On the radial order of a univalent function.

By T. M. Flett

(Received Jan. 12, 1958)
(Revised Sept. 12, 1958)

1. In a recent note in this Journal Gehring [5] has given a new proof of the following theorem of Denjoy [1] and Seidel and Walsh [6].*

Theorem 1. Suppose that $f(z)$ is regular and univalent in $|z|<1$. Then for almost all θ

$$
\begin{equation*}
f^{\prime}(z)=o\left((1-|z|)^{-\frac{1}{2}}\right) \tag{1.1}
\end{equation*}
$$

uniformly as $z \rightarrow e^{i \theta}$ in each Stolz domain.
Gehring's proof, though short, is far from elementary, since it depends on a difficult maximal theorem of Hardy and Littlewood. In this note we give an alternative proof of Theorem 1 which is considerably more elementary.
2. We require a simple identity concerning Cesàro means. Let $f(z)=$ $\sum c_{n} z^{n}$, and let $\tau_{n}{ }^{\alpha}(\theta)$ denote the n-th Cesàro mean of order α of the sequence $n c_{n} e^{n i \theta}$. Then it is well known that for any α and for $|z|<1$

$$
\begin{equation*}
\frac{z f^{\prime}\left(z e^{i \theta}\right)}{(1-z)^{\alpha}}=\sum_{1}^{\infty} E_{n}^{\alpha} \tau_{n}^{\alpha}(\theta) z^{n}, \tag{2.1}
\end{equation*}
$$

where (as usual)

$$
E_{n}{ }^{\alpha}=\binom{\alpha+n}{n}=\frac{(\alpha+1)(\cdots)(\alpha+n)}{n!} \quad(n>0)
$$

3. Consider now the proof of the theorem. A familiar argument [6] allows us to assume that the image of $|z|<1$ under $\zeta=f(z)$ has finite area, or that

$$
\begin{equation*}
\int_{0}^{1} \int_{-\pi}^{\pi}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{2} \rho d \theta d \rho<\infty . \tag{3.1}
\end{equation*}
$$

We show first that if f satisfies (3.1), and if $\alpha>1 / 2$, then the series $\sum\left|\tau_{n}{ }^{\alpha}(\theta)\right|^{2}$ is convergent p. p. This is a particular case of a more general result (Flett [4]), but we give the proof for the sake of completeness.

Applying Parseval's theorem to the function (2.1) we obtain

$$
\begin{equation*}
\sum_{1}^{\infty}\left(E_{n}^{\alpha}\right)^{2}\left|\tau_{n}^{\alpha}(\theta)\right|^{2} \rho^{2 n} \leqq \frac{\rho}{2 \pi} \int_{-\pi}^{\pi} \frac{\left|f^{\prime}\left(\rho e^{i \theta+i t}\right)\right|^{2}}{\left|1-\rho e^{i t}\right|^{2 \alpha}} d t . \tag{3.2}
\end{equation*}
$$

[^0]Multiplying both sides of (3.2) by $(1-\rho)^{2 \alpha-1}$, integrating with respect to ρ from 0 to 1 , and observing that*

$$
\int_{0}^{1}(1-\rho)^{2 \alpha-1} \rho^{2 n} d \rho \geqq A(\alpha) n^{-2 \alpha},
$$

we obtain

$$
\begin{equation*}
\sum_{1}^{\infty}\left|\tau_{n}^{\alpha}(\theta)\right|^{2} \leqq A(\alpha) \int_{0}^{1}(1-\rho)^{2 \alpha-1} \rho d \rho \int_{-\pi}^{\pi} \frac{\left|f^{\prime}\left(\rho e^{i \theta+i t}\right)\right|^{2}}{\left|1-\rho e^{i t}\right|^{2 \alpha}} d t \tag{3.3}
\end{equation*}
$$

Now integrate both sides of (3.3) with respect to θ and interchange the order of integration on the right: we get

$$
\int_{-\pi}^{\pi}\left(\sum_{1}^{\infty}\left|\tau_{n}^{\alpha}(\theta)\right|^{2}\right) d \theta \leqq A(\alpha) \int_{0}^{1}(1-\rho)^{2 \alpha-1} \rho d \rho \int_{-\pi}^{\pi} \frac{d t}{\left|1-\rho e^{i t}\right|^{2 \alpha}} \int_{-\pi}^{\pi}\left|f^{\prime}\left(\rho e^{i \theta+i t}\right)\right|^{2} d \theta .
$$

Here the innermost integral on the right is actually independent of t and is equal to

$$
\int_{-\pi}^{\pi}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{2} d \theta
$$

Moreover,

$$
\int_{-\pi}^{\pi} \frac{d t}{\left|1-\rho e^{i t}\right|^{2 \alpha}} \leqq \frac{A(\alpha)}{(1-\rho)^{2 \alpha-1}}
$$

(since $2 \alpha>1$), so that

$$
\int_{-\pi}^{\pi}\left(\sum_{1}^{\infty}\left|\tau_{n}^{\alpha}(\theta)\right|^{2}\right) d \theta \leqq A(\alpha) \int_{0}^{1} \rho d \rho \int_{-\pi}^{\pi}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{2} d \theta=A(\alpha) \int_{0}^{1} \int_{-\pi}^{\pi}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{2} \rho d \theta d \rho<\infty .
$$

Thus the sum-function of the series $\Sigma\left|\tau_{n}^{\alpha}(\theta)\right|^{2}$ belongs to $L^{2}(-\pi, \pi)$, and so is finite p.p.

It remains now to show that (1.1) holds at any point θ for which $\Sigma\left|\tau_{n}{ }^{\alpha}(\theta)\right|^{2}$ converges (where α is any fixed number greater than $1 / 2$). Let θ be such a point. Then given $\varepsilon>0$ we can find an integer N such that

$$
\sum_{N}^{\infty}\left|\tau_{n}^{\alpha}(\theta)\right|^{2}<\varepsilon^{2},
$$

and then also

$$
\begin{aligned}
\left|\sum_{N}^{\infty} E_{n}^{\alpha} \tau_{n}^{\alpha}(\theta) z^{n}\right| & \leqq\left\{\sum_{N}^{\infty}\left(E_{n}^{\alpha}\right)^{2}|z|^{2 n}\right\}^{\frac{1}{2}}\left\{\sum_{N}^{\infty}\left|\tau_{n}{ }^{\alpha}(\theta)\right|^{2}\right\}^{\frac{1}{2}} \\
& \leqq A(\alpha) \varepsilon(1-|z|)^{-\alpha-\frac{1}{2}}
\end{aligned}
$$

Hence, by (2.1),

$$
\frac{\left|z f^{\prime}\left(z e^{i \theta}\right)\right|}{|1-z|^{\alpha}} \leqq \sum_{1}^{N-1} E_{n}^{\alpha}\left|\tau_{n}^{\alpha}(\theta)\right|+A(\alpha) \varepsilon(1-|z|)^{-\alpha-\frac{1}{2}} .
$$

Since $|1-z| /(1-|z|)$ lies between two positive constants when z belongs to

[^1]any given Stolz domain with vertex at $z=1$, Theorem 1 follows.
4. The argument of $\S 3$ generalizes without difficulty to prove the following result of Dufresnoy [2].

Theorem 2. Suppose that $f(z)$ is regular in $|z|<1$ and that

$$
\int_{0}^{1} \int_{-\pi}^{\pi}(1-\rho)^{k-k r-1}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{k} d \rho d \theta<\infty,
$$

where $k \geqq 1$ and $0<r \leqq 1$. Then for almost all θ

$$
\begin{equation*}
f^{\prime}(z)=o\left((1-|z|)^{r-1}\right) \tag{4.1}
\end{equation*}
$$

uniformly as $z \rightarrow e^{i \theta}$ in each Stolz domain.
We have now that for almost all θ

$$
\sum n^{k r-1}\left|\tau_{n}{ }^{\alpha}(\theta)\right|^{k}<\infty
$$

provided that $\alpha>\sup (1 / k, 1-1 / k)$ [4, Theorem 11], and this implies (4.1).
The University of Liverpool.

References

[1] A. Denjoy, Sur la représentation conforme, C. R. Acad. Sci. Paris, 212 (1941), 1071-1073.
[2] J. Dufresnoy, Sur les fonctions méromorphes à caractéristique bornée, C. R. Acad. Sci. Paris, 213 (1941), 393-395.
[3] J. Ferrand, Etude de la représentation conforme au voisinage de la frontière, Ann de l'Ecole Norm. Sup., (3), 59 (1942), 43-106.
[4] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series, Proc. London Math. Soc., (3), 8 (1958), 357-387.
[5] F.W. Gehring, On the radial order of subharmonic functions, J. Math. Soc. Japan, 9 (1957), 77-79.
[6] W. Seidel and J. L. Walsh, On the derivatives of functions analytic in the unit circle and their radii of univalence and of p-valence, Trans. Amer. Math. Soc., 52 (1942), 128-216.

[^0]: * Various generalizations of the theorem are known (see, for example, Ferrand [3]), but we do not consider these here.

[^1]: * We use $A(\alpha)$ to denote a positive constant depending only on α, not necessarily the same on any two occurrences.

