On local cyclotomic fields.

Dedicated to Professor Z. Suetuna.

By Kenkichi IWASAWA

(Received May 4, 1959)

Introduction.

Let \(p \) be an odd prime, \(Q_p \) the \(p \)-adic number field, and \(\Omega \) an algebraic closure of \(Q_p \). For each \(n \geq 0 \), we denote by \(F_n \) the extension field of \(Q_p \) generated by the set \(W_n \) of all \(p^{n+1} \)-th roots of unity in \(\Omega \). The local cyclotomic field \(F_n \) is then a cyclic extension of degree \(p^n(p-1) \) over \(Q_p \). Let \(W \) be the union of the increasing sequence of groups \(W_n \) for \(n \geq 0 \) and let \(F \) be the union of the increasing sequence of fields \(F_n \) for \(n \geq 0 \). Then \(F = Q_p(W) \), and it is an infinite abelian extension of \(Q_p \). Let \(j \psi \) be the maximal abelian extension of \(F \) in \(\Omega \); \(j \psi \) is clearly a Galois extension of \(Q_p \).

We now consider the following problems on the local fields \(F_n \) and \(j \psi \): To determine the structure of the multiplicative group of the field \(F_n \) acted on by the Galois group \(G(F_n/Q_p) \), and to describe explicitly the structure of the Galois group of the extension \(M/Q_p \). In the present paper, we shall give a solution to these problems by using the result of a previous paper, in which we studied some arithmetic properties of local cyclotomic fields in applying the theory of \(\Gamma \)-finite modules. We hope that the result of the present paper, combined with our previous results on Galois groups of local fields, will give us further insight into the structure of the Galois group of the extension \(\Omega/Q_p \).

1. The structure of the multiplicative group of \(F_n \).

Let \(U \) be the group of all \(p \)-adic units in \(Q_p \) and \(U^0 \) the subgroup of all \(a \) in \(U \) such that \(a \equiv 1 \mod p \). Then \(U \) is the direct product of \(U^0 \) and a cyclic subgroup \(V \) of order \(p-1 \) consisting of all roots of unity in \(Q_p \):

\[
U = U^0 \times V.
\]

By local class field theory, there exists a topological isomorphism \(\kappa \) of \(G = G(F/Q_p) \) onto \(U \) such that

\[
\zeta^\sigma = \zeta^{\kappa(\sigma)}, \quad \sigma \in G,
\]

for every \(\zeta \) in \(W \). Then, for any \(\sigma \) in \(G \), there exists a unique element \(\eta_\sigma \) in \(V \) such that

\[
\kappa(\sigma) \equiv \eta_\sigma \pmod{p},
\]

and the mapping \(\sigma \rightarrow \eta_\sigma \) defines a homomorphism of \(G \) onto \(V \) with kernel \(G(F/F_0) \).

Let \(n (\geqq 0) \) be fixed. Let \(p_n \) be the unique prime ideal of \(F_n \) dividing the rational prime \(p \), and let \(B_n \) and \(B_n^0 \) denote, respectively, the group of all \(p_n \)-adic units in \(F_n \) and the subgroup of all \(\beta \) in \(B_n \) such that \(\beta \equiv 1 \pmod{p_n} \). Then \(B_n \) is the direct product of \(B_n^0 \) and \(V \):

\[
B_n = B_n^0 \times V.
\]

The groups \(B_n, B_n^0, \) and \(V \) are invariant under the Galois group \(G_n = G(F_n/Q_p) \). The action of \(G_n \) on \(V \) is obviously trivial. But the action of \(G_n \) on \(B_n^0 \) is given as follows\(^3\): Let \(R_n \) be the group ring of \(G_n \) over the ring \(O_p \) of \(p \)-adic integers, and let \(I_n \) be the ideal of \(R_n \) consisting of all elements of the form \(\sum a_\sigma \sigma \) (\(a_\sigma \in O_p \)) with \(\sum a_\sigma = 0 \). Since \(B_n^0 \) is a \(p \)-primary compact abelian group, we may consider \(O_p \) as an operator domain of \(B_n^0 \). Hence we may also consider \(R_n \) as acting on \(B_n^0 \). As an \(R_n \)-group, \(B_n^0 \) is then the direct product of \(U^0, W_n, \) and a subgroup \(C_n \) isomorphic with the \(R_n \)-module \(I_n \):

\[
B_n^0 = U^0 \times W_n \times C_n.
\]

Since \(U = U^0 \times V, \) we also have

\[
B_n = U \times W_n \times C_n, \quad C_n \cong I_n.
\]

Now, let \(A_n \) denote the multiplicative group of the field \(F_n \) and let \(\pi_n \) be any prime element of \(F_n \). Then \(A_n/B_n \) is an infinite cyclic group generated by the coset of \(\pi_n \mod B_n \) and the Galois group \(G_n \) acts trivially on \(A_n/B_n \). Therefore \(\pi_n^{\sigma^{-1}} \) is contained in \(B_n \) for any \(\sigma \) in \(G_n \). For such a \(\sigma \), we also put

\[
\eta_\sigma = \eta_{\sigma'},
\]

where \(\sigma' \) is any element of \(G = G(F/Q_p) \) inducing \(\sigma \) on \(F_n \). We then have the following

Lemma. For any prime element \(\pi_n \) of \(F_n \) and for any \(\sigma \) in \(G_n \),

\[
\pi_n^{\sigma^{-1}} \equiv \eta_\sigma \pmod{p_n}.
\]

3) Cf. I. c. 1), Theorem 19.
PROOF. Let π'_n be any other prime element of F_n. Then $\pi'_n = \beta \pi_n$, with β in B_n; and since G_n acts trivially on V, $\beta^{\sigma-1} \equiv 1 \mod p_n$. Hence $\pi_n^{\sigma-1} \equiv \pi_n^{\sigma-1} \mod p_n$ and we see that it is sufficient to prove the lemma for one particular π_n. Let ζ_{n+1} be a primitive p^{n+1}-th root of unity in F_n. Then $\pi_n = 1 - \zeta_{n+1}$ is a prime element of F_n, and

$$\pi_n^{\sigma} \equiv \pi_n^{\sigma'} \equiv 1 - \zeta_{n+1}^{\pi_n^{\sigma} \equiv 1 - (1 - \pi_n)^{\pi_n^{\sigma} \equiv 1 \mod p_n^2}}.$$

Therefore $\pi_n^{\sigma-1} \equiv \eta_{\sigma} \mod p_n$, q.e.d.

Let π_n be again any prime element of F_n. By the above lemma, we put

$$\pi_n^{\sigma-1} = \beta_{\sigma} \eta_{\sigma}, \quad \sigma \in G_n,$$

with β_{σ} in B_n^0. We then denote by $D(\pi_n)$ the closure of the subgroup of the compact group B_n^0 generated by these β_{σ} ($\sigma \in G_n$); $D(\pi_n)$ consists of all elements of the form

$$\prod_{\sigma} \beta_{\sigma}^{a_{\sigma}}$$

with arbitrary p-adic integers a_{σ}. Since the elements β_{σ} ($\sigma \in G_n$) define a 1-cocycle of G_n in B_n^0 and satisfy the relations $\beta_{\tau \sigma} = \beta_{\sigma} \beta_{\tau}^{a_{\sigma}}$ ($\sigma, \tau \in G_n$), $D(\pi_n)$ is an R_n-subgroup of B_n^0.

Theorem 1. There exists a prime element π_n of F_n such that $B_n = U \times W_n \times D(\pi_n)$.

The R_n-group $D(\pi_n)$ is then isomorphic with the R_n-module L_n under an isomorphism φ such that $\varphi(\beta_{\sigma}) = \sigma - 1$ ($\sigma \in G_n$).

Proof. Let $B_n = U \times W_n \times C_n$ as in the above, and let g be the projection from B_n on the factor C_n. For any ξ in A_n, $\xi^{\sigma-1}$ ($\sigma \in G_n$) is always contained in B_n. Hence we put

$$\xi_{\sigma} = g(\xi^{\sigma-1}), \quad \sigma \in G_n.$$

Then $\{\xi_{\sigma}\}$ defines a 1-cocycle of G_n in C_n; and since $H^1(G_n; A_n) = 1$, the mapping $\xi \rightarrow \{\xi_{\sigma}\}$ induces a homomorphism of A_n/B_n onto the cohomology group $H^1(G_n; C_n)$. Let f be an R_n-isomorphism of C_n onto I_n, and let ω_{σ} ($\sigma \in G_n$) be the elements of C_n such that $f(\omega_{\sigma}) = \sigma - 1$. It is then easy to see that $H^1(G_n; C_n)$ is a cyclic group of order p^n generated by the cohomology class of $\{\omega_{\sigma}\}$. Take a prime element π_n of F_n. Since A_n/B_n is an infinite cyclic group generated by the coset of π_n mod B_n, the 1-cocycle $\{g(\pi_n^{\sigma-1})\}$ also generates $H^1(G_n; C_n)$. Therefore there is an integer m, prime to p, such that

$$g(\pi_n^{\sigma-1}) = \omega_{\sigma}^{m \tau^{\sigma-1}}, \quad \sigma \in G_n,$$

with an element τ in C_n. Since $\pi_n^{\sigma-1}$ is also a prime element of F_n, we
replace π_n by π_n^{-1} and denote the latter again by π_n. Then we have
$$g(\pi_n^{\sigma-1}) = \omega_\sigma^m, \quad \sigma \in G_n.$$

As in the above, let $\pi_n^{\sigma-1} = \beta_{\sigma} \pi_{n\sigma}$. Then $g(\beta_{\sigma}) = \omega_\sigma^m$ (\sigma \in G_n) and g induces an O_p-homomorphism of $D(\pi_n)$ into C_n. Therefore, if h is the O_p-homomorphism of I_n onto $D(\pi_n)$ such that $h(\sigma - 1) = \beta_{\sigma}$, then
$$f \circ g \circ h(\sigma - 1) = m(\sigma - 1), \quad \sigma \in G_n.$$

Since m is prime to p, $f \circ g \circ h$ is an automorphism of I_n. It follows that g induces an isomorphism of $D(\pi_n)$ onto C_n, and we have
$$B_n = U \times W \times D(\pi_n).$$

Suppose next that π_n is any prime element of F_n satisfying $B_n = U \times W \times D(\pi_n)$; π_n need not be the particular prime element obtained in the above argument. Clearly, there is an O_p-homomorphism ψ of I_n onto $D(\pi_n)$ such that $\psi(\sigma - 1) = \beta_{\sigma}$. Since $\beta_{\sigma} = \beta_{\sigma} \pi_{n\sigma}^\sigma$, ψ is then also an R_n-homomorphism. However, it follows from $B_n = U \times W_n \times C_n$ that $I_n \cong C_n \cong D(\pi_n)$. In particular, as compact abelian groups, both I_n and $D(\pi_n)$ are isomorphic with the direct sum of $p^n(p - 1) - 1$ copies of O_p. Hence ψ must be one-one, and $\varphi = \psi^{-1}$ is an R_n-isomorphism of $D(\pi_n)$ onto I_n such that $\varphi(\beta_{\sigma}) = \sigma - 1$. Thus the theorem is completely proved.

Since A_n/B_n is an infinite cyclic group generated by the coset of π_n mod B_n and since the action of G_n on $U \times W_n$ is well-known, the structure of the G_n-group A_n, the multiplicative group of F_n, is completely determined by Theorem 1.

2. The structure of the Galois group $G(M/Q_p)$.

Let E be the maximal unramified extension of Q_p in Q. It is known that E is an abelian extension of Q_p generated by all roots of unity in Q whose orders are prime to p, and also that the Galois group $G(E/Q_p)$ is isomorphic with the so-called total completion \overline{Z} of the additive group Z of rational integers.\(^4\) It follows that the Galois group $G(E'/Q_p)$ of the maximal p-complementary unramified extension E' of Q_p is isomorphic with the p-complementary completion $p\overline{Z}$ of Z. Furthermore, for each $n \geq 0$, EF_n is the maximal unramified extension of F_n in Q, and EF_{n+1} is the maximal p-complementary unramified extension of F_n in Q. Let L_n be the maximal p-complementary abelian extension of F_n in Q. Then EF_n is contained in L_n and,

\(^4\) For compact completions of (discrete) groups, cf. l.c. 2), 1.3. We also notice that a compact topological group is called p-primary (p-complementary) if and only if it is the inverse limit of a family of finite groups whose orders are powers of p (prime to p).
by local class field theory, \(G(L_n/E'F_n) \) is naturally isomorphic with \(B_n/B_n^0 \equiv V \). Since \(F_n \cap L_0 = F_n, G(F_nL_0/F_n) \equiv G(L_0/F_0), F_nL_0 \) is clearly contained in \(L_n \). But, since \(F_nL_0 \) contains both \(E'F_n \) and a ramified extension of degree \(p-1 \) over \(F_n \), it follows that
\[
F_nL_0 = L_n, \quad n \geq 0.
\]
If \(F_n' \) denotes the unique subfield of \(F_n \) with degree \(p^n \) over \(Q_p \), then we also have
\[
F_n'L_0 = L_n, \quad F_n' \cap L_0 = Q_p, \quad n \geq 0.
\]
Let \(F' \) be the union of the increasing sequence of subfields \(F_n' \) in \(\Omega \). Then \(F' \) is a subfield of \(F \) such that \(\kappa(G(F/F')) = V \), and we have
\[
G(F'/Q_p) \cong U^0.
\]
On the other hand, the union \(L \) of the increasing sequence of subfields \(L_n \) in \(\Omega \) is, as one sees easily, the maximal \(p \)-complementary abelian extension of \(F \) in \(\Omega \). We then prove the following

Theorem 2. Let \(F' \) be the subfield of \(F \) such that \(\kappa(G(F/F')) = V \) and let \(L_0 \) and \(L \) be the maximal \(p \)-complementary abelian extensions of \(F_0 \) and \(F \) in \(\Omega \), respectively. Then
\[
F'L_0 = L, \quad F' \cap L_0 = Q_p, \quad G(L/Q_p) = G(L/F') \times G(L/L_0),
\]
\[
G(L/F') \cong G(L_0/Q_p), \quad G(L/L_0) \cong G(F'/Q_p) \cong U^0.
\]
Furthermore, \(G(L_0/Q_p) \) is the \(p \)-complementary completion of a group generated by two elements \(\sigma \) and \(\tau \) satisfying the only relations
\[
\sigma \tau \sigma^{-1} = \tau^p, \quad \tau^{(p-1)^2} = 1;
\]
\(\sigma \) is a Frobenius automorphism for \(L_0/Q_p \) and \(\tau \) is a generator of the inertia group for \(L_n/Q_p \).

Proof. The first half of the theorem is an immediate consequence of what is stated in the above; one has only to notice that \(L_0 \) is a Galois extension of \(Q_p \).

The field \(E' \) defined in the above is obviously the inertia field for the tamely ramified extension \(L_0/Q_p \). Since \([L_0: E'F_0] = [F_0 : Q_p] = p-1\) and \(E' \cap F_0 = Q_p \), we see that \([L_0: E'] = (p-1)^2\). The second half of the theorem is then an easy consequence of a result on the structure of the Galois group for the maximal tamely ramified extension of a local field.5)

If we are merely interested in the purely group-theoretical structure of the group \(G(L/Q_p) \), we have the following corollary, which is an immediate consequence of the above theorem:

5) Cf. l. c. 2), 3.1.
Corollary. The Galois group $G(L/Q_p)$ is the total completion of a group generated by two elements λ and μ satisfying the only relations

$$\lambda\mu\lambda^{-1}=\mu^p, \; \mu^{(p-1)^2}=1.$$

Theorem 3. Let L and M be as in the above and let K be the maximal p-primary abelian extension of F in Q so that $KL=M, K\cap L=F$. Then:

i) $G(M/L)$ is a closed normal subgroup of $G(M/Q_p)$ such that $G(M/Q_p)/G(M/L)=G(L/Q_p)$, and the group extension $G(M/Q_p)/G(M/L)$ splits,

ii) $G(L/F)$ acts trivially on $G(M/L)$ so that $G(M/L)$ can be considered as a G-group $(G=G(F/Q_p)=G(L/Q_p)/G(L/F))$, and as such, $G(M/L)$ is naturally isomorphic with $G(K/F)$.

Proof. Let

$$X=G(M/Q_p), \; P=G(M/L_0), \; N=G(M/L).$$

Then P is a closed p-primary normal subgroup of X, and $X/P=G(L_0/Q_p)$ is a p-complementary compact group. Hence the group extension X/P splits and there exists a closed subgroup H of X such that

$$HP=X, \; H\cap P=1, \; H\cong X/P.$$

Such a group H also satisfies $HN=G(M/F^\prime)$. On the other hand, since $P/N=G(L/L_0)\cong U^\prime$, there is an element σ in P such that $N\sigma$ generates a cyclic group which is everywhere dense in P/N. Let S be the closure of the cyclic subgroup of P generated by σ. Using $P/N\cong U^\prime$, we then see easily that

$$NS=P, \; N\cap S=1.$$

Since both N and $HN=G(M/F^\prime)$ are normal in X, we have $(\sigma H\sigma^{-1})N=\sigma(HN)\sigma^{-1}=HN$, and $\sigma H\sigma^{-1}\cap N=\sigma(H\cap N)\sigma^{-1}=1$. Hence there is an element τ in N such that $\tau\sigma H\sigma^{-1}\tau^{-1}=H$. Let $\sigma'²=\sigma\tau\tau^{-1}$. Then $N\sigma=No\sigma'$, and the closure S' of the cyclic subgroup of P generated by σ' also satisfies $NS'=P$ and $N\cap S'=1$. Furthermore, since $\sigma'H\sigma'=H, S'$ is contained in the normalizer of H in X. Therefore $T=HS'$ is a closed subgroup of X, and it is easy to see that $NT=X, N\cap T=1$. Thus the first part of the theorem is proved.

The second part is an immediate consequence of the fact that $KL=M, K\cap L=F$, and $G(M/F)=G(M/K)\times G(M/L)$.

Now, the action of $G=G(F/Q_p)$ on $G(K/F)$ is explicitly known. Therefore, combining that with the above Theorems 2, 3, we see that the structure of the Galois group $G(M/Q_p)$ is thus completely determined.

Massachusetts Institute of Technology.

6) Cf. l. c. 2), Lemma 5.
7) Cf. l. c. 6).
8) Cf. l. c. 1), Theorem 18.