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The purpose of this paper is to generalize some results of Weil [6] on
abelian varieties to the case of commutative group varieties. An element, of
a group, $who^{\sim}e$ order is finite and divides $n$ will be called an n-division point.
In \S 1, we first count the number of n-division points on a commutative group
variety and see that a commutative group variety without affine subgroup
is generated by division points. We can introduce therefore a system of l-
adic coordinate\^o on such a group $G$ , and get the l-adic representation of the
ring of endomorphisms of $G$ . Next we shall show the symmetric property
of isogenies between divisible commutative group varieties, where an isogeny
means a surjective (rational) homomorphism between two group varieties of
the same dimension. In \S 2, we shall see that a group variety defined over
a finite field is generated by an abelian variety and a linear group variety
(Theorem 1), and that the algebra of endomorphisms of a divisible commuta-
tive group variety defined over a finite field is a semi-simple algebra over
the field of rational numbers.

We use the following terminologies and notations throughout the paper.
A homomorphism of a group variety into a group variety means always a
rational homomorphism; we use “ endomorphism “ in the corresponding sense.
An algebraic subgroup of a group variety is an abstract subgroup which is
a closed subset in the sense of Zariski topology. An affine group is a group
variety which is biregularly equivalent to an affine space as a variety. $G_{a}$

denotes the additive group of the universal domain and $G_{m}$ the multiplica-
tive group of the non-zero elements of the universal domain. A biregular
isomorphism between group varieties is a group-isomorphism defined by a
birational mapping which we denote by $\cong$ . $T\supset S$ means that $T$ contains $S$

but not equals S. For a natural number $n$ , we denote by $n[G]$ the number
of n-division points on a group $G$ . We denote the characteristic of the uni-
versal domain by $p$ . We write the (commutative) group-operation additively.

\S 1. Division points.

1. Let $G$ be a commutative group variety and $L$ be its maximal linear
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group subvariety. Then the factor group $A=G/L$ is an abelian variety [2,

p. 439, Theorem 16]; in this case we shall say that the group variety $G$ is
an extension of an abelian variety $A$ by a $lin\supset.ar$ group variety $L$ . It is
known also that the (commutative) linear group variety $L$ is a direct product
of two group varieties $L_{1}$ and $L_{2}$ where $L_{1}$ is biregularly isomorphic to a
direct product of a certain number of $G_{m}$ , and $L_{2}$ is an affine group ([1],

[3]). We first count the number of n-division points of a commutative group
variety.

LEMMA 1. Let $G$ be a commutative abstract group and $L$ be its subgroup.
$ Jfn[L]<\infty$ and $ n[G/L]<\infty$ , then we have $n[G]\leqq n[L]n[G/L]$ . Moreover we
have $n[G]=n[L]n[G/L]$ , provided that $nL=L$ .

PROOF. Put $\mathfrak{g}=\{x|x\in G, nx=e\},$ $\mathfrak{h}=\mathfrak{g}\cap L,$ $A=G/L,$ $\mathfrak{a}=\{a|a\in A, na=e\}$ ,

and let $\alpha:G\rightarrow A$ be the canonical homomorphism. As $\mathfrak{g}/\mathfrak{h}\cong \mathfrak{g}L/L=\alpha \mathfrak{g}\subseteqq \mathfrak{a}$ , we
have $n[G]\leqq n[L]n[A]$ . Moreover if $nL=L$ , then we have $\alpha \mathfrak{g}=\mathfrak{a}$ . In fact,
take an element $a=\alpha x$ of $\mathfrak{a}$ (with $x\in G$). From $na=\alpha nx=e$ , it follows that
$nx\in L=nL$ . Hence there exists an element $\xi$ of $L$ such that $ nx=n\xi$ , which
implies that $x-\xi\in \mathfrak{g}$ and $a=\alpha(x-\xi)\in\alpha \mathfrak{g}$ : Lemma 1 is thereby proved.

PROPOSITION 1. Let $n$ be a natural number coprime to the characteristic $p$ .
Then the neutral element is the only n-division point of an affine group.

PROOF. An affine group $L^{m}$ is solvable and has a normal chain of affine
subgroups: $L^{m}=H_{0}\supset H_{1}^{m-1}\supset\cdots\supset H_{m-1}^{1}\supset H_{m}=\{e\}$ with $H_{i-1}/H_{i}\cong G_{a}(1\leqq i\leqq m)$

[ $3$ , p. 155]. Proposition 1 follows immediately from this and the relation
$n[H_{i-1}/H_{i}]=n[G_{a}]=1$ .

PROPOSITION 2. Let a commutative group variety $G$ be an extension of an
abelian variety $A^{n_{0}}$ by a linear group variety $L=L_{1}\times L_{2},$ $u’ hereL_{1}\cong(G_{m})^{n_{1}}$ and $L_{2}$

is an affine group. Let $n$ be a natural number. If $n$ is coprime to the charac-
teristic $p$ , then the number of n-division points on $G$ is $n^{2n_{0}+n_{1}}$ . If $G$ contains no
$aJfine$ group, then the number of n-division points is at most $n^{2n_{0}+n_{1}}$ .

PROOF. Since the n-division points of $G_{m}$ are n-th roots of the unity, we
have clearly $n[L|]=n^{n_{1}}$ for $n$ which is coprime to the characteristic $p$ and
$n[L_{1}]\leqq n^{n_{1}}$ for arbitrary $n$ . We first assume that $n$ is $coprin\iota e$ to $p$ . From
$n[L_{1}]=n^{n_{1}}$ and Proposition 1 follows immediately $n[L]=n^{n_{1}}$ , which implies
also $nL=L$ . It is well known that the number $n[A]$ of the abelian variety
$A$ is $n^{2n_{0}}$ , so that we have $n[G]=n^{2n_{0}+n_{1}}$ by Lemma 1. The second part of
Proposition 2 will be verified analogously.

2. We shall show next that division points of a commutative group va-
riety generate, together with its canonical affine subgroup, the whole group.

PROPOSITION 3. Let $G$ be biregularly isomorphic to a direct product of $G_{m}’ s$ ,
then every group subvariety of $G$ is also biregularly isomorphic to a direct product

of $G_{m}’ s$ .
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PROOF. Let $H$ be a group subvariety of $G\cong(G_{m})^{n}$ . Since $H$ and $G/H$ are
linear [2, p. 440, Cor. 2 to Th. 16], we have, by the structure theorem of
linear group variety, $H=H_{1}^{t_{1}}\times H_{2^{2}}^{t},$ $G/H=G_{1}^{s_{1}}\times G_{2}^{s_{2}}$ where $H_{1}\cong(G_{m})^{1_{1}},$ $G_{1}\cong(G_{m})^{s_{1}}$ ,
and $H_{2}$ and $G_{2}$ are $a_{-}8ine$ groups. We take now a natural number $l$ coprime
to the characteristic $p$ and count the number of l-division points. By Propo-
sition 2 and Lemma 1, we have $l^{n}=l[G]=l[H]l[G/H]=l^{t_{1}}l^{s_{1}}$ . From this
follows that $n=t_{1}+s_{1},$ $t_{2}=s_{2}=0$ and $H\cong(G_{m})^{t_{1}}$ , which proves Proposition 3.

PROPOSITION 4. Let $G$ be a commutative group variety and $F$ an algebraic
subgroup of G. Suppose that $F$ fulfills the following two conditions:

(i) for infinite number of natural numbers $n$ which is coprime to the charac-
teristic $p,$ $F$ contains all the n-division points of $G,$ $i$ . $e.,$ $(n\delta)^{-1}(e)\subseteqq F$ ;

(ii) $F$ contains the canonical affine subgroup of $G$ .
Then $u’ e$ have $F=G$ .
$P_{ROOF}\cdot$ . Assume for a moment that $F\neq G$ ; let $G$ be an extension of an

abelian variety $A^{n_{0}}$ by a linear group variety $L=L_{1}\times L_{2}$ , where $L_{1}\cong(G_{n})^{n_{1}}$

and $L_{2}$ is an affine group. Let $F_{0}$ and $(F_{0\cap}L)_{0}$ be the identity-components
of $F$ and $F_{0}\cap L$ respectively. If a natural number $n$ is coprime to $p$ , we have,
by Lemma 1 and Proposition 1, $n[F]\leqq(F:F_{0})n[F_{0}/(F_{0}\cap L)_{0}]n[(F_{0}\cap L)_{0}/L_{2}]$ .
$F_{0}/(F_{0}\cap L)_{0}$ is isogenous to $F_{0}L/L$ , which is an abelian subvariety of $G/L=A$ .
Put $n_{0^{\prime}}=\dim F_{0}/(F_{0}\cap L)_{0}$ ; then we have $n_{0}^{\prime}\leqq n_{0}$ and $n[F_{0}/(F_{0}\cap L)_{0}]=n^{2n_{0}\prime}$ .
From $(F_{0}\cap L)_{0}/L_{2}\subseteqq L/L_{2}\cong(G_{m})^{n_{1}}$ and Proposition 3, it follows $(F_{0}\cap L)_{0}/L_{2}\cong$

$(G_{m})^{\circ\iota_{1^{\prime}}}$ with $n_{1}^{\prime}\leqq n_{\uparrow}$ , and $n[(F_{0\cap}L)_{0}/L_{2}]=n^{n_{1}}$ ‘. Since the equalities $n_{0}^{\prime}=n_{0}$ and
$n_{1}^{\prime}=n_{1}$ lead to $F_{0}L=F=G$ , we must have $2n_{0}^{\prime}+n_{1^{\prime}}<2n_{0}+n_{1}$ . Now, if $F$ con-
tains all the n-division points of $G$ , then the number of n-division points of $G$

is equal to that of $F$, and we have $n^{2^{\eta_{0}}+n_{1}}=n[G]=n[F]\leqq(F:F_{0})n^{2n_{0}/}n^{n_{r^{\prime}}}$ , i. e.,

$n^{(2n_{0}+n_{1)-(2^{\eta}0^{\prime}+n_{1^{\prime})}}}\leqq(F:F_{0})$ .

Since $(2n_{0}+n_{1})-(2n_{0}^{\prime}+n_{1^{\prime}})>0$ , we see that the number $n$ satisfying the last
inequality must be finite, which contradicts the condition (i) and proves our
assertion.

3. Let $G$ be a commutative group variety and assume that $G$ contains no $\cdot$

affine group; $G$ is an extension of an abelian variety $A^{n_{0}}$ by a linear group
variety $L\cong(G_{m})^{n_{1}}$ . Take a prime number $l$ coprime to the characteristic $p$ .
We have seen in Proposition 2 that, for a natural number $m$ , the group $\mathfrak{g}_{m}$

of $l^{m}$ -division points of $G$ is a finite group of order $l^{m}[G]=l^{m(2n_{0}+n_{1})}$ . We
have then the following proposition which is an analogue of the proposition
11 of [6, p. 45] and proved in the same way.

PROpOSITION 5. ($i$; is a direct product of $2n_{0}+n_{1}$ cyclic groups of order $l^{m}$ .
Denote by $\mathfrak{g}_{l}(G)$ the group of elements of $G$ whose orders are powers of

$l$ ; by virtue of Proposition 5, the structure of $\mathfrak{g}_{l}(G)$ is determined only by $\Gamma$
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and $2n_{0}+n_{1}$ , so by $l$ and $G$ ; as in [6], we see that $\mathfrak{g}_{l}(G)$ is isomorphic to the
direct product of $2n_{0}+n_{1}$ copies of the additive group of the l-adic numbers
modulo the l-adic integers. In other words, we can introduce a system of l-
adic coordinates in $tI_{l}(G)$ . Denote by $\mathfrak{a}_{m}$ and l) . the group of $l^{m}$ -division points
of $A$ and $L$ , respectively; denote by $\mathfrak{g}_{l}(A)$ and $\mathfrak{g}_{l}(L)$ the group of elements,
respectively, of $A$ and $L$ whose orders are powers of 1. From Proposition 2
and Lemma 1 it follows that $\mathfrak{g}_{m}/6_{m}$ is $isomorphi\wedge$. to $\mathfrak{a}_{m}$ , and therefore that $\mathfrak{g}_{m}$

is isomorphic to the direct product $\mathfrak{a}_{m}\times \mathfrak{y}_{m}$ . It follows from this that $\mathfrak{g}_{\iota}(G)$ is
isomorphic to {$)_{l}(A)\times \mathfrak{g}_{\iota}(L)$ (cf. [6, p. 46, Lemma 6]). Therefore we can intro-
duce a system of l-adic coordinates in $\mathfrak{g}_{l}(G)$ in such a way that the first $2n_{0}$

components of the coordinates are that of $tt_{l}(A)$ and the remaining $n_{1}$ com-
ponents are that of $\mathfrak{g}_{l}(L)$ .

Let $G^{\prime}$ be another commutative group variety which is an extension of
an abelian variety $A^{\prime n_{0}}$

‘ by a linear group variety $ L^{\prime}\cong(G_{l})\eta$ ; we introduce
a system cf l-adic coordinates also in $g_{l}(G^{\prime})$ ; let $\lambda$ be a homomorphism of $G$

into $G^{\prime}$ . Let $\alpha:G\rightarrow A$ and $\alpha^{\prime}$ : $G^{\prime}\rightarrow A^{\prime}$ be the canonical homomorphisms. As
$\alpha^{\prime}\lambda:G\rightarrow A^{\prime}$ maps $L$ to $\{e\}$ , there exists a homomorphism $\text{\‘{A}}_{0}$ : $A\rightarrow A^{\prime}$ such that
$\alpha^{\prime}\lambda=\lambda_{0}\alpha$ [ $2$, p. 415, Cor. 1 to Th. 4]. Since $\lambda L\subseteqq L^{\prime}$ (because $\lambda L$ is linear), $\lambda$

induces a homomorphism of $L$ into $L^{\prime}$ which we denote by $\lambda_{1}$ . Following the
same process as in [6, p. 49, Th. 14], we obtain an l-adic representation of $\lambda$

in the following sense. Namely there exists a matrix $1\psi=j\psi_{l}(\lambda)$ of $2n_{0}^{\prime}+n_{1}^{\prime}$

$\iota ows$ and $2n_{0}+n_{1}$ columns with l-adic integral coefficients such that, if $\overline{x}$ and
$\overline{y}$ are the l-adic representations of $x\in \mathfrak{g}_{l}(G)$ and $y=\lambda x\in \mathfrak{g}_{i}(G^{\prime})$ , we have $\overline{y}\equiv M\overline{x}$

$(mod. 1)$ . Moreover, $\lambda\rightarrow 1^{\rceil},I_{l}(\lambda)$ gives a faithful representation of the module of
homomorphisms of $G$ into $G^{\prime}$ . To prove this, assume that $\lambda\neq 0$ ; put $F=\lambda^{-1}(e)$ .
Since $F\neq G$ , Proposition 4 shows that the set $N$ of natural numbers $n$ which
is such that $(ff\delta)^{-1}(e)\subseteqq F$ and coprime to the characteristic $p$ is a finite set.
If $J/l_{l}(\lambda)=0$ , we see that

$l^{\prime}x=e$ $\Rightarrow$
$\grave{A}x=\angle\uparrow/I_{l}(\lambda)\overline{x}=0-$

$=\succ$ $\lambda x=e$ ,

$i$ . $e.,$ $(l^{d}\delta)^{-1}(e)\subseteqq F$, where $\nu$ is an arbitrary natural number. This indicates that
$N$ is an infinJte set, which is a contradiction.

We now introduce, in the same way as we have described below Propo-
sition 5, the systems of l-adic coordinates in $\mathfrak{g}_{\iota}(G)\cong \mathfrak{g}_{\iota}(A)\times \mathfrak{g}_{\iota}(L)$ and $\mathfrak{g}_{\iota}(G^{\prime})\cong$

$g_{\iota}(A^{\prime})\times \mathfrak{g}_{l}(L^{\prime})$ ; We denote l-adic representations of $\lambda,$ $\lambda_{0},$ $\text{\‘{A}}_{1}$ by $M_{l}(\lambda),$ $M_{l}(\lambda_{0}),$ $j\psi_{l}(\lambda_{j})$ ,

respectively. Then we have clearly $M_{i}(\lambda)=(^{j\psi(\lambda_{0})_{M_{\iota}}0_{(\lambda_{1})}}\iota_{jk})$ since $\lambda L\subseteqq L^{\prime}$ .

4. We now prove a symmetric property of isogenies between commuta-
tive group varieties.

$p_{ROPOSITION}6$ . Let $\lambda$ be a homomorphism of a commutative group variety
$G$ onto $a$ $comm^{\gamma}\vee i$lati$ve$ group variety $H$ with finite kernel. If $G$ is divisible (and
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a fortiori $H$ is also divisible), then there exists a homomorphism /4 of $H$ onto $G$

such that $\rho_{l}\lambda=\nu(\lambda)\delta_{G},$ $\lambda\mu=\nu(\lambda)\delta_{H}$ .
PROOF. Separable case: If $\lambda$ is separable, we have $H=G/\lambda^{-1}(e)$ . Putting

$d=\nu(\lambda)$ , we have $(d\delta)^{-1}(e)\supseteqq\lambda^{-1}(e)$ . Thus there exists a homomorphism $\mu$ of $H$

onto $dG=G$ such that $l^{4}\lambda=d\delta_{G}$ [ $2$ , p. 415, Cor. 1 to Th. 4].
Purely inseparable case: In this case $\lambda$ is bijective. Denote by $\Gamma$ the

graph of $\lambda$ in the product $H\times G$ and let $k$ be a field of definition for $G,$ $H$

and $\Gamma$ . Take a generic point $y$ of $H$ over $k$ , then the element $x\in G$ with
$y=\lambda x$ is a generic point of $G$ over $k$ . Put $d=\nu(\lambda)=\nu_{i}(\lambda)$ . Since we have
$\Gamma\cdot(y\times G)=y\times d(x)$ , the cycle $d(x)$ is rational over $k(y)$ , and hence the point
$dx\in G$ is also rational over $k(y)$ . We can thus define the rational mapping

$y\rightarrow\mu y=dx$ $(y=\lambda x)$

of $H$ into $G$ . Let $y^{\prime}$ be another generic point of $H$ over $k$ , independent of $y$

over $k$ . Clearly we have $\mu y^{\prime}=dx^{\prime}$ (with $y^{\prime}=\lambda x^{\prime}$ ). Since we have $y+y^{\prime}=$

$\lambda x+\lambda x^{\prime}=\lambda(x+x^{\prime})$ , we have $\mu(y+y^{\prime})=dx+dx^{\prime}=\mu y+\mu y^{\prime}$ . Thus $\mu$ is generically
a homomorphism, and therefore defines a homomorphism $\mu$ of $H$ into $G$ ; clear-
ly we have $\mu\lambda x=dx$.

General case: Given $\lambda$ , we can decompose $\lambda$ into two homomorphisms
$G\rightarrow^{\alpha}G[\lambda^{-1}(e)\rightarrow^{\beta}H$ where $\alpha$ is separable and $\beta$ is purely inseparable and
$\nu(\alpha)=\nu_{s}(\lambda),$ $\nu(\beta)=\nu_{i}(\lambda)$ [ $2$ , p. 415, Cor. 1 to Th. 4]; then, applying the above
two cases to $\alpha$ and $\beta$ respectively, we obtain a homomorphism $\mu$ of $H$ onto
$G$ such that $\mu\lambda=\nu_{i}(\lambda)\nu_{S}(\lambda)\delta_{G}=\nu(\lambda)\delta_{G}$ . $\lambda\mu=\nu(\lambda)\delta_{H}$ is trivially verified from
$\mu\lambda=\nu(\lambda)\delta_{G}$ . Proposition 6 is thereby proved.

\S 2. Groups over finite fields.

5. We first prove the following
PROPOSITION 7. Let $G$ be a commutative group $varie\neq y$ containing no abelian

subvariety and $L$ be its maximal linear group subvariely. If an endomorphism $\lambda$

of $G$ is zero on $L$ , then $\lambda=0$ on $G$ .
PROOF. Let $\alpha:G\rightarrow A=G/L$ be the canonical homomorphism. Since

$\alpha^{-1}(e)=L\subseteqq\lambda^{-1}(e)$ , there exists a homomorphism $\mu$ of $A$ into $G$ such that $\lambda=$

$\mu\alpha$ . Then the assumption that $G$ contains no abelian variety implies that
$i_{7}G=\mu\alpha(G)=\mu(A)=\{e\}$ , which proves our proposition.

THEOREM 1. Let $G$ be a group variety defined over a finite field. Let $A$ and
$L$ be the maximal abelian subvariety and the maximal linear group subvariety of
$G$ respectively. Then $G$ is generated by $A$ and $L:G=AL$ . (We do not assume
the commutativity of $G.$)

PROOF. Let $G$ be defined over a finite field $k$ . Then $L$ is also defined over
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$k$ . As there exists a $ce\backslash tral$ group subvariety $D$ of $G$ defined over $k$ such
that $G=DL$ and $D$ is divisible and $D$ contains every abelian subvariety of $G$ ,
we can assume without loss of generality that $G$ is commutative and contains
no affine subgroup (cf. [2, p. 431, Cor. 3 to Th. 12], [2, p. 433, Cor. 1 to Th.
13] and [2, p. 440, Cor. 5 to Th. 16]).

Let $A$ be the maximal abelian subvariety of $G$ , then $A$ is defined over $k$

and there exists a k-closed group subvariety $G_{1}$ of $G$ such that $G=G_{1}A$ and
$G_{1}\cap A$ is finite [2, p. 443, Cor. to Prop. 4], [2, p. 434, Cor. to Th. 14]. Hence
it suffices to prove our theorem for $G_{1}$ . Now suppose that $G$ is a commuta-
tive group variety defined over the finite field $k$ with $q$ elements and that $G$

contains neither affine subgroup nor abelian subvariety. Under this assump-
tion we shall show that $G$ is biregularly isomorphic to a direct product of
$G_{m}’ s$ , which will prove the theorem. Let $L\cong(G_{m})^{n_{1}}$ be the maximal linear
group subvariety of $G$ and $G/L=B^{n_{0}}$ . We assume $n_{0}>0$ and show that this
leads to a contradiction. $B=G/L$ is defined over $k$ [ $2$ , p. 413, Th. 4]; replac-
ing $k$ by its finite extension if necessary, we can also assume that the bi-
regular isomorphism $L\cong(G_{m})^{n_{1}}$ is defined over $k$ . Let $\pi$ and $\pi_{0}$ be the q-th-
power-endomorphisms of $G$ and $B$, respectively. We remark that we have
$\pi=q\delta_{L}$ on $L$ since the biregular isomorphism $L\cong(G_{m})^{n_{1}}$ is defined over $k$ .
Now we compare the l-adic representotions of $\pi$ and $q\delta_{G}$ :

$M_{\iota}(r_{\vee})=\left(\begin{array}{l}M,(\pi_{0}) 0\\*M_{\iota}(q\delta_{L})\end{array}\right)$ , $M_{\iota}(q\delta_{G})=\left(\begin{array}{l}M_{\iota}(q\delta_{B}) 0\\*M_{l}(q\delta_{L})\end{array}\right)$

(cf. \S 1, no. 3). Since $\det M_{l}(\pi_{0})=(\sqrt{q})^{2^{n_{0}}}=q^{n_{0}}$ [ $5$ , p. 37] and $\det M_{l}(q\delta_{B})=$

$\nu(q\delta_{B})=q^{2n_{0}}$ [ $6$ , p. 127, Cor. 1 to Th. 33] and $n_{0}>0$ , we see that $M_{\iota}(\pi)\neq M(q\delta_{G})$

and $\pi\neq q\delta_{G}$ . Put $\lambda=\pi-q\delta_{G}$ , then we have $\lambda\neq 0$ on $G$ and $\lambda=0$ on $L$ . From
Proposition 7, it $follow\backslash \wedge$ that $\lambda=0$ on $G$ since $G$ contains no abelian sub-
variety; this is a contradicition and completes the proof.

Since a divisible (commutative) linear group variety defined over a field
of positive characteristic is a direct product of $G_{m}’ s$ and since an abelian
variety is completely reducible, we have now at once

COROLLARY 1. Let $G$ be a divisible commutative group variety defined over a
finite field. Then lhere exist simple group subvarieties $G_{1},$

$\cdots,$
$G_{h}$ of $G$ , of dimen-

sions $n_{1},$ $\cdots,$ $n_{\iota}$ respectively, such that $\sum_{i=1}^{h}n_{i}=n$ and $G=G_{1}\cdots G_{h}$ .

COROLLARY 2. Let $G^{n}$ be a divisible commutative group variety defined over
a finite field and $H^{\prime}$ be a group subvariety of G. Then there exists a group sub-
variety $F^{n-r}$ of $G$ such that $H_{\cap}F$ is a finite set, and $G=HF$.

The divisibility assumption on $G$ in Corollaries 1 and 2 is necessary. For
example, a Witt group $W_{n}$ of length $n$ is defined over a prime finite field and
contains only $n-1$ proper group subvariety $W_{i}$ such that $ W_{n}\supset W_{n-1}\supset\cdots$
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$\supset W_{1}\supset\{e\}$ , so that it is immediately verified that the conclusions of Corol-
laries 1 and 2 do not hold.

We denote by $d(G)$ the ring of endomorphisms of a commutative group
variety $G$ . It is clear that, if $G$ is divisible, then the ring $cA(G)$ can be im-
bedded in the algebra $A(G)\otimes Q$ over the field $Q$ of rational numbers. We
now assume that $G$ is divisible and defined over a finite field; this implies, by
Corollary 1 to Theorem 1, that $G$ is isogenous to a direct product $H=A\times L_{r}$

where $A$ is an abelian variety and $L=(G_{m})^{n_{1}}$ . Making use of the symmetric
property of isogeny (Proposition 6), we can see easily that the algebra $d(G)\otimes Q$

is isomorphic to $t\Lambda(H)\otimes Q$ . On the other hand, it is easily verified that $\mathcal{A}(H)$

is isomorphic to the direct sum $of\leftrightarrow l(A)$ and $\llcorner\Lambda(L)$ , and that $A(L)$ is isomorphic
to the total matric ring of degree $n_{1}$ over the ring of rational integers, and
therefore that $\leftarrow\ell(L)\otimes Q$ is the total matric algebra over $Q$ ; it is well known
that $d(A)\otimes Q$ is a semi-simple algebra over $Q$ . We have thus

COROLLARY 3. Let $G$ be a divisible commutative group variety defined over a
finite field. Then the algebra $A(G)\otimes Q$ of endomorphisms of $G$ is a serzi-simple
algebra over $Q$ .

Added in June 3, 1959.

Previously we have shown that a group variety defined over a finite field
is generated by an abelian variety and a linear group variety (Theorem 1).

Here we shall show that Theorem 1 can be also proved by using the theory
of groups of extensions of abelian varieties [4, Chap. VII]. We shall also
show the existence of a group variety which is not generated by an abelian
variety and a linear group variety.

6. We first recall some properties of group extensions due to M. Rosen-
licht and J-P. Serre [4], and we shall call our special attention to fields of
definition of the objects which we are considering; we introduce these as
three lemmas.

Let $A,$ $B,$ $C$ be three commutative algebraic groups. An exact sequence
of (rational) homomorphisms

(1) $O\rightarrow B\rightarrow C\rightarrow A\rightarrow O$

is called slrictly exact if the homomorphisms $B\rightarrow C$ and $C\rightarrow A$ are separable.
We can then identify $B$ with an algebraic subgroup of $C$ , and $A$ with $C/B$.
An exact sequence (1) is called an extension of $A$ by $B$ ; we shall often call
$C$ itself an extension of $A$ by $B$ when no confusion is possible. Another ex-
tension $C^{\prime}$ of $A$ by $B$ is called equivalent to the extension $C$ if there is a
commutative diagram
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$O\rightarrow B\rightarrow C\rightarrow A\rightarrow O$

$id$ . $\downarrow$ $ f\downarrow$ $id$. $\downarrow$

$O\rightarrow B\rightarrow C’$ $\rightarrow A\rightarrow O$ ,

where $f$ is a homomorphism; in this case, $f$ is automatically a biregular iso-
morphism. The set of equivalence classes of extensions of $A$ by $B$ is denoted
by $Ext(A, B)$ . This is a functor which is contravariant in $A$ , covariant in
$B$ and additive in both $A$ and $B$. Especially we have

(2) $Ext(A, B\times B^{\prime})\cong Ext(A, B)\times Ext(A, B^{\prime})$ .
LEMMA 2. Assume in (2) that $A,$ $B$ and $B^{\prime}$ are defined over a field $k$ , and

let $C\in Ext(A, B\times B^{\prime})$ and $(C_{1}, C_{2})\in Ext(A, B)\times Ext(A, B^{\prime})$ be corresponding ele-
ments. Then $C$ is defined over $k$ if and only if both $C_{1}$ and $C_{2}$ are defined over $k$ .

This can be easily seen in following the proof of (2) in [4, VII-3].

We can define a composition law between the elements of $Ext(A, B)$ in a
natural way, by which $Ext(A, B)$ becomes a commutative group whose neutral
element is the class of trivial extension $A\times B$.

Suppose that $A$ and $B$ are connected, and that $B$ is linear. Then every
extension $C$ of $A$ by $B$ has a rational section $s:A\rightarrow C$, which determines a
symmetric factor system

$h(x, y)=s(x+y)-s(x)-s(y)$ , $x,$ $y\in A$ , $h(x, y)\in B$ .
This is a rational mapping of $A\times A$ into $B$, and satisfies the usual equations
of factor systems. If we take another section, then $h$ is modified by a co-
boundary. Thus a class of symmetric factor systems corresponds to a given
extension of $A$ by $B$. Conversely, every factor system $h$ determines a struc-
ture of pre-algebraic group on $A\times B$ which is an extension of $A$ by $B$ ; then,

in view of Weil’s theorem, there exists a group variety $C$ to which the factor
system $h$ corresponds. We denote by $H_{rat}^{2}(A, B)$ the group of equivalence
classes of rational symmetric factor systems from $A\times A$ into $B$. We have
then

LEMMA 3. The group $Ext(A, B)$ is isomorphic to the group $H_{rat}^{2}(A, B),$ pro-
vided that $A$ and $B$ are connected and $B$ is tinear ([4, Chap. VII, Prop. 11]).

Suppose now that $A$ is an abelian variety, and consider the group $Ext(A,G_{m})$

of equivalence classes of extensions of $A$ by the multiplicative group $G_{m}$ . Take
an extension $C$ of $A$ by $G_{m}$ . As $G_{m}$ is linear, there exists a rational section
$A\rightarrow C$, by which $C$ has a structure of principal fiber space over $A$ with group
$G_{m}$ , so that $C$ determines a linear equivalence class of divisors on $A$ . Serre
has shown, with the help of the absence of torsions of abelian varieites, that
a divisor class $\{D\}$ corresponds to an element of $Ext(A, G_{m})$ if and only if $D$

is algebraically equivalent to $0$ . We have thus
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(3) $Ext(A, G_{m})\cong P(A)$ ,

where $P(A)$ is a Picard variety of $A$ .
LEMMA 4. Suppose that $A,$ $G_{m}$ and $P(A)$ in (3) are defined over a field $k$ ,

and that an extension $C$ of $A$ corresponds to a point $c$ of $P(A)$ . If $C$ is defined
over $k$ , then the point $c$ is algebraic over $k$ .

This can be easily seen in following the proof of (3) in [4, Chap. VII,
pp. 5-10].

Clearly, a commutative group variety is generated by an abelian variety
and a linear group variety if and only if it is isogenous to a direct product
of an abelian variety and a linear group variety.

7. We can now prove the following
THEOREM 2. Let $A$ be an abelian variety, $L$ a commutative linear group va-

riety and $G$ an extension group of $A$ by L. Denote by $c=c(G)$ the equivalence
class of $G,$ $\in Ext(A, L)$ . Then $c$ is of finite order if and only if $G$ is generated
by an abelian variety $A^{\prime}$ and the linear group subvariety L. Moreover, when that
is so, the order of $c$ divides the degree of the O-cycle $A^{\prime}\cdot L$ .

PROOF. Assume first that $c$ is of finite order $n$ . Take a rational section
$s:A\rightarrow G$ . Then $h(x_{1}, x_{2})=s(x_{1}+x_{2})-s(x_{1})-s(x_{2})$ is a corresponding rational sym-
metric factor system of $A\times A$ into $L$ . In view of Lemma 3, our assumption
implies that there exists a rational mapping $k$ of $A$ into $L$ such that

(4) $nh(x_{1}, x_{2})=ns(x_{1}+x_{2})-ns(x_{1})-ns(x_{2})=k(x_{1})+k(x_{2})-k(x_{1}+x_{2})$ .
Put $o(x)=ns(x)+k(x)$ . Then $\sigma$ defines a homomorphism of $A$ into $G$ , since $\sigma$

is generically a homomorphism by (4). Calling $\pi$ the canonical homomorphism
$G\rightarrow A$ , we have $\pi\sigma(x)=n\pi s(x)-\pi k(x)=nx$ for a generic point $x$ of $A$ and so
for every $x$ of $A$ . If $\sigma(a)=0$ for an element $a$ of $A$ , then we have $\pi\sigma(a)=$

$na=0$ . It follows from this that $\sigma:A\rightarrow\sigma(A)$ is an isogeny, since the number
of elements $a$ of $A$ with $na=0$ is finite. As $A$ is complete, $\sigma(A)$ is complete
and an abelian variety. Since $\dim L+\dim\sigma(A)=\dim L+\dim A=\dim G$ and
since $L\cap\sigma(A)$ is a finite set, we see that $G=L\sigma(A)$ . We have thus proved
that, if $c=c(G)$ is of finite order, then $G$ is generated by $L$ and an abelian
variety $\sigma(A)$ .

Assume conversely that the extension $G$ of $A$ is generated by $L$ and an
abelian variety $A^{\prime}$ . Denote by $\lambda$ the restriction to $A^{\prime}$ of the canonical homo-

$\pi$

morphism $G\rightarrow A$ . It will follow that $\lambda^{*}(c)=0$ . In fact, $\lambda^{*}(G)$ is, by defini-
tion, the set of elements $(a^{\prime}, g)$ of $A^{\prime}\times G$ with $\text{{\it \‘{A}}}(a^{\prime})=\pi(a^{\prime})=\pi(g)$ , and $L$ is
identified with the subgroup composed of elements $(0, l)$ with $l\in L$ . The
mapping $s:a^{\prime}\rightarrow(a^{\prime}, a^{\prime})$ defines clearly a section homomorphism of $A^{\prime}$ into
$\lambda^{*}(G)$ ; hence $\lambda^{*}(G)$ is biregularly isomorphic to the direct product of $A^{\prime}\times L$ ,

which implies that $\lambda^{*}(c)=0$ . Since $\lambda$ is an isogeny of $A^{\prime}$ onto $A$ , there exists
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an isogeny $\mu$ of $A$ onto $A^{\prime}$ with $\lambda\mu=d\delta_{A}$ where $d=\nu(\lambda)$ and $\delta_{A}$ is the identity
automorphism of $A$ . As $\delta_{A^{*}}=1$ , it follows then that $0=\mu^{*}\lambda^{*}(c)=(\lambda\mu)^{*}(c)=$

$(d\delta_{A})^{*}(c)=dc$ . We see easily that $d=\nu(\lambda)$ is equal to the degree of the cycle
$A^{\prime}\cdot L$ . Our Theorem is thus completely proved.

We shall now show that Theorem 1 can be obtained as a corollary to
Theorem 2. Assume first that $G$ is an extension of an abelian variety $A$ by
$(G_{m})^{n}$ , and that $G$ is defined over a finite field $k$ ; we may assume that $A$ and
a Picard variety $P(A)$ of $A$ are also defined over $k$ . It follows from (2) and
(3) that

$Ext(A,(G_{m})^{n})\cong Ext(A, G_{m})\times\cdots\times Ext(A, G_{m})\cong P(A)\times\cdots\times P(A)$ .
Call $(c_{1}, \cdots, c_{n})$ the element of $ P(A)\times$ $\times P(A)$ which corresponds to the ex-
tension $G$ . As $G$ is defined over $k$ , it follows from Lemma 2 and 4 that the
point $(c_{1}, \cdots, c_{n})$ is algebraic over $k$ , which implies that the order of $(c_{1}, \cdots, c_{n})$

is finite since the abelian variety $P(A)$ is defined over the finite field $k$ . In
view of our Theorem 2, this completes the proof of Theorem 1 in the special
case we were considering.

If $G$ is an arbitrary group variety defined over a finite field $k$ , then we
can, as we have seen in the first proof of Theorem 1, reduce the problem to
the special case which we have just proved. Namely, we can see that there
exists a central group subvariety $D$ of $G$ defined over $k$ such that $G=DL$
and $D$ is divisible where $L$ is the maximal linear group subvariety of $G$ , so
that it is sufficient to prove our result in the case which we have already
proved. We have thus proved Theorem 1 again.

Theorem 2 will also be applied to show the existence of a group variety
which is not generated by an abelian variety and a linear group variety. Let
$A$ be an abelian variety, and $P(A)$ a Picard variety of $A$ . By (3), we have
$Ext(A, G_{m})\cong P(A)$ . Since the group $P(A)$ has points of infinite order, Theo-
rem 2 shows that, for an arbitrary given abelian variety $A$ , there is an extension
of $A$ by the linear group variety $G_{m}$ which is not generated by $G_{m}$ and an
abelian variety.

Musashi Institute of Technology,
Tokyo.
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