On the radial order of a univalent function.

By T.M. FLETT

(Received Jan. 12, 1958) (Revised Sept. 12, 1958)

1. In a recent note in this Journal Gehring [5] has given a new proof of the following theorem of Denjoy [1] and Seidel and Walsh [6].*

Theorem 1. Suppose that f(z) is regular and univalent in |z| < 1. Then for almost all θ

$$f'(z) = o((1-|z|)^{-\frac{1}{2}})$$
(1.1)

uniformly as $z \rightarrow e^{i\theta}$ in each Stolz domain.

Gehring's proof, though short, is far from elementary, since it depends on a difficult maximal theorem of Hardy and Littlewood. In this note we give an alternative proof of Theorem 1 which is considerably more elementary.

2. We require a simple identity concerning Cesàro means. Let $f(z) = \sum c_n z^n$, and let $\tau_n^{\alpha}(\theta)$ denote the *n*-th Cesàro mean of order α of the sequence $nc_n e^{ni\theta}$. Then it is well known that for any α and for |z| < 1

$$\frac{zf'(ze^{i\theta})}{(1-z)^{\alpha}} = \sum_{1}^{\infty} E_n{}^{\alpha} \tau_n{}^{\alpha}(\theta) z^n , \qquad (2.1)$$

where (as usual)

$$E_n^{\alpha} = {\binom{\alpha+n}{n}} = \frac{(\alpha+1)(\cdots)(\alpha+n)}{n!} \qquad (n>0)$$

3. Consider now the proof of the theorem. A familiar argument [6] allows us to assume that the image of |z| < 1 under $\zeta = f(z)$ has finite area, or that

$$\int_0^1 \int_{-\pi}^{\pi} |f'(\rho e^{i\theta})|^2 \rho d\theta d\rho < \infty . \tag{3.1}$$

We show first that if f satisfies (3.1), and if $\alpha > 1/2$, then the series $\sum |\tau_n^{\alpha}(\theta)|^2$ is convergent p. p. This is a particular case of a more general result (Flett [4]), but we give the proof for the sake of completeness.

Applying Parseval's theorem to the function (2.1) we obtain

$$\sum_{1}^{\infty} (E_{n}^{\alpha})^{2} |\tau_{n}^{\alpha}(\theta)|^{2} \rho^{2n} \leq \frac{\rho}{2\pi} \int_{-\pi}^{\pi} \frac{|f'(\rho e^{i\theta + it})|^{2}}{|1 - \rho e^{it}|^{2\alpha}} dt.$$
 (3.2)

^{*} Various generalizations of the theorem are known (see, for example, Ferrand [3]), but we do not consider these here.

Multiplying both sides of (3.2) by $(1-\rho)^{2\alpha-1}$, integrating with respect to ρ from 0 to 1, and observing that*

$$\int_0^1 (1-
ho)^{2lpha-1}
ho^{2n}d
ho \geqq A(lpha)n^{-2lpha}$$
 ,

we obtain

$$\sum_{1}^{\infty} |\tau_{n}^{\alpha}(\theta)|^{2} \leq A(\alpha) \int_{0}^{1} (1-\rho)^{2\alpha-1} \rho d\rho \int_{-\pi}^{\pi} \frac{|f'(\rho e^{i\theta+it})|^{2}}{|1-\rho e^{it}|^{2\alpha}} dt.$$
 (3.3)

Now integrate both sides of (3.3) with respect to θ and interchange the order of integration on the right: we get

$$\int_{-\pi}^{\pi} (\sum_{1}^{\infty} |\tau_{\boldsymbol{n}}^{\boldsymbol{\alpha}}(\theta)|^2) d\theta \leqq A(\alpha) \int_{0}^{1} (1-\rho)^{2\boldsymbol{\alpha}-1} \rho d\rho \int_{-\pi}^{\pi} \frac{dt}{|1-\rho e^{it}|^{2\boldsymbol{\alpha}}} \int_{-\pi}^{\pi} |f'(\rho e^{i\theta+it})|^2 d\theta \; .$$

Here the innermost integral on the right is actually independent of t and is equal to

$$\int_{-\pi}^{\pi} |f'(\rho e^{i\theta})|^2 d\theta.$$

Moreover,

$$\int_{-\pi}^{\pi} \frac{dt}{|1 - \rho e^{it}|^{2\alpha}} \leq \frac{A(\alpha)}{(1 - \rho)^{2\alpha - 1}}$$

(since $2\alpha > 1$), so that

$$\int_{-\pi}^{\pi} (\sum_{i=1}^{\infty} |\tau_n^{\alpha}(\theta)|^2) d\theta \leq A(\alpha) \int_{0}^{1} \rho d\rho \int_{-\pi}^{\pi} |f'(\rho e^{i\theta})|^2 d\theta = A(\alpha) \int_{0}^{1} \int_{-\pi}^{\pi} |f'(\rho e^{i\theta})|^2 \rho d\theta d\rho < \infty.$$

Thus the sum-function of the series $\sum |\tau_n^{\alpha}(\theta)|^2$ belongs to $L^2(-\pi,\pi)$, and so is finite p. p.

It remains now to show that (1.1) holds at any point θ for which $\sum |\tau_n^{\alpha}(\theta)|^2$ converges (where α is any fixed number greater than 1/2). Let θ be such a point. Then given $\varepsilon > 0$ we can find an integer N such that

$$\sum\limits_{N}^{\infty} \mid { au_n}^{lpha}(heta) \mid^2 < arepsilon^2$$
 ,

and then also

$$\begin{split} \mid \sum_{N}^{\infty} E_{n}{}^{\alpha} \tau_{n}{}^{\alpha}(\theta) z^{n} \mid & \leq \{ \sum_{N}^{\infty} (E_{n}{}^{\alpha})^{2} \mid z \mid^{2n} \}^{\frac{1}{2}} \{ \sum_{N}^{\infty} \mid \tau_{n}{}^{\alpha}(\theta) \mid^{2} \}^{\frac{1}{2}} \\ & \leq A(\alpha) \varepsilon (1 - \mid z \mid)^{-\alpha - \frac{1}{2}} . \end{split}$$

Hence, by (2.1),

$$\frac{|zf'(ze^{i\theta})|}{|1-z|^{\alpha}} \leqq \sum_{i=1}^{N-1} E_n^{\alpha} |\tau_n^{\alpha}(\theta)| + A(\alpha) \varepsilon (1-|z|)^{-\alpha-\frac{1}{2}}.$$

Since |1-z|/(1-|z|) lies between two positive constants when z belongs to

^{*} We use $A(\alpha)$ to denote a positive constant depending only on α , not necessarily the same on any two occurrences.

any given Stolz domain with vertex at z=1, Theorem 1 follows.

4. The argument of §3 generalizes without difficulty to prove the following result of Dufresnoy $\lceil 2 \rceil$.

Theorem 2. Suppose that f(z) is regular in |z| < 1 and that

$$\int_0^1 \int_{-\pi}^{\pi} (1-\rho)^{k-kr-1} |f'(\rho e^{i\theta})|^k d\rho d\theta < \infty ,$$

where $k \ge 1$ and $0 < r \le 1$. Then for almost all θ

$$f'(z) = o((1-|z|)^{r-1}) \tag{4.1}$$

uniformly as $z \rightarrow e^{i\theta}$ in each Stolz domain.

We have now that for almost all θ

$$\sum n^{kr-1} |\tau_n^{\alpha}(\theta)|^k < \infty$$

provided that $\alpha > \sup (1/k, 1-1/k)$ [4, Theorem 11], and this implies (4.1).

The University of Liverpool.

References

- [1] A. Denjoy, Sur la représentation conforme, C.R. Acad. Sci. Paris, 212 (1941), 1071-1073.
- [2] J. Dufresnoy, Sur les fonctions méromorphes à caractéristique bornée, C. R. Acad. Sci. Paris, 213 (1941), 393-395.
- [3] J. Ferrand, Etude de la représentation conforme au voisinage de la frontière, Ann de l'Ecole Norm. Sup., (3), 59 (1942), 43-106.
- [4] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series, Proc. London Math. Soc., (3), 8 (1958), 357-387.
- [5] F. W. Gehring, On the radial order of subharmonic functions, J. Math. Soc. Japan, 9 (1957), 77-79.
- [6] W. Seidel and J. L. Walsh, On the derivatives of functions analytic in the unit circle and their radii of univalence and of p-valence, Trans. Amer. Math. Soc., 52 (1942), 128-216.