\alpha}(1-\frac{x_{0}-r_{x}}{x_{0}+r_{x}}v)^{-\alpha}dv$

$=\frac{)^{-a}\Gamma(1-\alpha)\Gamma(\beta)}{+1)}\underline{(x0_{\Gamma(\gamma}-r_{x})^{\gamma}(x_{0}+}r_{x}F(\alpha,$ $\beta;\gamma+1$ ; $\frac{X_{()^{-\gamma_{x}}}}{x_{0}+r_{x}})$ ,

where $\alpha=n/2-\nu,$ $\beta=m\mu,$ $\gamma=m\mu+\nu-n/2$ and $F$ is the hypergeometric function.
Substituting for $H_{n}(\nu)$ its value, we find

(4) $W(x, \mu, \nu)=\frac{(x_{0}-r}{\pi^{(}}x^{\chi_{2}+}\frac{)^{\tau}(}{-1J}\frac{\psi_{x})^{-a\prime}\Gamma(\nu+1/2)}{(2\nu)\Gamma(\gamma+1)}F(\alpha,$ $\beta;\gamma+1$ ; $\frac{x_{0}-r_{x}}{x_{0}+r_{x}})$ .

The condition on the parameters insuring convergence of the hypergeometric
series is that the inequalities $\mathfrak{R}(\beta)>0,$ $\mathfrak{R}(\gamma+1)>0$ both hold. The first
inequality is satisfied for $\mathfrak{R}(\mu)>0$ , independently of $m$ , and the second if
$\mathfrak{R}(m\mu+\nu)>n/2-1$ . On the other hand, the condition on the argument of the
hypergeometric series for convergence is that $|(x_{0}-r_{x})/(x_{0}+\gamma_{x})|<1$ . This
inequality is satisfied everywhere inside the light cone except when $r_{x}=0$ ,
$i$ . $e$ . along the axis of the light cone, at which points $(x_{0}-r_{x})/(x_{0}+r_{x})=1$ . This
does not necessarily mean that the function has a singularity along the axis,
but we shall defer a careful investigation of this point until later. The
factor $(x_{0}-r_{x})^{\gamma}$ is well behaved as long as $m\mu+\nu>n/2$ and the factor $(x_{0}+r_{x})^{-\alpha}$

is analytic for all values of $\nu$ , since $x_{0}>0\geqq-r_{x}$ . Thus it follows that the
Riesz kernel $W(x, \mu, \nu)$ is an analytic function of $\mu$ and $\nu$ , except possibly for
$x$ on the axis of the light cone, as long as $\mathfrak{R}(\mu)>0$ and $\mathfrak{R}(m\mu+\nu)>n/2$ .

3. The Riesz operators $J^{\mu,\nu}$ . We are now ready to introduce the opera-
tors

(5) $(J^{\mu,\nu}f)(x)=\int_{D^{x}}TjV(x-y, \mu, \nu)f(y)dy_{(n)}$
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where $f$ is the function occurring on the right side of equation (1). The
notation $dy_{(n)}$ means that we are computing the volume integral and has
obvious modifications for surface integrals. The integral is taken over the
retrograde light cone with vertex at the point $x$.

Let $S(Px, x_{0}-y_{0})$ be the $n-1$ dimensional sphere with center at $Px$ and
radius $x_{0}-y_{0}$ , then we can write

$(J^{\alpha,\nu}f)(x)=\int_{-\infty}^{x_{0}}[\int_{S(Px,x_{0}-y_{0})}W(x-y, \mu, \nu)f(y)dy_{(?1-1)}]dy_{0}$ .

One observes that $|/V(x-y, \mu, \nu)$ actually depends on the variables $y_{0}$ and $r$,
hence

$(J^{\prime J\mathcal{V}}f)(x)=\int_{-\infty}^{x_{\Phi}}\{\int_{0}^{x_{0}-y_{0}}[\int_{S(Px.7)}W(x_{0}-y_{0}, r, \mu, \nu)f(y)dy_{(n-2)}]dr\}dy_{0}$ .
Let

(6) $M(r,y_{0}, x,f)=\frac{1}{\omega_{n-1}r^{n-2}}\int_{S(Px,r)}f(x)dy_{(n-2)}$ ,

the spherical mean of $f$, then

$(J^{\rho,\nu}f)(x)=\int_{-\infty}^{x_{\Phi}}\int_{0}^{x_{0}-y_{0}}\omega_{n-1}r^{n-2}W(x_{0}-y_{0}, r, \mu, \nu)1\psi(r,y_{0}, x,f)drdy_{0}$ .

Here, $\omega_{n-1}$ is the surface area of the $n-1$ dimensional unit sphere, $\omega_{n-1}=$

$2\pi^{(n-2)/2}/\Gamma((n-1)/2))$ . Now, let $y_{0}=x_{0}-\tau,$ $r=\tau(1-\sigma)$ , then our last formula
becomes

(7) $(J^{\prime z\nu}f)(x)=\omega_{n-1}\int_{0}^{\infty}\int_{0^{1}}\tau^{n-1}(1-\sigma)^{n-2}W(\tau, \sigma, \mu, \nu)M(\tau, x,f)d\sigma d\tau$ .

We also have

$W(\tau, \sigma, \mu, \nu)=\frac{\sigma^{\gamma}(2-}{\pi^{(n-}}\sigma_{\frac{)^{-\alpha_{T}}}{/2\Gamma(}\overline{2\nu)}\Gamma(\gamma}^{\beta-2\mathcal{T}}\Gamma(\frac{\gamma+1/2)}{+1)}F(\alpha,$ $\beta;\gamma+1$ ; $\frac{\sigma}{=0-\sigma})$ .
Consider

$F(\alpha,$ $\beta;\gamma+1$ ; $\frac{\sigma}{2-\sigma})=\frac{\Gamma(\gamma}{\Gamma(\beta)}\Gamma+\frac{1)}{(\alpha)}\sum_{j=0}^{\infty}\frac{\Gamma(\beta+j)\Gamma(\alpha+j)}{j!\Gamma(\gamma+j+1)}(\frac{\sigma}{2-\sigma})^{j}$

It should be pointed out that in the case where $\nu=n/2+k,$ $k=1,2,$ $\cdots$ , this
hypergeometric series terminates after $k+1$ terms, and in the analysis that
follows we need not consider these values. We next write

$F(\alpha,$ $\beta;\gamma+1$ ; $\frac{\sigma}{2-\sigma})=\frac{\Gamma(\gamma+1)}{\Gamma(\alpha)\Gamma(\beta)}\{\sum_{j=0}^{p-1}\frac{\Gamma(\alpha+j)\Gamma(\beta+j)}{j!\Gamma(\gamma+j+1)}(\frac{\sigma}{2-\sigma})^{j}$

$+\frac{\Gamma(\alpha+p)\Gamma(\beta+p)}{p!\Gamma(r+p+1)}(\frac{\sigma}{2-\sigma})^{p}G_{\mu.\nu.p}\}$

where



On a smoothing operator for the wave equation. 405

$ G_{\mu,\nu,p}=1+\frac{(m\mu+p)(n/2+p-\nu)}{(p+1)(m\mu+\nu+p+1-n/2)}\frac{\sigma}{2-\sigma}+\cdots$ .

Then we can write

$W(\tau, \sigma, \mu, \nu)=\frac{\sigma^{\gamma}(2-\sigma)^{-a}\tau^{\beta-2\mathcal{O}}\Gamma(\nu}{\pi^{(n-1)/2}\Gamma(2\nu)\Gamma(\alpha)}\Gamma+\frac{1}{(\beta}\frac{/2)}{)}${ $\sum_{j=0}^{p-1}\frac{\Gamma(}{j}\alpha-+\frac{j)\Gamma(\beta+j)}{\gamma+j+1)}(\frac{\sigma}{2-\sigma})^{j}$

$+\frac{\Gamma(\alpha}{p!}\Gamma+\frac{p)\Gamma(\beta+p)}{(r+p+1)}(\frac{\sigma}{2-\sigma})^{p}G_{\mu,\nu,p}\}$ .

By substitution into (7) one arrives at the result

$(J^{\prime 1\nu}f)(x)=\sum_{j=0}^{p-1}\frac{\Gamma(\alpha+j)}{\Gamma(\theta)\Gamma(\gamma+j+1)}\int_{0}^{\infty}\int_{0}^{1}\tau^{\theta}\sigma^{\tau+j}(2-\sigma)^{-a-j}j\psi_{j}d\sigma d\tau$

$+\frac{\Gamma(\alpha+p)}{\Gamma(\theta)\Gamma(r+p+1)}\int_{0^{\infty}}\int_{0}^{1}\tau^{\theta}\sigma^{\gamma+p}(2-\sigma)^{-a-p}H_{\mu,\nu,p}d\sigma d\tau$ ,

where $\theta=\beta+2\nu-1=m\mu+2\nu-1$ and where

(8) $M_{f}(\sigma, \tau, \mu, \nu)=\frac{\omega_{n-1}\Gamma(\theta+1)\Gamma(\nu+1/2)\Gamma(\beta+j)(1-\sigma)^{n-2}}{\pi^{(n-1)/2}\Gamma(2\nu)\Gamma(\alpha)\Gamma(\beta)j!}M(\tau, \sigma, x,f)$ ,

and

(9) $H_{z,\nu,p}(\sigma, \tau, \mu, \nu)=\frac{\omega_{n-1}\Gamma(\theta+1)\Gamma(\nu+1/2)\Gamma(\beta+p)(1-\sigma)^{n-2}}{\pi^{(n-1)/2}\Gamma(2\nu)\Gamma(\alpha)\Gamma(\beta)p!}G_{\mu,\nu,p}M(\tau, \sigma, x,f)$ .
Next, for arbitrary $a$ and $b$ , we define the integral

(10) $ R^{a,b_{\wedge}}\eta_{p}I=\frac{\Gamma(a+n-1-b)}{\Gamma(a)\Gamma(b)}\int_{0^{\infty}}\int_{0^{O^{a-1}T^{b-1}}}^{1}(2-\sigma)^{b+1-n-a}Md\sigma d\tau$ ,

then we can write
(11) $(I^{\mu,\nu}f)(x)=\sum_{j=0}^{p-1}JR^{m,\alpha+\nu+j+1-n/2,2\nu+m\mu}M_{j}$

$+R^{m/J+\nu+p+1-n/2.2\nu+m_{/t}}H_{\mu,\nu,p}$ .
Our aim is to study $J^{\prime 1\nu}f$ given by (11) in order to show that $J^{0,0}f=f$.

It is not difficult to see that the functions $M_{j}$ have singularities only for
certain negative values of $\mu$ and $\nu$ and are analytic for all other values of
these parameters. The same is true for $H_{\mu,\nu,p}$ if $p$ is sufficiently large.
Therefore, the study of $J^{\mu,\nu}f$ reduces to the study of the nature of the
integral $ R^{a,b}1\psi$ and its dependence on the parameters $a$ and $b$ . To assure the
convergence of this integral, we assume $M$ is continuous in $\sigma$ and $\tau$ and
$M\equiv 0$ for $\tau>\tau_{0}$ . For such an $j\psi,$ $R^{a,b}M$ converges absolutely for $\mathfrak{R}(a)>0$

and $\Re(b)>0$ and the result is an analytic function of $a$ and $b$ . The only
difficulty is at $\sigma=\tau=0,$ $i$ . $e$ .

$\int_{e}^{\infty}\int_{\epsilon}^{1}\sigma^{a-1}\tau^{b-1}(2-\sigma)^{b+1-n-a}M(\sigma, \tau)d\sigma d\tau$
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is analytic for all $a$ and $b$ if $\epsilon>0$ .
Assume now that $M\in C_{\delta^{q,r}}$ in some neighborhood of $\sigma=\tau=0$ , where by

$C_{\delta^{q,r}}$ we mean the class of functions $g(\sigma, \tau)$ which are $q$ times continuously
differentiable with respect to $\sigma,$

$\gamma$ times continuously differentiable with
respect to $\tau$ and such that

$|g_{q,r}(\sigma, \tau)-g_{q,r}(0,0)|<K\sigma^{\delta}\tau^{\delta}$ , $0<\delta\leqq 1$ ,

(by $g_{q.r}(\sigma, \tau)$ we mean $\frac{\partial^{p+r}}{\partial\sigma}g_{q}\frac{(\sigma,\tau)}{\partial\tau^{r}}$ ). Adopting some lemmas proved by Riesz

[1] to the present integral, we find, for $a,$ $b\geqq 0$ ,

$R^{-a,-b}M=\Gamma(b+n-1-a)2^{-(b+n-1-a)}M_{a,b}(0,0)(-1)^{a+b}$ ,

$ R^{-a,b}M=\underline{\Gamma(n-1-b-}\Gamma a\frac{)2^{b+1-n+a}(-1)^{a}}{(b)}\int_{0^{\infty}}\tau^{b-1}M_{a}(0, \tau)d\tau$ ,

$ R^{a.-b}M=\frac{\Gamma(a+n-1+b)(-1)^{b}}{\Gamma(a)}\int_{0^{1}}\sigma^{a-1}(2-\sigma)^{-b+1-n-a}M_{b}(\sigma, 0)d\sigma$ .

Thus we see that, for $a,$ $b$ zero or negative integers, the integral $R^{o,b_{A}7}|I$

depends only on the local properties of the function $M$. From what we have
done, it is clear that the functions $M_{j}$ and $H_{\mu,\nu}$ ,, have all the desired pra-
perties except for certain negative values of $\mu$ and $\nu$ and if $p$ is sufficiently
large. The requirement that $M\equiv 0$ for $\tau>\tau_{0}$ can be satisfied by choosing $f$

to vanish for large negative values of $y_{0}$ .
We can now compute $J^{0,0}f$. One observes that $M_{j}(\sigma, \tau, 0,0)=0$ except for

the case where $j=0$ . Likewise $H_{0,0,p}=0$ if $p>n/2-1$ . Thus, we find

$(J^{0,0}f)(x)=R^{1-n/2,0}M_{0}(0,0)$ .

But $M_{0}(0,0)=\frac{\omega_{n-1}\Gamma(}{\pi^{(n-}}\frac{1/2)(1-\sigma)^{n-2}}{1)/2\Gamma(n/2)}M(\tau(1-\sigma), y_{0}-\tau, x,f)$ . On the other hand,

using the above formula for $R^{a,-b}$ , one finds

$ R^{a.0}M_{0}(0,0)=\frac{\Gamma(a+n-1)}{\Gamma(a)}\int_{0^{1}}\sigma^{a-1}(1-\sigma)^{n-2}(2-\sigma)^{1-n-a}\frac{\omega_{n-1}M(0,x_{0}.x,f)}{\pi^{(n-1)/2}\Gamma(n/2)}d\sigma$ .

Now, we make use of the value of $\omega_{n-1}$ and the fact that $M(O, x_{0}, x,f)=f(x)$

to find

$ R^{a.0}M_{0}(0,0)=\frac{2\pi^{(n-1)/2}\Gamma(a+n-1)f(x)}{\pi^{(n-2)/2}\Gamma(a)\Gamma(n/2)\Gamma((n-1)/2)}\int_{0^{1}}\sigma^{a-1}(1-\sigma)^{n-2}(2-\sigma)^{1-n-a}d\sigma$ .

One can show that [4]

$\int_{0^{1}}\sigma^{a-1}(1-\sigma)^{n-2}(2-\sigma)^{1-n-a}d\sigma=2^{1-n}\frac{\Gamma(a)\Gamma(n-1)}{\Gamma(a+n-1)}$

Thus,

$R^{a,0}M_{0}(0,0)=f(x)\frac{2^{2-n}\pi^{1/2}\Gamma(n-1)}{\Gamma((n-1)/2)\Gamma(n/2)}$
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Finally, an application of the Legendre duplication formula gives

(12) $(J^{0.0}f)(x)=R^{a,0}M_{0}(0,0)=f(x)$ .
We have already observed that $W(x, \mu, \nu)$ will be an analytic function if

$\mu>0$ and $\mathfrak{R}(m\mu+\nu)>n/2$ . Suppose $\nu=1$ , then the second inequality assures
us that $W(x, \mu, 1)$ will be analytic at $\mu=1$ if $m>(n-2)/2$ . Thus, $W(x, 1,1)$ is
analytic if $m>(n-2)/2$ where $n$ is the number of dimension and $m$ the
number of partial differentiations with respect to $x_{0}$ in equation (1). (It will
be remembered that the analyticity may break down along the axis of $D^{x}$,

but we shall continue to ignore this possiblity for the moment.) It is now
meaningful to write the operator

$(J^{1,1}f)(x)=\int_{D^{x}}W(x-y, 1,1)f(y)dy_{(n)}$

or
(13) $(I^{1.1}f)(x)=\frac{\pi^{-(n-1)/2}}{\Gamma(m+2-n)/2}\int_{D^{x}}f(y)\frac{(x_{0}-y_{0}-r)^{m}}{[(x_{0}-y_{0})^{2}-r^{2}]^{n/2-1}}$

$\times F(n/2-1,$ $m;m+2-n/2;\frac{x_{0}-y_{0}-r}{x_{0}-y_{0}+r})dy_{(n)}$

where $m>(n-2)/2$ and $f$ vanishes for sufficiently large negative values of $y_{\alpha}$

so that the integral converges.

4. Behavior of the integrand of $J^{1,1}f$ for $y$ on the axis of $D_{x}$ . We have
already pointed out that the hypergeometric function occurring in the Riesz
kernel has argument 1 when $r=0$ . The value of this function for argument
1 is given by the formula [4],

$F(n/2-1, m;m+2-n/2;1)=\frac{\Gamma(m+2-n/2)\Gamma(3-n)}{\Gamma(2-n/2)\Gamma(m+3-n)}$ ,

and the formula is valid if $m+2-n/2\neq 0,$ $-1,$ $-2$ , $\cdot$ . and if $\mathfrak{R}(3-n)>0$ . At
first glance it would appear that the integrand of $J^{1,1}f$ will be singular if
$n>2$ , but we might still hope to choose $m$ (in accord with the inequality
above) in such a way that the singularity will be cancelled out. In fact, if
we choose $m=n/2$ and use the Legendre duplication formula, we find

(14) $F(n/2-1, n/2;2;1)=\frac{2^{2-n}\pi^{1/2}\Gamma(\frac{3-n}{2})}{\Gamma(\frac{6-n}{2})}$ .

This function has simple poles at $n=3,5,7,9,$ $\cdots$ and $z$eros for $n=6,8,10,$ $\cdots$ .
Therefore, for $n$ even the integrand of $J^{1,1}f$ has no singularity and equation
(13) is valid with the Riesz kernel given by (14) for $r=0$ .



408 J. S. MAYBEE

On the other hand, if we choose $m=n/2-1/2$ , we also satisfy the in-
equality for $m$ given in the last section and we find

(15) $F(n/2-1, n/2-1/2;3/2;1)=\frac{2^{1-n}\Gamma((3-n}{\Gamma((5-n)/}2\frac{2)}{)})/$ .

This function has simple poles in the numerator at $n=3,5,7,9,$ $\cdots$ as before
and simple poles in the denominator at $n=5,7,9,$ $\cdots$ . Therefore, for $n=5,7$ ,
9, $\cdots$ the singularity of the integrand on the axis of $D^{x}$ is removed and equa-
tion (13) is again valid with the kernel given as $2^{1-n}$ for $r=0$ .

It remains to determine how the Ries $z$ kernel behaves in the case of
3-dimensions. We choose $m=1$ in conformity with the situation for the odd
dimensional case in general. Then one finds [4],

$F(1/2,1;3/2;z)=\frac{1}{2\sqrt{}^{-}z}\log\frac{1+\wedge z}{1-\sqrt{}\overline{z}}$

where we have set $z=(x_{0}-y_{0}-r)/(x_{0}-y_{0}+r)$ . This means that the Riesz
kernel becomes

(16) $\frac{1}{2}\log\frac{1+\sqrt{z}}{1-\sqrt{z}}$ .

This kernel vanishes on the surface of $D^{x}$ and has a logarithmic singularity
along the axis of $D^{x}$ . However, the kernel (16) is the same as the kernel in
the classical solution of Volterra [5] and, by a transformation to polar
coordinates, we can show that the singularity on the axis does not cause any
trouble in the integration. Therefore, the formal calculation is valid and the
Riesz operator for the equation

$\frac{\partial}{\partial x_{0}}(\frac{\partial^{2}}{\partial x_{0^{2}}}-\frac{\partial^{2}}{\partial x_{1^{2}}}-\frac{\partial^{2}}{\partial x_{2^{2}}})u=f$

can be written explicitly in the form

(17) $(J^{1,1}f)(x)=\frac{1}{2\pi\Gamma(3/2)}\int_{D^{x}}f(y)\log\frac{1+\wedge z}{1-\sqrt{z}}dy_{(3)}$ .

Our analysis so far has shown that for certain particular values of $m$ we
can generate Riesz operators for equation (1) for which the integrands are
analytic at $\mu=\nu=1$ when $y$ is inside the light cone $D^{x}$ . We must now
justify the remark made in the introduction by showing that this can be
done for all combinations of $m$ and $n$ . For the case where $n$ is even we can
try $m=n/2+k$ , then we find

$F(n/2-1, n/2+k;k+2;1)=\frac{2^{2-n}\pi^{-1/2}\Gamma(k+2)\Gamma((3-n)/2)}{\Gamma((2k+6-n)/2)}$



On a smoothing operator for the wave eqnation. 409

This choice again gives singularities in the odd dimensional cases, but reduces
to a constant in the even dimensional cases. It follows that we have an
analytic Riesz kernel for equation (1) for every integer value of $m$ greater
than or equal to $n/2$, when the number of dimensions is even. Now, if one
applies the method we shall use in the next section for obtaining the Riesz
operator for $\square _{n}$ , one can find a Ries $z$ operator for every integer value of $m$

if $n$ is even. Further, once the operator has been found for given combination
of $m$ and $n$ (even), Hadamard’s method of descent [6] allows us to deduce
the operator for $m$ and $n-1$ . In this way we can find the Riesz operator for
every conbination of $m$ and $n$ .

5. The Riesz operator for $\square _{n}$ . From our development of formula (13) it
is clear that

$\frac{\partial^{m}}{\partial x_{0}^{m}}\square _{n}(J^{1,1}f)(x)=\square _{n}\frac{\partial^{m}}{\partial x_{0}^{m}}(J^{I,1}f)(x)=(J^{c,n}f)(x)=f(x)$ .

Therefore, we set

$v=\frac{\partial^{m}}{\partial x_{0}^{m}}(J^{1,1}f)(x)$

and we have the Riesz operator for $\square _{n}$ . Moreover, we have shown that if
$n$ is even we can chose $m=n/2$ and if $n$ is odd we can chose $m=(n-1)/2$.
It follows that the Riesz operator for the wave equation is given by the
formula

$\partial^{[n/2]}$

(18) (I $1,1f$ ) $(x)=-(J^{1,1}f)(x)\partial\overline{x_{0^{[n/2]}}}$

Let us rewrite the Riesz operator in the following form:

(I $1,1f$ ) $(x)=\frac{\partial^{[n/2]}}{\partial x_{0}^{[n/2]}}\int_{-\infty}^{x_{\theta}}\int_{S(Px,x_{0}-y_{0})}f(y)W(x-y, 1,1)dy_{(n-1)}dy_{0}$ .

It is not difficult to show that one can move $n-1$ differentiations with respect
to $x_{0}$ inside the first integral sign. Therefore, we can write

(I $1,1f$ ) $(x)=\int_{-\infty}^{x_{0}}\frac{\partial^{[n/2]}}{\partial x_{0}^{[n/2]}}\int_{S(Px.x_{\Phi}-y_{0})}f(y)W(x-y, 1,1)dy_{(n-1)}dy_{0}$ .

We define $W(x_{0})$ , a one parameter set of operators on $L^{2}(E^{n-1})$ , such that for
$f(Py)\in L^{2}(E^{n-1})$

(19) $W(x_{0})(f, Px)=\frac{\partial^{[n/2]}}{\partial x_{0}^{[n/2]}}\int_{S(Px,x_{0})}f(Py)W(x_{0}, Py, 1,1)dy_{(n-1)}$ .

With the aid of this set of operators we shall solve the Cauchy problem
for data given on the plane $x_{0}=0$ .
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6. Solution of the Cauchy problem for $\square _{n}u=f$. Let us write the wave
equation in the form

$\partial_{ll}^{\underline{\gamma}}$

(20) $-\partial\overline{x}_{0}^{\underline{o}^{-}}+Lu(x_{0})=f(x_{0})$

where $L=-\sum_{i\Rightarrow 1}^{n-1}\overline{\partial}^{\partial_{\overline{X_{i^{2}}^{2}}}}$ . Suppose that we look upon equation (20) as if it were
an ordinary differential equation with $L$ a constant and that we seek the
solution of this equation for initial data given at $x_{0}=0$ . Let the data be
$u(0)=u_{0},$ $\frac{\partial u}{\partial x_{0}}(0)=u_{1}$ . Then we can write the solution of the homogeneous

equation

$-dd_{\frac{2u}{x_{0}^{2}}+Lu(x_{0})=0}$

in the form

$u(x_{L)})=\cos(\sqrt{L}x_{0})u_{0}+\frac{\sin(\sqrt{}\overline{L}}{\sqrt{L}}\underline{x_{0})}u_{1}$ .

Let $W(x_{0})=\frac{\sin(}{\sqrt{}}\frac{\wedge L}{L}\underline{x}_{\underline{0}})$ then we have

(21) $u(x_{0})=_{d}^{d_{\frac{W}{x_{0}}}}-(x_{0})u_{0}+W(x_{0})u_{1}$ .
Formally,

$\frac{\sin(}{\sqrt{}}-\prime_{L^{-}}\underline{Lx_{0})}=x_{0}-\underline{L}_{3}x_{!^{0_{-+}}}^{3}\underline{L}_{5^{X}!^{0_{--}}}^{25}\ldots$

If $W(x_{0})$ has the desired formal properties, then equation (21) gives the solu-
tion of the homegeneous equation. To solve the non-homogeneous equation
we write

(22) $u(x_{0})=--\frac{W}{x_{0}}\partial\partial(x_{0})u_{0}+W(x_{0})u_{1}+\int_{0}^{x_{0}}W(x_{0}-y_{0})f(y_{0})dy_{0}$ .
Writing $f(y)=f(y_{0})(Py)$ we see that the last integral is the operator we have
called (I $11f$) $(x)$ so that we can write out the solution of the Cauchy problem
in the form

(23) $u(x)=\frac{\partial^{[n/2+1]}}{\partial x_{0^{[n/2+1]}}}\int_{S(Px.x_{0})}u_{0}(Py)W(x_{0}, Py, 1.1)dy_{(n-1)}$

$+\partial^{\frac{\partial^{\subset}}{x_{0}}}n/2J[\overline{n/}2]\int_{S(Px.x_{0})}u_{1}(Py)W(x_{0}, Py, 1,1)dy_{(n-1)}$

$+\partial^{\partial,}\overline{\mathfrak{r}_{0^{n/}}^{\llcorner}}\ulcorner Cn^{2}/^{J}2_{\lrcorner^{-\int_{0}^{x_{0}}\int_{S(Px.x_{0}-y_{0})}f(y)W(x-y,1,1)dy_{(n)}}}^{\urcorner}$ .
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“SVe leave aside here the problem of determining under what conditions the
one parameter semi-group of operators $W(x_{0})$ can be represented by the
cperator series, but an operational calculus of the kind we have just used
can be justified under quite general conditions.

University of Oregon.
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