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On Umezawa’s criteria for univalence II.

By Maxwell O. READE1)

(Received Nov. 5, 1957)

1. In this note we discuss two of Umezawa’s criteria for the univalence
of a mapping by an analytic function [4]. We use one of his results, in a
slightly generalized form, to extend results due to Rogozhin [3] and the
present author [2], and we give a simple proof of the other result.

2. Umezawa proved the following
THEOREM 1 ([4], p. 212). Let $f(z)$ be analytic in the closure of the finite

domain 9 bounded by the simple closed analytic curve $\Gamma$ , and let $f^{\prime}(z)\neq 0$ for $z$

on $\Gamma$ . If the relation

(1) $\int_{c}d(\arg df(z))>-\pi$

holds for all arcs $C$ on $\Gamma$ , and if the relation

(2) $\int_{\tau^{d(\arg df(z))=2\pi}}$

holds, then $f(z)$ is univalent in $g$).

We have given another proof of the preceding result, one in which we
show that $f(z)$ maps 9 onto a close-to-convex domain [1]. An examination
of our proof shows that $f(z)$ also maps $\Gamma$ onto a simple closed analytic curve.
Indeed, an even closer examination of our (or Umezawa’s) proof of Theorem
1, shows that we can establish the following slightly more general result.

THEOREM 2. Let $\Gamma$ be a simple closed piece-wise analytic curve with a finite
number of corners, and let $\Gamma$ have well-defined one-sided tangent vectors at those
corners. If $f(z)$ is analytic in the closure of the finite domain 9 bounded by $\Gamma$ ,

if $f^{\prime}(z)\neq 0$ there, if there is a positive $\epsilon$ such that

$\int_{c}d(\arg df(z))\geqq-\pi+\epsilon$

holds for all arcs $C$ on $\Gamma$ , and if (2) holds, then $f(z)$ is univalent in $\mathscr{D}$, and the
image of 9 is a close-to-convex domain.

PROOF. We shall merely sketch the proof. If we write
(3) $d(\arg df(z))=d(\arg f^{\prime}(z))+d(\arg dz)$ ,

1) The research reported here was supported in part by a grant from the
National Science Foundation.



256 M. O. READE

then we see that our hypothesis gives us information on the rotation of the
tangent vector to the image of $\Gamma$ under the mapping defined by $w=f(z)$ . We
now use this last fact, the continuity of the function $\arg f^{\prime}(z)$ and the geo-
metric character of the domain 9 in order to construct a nested sequence of
domains $ D_{\underline{1}}\subset D_{2}\cdots$ , $\bigcup_{n}D_{n}=9$ such that each $D_{n}$ is bounded by a simple closed

analytic curve $\Gamma_{n}$ for which (1) and (2) hold. We now appeal to Theorem 1
to conclude that $f(z)$ is univalent in each $D_{n}$ , and close-to-convex there. The
rest of the result now follows.

We now use the preceding result to prove the following theorem which
is a generalization of a result announced by us, at the International Congress
held in Amsterdam 1954, for what we called “ almost convex ” domains [2];

it is essentially a theorem due to Rogozhin [3].

THEOREM 3. Let $\varphi$ be fixed, $ 0\leqq\varphi<\pi$ . Let 9 be a domain in which it is
possible to join each pair of dislinct points $z_{1},$ $z$ )

$\lrcorner$

by a pair of straight line

segments $z_{1}z_{3},$ $z_{3}z_{2}$ , lying in 9, such that $|\arg\frac{z_{3}-z_{\iota}}{z_{2}-z_{3}}|\leqq\varphi$ . If $f(z)$ is analytic

in 9, and if the relation

(4) $|\int_{c}d(\arg f^{f}(z))|<\pi-\varphi$

holds for all arcs $C$ in 9, then $f(z)$ is univalent in 9.
PROOF. Let $z_{1},$ $z_{2}$ be distinct points in $\mathscr{D}$, and let $z_{1}z_{3}z_{2}$ denote the broken

line in $\lrcorner c$) joining the points. We construct a narrow band about the broken
line. The band is constructed out of six line segments; two are parallel to
$z_{1}z_{3}$ , two are parallel to $z_{3}z_{2}$ , one is perpendicular to $z_{1}z_{3}$ , and the sixth is
perpendicular to $z_{3}z_{2}$ . This band bounds a domain 9’ whose closure is in 9,

and whose interior contains the broken line $z_{1}z_{3}z_{2}$ . We denote the oriented
boundary curve of 9’ by $\Gamma^{\prime}$ .

It is geometrically evident that the relation

(5) $\int_{c}d(\arg dz)\geqq-\varphi$

holds for each arc $C$ of $\Gamma^{\prime}$ ; here we have made use of the hypothesis that

$|\arg\frac{z_{3}-z_{1}}{z_{2}-z_{3}}|\leqq\varphi$ as well as of the geometry of the figure. From (3), (4) and

(5) we obtain

$\int_{c}d(\arg df(z))=\int_{c}d(\arg f^{\prime}(z))+\int_{c}d(\arg dz)>-\pi$

for each arc $C$ on $\Gamma^{\prime}$ . From (4) we obtain

$\int_{\tau^{d(\arg f^{\prime}(z))=0}}$,
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which combines with (3) to yield

$\int_{\tau^{d(\arg df(z))=2\pi}},$ ’

We also note that (4) guarrantees that $f^{\prime}(z)\neq 0$ in 9’. Hence we can appeal
to Theorem 2 to conclude that $f(z)$ is univalent in 9’. Therefore $f(z_{1})\neq f(z_{d}))$

for $z_{1}\neq z_{2}$ . The theorem now follows.
The domain 9’ in the preceding proof is typical of what we [2] called

“ almost convex” domains. Domains of that type can be used to prove the
following theorem due to Rogozhin.

THEOREM 4 ([3]). Let $k$ be $f\iota xed,$ $0\leqq k<1$ . If $f(z)$ is analytic for $|z|>k$,
and if the inequality

(6) $|\int_{c}d(\arg f^{\prime}(z))|<\pi-4$ arc $\tan k$

holds for all arcs $C$ lying outside the circle $|z|=k$, lhen $f(z)$ is univalent for
$|z|>1$ .

PROOF. With Rogozhin, we consider the circular arc $\gamma$ through $z=\pm 1$

which is tangent to the circle $|z|=k$ and we note that its radian measure is
4 arc $\tan k$ . Let $z_{1},$ $z_{2}$ be distinct points outside the circle $|z|=1$ . It will be
clear from our construction that we need only consider the extreme case
when $z_{1},$ $z_{2}$ lie on a line through $z=0$ and on opposite sides of the origin.
Without any loss in generality, we take $z_{1},$ $z_{2}$ to lie on the real axis; one
point is on the positive real axis, the other is on the negative real axis. We
now join $z_{1}$ and $z_{2}$ by means of two line segments tangent to $\gamma$ , such that $z_{3}$

lies just above $\gamma$ . It is clear that

(7) $|\arg\frac{z_{3}-z_{1}}{z_{2}-z_{3}}|<4$ arc $\tan k$ .

Now we can construct a band domain as in the proof of Theorem 3 and then
make use of (6) and Theorem 2 to conclude that $f(z_{1})\neq f(z_{2})$ when $z_{1}\neq z_{2}$ . It
is also geometrically clear that each pair of points outside the circle $|z|=1$

can also be joined by a broken line outside the circle $|z|=k$ (though not
necessarily by lines tangent to $\gamma$ ) such that (7) holds. Again we can use (6),

(7), and the Theorem 2 to conclude that different points have different images
under $f(z)$ . This completes the proof.

It is worth noting that the arcs $C$ in the preceding theorem, as well as
the broken line, were permitted to leave the presumed domain of univalence.
We also note that we were able to obtain more information than Rogozhin
did with his proof. For example, it is clear from our proof that the function
$f(z)$ is also univalent in any half-plane not containing the circle $|z|=k$ . This
last result can also be extended a little.
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We now come to another criterion for the univalence of functions defined
in certain domains considered by Rogozhin.

DEFINITION. A domain 9 is said to be of type $R$ if and only if each pair
of distinct points $z_{1},$ $z_{2}$ can be joined by a circular arc $\gamma(z_{I}, z_{2})$ lying in 9.
Let $\theta(z_{1}, z_{2})$ denote the greatest lower bound of the radian measures of all
arcs $\gamma(z_{1}, z_{2})$ joining $z_{1},$ $z_{2}$ and let $\theta$ denote the least upper bound of all values
$\theta(z_{1}, z_{2})$ as the points $z_{1},$ $z_{2}$ range over $\mathscr{D}$. Similarly, $l(z_{1}, z_{2})$ denotes the
greatest lower bound of the lengths of all $\gamma(z_{1}, z_{2})$ joining $z_{1},$ $z_{2}$ and $l$ denotes
the least upper bound of all values $l(z_{1}, z_{2})$ as $z_{1},$ $z_{2}$ range over 9. We call $\theta$

and $l$ the parameters of 9.
THEOREM 5 ([3]). Let 9 be a domain of type $R$, with parameters $\theta$ and $l$.

If $f(z)$ is analytic in 9, and if the inequality

(8) $|\frac{f^{\prime\prime}(z)}{f^{\prime}(z)}|<\frac{\pi-\theta}{l}$

holds throughout 9, then $f(z)$ is univalent in 9.
PROOF. We content ourselves with the following sketch of the proof, but

only for the case $ 0\leqq\theta<\pi$ . If $z_{1},$ $z_{2}$ are distinct points in 9, then it is clear
that they can be joined by a circular arc $ z_{1}z_{2}\wedge$ lying in $\mathscr{D}$, such that the
radian measure of the arc is less than $\theta$ and such that the length of the arc
$ z_{1}z_{2}\wedge$ is less than $l$. We can construct a band about $ z_{1}z_{2}\wedge$ made up of two
circular arcs close to, and parallel to, $ z_{1}z_{2}\wedge$ , and of two small line segments
perpendicular to the extension of $ z_{1}z_{2}\wedge$ through $z_{1}$ and $z_{2}$ . We use (3) and the
geometry of the figure to show that the hypotheses of Theorem 2 are satisfied,
just as in the proof of Theorems 3 and 4 above, in order to be able to con-
clude that $f(z_{1})\neq f(z_{2})$ . This completes the sketch of the proof.

3. We now consider one of Umezawa’s criteria for the univalence of
functions defined in a doubly connected domain.

THEOREM 6 ([4], p. 217). Let 9 be the domain bounded by the simple closed
analytic curve $\Gamma$ and the point $z_{0}$ inside $\Gamma$ . If $f(z)$ is analytic in the closure of
9, except for a simple pole at $z_{0}$ , if $f^{\prime}(z)\neq 0$ for $z$ on $\Gamma$ , and if the relations

(9) $d(\arg df(z))<0$ , $z$ on $\Gamma$ ,
and

(10) $\int_{\tau^{d(\arg df(z))=-2\pi}}$

hold, then $f(z)$ is univalent in 9.
PROOF. Our proof seems a little simpler than Umezawa’s geometric proof,

Since $f(z)$ has a simple pole, a simple application of the classic integral of
the logarithmic derivative shows that $f^{\prime}(z)\neq 0$ in $\mathscr{D}$ ; of course we have made
use of (10). If we refer back to (3), then we see that the inequality (9) states
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that the tangent vector to the image of $\Gamma$ always rotates in the same direc-
tion, $i$ . $e.$ , it is a curve with negative curvature. Because of (10), we find that
the tangent vector to the image of $\Gamma$ must make only one complete revolu-
tion. Hence that image curve is a simple closed analytic convex curve. The
univalence now follows from a classic argument. This completes the proof.

A proof of the preceding result could also be given along the lines of
our proof of Umezawa’s Theorem 1 [1]; this would entail the use of a con-
formal map of the inside of $\Gamma$ onto a unit disc such that $z_{0}$ is mapped onto
the center of the disc.

University of Michigan.
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