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On the radial order of a univalent function.
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1. In a recent note in this Journal Gehring [5] has given a new proof
of the following theorem of Denjoy [1] and Seidel and Walsh $[$6 $]^{*}$

THEOREM 1. Suppose that $f(z)$ is regular and univalent in $|z|<1$ . Then for
almost all $\theta$

$f^{\prime}(z)=o((1-|z|)^{-\frac{1}{2}})$ (1.1)

uniformly as $z\rightarrow e^{i\theta}$ in each Stolz domain.
Gehring’s proof, though short, is far from elementary, since it depends

on a difficult maximal theorem of Hardy and Littlewood. In this note we give
an alternative proof of Theorem 1 which is considerably more elementary.

2. We require a simple identity concerning Ces\‘aro means. Let $f(z)=$

$\sum c_{n}z^{n}$ , and let $\tau_{n}^{\alpha}(\theta)$ denote the n-th Ces\‘aro mean of order $\alpha$ of the sequence
$nc_{n}e^{ni\theta}$ . Then it is well known that for any $\alpha$ and for $|z|<1$

$\frac{zf^{\prime}(ze^{i\theta})}{(1-z)^{a}}=\sum_{1}^{\infty}E_{n}^{\alpha}\tau_{n}^{\alpha}(\theta)z^{n}$ , (2.1)

where (as usual)

$E_{n^{\alpha}}=\left(\begin{array}{l}\alpha+n\\n\end{array}\right)=\frac{(\alpha+1)(\cdots)(\alpha+n)}{n!}$ $(n>0)$ .

3. Consider now the proof of the theorem. A familiar argument [6]

allows us to assume that the image of $|z|<1$ under $\zeta=f(z)$ has finite area, or
that

$\int_{0}^{1}\int_{-\pi}^{\pi}|f^{\prime}(\rho e^{i\theta})|^{2}\rho d\theta d\rho<\infty$ . (3.1)

We show first that if $f$ satisfies (3.1), and if $\alpha>1/2$ , then the series $\sum|\tau_{n}^{a}(\theta)|^{2}$

is convergent $p$ . $p$ . This is a particular case of a more general result (Flett
[4]), but we give the proof for the sake of completeness.

Applying Parseval’s theorem to the function (2.1) we obtain

$\sum_{1}^{\infty}(E_{n}^{a})^{2}|\tau_{n}^{\alpha}(\theta)|^{2}\rho^{2n}\leqq\frac{\rho}{2\pi}\int_{-\pi}^{\pi}\frac{|f^{\prime}(\rho e^{i\theta+it})|^{2}}{|1-\rho e^{it}|^{2\alpha}}dt$ . (3.2)

*Various generalizations of the theorem are known (see, for example, Ferrand [3]),
but we do not consider these here.
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Multiplying both sides of (3.2) by $(1-\rho)^{2\alpha-1}$ , integrating with respect to $\rho$

from $0$ to 1, and observing that*

$\int_{0}^{1}(1-\rho)^{2\alpha-1}\rho^{2n}d\rho\geqq A(\alpha)n^{-2a}$ ,

we obtain
$\sum_{1}^{\infty}|\tau_{n}^{\alpha}(\theta)|^{2}\leqq A(\alpha)\int_{0}^{1}(1-\rho)^{2-1}\alpha\rho d\rho\int_{-\pi}^{\pi}\frac{|f^{\prime}(\rho e^{i\theta+it})|^{2}}{|1-\rho e^{it}|^{2\alpha}}dt$ . (3.3)

Now integrate both sides of (3.3) with respect to $\theta$ and interchange the order
of integration on the right: we get

$\int_{-\pi}^{\pi}(\sum_{1}^{\infty}|\tau_{n}^{a}(\theta)|^{2})d\theta\leqq A(\alpha)\int_{0}^{1}(1-\rho)^{2a-1}\rho d\rho\int_{-\pi}^{\pi}\frac{dt}{|1-\rho e^{it}|^{2\alpha}}\int_{-\pi}^{\pi}|f^{\prime}(\rho e^{t\theta+it})|^{2}d\theta$ .

Here the innermost integral on the right is actually independent of $t$ and is
equal to

$\int_{-\pi}^{\pi}|f^{\prime}(\rho e^{t\theta})|^{2}d\theta$ .
Moreover,

$\int_{-\pi}^{\pi}\frac{dt}{|1-\rho e^{it}|^{2a}}\leqq\frac{A(\alpha)}{(1-\rho)^{2\alpha-1}}$

(since $2\alpha>1$ ), so that

$\int^{\pi}(\sum_{1}^{\infty}|\tau_{n}^{a}(\theta)|^{2})d\theta\leqq A(\alpha)\int^{1}\rho d\rho\int^{\pi}|f^{\prime}(\rho e^{i\theta})|^{2}d\theta=A(\alpha)\int^{1}\int^{\pi}|f^{\prime}(\rho e^{i\theta})|^{2}\rho d\theta d\rho<\infty$ .

Thus the sum-function of the series $\Sigma|\tau_{n}^{\alpha}(\theta)|^{2}$ belongs to $L^{2}(-\pi, \pi)$ , and so is
finite $p$ . $p$ .

It remains now to show that (1.1) holds at any point $\theta$ for which $\Sigma|\tau_{n}^{\alpha}(\theta)|^{2}$

converges (where $\alpha$ is any fixed number greater than 1/2). Let $\theta$ be such a
point. Then given $\epsilon>0$ we can find an integer $N$ such that

$\sum_{N}^{\infty}|\tau_{n}^{\alpha}(\theta)|^{2}<\epsilon^{2}$ ,

and then also

$|\sum_{N}^{\infty}E_{n}^{\alpha}\tau_{n}^{a}(\theta)z^{n}|\leqq\{\sum_{N}^{\infty}(E_{n}^{a})^{2}|z|^{2n}\}k_{\{\sum_{N}^{\infty}|\tau_{n}^{\alpha}(\theta)|^{2}\}}\not\in$

$\leqq A(\alpha)\epsilon(1-|z|)^{-a-\#}$ .
Hence, by (2.1),

$\frac{|zf^{\prime}(ze^{t\theta})|}{|1-z|^{\alpha}}\leqq\sum_{1}^{N-1}E_{n}^{a}|\tau_{n}^{a}(\theta)|+A(\alpha)\epsilon(1-|z|)^{-\alpha-}z1$

Since $|1-z|/(1-|z|)$ lies between two positive constants when $z$ belongs to

*We use $A(\alpha)$ to denote a positive constant depending only on $\alpha$ , not necessarily
the same on any two occurrences.
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any given Stolz domain with vertex at $z=1$ , Theorem 1 follows.
4. The argument of \S 3 generalizes without difficulty to prove the fol-

lowing result of Dufresnoy [2].

THEOREM 2. Suppose that $f(z)$ is regular in $|z|<1$ and that

$\int^{1}\int^{\pi}(1-\rho)^{k-kr-1}|f^{\prime}(\rho e^{i\theta})|^{k}d\rho d\theta<\infty$ ,

where $k\geqq 1$ and $0<r\leqq 1$ . Then for almost all $\theta$

$f^{\prime}(z)=o((1-|z|)^{r-1})$ (4.1)

uniformly as $z\rightarrow e^{i\theta}$ in each Stolz domain.
We have now that for almost all $\theta$

$\Sigma n^{kr-1}|\tau_{n}^{\alpha}(\theta)|^{k}<\infty$

provided that $\alpha>\sup(1/k, 1-1/k)$ [ $4$ , Theorem 11], and this implies (4.1).

The University of Liverpool.

References

[1] A. Denjoy, Sur la repr\’esentation conforme, C. R. Acad. Sci. Paris, 212 (1941),
1071-1073.

[2] J. Dufresnoy, Sur les fonctions m\’eromorphes \‘a caract\’eristique born\’ee, C. R.
Acad. Sci. Paris, 213 (1941), 393-395.

[3] J. Ferrand, Etude de la repr\’esentation conforme au voisinage de la fronti\‘ere,
Ann de l’Ecole Norm. Sup., (3) , 59 (1942), 43-106.

[4] T. M. Flett, Some more theorems concerning the absolute summability of Fou-
rier series and power series, Proc. London Math. Soc., (3), 8 (1958), 357-387.

[5] F. W. Gehring, On the radial order of subharmonic functions, J. Math. Soc.
Japan, 9 (1957), 77-79.

[6] W. Seidel and J. L. Walsh, On the derivatives of functions analytic in the unit
circle and their radii of univalence and of $p$-valence, Trans. Amer. Math. Soc.,
52 (1942), 128-216.


	On the radial order of ...
	1.
	THEOREM 1. ...

	2.
	3.
	4.
	THEOREM 2. ...

	References


