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The theory of rings of operators founded by F. J. Murray and J. $v$ .
Neumann [1], [2], [3], [4] was extended from the case of factors to general
rings of operators by J. Dixmier [5], I. Kaplansky [6], I. E. Segal [7], and
others. In particular, the notions of finiteness, and types I, II etc. of general
operator algebras and of the trace of elements of these algebras were
defined and investigated by these authors. The aim of this paper is to
reestablish and generalize some results of these authors from a unified
standpoint by introducing the notion of “ local properties ” of systems of
elements of operator algebras.

We shall explain in \S 1 what we mean by “ local ” and “ global ” pro-
perties of systems of elements of a $B^{*}$-algebra, and study mutual relations
between them.

In \S 2 we refer to some general theorems as preliminaries to \S \S 3, 4.
These are mostly known results, but we give also proofs for completeness’
sake. Especially the results on “ natural $s$ upporters ” as named by Ti. Yen
[8] after the idea of Dixmier [5], are given here for arbitrary $AW^{\star}$-alge-
bras, whereas Dixmier [5] introduced them in case of finite $W^{*}$-algebras
and Ti. Yen considered them only in case of finite $AW^{*}$-algebras.

In \S 3, we shall develope a “ local theory” of $AW^{\star},algebras$ . We shall
first reestablish an important theorem of Kaplansky [6] on the equivalence
between projections in $AW^{*}$-algebras as Proposition 3.5, and obtain finally
a ” decomposition theorem “ as Proposition 3.10. The method of “ localiza-
tion” will turn out to be very useful in the course of this \S .

Finally we shall deal with the trace in \S 4. This concept was introduced
by F. J. Murray-J. von Neumann [1], [2] in finite factors, and investigated
further by J. Dixmier [51 in case of finite $W^{\$\epsilon}$-algebras, by Ti. Yen [8] and
M. Goldman [9] in case of finite $AW^{*}$-algebras. We shall obtain a necessary
and sufficient condition for the existence of ”local trace“ in finite $AW^{\star}$,

algebras (Proposition 4.1.) and some sufficient conditions for the existence
of trace in these algebras (Theorems 4.1, 4.2, 4.3).
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Prof. $0$ . Takenouchi for their kind encouragements, and to Mr. M. Sugiura
for his valuable suggestions. Also, I express my thanks to Dr. T. Kuroda
and Mr. M. Nakai for their valuable discussions.

\S 1. Global properties and local properties.

Let $R$ be a $B^{*}$ -algebra with a unit 1, that is to say, a Banach algebra
over the complex number field with a unit 1 and an involution *satisfying
following conditions:

(1.1) $x^{**}=x$,
(1.2) $(\alpha x)^{*}=\overline{\alpha}x^{*}$ ( $\overline{\alpha}=the$ conjugate complex number of $\alpha$),

(1.3) $(x+y)^{*}=x^{*}+y^{*}$ ,
(1.4) $(xy)^{*}=y^{*}x^{*}$ ,
(1.5) $||x^{*}x||=||x||^{2}$ .

We denote by $R_{0}$ the center of $R$ and by 2 the spectrum of $R_{0}$ , which is a
compact Hausdorff space by the usual topology $\sigma(R_{0}, \Omega)$ . It is well known
that $R_{0}$ is isometric and isomorphic to $C(\Omega)$ , the $B^{*}$-algebra of continuous
functions on $f2$ by a theorem of I. Gelfand and M. H. Stone. We identify
$R_{0}$ with $C(\Omega)$ by the canonical isomorphism from $R_{0}$ onto $C(\Omega)$ . We write
$\lambda(a_{0})$ instead of $a_{0}(\lambda)$ for $a_{0}\in R_{0}$ and $\lambda\in\Omega$ . An element $e$ of $R$ is called a
projection if we have $e=e^{*}=e^{2}$ . We denote by $E_{0}$ the set of projections of
$R_{0}$ , which forms a Boolean lattice if we define the semi-order $e_{0t}\leqq e_{0_{\sim}^{o}}$ . $(e_{01},$ $e_{02}$

$\in E_{0})$ by $\lambda(e_{01})\leqq\lambda(e_{02})$ for any $\lambda\in\Omega$ . As to $E_{0}$ , we shall assume that the
following condition is satisfied:

(1.6) $R_{0}$ is generated by $E_{0}$ .
A point of $\Omega$ is called a spectre of $R$ . For any spectre $\lambda$ of $R$, we denote
by $E_{0}(\lambda)$ the set of projections $e_{0}’ s$ of $E_{0}$ with $\lambda(e_{0})=1$ . Then, $E_{0}(\lambda)$ forms
the set of characteristic functions of a basis of neighbourhoods at $\lambda$ .

Let $(L)$ be a property concerned with a system $\mathfrak{a}=(a_{\iota} ; f\in I)$ of some
elements of $R$, where $I$ is a set of indices depending on $(L)$ . We denote by
$E_{0}(\mathfrak{a}, (L))$ (or briefly by $E_{0}((\iota))$ the set of projections $e_{0}’ s$ of $E_{0}$ such that
$e_{0}(\ddagger=(e_{0}a_{\iota} ; f\in I)$ has the property $(L)$ . A property $(L)$ is called global, if, for
any system $\mathfrak{a}$ of elements of $R,$ $E_{0}(\mathfrak{a})$ forms an ideal of $E_{0}$ , that is to say, a
non-empty subset of $E_{0}$ containing $e_{01}\cup e_{02},$ $e_{01}\cap e_{02}^{\prime}$ with $e_{01}$ and $e_{02}$ for any
$e_{02}^{\prime}$ of $B_{0}^{\urcorner}$ . A property $(L_{\lambda})$ is called local with respect to a spectre $\lambda$ of $R$,
if, for any system $\mathfrak{a}$ of elements of $R$, it holds that $E_{0}(\mathfrak{a}, (L_{\lambda}))=E_{0}$ or $F_{\rightarrow 0}(\lambda)^{c}$

(the complement of $E_{0}(\lambda)$ in $E_{0}$). For any global property $(L)$ and for any
spectre $\lambda$ of $R$, we denote by $(L)_{\lambda}$ the local property with respect to $\lambda$ , which
$\mathfrak{a}$ has if and only if $ E_{0}(\lambda)\cap E_{0}(())\neq\phi$ (we shall denote with $\phi$ the empty set).

We call $(L)_{\lambda}$ the local property corresponding to $(L)$ with respect to $\lambda$ , and
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denote by $\eta(L)$ the system $((L)_{\lambda} ; \lambda\in\Omega)$ of local properties corresponding to $(L)$ .
The following series of propositions play an essential role in our in-

vestigations.
PROPOSITION 1.1. $a$ has a global property $(L)$ if and only if $a$ has $(L)_{\lambda}$ for

any spectre $\lambda$ of $R$ .
PRCOF. Necessity. If $\mathfrak{a}$ has $(L)$ , we have $E_{0}(\mathfrak{a})=E_{0}$ , and hence $ E_{0}(\lambda)\cap$

$ E_{0}(\mathfrak{a})\neq\phi$ . This means that $\mathfrak{a}$ has $(L)_{\lambda}$ for any spectre $\lambda$ of $R$. Sufficiency.
For any spectre $\lambda$ of $R$ , there exists a projection $e_{0}(\lambda)$ of $E_{0}(\lambda)$ with $ e_{0}(\lambda)\in$

$E_{0}(\mathfrak{a})$ . Since $\Omega$ is compact, we have $1=e_{0}(\lambda_{1})\cup e_{0}(\lambda_{2})\cup\cdots\cup e_{0}(\lambda_{n})$ for some
spectres $\lambda_{1},$ $\lambda_{2},\cdots,$ $\lambda_{n}$ of $R$ with $e_{0}(\lambda_{i})\in E_{0}(\{\ddagger)(1\leqq i\leqq n)$ . Since $E_{0}(a)$ is an ideal
of $E_{0}$ , we get $1\in E_{0}(\mathfrak{a})$ . This means that $\mathfrak{a}$ has $(L)$ . $q$ . $e$ . $d$ .

For any system $((L_{\lambda});\lambda\in\Omega)$ of local properties, we denote by $\eta^{\prime}((L_{\lambda})$ ;
$\lambda\in\Omega)$ the logical product of local properties of $((L_{\lambda});\lambda\in l2)$ , that is to say,
the property, which $\mathfrak{a}$ has if and only if $\mathfrak{a}$ has $(L_{\lambda})$ for any spectre $\lambda$ of $R$.
Then, we have

PROPOSITION 1.2. $\eta^{\prime}((L_{\lambda});\lambda\in\Omega)$ is a global property.
PROOF. Let S2’ be the set of spectres $\mu’ s$ of $R$, for which $\mathfrak{a}$ has not $(L_{l})$

and let $(L)$ be $\eta^{\prime}((L_{\lambda});\lambda\in\Omega)$ . Then, we have $E_{0}(t1, (L))=\cap(E_{0}(\mu)^{c} ; \rho\in\Omega^{\prime})$ ,

where the intersection means $E_{0}$ if $\Omega^{\prime}$ is an empty set. Hence, $E_{0}(\mathfrak{a}, (L))$ is
an ideal of $E_{0}$ . $q$ . $e$ . $d$ .

A system $((L_{\lambda});\lambda\in\Omega)$ of local properties is called closed if $\Omega^{\prime}(=(\chi\ell;a$

has not $(L_{\mu})))$ is a closed subspace of 2 for any system $t$} of elements of $R$ .
Then, we have

PROPOSITION 1.3. For a system ( $(L_{\lambda});\lambda\in$ S2) of local properties, it holds
$(L_{\lambda})=(\eta^{\prime}((L_{\lambda});\lambda\in\Omega))_{\lambda}$ for any spectre $\lambda$ of $R$ if and only if the system ( $(L_{\text{{\it \‘{A}}}})$ ;
$\lambda\in\Omega)$ of local properties is closed.

PROOF. Necessity. For a spectre $\lambda$ of $R$ with $\lambda\in\Omega^{\prime}$ , it holds that $\mathfrak{a}$ has
$(\eta^{\prime}((L_{\lambda});\lambda\in\Omega))_{\lambda}$ by hypothesis, that is, $ E_{0}(\lambda)\cap(\cap(E_{0}(\mu)^{c} ; \rho\ell\in 42^{\prime}))\frac{\prime}{\neq}\phi$ . Hence,

we may find a characteristic function $e_{0}(\lambda)$ of a neighbourhood of $\lambda$ separa-
ting $\lambda$ and $\Omega^{\prime}$ . This means that S2’ is closed. Sufficiency. if $\mathfrak{a}$ has not $(L_{\lambda})$ ,
then we have $\lambda\in\Omega^{\prime}$ . Hence, we have $ E_{0}(\lambda)\cap(\cap(E_{0}(\mu)^{c} ; \mu\in\Omega^{\prime}))=\phi$ . This
means that $a$ has not $(\eta^{\prime}((L_{\lambda});\lambda\in\Omega))_{\lambda}$ . Conversely, if $\mathfrak{a}$ has $(L_{\lambda})$ , then we
have $\lambda\in\Omega$ ‘. Since $\Omega^{\prime}$ is closed, we may find a characteristic function $e_{0}(\lambda)$

$(\in E_{0}(\lambda))$ of a neighbourhood of $\lambda$ separating $\Omega^{\prime}$ . This means that it holds
$ E_{0}(\lambda)\cap(\cap(E_{0}(\eta)^{c} ; \mu\in\Omega^{\prime}))\neq\phi$ . Thus, $\mathfrak{a}$ has $(\eta^{\prime}(L_{\lambda});\lambda\in\Omega))_{\lambda}$ . $q$ . $e$ . $d$ .

We write $0$ instead of $\mathfrak{a}=(a_{\iota} ; f\in I)$ if each $a_{\iota}$ of $\mathfrak{a}$ is $0$ . Then, the pro-
perty “ $\mathfrak{a}=0$

” is a global property. We denote it by $(\phi)$ . For a local pro-
perty $(L_{\lambda})$ with respect to a spectre $\lambda$ of $R$, we denote by $(L_{\lambda})^{c}$ the property,
which $t\ddagger$ has if and only if $\mathfrak{a}$ has $(\phi)_{\lambda}$ or has not $(L_{\lambda})$ . Then, we have

PROPOSITION 1.4. The property $(L_{\lambda})^{c}$ is a local property with respect to $\lambda$ .
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PROOF. If $\mathfrak{a}$ has $(L_{\lambda})$ , we have $E_{0}(a, (L_{\lambda})^{c})=E_{0}(\mathfrak{a}, (\phi)_{\lambda})=E_{0}$ or $E_{0}(\lambda)^{c}$ . On
the other hand, if $\mathfrak{a}$ has not $(L_{\lambda}),$ $e_{0}(\lambda)a$ has not $(L_{\lambda})$ for any $e_{0}(\lambda)$ of $E_{0}(\lambda)$ .
Hence, we have $E_{0}(\mathfrak{a}, (L_{\text{{\it \‘{A}}}})^{c})\supseteqq E_{0}(\lambda)$ . Since $\mathfrak{a}$ has not $(L_{\lambda}),$ $\mathfrak{a}$ has not $(\phi)_{\lambda}$ , that
is, $E_{0}(\mathfrak{a}, (\phi)_{\lambda})=E_{0}(\lambda)^{c}$ . Thus, we have $E_{0}(\mathfrak{a}, (L_{\lambda})^{c})\supseteqq E_{0}(\lambda)\cup E_{0}(\lambda)^{c}=E_{0}$ . $q$ . $e$ . $d$ .

This local property $(L_{\lambda})^{c}$ is called the negation of $(L_{\lambda})$ . Similarly, for a
global property $(L)$ , we denote by $(L)^{c}$ the logical product of the system
$(((L)_{\lambda})^{c} ; \lambda\in\Omega)$ of local properties. This global property $(L)^{c}$ is called the
negation of $(L)$ .

A global property $(L)$ is called normal, if, for any system $\mathfrak{a}$ of elements
of $R,$ $E_{0}(\mathfrak{a}, (L))$ is a principal ideal of $E_{0}$ , that is to say, an ideal such as
$e_{0}E_{0}$ of $E_{0}$ for some projection $e_{0}$ of $E_{0}$ . We denote $e_{0}$ by $e_{0}(\mathfrak{a}, (L))$ . In the
following investigation, we shall add the following assumption

(1.7) $(\phi)$ is normal.
Under the assumption (1.7), we have the following

PROPOSITION 1.5. It holds $((L)_{\lambda})^{c}=((L)^{c})_{\lambda}$ for any spectre $\lambda$ of $R$ if and only

if $(L)$ is normal.
PROOF. Necessity. Since we have $((L)_{\lambda})^{c}=((L)^{c})_{\lambda}$ for any spectre $\lambda$ of $R$,

the system $(((L)_{\lambda})^{c} ; \lambda\in\Omega)$ of local properties is closed by Prop. 1.3. On the
other hand, ( $\mu;\mathfrak{a}$ has not $((L)_{/J})^{c}$) $=$ ( $\mu;t\ddagger$ has $(L)_{\mu}$) $\cap(\mu;\mathfrak{a}$ has $(\phi)_{\mu})^{c}$ is open by
(1.7) and by the definition of $(L)_{\mu}$ . Hence, we may find a projection $e_{0}$ of
$E_{0}$ , which is the characteristic function of ($\mu;$ a $ha_{\grave{s}}$( not $((L)_{\mu})^{c}$). Thus, we
have $E_{0}(\mathfrak{a}, (L))=(e_{0}\oplus e_{0}(\mathfrak{a}, (\phi)))E_{0}$ . (We used here and shall use hereafter the
notation $e_{1}\oplus e_{2}$ instead of $ e_{1}+e\lrcorner$ if $e_{1}e_{\Delta}$) $=0.$ ) Sufficiency. Since ( $\mu;\mathfrak{a}$ has not
$((L)_{/1})^{c})=$ ( $\mu;\mathfrak{a}$ has $(L)_{/t}$) $\cap(\mu;\mathfrak{a}$ has $(\phi)_{/1})^{c}$ is closed, we have $((L)_{\lambda})^{c}=((L)^{c})_{\lambda}$ for
any spectre $\lambda$ of $R$ by Prop. 1.3. q. e. $d$ .

The negation $(L)^{c}$ is normal with $(L)$ if and only if we have (1.7). In
fact, we have $E_{0}(\mathfrak{a}, (L)^{c})=E_{0}(\mathfrak{a}, (L))^{\prime}\oplus E_{0}((\ddagger, (\phi))$ (the direct sum of $E_{0}(\mathfrak{a}, (L))^{\prime}$

and $E_{0}(\mathfrak{a}, (\phi))$ as Boolean lattices). Here, we denote by $E_{0}(a, (L))^{\prime}$ the set of
projections $e_{0}’ s$ of $E_{0}$’ such that $e_{0}E_{0}(a, (L))=(O)$ . Moreover, under (1.7), we
have $(L)^{cc}=(L)$ if $(L)$ is normal. In fact, it holds that $((L)^{cc})_{\lambda}=((L)_{\lambda})^{cc}=(L)_{\lambda}$

by Prop. 1.5. Hence, we have $(L)^{cc}=(L)$ by Prop. 1.1.
For example, the property “ $a=b$ is a global property which concerns

two elements $a,$
$b$ of $R$. The local property “

$a=\lambda b$
“ corresponding to “ $a=b$

with respect to a spectre $\lambda$ of $R$ is defined by the existence of a projection
$e_{0}(\lambda)$ of $E_{0}(\lambda)$ with ”

$e_{0}(\lambda)a=e_{0}(\lambda)b$ ”. On the other hand, we may define “ $a=b$ ”

by $||a-b||\leqq\epsilon$ for any positive number $\epsilon$ , whose local property with respect
to $\lambda$ is defined by the existence of a projection $e_{0}(\lambda)$ of $E_{0}(\lambda)$ with $||e_{0}(\lambda)(a$

$-b)||\leqq\epsilon$ for any positive number $\epsilon$. Thus, two local properties correspond-
ing to the same global property with respoct to the same spectre of $R$ is
not always equivalent to each other according to the mode of the expression
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of the definition of the global property. In this paper, we shall use the
former as the definition of ” $a=b$ ”.

\S 2. Preliminary results.

Let $R$ be an $AW^{*}$-algebra, that is to say, a $B^{*}$ -algebra satisfying the
following conditions:

(2.1) Any orthogonal system of projections of $R$ has a $s$ upremum in
the set of projections of $R$ with respect to the semi-order $e_{1}\leqq e_{2}(e_{1},$

$e_{2}$ being
projections of $R$ ) defined by $e_{1}e_{2}=e_{1}$ , where two elements $a,$

$b$ of $R$ are called
orthogonal to each other if it holds $a^{\star}b=ba^{- X}=0$ ,

(2.2) Any maximal commutative subalgebra of $R$ is generated by pro-
jections in it, where two elements $a,$

$b$ of $R$ is called commutative with each
other if it holds that $ab=ba$ and $a^{*}b=ba^{*}$ .

This algebra was introduced by I. Kaplansky [6]. For the sake of
completeness, we shall sketch the proofs of results obtained by C. E. Rickart
[10], I. Kaplansky [6], and Ti. Yen [8]. We denote by $E$ the set of projec-
tions of $R$ and by $U$ the set of partial isometries of $R$, that is to say, the set
of elements $u’ s$ of $R$ such that $u^{*}u$ is a projection of $R$ . We notice that
$uu^{\{\prime}\backslash $ is a projection of $R$ if $u$ is a partial isometry of $R$ .

LEMMA 2.1. In a B’-algebra, (2.1) is equivalent to
(2.3) Any chain of $E$, that is, any linearly ordered subset of $E$, has a

supremum in $E$.
PROOF. (2.3) implies (2.1). In fact, let $E_{1}$ be an orthogonal system of

projections of a $B^{*}$-algebra. We shall show that $E_{1}$ has a supremum in
the set $E$ of projections of the $B^{*}$-algebra. We denote by $\mathfrak{F}$ the family of
subsets $E_{2}’ s$ of $E_{1}$ having a supremum in $E$. Obviously, $\mathfrak{F}$ is non-empty.
Moreover, from (2.3) it follows that $\mathfrak{F}$ is an inductively ordered set with
respect to the inclusion semi-order. Hence, by Zorn’s lemma, there exists a
maximal subset $E_{3}$ of $E_{1}$ in $\mathfrak{F}$ with respect to this semi-order. It is easy to
see that $E_{3}$ coincides with $E_{1}$ .

(2.1) implies (2.3). First, we shall prove that, if a projection $e^{\prime}$ is com-
mutative with each element of an orthogonal system $E_{1}$ of projections, then
$e^{\prime}$ is commutative also with its supremum $e_{1}$ under the assumption (2.1).
We denote by $e_{2}$ the supremum of $(e^{\prime}e_{\iota} ; e_{\iota}\in E_{1})$ and by $e_{3}$ that of ( $(1-e^{\prime})e_{\iota}$ ;
$e_{\iota}\in E_{1})$ . Then, we have $e_{2}\leqq e^{\prime},$ $e_{3}\leqq 1-e^{\prime}$ , and $e_{1}=e_{2}\oplus e_{3}$ . Hence, $e^{\prime}e_{1}=e_{2}$ and
thus $e^{\prime}e_{1}=e_{1}e^{\prime}$ . Next, we shall prove that any commutative system $E_{1}$ of
projections has a supremum in $E$ under the assumption (2.1). We denote
by $E_{2}$ the set of projections $e’ s$ such that $e\leqq e_{\iota}$ for some $e_{\iota}\in E_{1}$ and that $e$ is
commutative with each projection of a commutative system $E_{3}$ of projections
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containing $E_{1}$ . (There is no need.to introduce $E_{3}$ here, but we do so in
order to prove the corollary below by a method without large charge.)

Moreover, we denote by $E_{1}$ a maximal orthogonal system in $E_{2}$ , whose
supremum we denote by $e$ . Then, we have $e_{\iota}\leqq e$ for any $e_{\iota}\in E_{1}$ . In fact
$e_{\iota}(1-e)$ is orthogonal to eash projection of $E_{4}$ and commutative with each
projection of $E_{3}$ and hence $e_{\iota}(1-e)=0$ . On the other hand, if $e_{\iota}\leqq e^{\prime}$ for any
$e_{\iota}\in E_{1}$ , then we have $e_{\kappa^{\prime}}\leqq e^{\prime}for$ any $e_{\kappa^{\prime}}\in E_{\iota}$ and hence $e\leqq e^{\prime}$ . Thus, we have
$e=\sup(e_{\iota};e_{\iota}\in E_{1})$ . q. e. d.

$CoROLLARY$ . If a projection $e_{4}$ of $R$ is commutative with each projection of
a commutative system of $E$, then it is commutative also with the supremum of
the system.

PROOF. Under the same notation as in the proof of Lemma 2.1, we take
the commutative system consisting of $e_{4}$ and $E_{1}$ as $E_{3}$ . Then, we get the
assertion by the proof of Lemma 2.1. $q$ . $e$ . $d$ .

PROPOSITION 2.1. $R$ has a unit (denoted by 1).

PROOF. There exists a maximal orthogonal system $E_{1}$ of $E$, whose
supremum we denote by $e$ . Then, we have $ae=a$ for any element $a$ of $R$.
For, otherwise, we could find an element $a$ of $R$ with $a-ae\neq 0$ . We denote
(a-ae)’(a-ae) by $h$ . Then, we have $h\neq 0$ and $eh=he=0$ . Let $A$ be a maximal
commutative subalgebra of $R$ containing $h$ and $e$ . Then, for any natural
number $n$ , there exists an orthogonal system $(e_{\iota}^{()} ;n 1\leqq\nu\leqq k_{n})$ of projections of
$A$ and real numbers $(\alpha_{\nu}^{(n)} ; 1\leqq\nu\leqq k_{\tau t})$ such that $||h-\Sigma_{\nu\subset 1}^{k_{n}}\alpha_{\nu}^{()}e_{\nu}^{()}nn||\leqq 1/n$ .
If $ee_{\nu}^{()}n\neq 0$ for any $n$ and any $\nu$ , we have $||\Sigma_{\nu\Rightarrow 1}^{k_{n}}\alpha_{\nu}^{(n}$ ) $ee_{\nu}^{(n)}||\leqq 1/n$ , from which
follows $|\alpha_{\nu}^{()}n|\leqq 1/n,$ $(1\leqq\nu\leqq k_{n})$ . Hence, we have $||h||\leqq 2/n$ , which leads to a
contradiction. Thus, we have $ee_{\nu}^{(n)}=0$ for some $n$ and some $\nu$ . But this
contradicts the maximality of $E_{1}$ . Hence, we obtain $ae=a$ for any element
$a$ of $R$ . On the other hand, we have $a=(a^{*})^{*}=(a^{*}e)^{\star}=ea$. Thus, $R$ has a
unit $e$ . $q$ . $e$ . $d$ .

An element $h$ of $R$ with $h=h^{*}$ is called hermitian. We denote by $N$ the
set of hermitian elements of $R$ . By virtue of M. Fukamiya [11], J. L. Kelley-
R. L. Vaught [12], and I. Kaplansky [13] (cf. J. A. Schatz’ review [14]), it is
known that the set of hermitian elements of a $B^{*}$-algebra with a unit 1
forms a semi-ordered set with respect to a semi-order $h\geqq 0$ defined by the
following mutially equivalent conditions:

(2.4) Any spectrum of $h$ is positive,
(2.5) $h=k^{2}$ , for some hermitian element $k$ of $R$ ,
(2.6) $||\alpha-h||\leqq\alpha$ for sufficiently large positive number $\alpha$ ,

and with respect to this semi-order it holds that
(2.7) $a^{*}a\geqq 0$ for any element $a$ of $R$ .

We can easily see that the semi-order of $E$ stated in (2.1) coincides with



190 T. ONO

that of $N$ reduced to $E$.
Let $A$ be a maximal commutative subalgebra of $R$ and $N_{A}$ be the set

of hermitian elements of $A$ . We say that an element $h$ of $N$ has a resolution
of the unit in $N_{A}$ , if there exists a system $(e_{\alpha} ; -\infty<\alpha<\infty)$ of projections
of $N_{A}$ satisfying (1) $e_{c}=1,$ $e_{-c}=0$ for a sufficiently large positive number $c$,
(2) $e_{\alpha}\leqq e_{\beta}$ for $\alpha\leqq\beta,(3)\lim_{\beta\downarrow\alpha}e_{\beta}=e_{\alpha}$

, and

(2.8) $h=\int_{-\infty}^{\infty}\alpha de_{\alpha}$ .

LEMMA 2.2. If each of $h,$ $h$ of $N_{A}$ has a resolution of the unit in $N_{A}$ , then
(2.9) $h\leqq k$ holds if and only if $e_{\alpha}(h)\geqq e_{\alpha}(k)$ for any real number $\alpha$ .
PROOF. Necessity. We denote by $(e_{a}(h);-\infty<\alpha<\infty)$ a resolution of the

unit of an hermitian element $h$ of $R$ if $h$ has a resolution of the unit. We
may assume without loss of generality that we have $0\leqq h\leqq k$ . We denote
$1-e$ by $e^{c}$ for any projection $e$ of $N$ Then, we have $\beta e_{\beta}(h)^{c}\leqq k$ , from which
follows $\beta e_{\beta}(h)\geqq\beta-k$ and hence $\beta e_{\beta}(h)e_{\alpha}(k)\geqq(\beta-\alpha)e_{\alpha}(k)$ for $\beta>\alpha\geqq 0$ . Thus,
we have $e_{\beta}(h)\geqq e_{\alpha}(k)$ . Making $\beta\downarrow\alpha$ , we have $e.(h)\geqq e.(k)$ . Sufficiency. First
we shall prove that, for any element $h$ of $N_{A}$ not being $h\geqq 0$ , there exists a
projection $e$ of $N$ with $eh\geqq 0$ and $eh\neq 0$ . In fact, under the same notation
as in the proof of Prop. 2.1, we obtain $1/n+\Sigma_{t^{J}=1}\alpha_{\nu}e_{\nu}nn\geqq h\geqq-1/n+$

$\Sigma_{\nu=1}^{k_{n}}\alpha_{\nu}^{()}ne_{\nu}^{()}n$ and here we have not always $1/n\geqq\alpha_{\nu}^{()}n$ for, otherewise, we
would have $h\leqq 0$ . Thus, for some $n$ and $\nu,$ $\alpha_{\nu}^{()}n-1/n>0$ , so $e_{\nu}^{()}nh\geqq(\alpha_{\nu}^{()}n-$

$1/n)e_{\nu}^{()}n>0$ and $e_{\nu}^{()}nh\neq 0$ . Next, we assume that $e_{\alpha}(h)\geqq e_{\alpha}(k)$ for any real
number $\alpha$ and that $h\leqq k$ does not hold. Then, we may find a projection $e$

of $N_{A}$ with $eh\geqq ek$ and $eh\neq ek$ . Since each of $eh,$ $ek$ has also a resolution of
the unit, we have $ee_{\alpha}(h)\leqq ee_{a}(k)$ . On the other hand, we see $ee_{\alpha}(h)\geqq ee_{\mathcal{O}}(k)$

from $e_{\alpha}(h)\geqq e_{a}(k)$ . Thus, we get $ee.(h)=ee.(k)$ for any real number $\alpha$ , that
is, $eh=ek$ . This leads to a contradiction. Therefore, if $e_{\alpha}(h)\geqq e_{a}(k)$ for any
$\alpha$ , then we have $h\leqq k$ . $q$ . $e$ . $d$ .

LEMMA 2.3. Any upper-bounded system $(h_{\iota} ; c\in I)$ of $N_{A}$ , whose. member has
a resolution of the unit in $N_{A}$ , has a supremum with a resolution of the unit
in $N_{A}$ .

PROOF. We denote by $(e_{\alpha}(h_{\iota});-\infty<\alpha<\infty)$ a resolution of the unit of
$h_{\iota}$ . Then, $(e_{a}(h_{\iota});f\in I)$ forms a commutative system of projections of $N_{A}$ .
We put $e_{\alpha^{\prime}}=\inf(e_{\alpha}(h_{\iota});f\in I)$ . By the Corollary of Lemma 2.1, $e_{\alpha}^{\prime}$ is a pro-
jection of $N_{A}$ . We put

$\inf_{\beta 1\alpha}e_{\beta^{\prime}}\equiv e_{\alpha}$
. Then, $(e_{a} ; -\infty<\alpha<\infty)$ forms a resolution

of the unit of an element $h(h=\int_{-\infty}^{\infty}\alpha de_{\alpha})$ . It can be proved that $h$ is a

supremum of $(h_{\iota} ; \ell\in I)$ . In fact, we have $h_{\iota}\leqq h$ from $e_{\alpha}(h_{\iota})\geqq e_{a}(h)$ for any
real number $\alpha$ . On the other hand, if $h_{\iota}\leqq k$ for any $f\in I$, there exist, for
any natural number $n$ , projections $(e_{\nu}^{()}n ; 1\leqq\nu\leqq k_{n})$ and real numbers ( $\alpha_{\nu}^{()}$ ;$n$
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$1\leqq\nu\leqq k_{n})$ such that $||k-k^{(n)}+1/n||<1/n$ with $h^{(n)}=1/n+\Sigma_{\nu=1}^{k_{n}}\alpha_{\nu}^{(n)}e_{\nu}^{(n)}$ , which
has a resolution of the unit (denoted by $(e_{\alpha}(k^{()}n);-\infty<\alpha<\infty)$). Since $ h_{\iota}\leqq$

$k^{()}n$ we have from Lemma 2.2 $e_{a}(h_{\iota})\geqq e_{a}(h^{()}n)$ and hence $e_{\alpha}(h)\geqq e_{a}(k^{()}n)$ . Thus,
it follows $h\leqq k_{n}$ . Making $ n\rightarrow\infty$ , we get $h\leqq k$ . $q$ . $e$ . $d$ .

We say that an element $h$ of $N$ has a resolution of the unit if there
exists a system $(e_{\alpha}(h);-\infty<\alpha<\infty)$ of projections of $N$ satisfying (1) $-(3)$

and (2.8) as before. Then, we have the so-called spectral theorem as follows.
$p_{RoPosrTION}2.2$ . Any element of $N$ has a unique resolution of the unit.
PROOF. Existence. Let $k$ be an element of $N$ and let $A$ be a maximal

commutative subalgebra of $R$ containing $h$ . Then, under the same notation
as in the proof of Lemma 2.3, it holds that $k=1imk^{(n}$ )

$n\rightarrow\infty(=\inf(\sup(k^{(\nu)} ; \nu\geqq n)$ ;

$1\leqq n<\infty))$ and $\sup(k^{(n)} ; n\leqq\nu\leqq m)$ has a resolution of the unit in $N_{A}$ . Thus,
by Lemma 2.3, $k$ has a $resol\iota ltion$ of the unit (in $N_{A}$). Uniqueness. We
denote by $(k)^{\prime}$ the set of elements of $R$ commutative with $k$ and by $(k)^{\prime/}$

the set of elements of $Rcommu_{-}^{\{}$ ative $\backslash vith$ each element of $(k)^{\prime}$ . Then, the
uniqueness and $e_{\alpha}(k)\in(h)^{\prime\prime}$ are proved by a simiIar argument as in the
proof of the spectral theorem of hermitian $operator_{\backslash }^{C\backslash }$, on a Hilbert \‘opace.

$q$ . $c$ . $d$ .
The following proposition is an immediate consequence of Lemma 2.3

and Prop. 2.2.
PROPOSITION 2.3. In any maximal commutative subalgebra $A$ of $R,$ $ever_{\vee}!$

upper-bounded system of hermitian elements has a supremum in $A$ .
For any element $a$ of $R$, we denote $e_{0}(a^{*}a)^{c}(=1-e_{0}(a^{\star}a))$ by $e_{*}(a)$ and

$e_{\star}(a^{*})$ by $e(a)$ , where $(e_{a}(a^{*}a);-\infty<\alpha<\infty)$ is the resolution of the unit of
$a^{*}a$ . After C. E. Rickart [10] and I. Kaplansky [6], we call $e_{*}(a)$ the initial
projection of $a$ and $e(a)$ the final projection of $a$ . We say that a projection $e$

fixes an element $a$ from right side if $ae=a$ .
LEMMA 2.4. $e_{*}(a)$ is the minimal projection fixing $a$ from right side.
PROOF. Since $e_{*}(a)^{c}(a^{*}ae_{*}(a)^{c})=0$ , we have $ae_{\star}(a)^{c}=0$ . Hence, we have

$ae_{*}(a)=a$ . On the other hand, if $ae=a$ for a projection $e$ of $R$, we get $ae^{c}=0$

and hence $a^{\star}ae^{c}=0$ . By easy computation, it follows that $e.(a^{*}a)^{C}e^{C}=0$ for
$\alpha>0$ . Making $\alpha\downarrow 0$ , we get $e_{*}(a)e^{c}=0$ and so $e_{*}(a)\geqq e$ . $q$ . $e$ . $d$ .

PROPOSITION 2.4. For any system $F$ of elements of $R$, there exists the
minimal projection fixing each element of $F$ from $ri_{o^{\circ}}ht$ side.

PROOF. We denote by $E_{1}$ a maximal orthogonal system of projections
$e’ s$ of $R$ with $ae=0$ for any $a\in F$ and by $e_{1}$ its supremum, which satisfies
$ae_{1}=0$ for any $a\in F$. If $ae=0$ for any $a\in F$, then $e(e-e_{1}e)$ (the final projec-
tion of $e-e_{1}e$) is orthogonal to $e_{1}$ and $ae(e-e_{1}e)=0$ for any $a\in F$. Hence,

$e_{(}^{\prime}e-e_{1}e)=9$ , tha $t\swarrow s,$ $e\leqq e_{1}$ . Thus, $e_{1}^{c}$ is the projection in question. $q$ . e. d.
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We denote by $e_{*}(F)$ the minimal projection fixing each element of $F$

from right side and by $e(F)$ that from left side. It is obvious that $e(F)=$

$e_{*}(F^{*})$ , where $F^{*}=(a^{*} ; a\in F)$ . As a corollary of Prop. 2.4, we have (cf. I.
Kaplansky [6])

PROPOSITION 2.5. The set $E$ of projections of $R$ forms a complete lattice.
As to $e(a)$ and $e(F)$ , we have the following

LEMMA 2.5. It holds that
(2.9) $e(ab)=e(ae(b))$ ,
(2.10) $e(a(\cup (e_{\iota} ; \ell\in I)))=\cup(e(ae_{\iota});f\in I)$ ,

(2.11) $e(F)=\cup(e(a);a\in F)$ ,
(2.12) $e(e_{1}^{c}e_{2})=e_{1}\cup e_{2}-e_{1}$ ,

where $(e_{\iota} ; f\in\Gamma)$ is a system of projections of $R$ and $F$ is a system of elements

of $R$.
PROOF. (2.9) follows from the fact that $eab=0$ is equivalent to $eae(b)=0$

for any $a,$ $b\in R$ and any $e\in E$ (the set of projections of $R$). We shall prove
(2.10). From $e(a(\cup (e_{\iota} ; \ell\in I)))a(\cup(e_{\iota} ; \ell\in I))=a(\cup(e_{\iota} ; \iota\in I))$ it follows that $ e(a(\cup$

( $f$ that is, $e(a(\cup(e_{\iota} ; \ell\in I)))\geqq e(ae_{\iota})$ . Hence, we have $e(a(\cup(e_{\iota}$ ;
$f\in I)))\geqq\cup(e(ae_{\iota});f\in I)$ . On the other hand, denoting $\cup(e(ae_{\iota});\ell\in I)$ briefiy
by $e$ , we see $eae_{\iota}=ae_{\iota}$ and hence $(ea-a)e_{\iota}=0$ and so $e_{*}(ea-a)e_{\iota}=0$ . Therefore,
by Prop. 2.5, it holds that $e_{*}(ea-a)(\cup (e_{\iota} ; f\in I))=0$ and so $(ea-a)(\cup(e_{\iota} ; f\in I))$

$=0$ . Thus, we get $e(a(\cup (e_{\iota} ; \ell\in I)))\leqq e$ . (2.11) is an immediate consequence
of Prop. 2.5. We shall see (2.12). It is easy to see that $e(e_{1}^{c}e_{2})\leqq e_{1}\cup e_{2}-el$ .
Conversely, putting $e^{\prime}=e(e_{1}^{c}e_{2})$ , we have $e^{\prime c}e_{1}^{c}e_{2}=0$ , that is, $e_{1}^{c}-e^{\prime}\leqq e_{2}^{c}$ . Hence,

we have $e_{1}^{c}-e^{\prime}\leqq e_{1}^{c}\cap e_{2}^{c}$ , that is, $e_{1}\cup e_{2}-e_{1}=e_{1}^{c}-e_{1}^{c}\cap e_{2}^{c}\leqq e^{\prime}$ . Thus, we get
(2.12). $q$ . $e$ . $d$ .

After Ti. Yen [8], a subalgebra $R_{1}$ of $R$ is called an $AW^{*}$ -subalgebra of
$R$ if it is a $B^{96}$-subalgebra of $R$ with structure of an $AW^{*}$-algebra. We
shall consider two $AW^{*}$-subalgebras $R_{i}(i=1,2)$ of $R$, whose units are
denoted by $I_{i}(i=1,2)$ , and a system $A$ of elements of $R$ satisfying $b^{k}\sim^{\prime}a\in R_{1}$ ,
$ab^{*}\in R_{2}$ , and $R_{2}aR_{1}\subseteqq A$ for any $a,$ $b\in A$ . We denote by $R_{0i},$ $E_{i}$ , and $E_{0i}$ the
center of $R_{i}$ , the set of projections of $R_{i}$ , and the set of projections of $R_{0i}$

respectively.
To $e_{1}$ of $E_{1}$ , we associate the minimal projection $e_{\iota^{\mathfrak{h}}}$ of $E_{1}$ in $E_{1}$ fixing

each element of $e_{1}R_{1}$ from right side. This notation $e_{1}^{\mathfrak{h}}$ was introduced by

J. Dixmier [5] in another expression $ e_{1}^{\mathfrak{h}}=\cup$ ( $s_{1}^{*}e_{1}s_{1}$ ; $s_{1}$ unitary of $R_{1}$ ) in finite
$W^{*}$ -algebras and was called by Ti. Yen [8] the natural supporter of $e_{1}$ . (An

element $s_{1}$ in $R_{1}$ is called unilary if it holds that $s_{1}^{*}s_{1}=s_{1}s_{1}^{*}=I_{1}.$ ) Similarly,
to $e_{1}$ of $E_{1}$ , we associate the minimal projection $ e_{1}\#$ of $E_{2}$ in $E_{2}$ fixing each
element of $Ae_{1}$ from left side. In the same way, we can associate with any
$e_{2}\in E_{2}$ an $e_{2}^{\eta}\in E_{2}$ and an $e_{2}\#\in E_{1}$ by considering $R_{2}e_{2}$ and $e_{2}A$ respectively.
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Then, we have the following

PROPOSITION 2.6. As to operation $\#$ the following statements hold.
(2.13) $e_{1}\#\in E_{02}$ ,
(2.14) $ e_{1}^{\mathfrak{U}\#}=e_{1}\#$,
(2.15) $(\cup(e_{\iota} ; \ell\in I))\#=U(e_{\iota}\#;f\in I)$ ,
(2.16) $(e_{1}^{\mathfrak{h}}\cap e_{1^{\prime}})=e_{1}\cap e_{1}^{\prime\#}$,
(2.17) $e_{1}\#\#=e_{1}^{\mathfrak{h}}$ if and only if $ e_{1}^{\mathfrak{h}}\leqq I_{2}\#$,

(2.18) $e_{2}Ae_{1}=0$ if and only if $e_{2}^{*}e_{1}^{A}=0$ .
PROOF. The proof of (2.13). For any element $b$ of $R$ with $bb^{*}\in R_{2}$ , we

denote also by $e(b)$ the minimal projection in $E_{2}$ fixing $b$ from left side.
Moreover, we denote $Ae_{1}$ by F. .Then, for any element $a$ of $F$, we have
$aa^{*}\in R_{2}$ and $R_{\rightarrow}a\subseteqq F$. By (2.11), we have $e_{1}\#=\cup(e(a);a\in F)$ . Putting $ c=be_{1}\#$

$-e_{1}^{\#}be_{1}\#$ for any (but fixed) element $b$ of $R_{2}$ , we have $ca=e_{1}^{\beta c}ba=0$ for any
$a\in F$ and hence $e_{\epsilon}(c)a=0$ for any $a\in F$, that is, $e_{1}\#\leqq e_{*}(c)^{c}$. Thus, we get
$e_{*}(c)e_{1}\#=0$ . On the other hand, $ce_{1}^{\Downarrow c}=0$ and so $e_{*}(c)e_{1}\#=0$ . Hence, there holds
$e_{*}(c)=0$ and hence $c=0$ , that is $ be_{\rfloor}\#=e_{1}\# be_{1}\#$ . Since arbitrary elements of $R_{2}$

are generated by hermitian elements of $R_{2}$ , this completes the proof of (2.13).
In the proof below, we shall use the fact that $e_{1}^{\mathfrak{h}}\in E_{01}$ . This fact is

nothing but (2.13) below and so the proof is omitted.
The proof of (2.15). Let $(e_{1\iota} ; f\in I)$ be a system of projections of $R_{1}$ .

Then, from (2.10) and (2.13) it follows that $(\cup (e_{1\iota} ; c\in I))^{t}=\cup(e(a(\cup(e_{1\iota} ; f\in I)))$ ;
$a\in A)=\cup(e(ae_{1\iota});a\in\Lambda, f\in I)=\cup(e_{1^{\iota}}\#:f\in I)$ .

The proof of (2.14). Since $e_{1}\leqq e_{\iota^{\mathfrak{U}}}$ , we have $e_{I^{\Uparrow\mu}}\leqq e_{1}^{M\#}$ . On the other hand,
we have $e_{1}^{\mathfrak{U}\#=}\cup(e(a(\cup(e_{*}(e_{1}b);b\in R_{1}));a\in A)=U(e(a(U(e(b^{*}e_{\rfloor});b\in R_{1}));a\in A))$

$=\cup(e(a(\cup(e(be_{1});b\in R_{J}));a\in A))=\cup(e(abe_{1});b\in R_{1}, a\in A)\leqq e_{1}^{\#}$ . Thus, we get
(2.14).

The proof of (2.16). First we prove $e_{1}^{\oint\#}\leqq e_{1}^{M}$ . In fact, we have $e_{1}\#\#=$

$\cup(e(ae_{1})\# ;. a\in A)=\cup(e_{*}(e(ae_{1})b);a, b\in A)=\cup(e(b^{*}ae_{1});a, b\in A)\leqq e_{1}^{\mathfrak{h}}$ . Next, we
prove $ae_{1}^{\mathfrak{h}}e_{1}^{\prime}=e_{1}^{k}ae_{1}^{\prime}$ . In fact, from (2.14) and from the fact above, we have
$ae_{1}^{\mathfrak{U}M\#\mathfrak{U}*\#\#\#M\#\#\#\#}e_{1}^{\prime}=e_{1}ae_{1}e_{1}^{\prime}=eae_{1}e_{1}^{\prime}=e_{l}^{g}ae_{I}e_{I}e_{1}^{\prime}=e_{1}ae_{1}e_{1^{\prime}}=e_{1}ae_{1}^{\prime}$ . Hence, we have
$(e_{1}^{v}e_{1}^{\prime})^{*}=\cup(e(ae_{1}^{\mathfrak{h}}e_{1}^{\prime});a\in A)=\cup(e(e_{1}ae_{1}^{\prime});a\in A)=e(e_{1}(\cup(e(ae_{1^{\prime}});a\in A))=e(e_{1}\#_{e_{1}^{\prime}}\#)$

$=e_{1}\#_{e_{1}^{\prime}}\#$ .
The proof of (2.17). First we prove $e_{1}\#\leqq e_{1}$ . In fact, we have $e_{1}\#\#\#\leqq e_{1}^{\mathfrak{U}t}$

$=e_{1}\$ $. Conversely, it holds that $e_{1}\# ae_{1}=(e_{1}((e_{1}a)e_{1}))e_{1}=e_{1}(e_{1}(ae_{1}))e_{1}^{\{\#}=ae_{1}$ .
Hence, we have $e_{1}\leqq e_{1}$ . Thus, we have $e_{1}=e_{1}$ . If $ e_{\iota^{\mathfrak{h}}}\leqq I_{2}\#$ , then it holds
that $ e_{1}^{\mathfrak{q}}=e_{1}\#\#$, because, as we have $ I_{2}\#=I_{2}\#\#\#=e_{1}\#\#\oplus(I_{2}e_{1})\#\#$, we must have
equality sign in both of $ e_{\iota^{\mathfrak{h}}}\geqq e_{1}\#\#$ , and $ I_{2}\#_{e_{1}^{\mathfrak{h}c}\geqq(e_{1}^{\mathfrak{h}c})^{l}\#}I_{2}\#\cdot\cdot$ . Conversely, if $ e_{1}^{\mathfrak{h}}=e_{1}\#\#$ ,
then it holds that $ e_{1}^{\mathfrak{h}}=(e_{1^{*}})^{\mathfrak{p}}\leqq\tau_{2}\#$ .

The proof of (2.18). It holds that $e_{2}Ae_{1}=0$ if and only if $e_{1}\#\leqq e_{2^{C}}$. Hence,
we have $e_{\iota^{\#}}R_{2}e_{2}=0$ . Thus, we obtain $e_{I}\#_{e_{2}=0}$ if and only if $e_{2}Ae_{1}=0$ . q. e. d.
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In what follows, it may happen to use $\#$ simply without specifying $A$ ,
$R_{1},$ $R_{2}$ . In that case, we are supposing that $R=R_{1}=R_{2}=A$ , and, by virtue
of the *operation, ta and $\#$ are identified. As an immediate consequence of
Prop. 2.6, we have

PROPOSITION 2.7. In an $AW^{*}$ -algebra $R$ , whose center is denoted by $R_{0}$ , it
holds that

(2.13) $e^{\mathfrak{h}}\in R_{0}$ ,
(2.14)i $e^{\mathfrak{h}\mathfrak{h}}=e^{\mathfrak{h}}$ ,
(2.15)i $(\cup (e_{\iota} ; f\in I))^{\mathfrak{h}}=\cup(e_{\iota}^{\eta} ; \ell\in I)$ ,
(2.16) $(e^{\mathfrak{h}}\cap e^{\prime})^{\mathfrak{h}}=e^{\mathfrak{h}}\cap e^{fq}$ ,
(2.18)i $e_{2}Re_{1}=0$ if and only if $e_{1}^{\mathfrak{h}}e_{2}^{M}=0$ .
For an element $a$ of $R$, we denote $e(a)^{\mathfrak{h}}$ by $e_{0}(a)$ . It is easy to see that

$e_{0}(a)$ is the minimal projection of $R_{0}$ fixing $a$ .
Since the mapping $ e_{1}^{\mathfrak{h}}\rightarrow e_{1}\#$ is an isomorphism from $I_{2}\# E_{01}$ onto $I_{1}^{*}E_{02}$ as

structure of Boolean lattices, it is extended to an algebraic isomorphism
from $I_{\underline{o}}\#_{R_{01}}$ onto $I_{1}\#_{R_{02}}$ , which we denote also by $\#$ . (Here, we say that $\varphi$ is
an algebraic isomorphsm from an $AW^{*}$-algebra $R_{1}$ onto an $\Lambda W^{*}$-algebra
$R_{\rangle,\lrcorner}$ if $\varphi$ is a one-to-one mapping from $R_{1}$ onto $R_{2}$ with following conditions:
(1) $\varphi(a_{1}+a_{1}^{\prime})=\varphi(a_{1})+\varphi(a_{1}^{\prime}),$ (2) $\varphi(a_{1}a_{1^{\prime}})=\varphi(a_{1})\varphi(a_{1}^{\prime})$ , and (3) $\varphi(a_{1}^{*})=\varphi(a_{1})^{*}$ (for

any $a_{1},$
$a_{1}^{\prime}\in R_{1}$ ) $.$ )

PROPOSITION 2.8. With the same notation as before, let $\varphi_{0}$ be an algebraic
isomorphism from $R_{01}$ onto $R_{02}$ and suppose that $A$ satisfies the property $\varphi_{0}(c_{01})a$

$=ac_{01}$ for any $a\in A$ and any $c_{01}\in R_{01}$ . Then, we have $\varphi_{0}(c_{01})\#=c_{01}$ for any $ c_{01}\in$

$I_{2}\# R_{01}$ . Moreover, if $\varphi_{0}(I_{2}\#)=I_{1}\#$ , it holds that $\varphi_{0}(c_{01})=c_{01}\#$ for any $c_{01}\in R_{01}$ .
PROOF. Since $\varphi_{0}(e_{01})ae_{01}=ae_{01}$ for any $a\in A$ and $e_{01}\in E_{01}$ , it holds that

$e_{01}^{i}\leqq\varphi_{0}(e_{01})$ and so $e_{01}\#\#\leqq\varphi_{0}(e_{01})^{\lambda}$ . Moreover, from $\varphi_{0}(e_{01})a=\varphi_{0}(e_{01})ae_{01}$ it follows
that $\varphi_{0}(e_{01})\#\leqq e_{01}$ . Thus, we have $\varphi_{\iota}(e_{01})^{t}=e_{01}$ if $e_{01}\in I_{2}\# E_{01}$ and hence $\varphi_{0}(c_{01})\#$

$c_{01}$ if $c_{01}\in I_{2}\# R_{01}$ . $q$ . $e$ . $d$ .

\S 3. Local relative dimension.

Again, let $R$ be an $AW^{*}$-algebra. Hereafter, throughout this paper, a
local property with respect to a spectre of $R$ is called briefly a local pro-
perty, if the spectre is considered as given once for all. In this case we
use also the term “ locally ” in the corresponding sense. A global property
is simply called a property.

In order to apply results in \S 1 to $AW$“-algebras, we must prove the
following

PROPOSITION 3.1. $R$ satisfies (1.6) and (1.7).

PROOF. The proof of (1.6). For an hermitian element $h$ of $R_{0}$ , we denote
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by $(e_{\alpha}(h);-\infty<\alpha<\infty)$ the resolution of the unit of $h$ . Then, from the
definition itself, $h$ is the limit of linear combinations of $e_{\alpha}(h)$ , and, as we
saw in the proof of Prop. 2.2, $e_{a}(h)\in E_{0}$ . We thus see that $h$ is in the
subalgebra generated by $E_{0}$ . As regards to a general element of $R_{0}$ , being
able to be written as a linear combination of two hermitian elements of
$R_{0}$ , it is also in that named subalgebra. This shows (1.6).

The proof of (1.7). Let $a=(a_{\iota} ; f\in I)$ be a system of elements of $R$.
Then, by (2.11), we get $E_{0}(\mathfrak{a}, (\phi))=(\cup((e_{0}(a_{\iota});f\in I))^{c}E_{0}$ . Hence, $(\phi)$ is normal.
$q$ . $e$ . $d$ .

First, we introduce some concepts.
DEFINITION 3.1. 1) Two projections $e_{i}(i=1,2)$ are called equivalent to each

other and denoted by $e_{1}-e_{2}$ if there exists a partial isometry $u$ of $R$ with $e_{*}(u)$

$=e_{1}$ and $e(u)=e_{2}$ . Here, we say that an element $u$ of $R$ is a partial isometry if
$u^{*}u$ is a projection of R. In this case, $uu^{*}$ is also a projection of $R$ .

2) A projection $e$ of $R$ is called finite if $e=e_{1}$ follows from $e\sim e_{1}$ and $e\geqq e_{1}$ .
3) A projection $e$ of $R$ is called infinite if it is not finite.
4) A projection $e$ of $R$ is called irreducible if $e_{1}=e_{2}=0$ follows from $e\geqq e_{1}$

$\oplus e_{2}$ and $e_{1}\sim e_{2}$ .
These properties are normal properties except for infiniteness (as this

is easily seen from Lemma 3.1 below for 1) and is clear for 2), 4)) and are
properties concerning with one projection of $R$ except for equivalence,
which concerns with two projections of $R$. We call negation of finiteness
the normal infiniteness.

We denote by $U$ the set of partial isometries of $R$. We write $u_{1}\leqq_{1}u_{2}$

for $u_{1},$ $u_{2}\in U$ if $u_{2}-u_{1}$ is a partial isometry orthogonal to $u_{1}$ . Then, it is
easy to see that $U$ forms a semi-ordered set.

The first aim of this \S is to prove a theorem of I. Kaplansky [6] (cf.
Prop. 3.5). By the local consideration, his proof will be slightly shortened.
We denote by $(L_{0})$ the property concerning with an orthogonal system $\mathfrak{a}=$

$(u_{\iota} ; f\in I)$ of elements of $U$, which $\mathfrak{a}$ has if and only if $\mathfrak{a}$ has a supremum
in $U$.

LEMMA 3.1. $(L_{0})$ is normal.
PROOF. If each system $\mathfrak{a}_{\iota}$ of partial isometries has a supremum $u_{\iota}$ in $U$

and if $(u_{\iota} ; \ell\in I)$ has a supremum $u$ in $U$, then $u$ is the supremum of $(v;v\in a_{\iota}$

for some $\ell\in I$ ) in $U$. Hence, we need only to prove that an orthogonal
system $\mathfrak{a}=(u_{\iota} ; \ell\in I)$ of elements of $U$ has a supremum in $U$, if $(e_{0}(u_{\iota});c\in I)$

is an orthogonal system of projections of $R_{0}$ . We denote by $A$ a maximal
commutative subalgebra of $R$ containing $(u_{\iota}^{*}+u_{\iota} ; C\in I)$ and denote by ( $e_{t^{\iota}}$ ;
$-\infty<\alpha<\infty)$ the resolution of the unit associated to $u_{\iota}^{*}+u_{\iota}$ . Putting $e_{\alpha}$

$=\sup(e_{a.\iota} ; f\in I)$ , the system $(e_{\alpha} ; -\infty<\alpha<\infty)$ forms the resolution of the
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unit associated to some hermitian element of $A$ . We denote it by $[u^{*}+u]$ .
Then, we have $e_{0}(u_{\iota})[u^{*}+\iota t]=u_{\iota}^{*}+u_{\iota}$ . Similarly, we may find an element
$[u^{*}-u]$ of $N$ with $e_{0}(u_{\iota})[u^{\star}-u]=u_{\iota}^{*}-u_{\iota}$ . We put $u=\#([u^{*}+u]-[u^{*}-u])$

$(\oplus(e_{0}(u_{\iota});\ell\in I))$ . Then, it is easy to see that $u$ is the supremum of $(u_{\iota} ; c\in I)$

in U. $q$ . $e$ . $d$ .
The following lemma is due to [6]. But the present proof need less

calculation.
LEMMA 3.2. Let $(u_{\iota} ; \ell\in I)$ be an orthogonal system of elements of $U$, whose

initial projection $e_{*}((u_{\iota} ; \ell\in I))$ and final one $e((u_{\iota} ; \ell\in I))$ are orthogonal to each
other. Then, $(u_{\iota} ; f\in I)$ has a supremum in $U$.

PROOF. We denote $e_{*}((u_{\iota} ; \ell\in I))$ by $e_{*}$ and $e((u_{\iota} ; \ell\in I))$ by $e$ . Since $u_{\iota}^{*}$

$+u_{\iota}$ is hermitian and unitary in $(e_{*}(u_{\iota})\oplus e(u_{\iota}))R(e_{*}(u_{\iota})\oplus e(u_{\iota}))$ , we have $u_{\iota}^{*}+u_{\iota}$

$=e_{\iota}^{\prime}-e_{\iota}^{\prime\prime}$ , where $e_{\iota}^{\prime},$ $e_{\iota}^{\prime\prime}$ are mutually orthogonal $projections$
$f$

of $(e_{*}(u_{\iota})\oplus$

$e(u_{\iota})R(e_{*}(u_{\iota})\oplus e(u_{\iota}))$ . Putting $e^{\prime}=\oplus(e_{\iota}^{\prime} ; f\in I),$ $e^{\prime\prime}=\oplus(e_{\iota} ; f\in I)$ , and $u=e(e^{\prime}-e^{\prime f})$ ,

we have $e(u_{\iota})u=e(u_{\iota})(e_{*}(u_{\iota})\oplus e(u_{\iota}))(e^{\prime}-e^{\prime\prime})=e(u_{\iota})(e_{\iota}^{\prime}-e_{\iota}^{\prime\prime})=e(u_{\iota})(u_{\iota}^{*}+u_{\iota})=e(u_{\iota})u_{\iota}$

$=u_{\iota}$ and similarly we have $ue_{*}(u_{\iota})=u_{\iota}$ . Further we get $uu^{*}=e(e^{\prime}-e^{\prime\prime})^{2}e=$

$e(e_{*}\oplus e)=e$ and $u^{*}u=(e^{\prime}-e^{\prime\prime})e(e‘ -e^{\prime\prime})=\oplus(e_{*}(u_{\iota});f\in I)=e_{*}$ . $q$ . $e$ . $d$ .
PROPOSITION 3.1. For two projections $e_{1},$ $e_{2}$ of $R$, there exists a non-zero

element $u$ of $U$ with $e_{*}(u)\leqq e_{1}$ and $e(u)\leqq e_{2}$ if and only if it holds $e_{1}^{\mathfrak{h}}e_{2}^{\mathfrak{h}}\neq 0$ .
PROOF. Necessity. Since $e_{2}Re_{1}\neq 0$ , we get $e_{1}^{\mathfrak{h}}e_{2}^{\mathfrak{h}}\neq 0$ by (2.18). Sufficiency.

By (2.18), we may find a non-zero element $a$ of $R$ with $e_{*}(a)\leqq e_{1}$ and $e(a)\leqq e_{2}$ .
Let $(e_{\alpha} ; 0\leqq\alpha<\infty)$ be the resolution of the unit of $a^{*}a$ . We denote by $k_{\alpha}$

the inverse of $a^{*}ae_{a}^{c}$ in $e_{\alpha}^{c}Re_{\alpha}^{c}$ for a sufficiently small positive number $\alpha$ .
Then, $u=ak_{\alpha}^{\frac{1}{2}}$ is a non-zero element of $U$ with $e_{*}(u)\leqq e_{*}(a)$ and $e(u)\leqq e(a)$ .
Thus, we get the assertion. $q$ . $e$ . $d$ .

PROPOSITION 3.2. The following statements are mutually equivalent: (1) $e$

is normally infinite, (2) $e=\oplus(e_{\eta} ; 1\leqq n<\infty)$ with $e_{1}-e_{n}(1\leqq n<\infty)$ for some $e_{n}$

of $E$, and, (3) $e-e^{\prime}-e^{\prime c}$ for some $e^{\prime}$ of $E$.
PROOF. (1) implies (2). Since $e$ is normally infinite, we may find a

projection $e^{\prime}$ satisfying that $e^{\prime}\leqq e$ and $e\neq e^{\prime}-e$ . Then, by the well known
way, we may find a $decomposition\oplus(e_{n}^{\prime} ; 1\leqq n<\infty)\leqq e$ with $e_{1}^{\prime}-e_{n}^{\prime}(1\leqq n<\infty)$ .
Hence, we may find a maximal orthogonal system $(e_{\iota}^{\prime} ; \ell\in I)$ of projections
of $R$ with $e_{1}^{\prime}\sim e_{\iota}^{\prime}(c\in I)$ containing $(e_{n}^{\prime} ; 1\leqq n<\infty)$ . Furthermore, using
Lemma 3.2, we may find a maximal pair $(e^{\prime}, e^{\prime\prime})$ of projections of $R$ with
$ e_{1}^{\prime}\geqq e^{\prime}\sim e^{\prime\prime}\leqq$ $(\oplus(e_{\iota}^{\prime} ; f\in I))^{c}$ . Then, we get $(e_{1}‘ -e^{\prime})^{\mathfrak{h}}((\oplus(e_{\iota}^{\prime} ; f\in I))^{c}-e^{\prime\prime})^{\mathfrak{h}}=0$ by
Prop. 3.1. Since $(e_{1}^{\prime}-e^{\prime})^{\mathfrak{h}}\neq 0$ , there exists at least one spectre $\lambda$ of $R$, with
respect to which it holds that $e=\oplus(e_{\iota}^{f\prime} ; \ell\in I)$ with $e_{1}\sim e_{\iota}^{\prime\prime}(f\in I)$ locally by
the well known way. Since the cardinal number of $I$ is greater than $\aleph_{0}$ we
find a decomposition (2) with respect to $\lambda$ locally. The property that a
projection decomposes into the sum of a countable orthogonal system con-
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sisting of mutually equivalent projections being normal, one easily sees the
validity of (2) from this.

(2) implies (3). We may use the index $(n, m)$ instead of $n$ and a decom-
position $e=\oplus(e_{n,m} ; 1\leqq n, m<\infty)$ instead of (2). We write $e_{n}=\oplus(e_{n,m}$ ; $1\leqq m$

$<\infty)$ . Applying Lemma 3.2 to $e_{2n}-1-e_{2n}(1\leqq n<\infty)$ . we have a partial
isometry $u$ of $R$ with $e_{*}(u)=\oplus(e_{2n-1} ; 1\leqq n<\infty)$ and $e(u)=\oplus(e_{2n} ; 1\leqq n<\infty)$ .
Similarly, we have a partial isometry $v$ of $R$ with $e_{*}(v)=\oplus(e_{2n} ; 1\leqq n<\infty)$

and $e(v)=\oplus(e_{2n+1} ; 1\leqq n<\infty)$ . We put $w=u+v$ . Then, $w$ is a partial isometry
of $R$ with $e_{*}(w)=e$ and $e(w)=e_{1}^{c}$ . Moreover, it holds $e_{1}\sim e_{1}^{c}$ by Lemma 3.2.

(3) implies (1). Let $e_{0}(\lambda)$ be a projection of $E_{0}(\lambda)$ . Since $e-e^{\prime c}$, it holds
that $(e_{0}(\lambda)e^{\prime c})^{\mathfrak{h}}=e_{0}(\lambda)e^{\prime c\mathfrak{h}}=e_{0}(\lambda)e^{\mathfrak{h}}$ . Hence, if $e_{0}(\lambda)e_{J}^{\#}\pm 0$ , we get $ e_{0}(\lambda)e\neq e_{0}(\lambda)e^{\prime}\sim$

$e_{0}(\lambda)e$ , that is, $e_{0}(\lambda)e$ not being locally finite. This means that $e$ is locally
zero or not locally finite. Hence, $e$ is locally normally infinite with respect
to any spectre $\lambda$ of $R$. Thus, $e$ is normally infinite by the definition of
normal infiniteness.

We say that $R$ is discrete, finite, and normally infinite if 1 is discrete,
finite, and normally infinite respectively, where a projection $e_{0}$ of $R_{0}$ is
called discrete if there exists an irreducible projection $e$ of $E$ with $e^{\#}=e_{0}$ .
We call the negation of discreteness the non-discreteness. These properties
are obviously normal properties concerning one element of $R$, namely the
unit 1 of $R$. Hence, we can say about these local properties.

DEFINITION 3.2. A projection $e$ of $R$ is called simple of order $n$ if there
exists a decomposition $e^{\#}=\oplus(e_{\nu} ; 1\leqq\nu\leqq n)$ with $e\sim e_{\nu}(1\leqq\nu\leqq n)$ .

This property is also normal.
LEMMA 3.3. There exists a unique decomposition
(3.1) $1=\oplus(e_{0}(I_{n});1\leqq n<\infty)\oplus e_{0}(II_{1})\oplus e_{0}(\infty)$ , where $e_{0}(I_{n}),$ $e_{0}(II_{1})$ , and $e_{0}(\infty)$

are the uniquely determined maximal projections of $R_{0}$ among the projections $e_{0}’ s$

of $R_{0}$ with a simple irreducible projection $e$ of order $n$ satisfying $e^{\mathfrak{h}}=e_{0}$ , with
finiteness and non-discreteness, and with normal infiniteness respectively.

PROOF. It is easy to see that there exist the maximal projections $e_{0}(I_{n})$

$(1\leqq n<\infty),$ $e_{0}(II_{1}),$ $e_{0}(\infty)$ in question and that they are orthogonal to each
other. We put $e_{0}=(\oplus(e_{0}(I_{n});1\leqq n<\infty)\oplus e_{0}(II_{1})\oplus e_{0}(\infty))^{c}$ . Then, $e_{0}$ is finite
and discrete. We shall prove that, if $e_{0}\neq 0,$

$e_{0}$ must be $0$ . From this, we
can conclude the assertion.

Now, assume that $e_{0}\neq 0$ . Since $e_{0}$ is discrete, we may find a non-zero
irreducible projection $e_{1}$ of $R$ with $e_{1}^{\eta}=e_{0}$ . Then, there exists a maximal
orthogonal system $(e_{\iota} ; \ell\in I)$ of projections of $R$ containing $e_{1}$ and satisfying
$e_{1}\sim e_{\iota}(\ell\in I)$ . If the cardinal number of $I$ is greater than $\aleph_{0}$ , we see from
Prop. 3.2 that, for any countable subsystem $(e_{n} ; 1\leqq n<\infty)$ of $(e_{\iota} ; \ell\in I)$ ,
$\oplus(e_{n} ; 1\leqq n<\infty)$ is normally infinite. Since $(\oplus(e_{n} ; 1\leqq n<\infty))\#=e_{1}^{\mathfrak{h}}=e_{0},$

$e_{0}$ is
normally infinite. This is a contradiction. Hence, $I$ is a finite set (say
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$I=(\nu;1\leqq\nu\leqq n)$ . We put $e^{(1)}=e_{0}(\oplus(e_{\nu} ; 1\leqq\nu\leqq n))^{c}$ . Then, we may find a
maximal pair $(e^{\prime}, e^{\prime/})$ of projections of $R$ with $e_{1}\geqq e^{\prime}\sim e^{\prime\prime}\leqq e^{(1)}$ . By Prop. 3.1,
we have $(e_{1}e^{\prime c})^{\mathfrak{h}}(e^{(1)}e^{\prime/c})^{\mathfrak{h}}=0$ . Since $(e_{1}e^{\prime c})^{\mathfrak{h}}\neq 0$ , we have $e_{1}\geqq e^{\prime}\sim e^{(1)}$ locally.
Since $e_{1}$ is irreducible, we have $(e^{f\mathfrak{h}}e_{1}e^{\gamma c})=e^{\prime}(e_{1}e^{\prime c})^{\mathfrak{h}}=0$ , that is, $e^{\prime \mathfrak{h}}e_{1}e^{\prime c}=0$ .
Hence, we get $e^{(1)M}e_{1}=e^{f\mathfrak{h}}e_{1}=e^{\prime}$ . Thus, we obtain $e^{(1)\#}=\oplus(e^{(1)\mathfrak{U}}e_{\nu} ; 1\leqq\nu\leqq n)\oplus e^{(1)}$

with $e_{1}-e^{(1)}$ locally. This means that $e^{(1)\#}\leqq\lambda e_{0}\cap e_{0}(I_{n+1})=0$ . Hence, we get
$e^{(1)}=\lambda 0$ , that is, $e_{0}=r\oplus(e_{\nu} ; 1\leqq\nu\leqq n)$ and so $e_{0}\leqq\lambda e_{0}(I_{n})$ . Since $e_{0}$ is locally
orthogonal to $e_{0}(I_{n}),$

$e_{0}$ must be locally zero. From this it follows that $e_{0}$

is zero by Prop. 1.1. $q$ . $e$ . $d$ .
LEMMA 3.4. If $R$ is locally normally infinite, then an orthogonal system a

of elements of $U$ has $(L_{0})$ .
PROOF. We may assume without loss of generality that $R$ is normally

infinite. By Prop. 3.2, we may find a projection $e$ of $R$ with $1\sim e\sim e^{c}$ . Hence,
there exist a partial isometry $u$ of $R$ with $e_{*}(u)=1,$ $e(u)=e$ and a partial
isometry $v$ of $R$ with $e_{*}(v)=e,$ $e(v)=e^{c}$ . By Lemma 3.2, vuau* $=(vua_{\iota}u^{*} ; \ell\in I)$

has $(L_{0})$ . By multiplying $u^{*}v^{*}$ from the left and $u$ from the right, we see
that $\mathfrak{a}$ has $(L_{0})$ . $q$ . $e$ . $d$ .

We denote by “
$a=_{\lambda}b$

” the local notion of “ $a=b$ and similarly by
“

$a\geqq\lambda b$
” that of ”

$ a\geqq b-\epsilon$ for any positive number $\epsilon$ ”. Moreover, we denote
by $e_{1}\sim_{\lambda}e_{2}$ the local notion of $e_{1}\sim e_{2}$ .

We say that.an element $a$ of $R$ is locally non-zero (denoted by $a\neq\lambda O$) if
it is not locally zero and that a projection $e$ of $R$ is locally minimal if $e$ is
locally non-zero and if $e=_{\lambda}e_{1}$ follows from $e\geqq\lambda e_{1}$ ( $e_{1}$ being locally non-zero).

Though these properties are never local properties, we shall use such
terminologies for convinience. Denoting by $(L^{\lambda})$ one of them, $(L^{\lambda})$ satisfies
that $1\in E_{0}(a, (L^{\lambda}))$ is equivalent to $E_{0}(a, (L^{\lambda}))=E_{0}(\lambda)$ .

PROPOSITION 3.3. As to the locally irreducble projections, we have (1) any
locally non-zero irreducible projection is locally minimal, (2) any locally non-zero
projection contains a locally non-zero irreducible projection if $R$ is locally discrete,

and (3) locally non-zero irreducible projections of $R$ are mutually locally equivalent.
PROOF. (1) Let $e$ be a locally non-zero irreducible projection of $R$ and

suppose that $e\geqq\lambda e^{\prime}$ holds for a locally non-zero projection $e^{\prime}$ of $R$ . Then,
we have $e=_{\lambda}e^{\prime}\oplus ee^{\prime c},$ $e^{\prime \mathfrak{h}}e^{\prime c\mathfrak{h}}=0$ and hence $e=_{\lambda}e^{\prime \mathfrak{U}}e=_{\lambda}e^{\prime}$ . (2) Let $e^{\prime}$ be a locally
non-zero projection of $R$ and $e$ be a locally non-zero irreducible projection
of $R$ . Then, there exists a maximal pair $(e_{1}, e_{1}^{\prime})$ of projections of $R$ with
$e^{\prime}\geqq e_{1}^{\prime}\sim e_{1}\leqq e$ by Lemma 3.1. By Prop. 3.1, it holds that $(e^{\prime}e_{1}^{\prime c})^{\mathfrak{h}}(ee_{1}^{c})^{\mathfrak{h}}=0$ . If
$\lambda((e^{\prime}e_{1}^{\prime c})^{\mathfrak{h}})=0$ , we have $e^{\prime}=\lambda e_{1}^{f}\sim e_{1}\leqq e$ and $e_{1}^{\mathfrak{h}}=\lambda e^{\prime \mathfrak{h}}\in E_{0}(\lambda)$ . Thus, we have
$e^{\prime}\sim_{\lambda}e_{1}=\lambda e$ . On the other hand, if $\lambda((e^{\prime}e_{1}^{fc})^{\mathfrak{h}})=1$ , we have $\lambda((ee_{1}^{r})^{\mathfrak{h}})=0$ and so
$e=\lambda(e^{\prime}e_{1}^{\prime C})e=(e_{1}e_{1}^{\prime c})e_{1}e=(e\prime e_{1}\prime c)e_{1}\sim(e^{\prime}e_{1}^{\prime c})^{\mathfrak{h}}e_{1}^{\prime}\leqq e_{1}$ . The fact (3) follows im-
mediately from (1) and (2). $q$ . $e$ . $d$ .
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LEMMA 3.5. If $R$ is locally finite and has a locally simple irreducble projec-
tion of order $n$ , then an orthogonal system $a$ of partial isometries of $R$ has $(L_{0})$ .

PROOF. We may assume without loss of generality that $R$ is finite and
has a simple irreducible projection of order $n$ . Let $P$ be the set of projec-
tions $e_{0}e_{*}(u_{\iota})s$ of $R$ for arbitrary $e_{0}\in E_{0}$ and $\ell\in I$. We denote $e_{0}u_{\iota}$ by
$\rho(e_{0}e_{*}\backslash (u_{\iota}))$ . Then, there exists a maximal orthogonal system $P_{1}$ of projec-
tions of $P$ satisfying that $(e^{\mathfrak{h}} ; e\in P_{1})$ is an orthogonal system of projections
of $R_{0}$ . Similarly, by induction, we may find a maximal orthogonal system
$P_{\nu}$ of projections of $P$ satisfying that $(e^{\mathfrak{h}} ; e\in P_{\nu})$ is an orthogonal system of
projections of $R_{0}$ and that $P_{\nu}$ is orthogonal to $P_{\mu}(1\leqq\mu<\nu)$ . Then, ($\rho(e)$ ;
$e\in P_{\nu})$ has $(L_{0})$ by Lemma 3.1. We denote by $e_{0}^{(\nu)}$ the supremum of ( $e^{\eta}$ ;
$e\in P_{\nu})$ and by $e^{(\nu)}$ that of $P_{\nu}$ . Then, it holds that $e_{0}^{(\nu)}\geqq e_{0^{(\nu+1)}}$ .

We shall prove that $e_{0}^{(n+1)}=0$ . For otherwise, we can take a spectre $\lambda$

of $R$ with respect to which $e^{(\nu)}=\lambda e_{0}^{(+1)}n\neq_{\lambda}0$ . As $e^{(\nu)}’ s$ are mutually orthogonal
and $e^{(\nu)\mathfrak{h}}=e_{0}^{(\nu)}$ and $R$ is discrete, we see from Prop. 3.3 that $R$ has no locally
simple irreducible projection of order $n$ with respect to $\lambda$ , and this con-
tradicts with the assumption by virtue of Prop. 1.1. Hence, we have $e_{0^{(+1)}}n$

$=0$ . Consequently, we may assume without loss of generality that $I$ is a
finite set. Then, $\sum(u_{\iota} ; f\in I)$ is the supremum of $a$ . $q$ . $e$ . $d$ .

The following proposition is due to J. Dixmier [5].

PROPOSITION 3.4. If $R$ is non-discrete, there exists two projections $e^{(1)}$ and
$e^{(2)}$ of $R$ satisfying $e=e^{(I)}\oplus e^{(2)}$ and $e^{(I)}\sim e^{(2)}$ for any projection $e$ of $R$.

PROOF. There exists a maximal pair $(e^{(1)}, e^{(2)})$ of projections satisfying
$e^{(1)}\sim e^{(2)}$ and $e=e^{(1)}\oplus e^{(2)}\oplus e^{(3)}$ for some projection $ e^{(\circ)}\circ$ of $R$. Hence, $e^{(3)}$ is
irreducible and must be $0$ . $q$ . $e$ . $d$ .

LEMMA 3.6. If $R$ is locally finite and locally non-discrete, then an orthogonal
system $a$ of partial isometries of $R$ has $(L_{0})$ .

PROOF. We may assume without loss of generality that $R$ is finite and
non-discrete. First we shall prove that two simple projections $e_{i}(i=1,2)$

of order 2 with $e_{i^{\mathfrak{h}}}=1$ are equivalent to each other. By Prop. 3.1, we may
find a pair $(e_{1}^{\prime}, e_{2}^{f})$ of non-zero projections of $R$ with $e_{1}\geqq e_{1^{\prime}}\sim e_{2}^{\prime}\leqq e_{2}$ . Since
$e_{1}^{\prime}\neq 0$ , there exists a spectre $\lambda$ of $R$, with respect to which it holds that
$e_{1}^{\prime}\geqq e_{1^{\prime\prime}}$ for some locally simple projection $e_{1}^{\prime\prime}$ of order $2^{r}(r>1)$ (cf.

Lemma 4.2.). Since $e_{1}^{\prime}\sim e_{2}^{\prime}$ , we may find a projection $e_{2}^{\prime\gamma}$ of $R$ with $e_{1^{\prime\prime}}\sim e_{2^{\prime\prime}}$

$\leqq e_{2}^{\prime}$ . We shall prove that $e_{2}^{f\prime}$ is also locally simple of order $2^{r}$. There
exists a maximal pair $(e^{\prime}, e^{\prime/})$ of projections of $R$ satisfying $e_{2}^{\prime\prime c}\geqq e^{\prime}\sim e^{\prime\prime}\leqq e_{2}$

‘’

by lemma 3.2. If $e_{2}^{\prime\prime c}e^{\prime c}$ is locally non-zero, we can repeat this process.
Thus, we get a decomposition $1=_{\lambda}\oplus(e_{2}^{\prime\prime(\nu)} ; 1\leqq\nu\leqq n+1)$ , where $e_{2}^{\prime\prime}=e_{2}^{\prime\prime(1)}\sim_{\lambda}$

$e_{2}^{\prime\prime(\nu)}(1\leqq\nu\leqq n)$ and $e_{2\lambda}^{\prime/(n+1)}\sim e^{\gamma/\prime}\leqq e_{2}^{\prime\prime}$ for some $e^{lf\prime}\in E$. Hence, multiplying
some projection $e_{0}(\lambda)$ of $E_{0}(\lambda)$ , we obtain a decomposition $e_{0}(\lambda)=\oplus(e_{0}(\lambda)e_{2}^{J/(\nu)}$ ;
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$1\leqq\nu\leqq n+1)$ , where $e_{0}(\lambda)e_{2}^{\prime\prime}=e_{0}(\lambda)e_{2}^{\gamma/(1)}\sim e_{0}(\lambda)e_{0^{\prime\prime(\nu)}}(1\leqq\nu\leqq n)$ and $e_{0}(\lambda)e_{2}^{\prime\prime(+1)}\sim n$

$e_{0}^{(\nu)}e^{\prime\prime\prime}\leqq e_{0}(\lambda)e_{2}^{f\prime}$ . Since $e_{0}Re_{0}$ is finite, we have, by the well known method,
$n=2^{r}$ and $e_{2}^{\prime/(n+1)}=_{\lambda}0$ . (On the same time, by the same method, we can
prove that above local decomposition is possible.) Thus, $e_{2}^{\prime\prime}$ is locally
simple of order $2^{r}$ . Here, we notice that “

$e_{2}^{\prime\prime}\leqq 1$
” is trivial, but this fact

is an essential part of above proof. Therefore, remembering that $e_{i^{\prime\prime}}\leqq e_{i}$

$(i=1,2)$ , we may find a decomposition $e_{i}=\oplus(e_{i}^{\prime\prime(\nu)} ; 1\leqq\nu\leqq 2^{r-1})$ , where $e_{i}^{\prime\prime}=$

$e_{i}^{\prime\prime(1)}\sim e_{i^{\prime\prime(\nu)}}(1\leqq\nu\leqq 2^{r-1})$ . Since $e_{v}^{\prime\prime(\nu)}(1\leqq\nu\leqq 2^{r-}, i=1,2)$ are mutually locally
equivalent to each other, we can easily conclude that $e_{1}$ is locally equi-
valent to $e_{2}$ . Since equivalence is normal, $e_{1}$ is equivalent to $e_{2}$ .

Let $\mathfrak{a}$ $(=(u_{\iota} ; \ell\in I))$ be an orthogonal system of elements of $U$. For each
$\ell\in I$, we may find a decomposition $e(u_{\iota})=e_{\iota}^{(1)}\oplus e_{\iota}^{(2)}$ with $e_{\iota}^{(1)}\sim e_{\iota}^{(2)}$ . We denote
by $\mathfrak{a}^{(1)}$ the orthogonal system $(e_{\iota}^{(1)}u_{\iota} ; \ell\in I)$ of elements of $U$. We need only
to see that $\mathfrak{a}^{(1)}$ has $(L_{0})$ . Then, we can find two simple projections $e_{1},$ $e_{2}$ of
order 2 of $R$ with $\oplus(e_{*}(e_{\iota}^{(1)}u_{\iota});f\in I)\leqq e_{1}$ and $\oplus(e(e_{\iota}^{(1)}u_{\iota});\ell\in I)\leqq e_{2}$ . Since
$e_{1},$

$e_{1}^{c},$
$e_{2}$ are simple projections of order 2, we may find partial isometries

$u,$ $v$ of $R$ such that $e_{*}(u)=e_{1},$ $e(u)=e_{1}^{c},$ $ e_{*}(v)=e\circ\lrcorner$ and $e(v)=e_{1}$ . Applying Lemma
3.2 to $uva^{(1)}=$ $(uve^{(1)}u_{\iota} ; r\in I),$ $uv\mathfrak{a}^{(1)}$ has the supremum $w$ in $U$. Hence, $\mathfrak{a}^{(1)}$ has
the spremum. $q$ . $e$ . $d$ .

Under these preparations, we shall prove the following important pro-
position already discovered and proved by I. Kaplansky [6], which plays
an essential role in $AW^{*}$-algebras.

PROPOSITION 3.5. Any orthogonal system of elements of $U$ has a supremum
in $U$.

PROOF. Since an orthogonal system $a$ of elements of $U$ has $(L_{0})$ with
respect to any $\lambda$ according to Lemmas 3.3-3.6, we see that $\mathfrak{a}$ has $(L_{0})$ by
virtue of Prop. 1.1. $q$ . $e$ . $d$ .

$C_{oROLLARY}$ . Any chain of elements of $U$ has a supremum in $U$.
PROOF. Let $(u_{\iota} ; \ell\in I)$ be a chain of elements of $U$. We denote by $E_{1}$ a

maximal commutative system of projections of $R$ containing $(e(u_{\iota});\iota\in I)$

and by $U_{1}$ the system $(e_{1}u_{\iota} ; e_{1}\in E_{1}, \ell\in I)$ . Moreover, we denote by $U_{2}$ a
maximal orthogonal system of elements of $U_{1}$ . Then, there exists the supre-
mum $u$ of $U_{2}$ in $U$ by Prop. 3.5. It is easily seen that $u$ is the supremum
of $(u_{\iota} ; f\in I)$ . $q$ . $e$ . $d$ .

Recently, Ti. Yen [8] has given the proof of the canonical decomposi-
tion theorem in $AW^{*}$-algebras (cf. Lemma 2.1 and its Corollary, [8]). The
following proposition contains the results of Ti. Yen [8].

PROPOSITION 3.6. For any element $a$ of $R$ , we may find a unique $system$

$(u_{\alpha}(a);0\leqq\alpha<\infty)$ of elements of $U$ satisfying (1) $u_{0}=0,$ $u_{a}=const$ . $\in U$for $\alpha_{0}\leqq\alpha$ ,
(2) $\alpha\leqq\beta$ implies $u_{\alpha}\leqq u$ ; and (3)

$\lim_{\beta\downarrow a}u_{\beta}=u_{\alpha}$ and further



Local theory $0$] rings of operators $I$. 201

(3.2) $a=\int_{-\infty}^{\infty}\alpha du_{\alpha}$ ,

and, from these it follows that

(3.3) $e_{*}(a)=\int_{-\infty}^{\infty}de_{*}(u_{\alpha})$ ,

(3.4) $e(a)=\int_{-\infty}^{\infty}de(u_{\alpha})$ ,

(3.5) $a=uh$ , where $h=(a^{*}a)^{\frac{1}{2}}$ , and $u=\int_{0^{\infty}}du_{\alpha}$ (the canonical decomposition of
$a)$ , and that

(3.6) $a^{*}a=u^{*}aa^{*}u$ .
PROOF. The proof of (3.2). Let $(e_{\alpha} ; 0\leqq\alpha\leqq<\infty)$ be the resolution of the

unit of $(a^{*}a)^{\frac{1}{2}}$ . We denote by $k_{a}$ the inverse of $a^{*}ae_{\alpha}^{c}$ in $e,$
$cRe_{\alpha}^{C}$ for $ 0<\alpha$

$<||a||$ . We put $ u_{a}^{c}=ak_{t}\not\in$ and $h_{a}=(a^{*}a)^{L_{)}}\lrcorner e_{a}^{c}$ . Then, we have $ae_{\alpha}^{c}=n_{\alpha}^{c}h_{\alpha}$ .
Since $(u_{\alpha}^{c} ; 0<\alpha<||a||)$ is a chain of elements of $U$, we may find its supre-
mum $u$ in $U$ by the Corollary of Prop. 3.5 and hence we have $ae_{\text{\^{o}}}^{c}=uh_{e}$

$=u\int_{\epsilon^{\infty}}\alpha de_{a\}}=\int_{\epsilon}^{\infty}\alpha due_{a}$ . We put $u_{\alpha}=ue_{\alpha}$ for $\alpha>0$ and $u_{0}=\lim_{\alpha\downarrow 0}u_{\alpha}=0$ . It is easy

to see that $(u_{a} ; 0\leqq\alpha<\infty)$ satisfies (1)$-(3)$ . Making $\epsilon\downarrow 0$ , we have (3.2) from
$ae_{\epsilon}^{c}=\int_{\epsilon}\alpha du_{a}$ .

The proof of uniqueness. Let $(u_{\alpha}^{\prime} ; 0\leqq\alpha<\infty)$ be another system of ele-

ments of $U$ satisfying (1)$-(3)$ and (3.2). From $a^{*}a=\int_{0}^{\infty}\alpha^{2}du_{a}^{*}u_{\alpha}=\int_{0}^{\infty}\alpha^{2}du_{\alpha}^{\prime*}u_{\alpha}^{\prime}$ ,

it is easy to compute that $u_{\alpha j}^{*}u_{a}=u_{\alpha}^{\prime*}u_{\alpha}^{\prime}$ for $ 0\leqq\alpha<\infty$ . Hence, we have
$u(u_{a}^{*}u_{\alpha})^{c}=a\int_{\alpha}^{\infty}\alpha^{-}du_{a}^{*}u_{\alpha}=a\int_{\alpha}^{\infty}\alpha^{-1}du_{\alpha}^{\prime*}u_{\alpha}^{\prime}=u^{\prime}(u_{\alpha^{\prime*}}u_{\alpha}^{\prime})^{c}$ , where we put $u^{\prime}=\int_{0}^{\infty}du_{\alpha}^{\prime}$ .
Making $\alpha\downarrow 0$ , we see that $u=u^{\prime}$ and so $u_{\alpha}^{\prime}=u^{\prime}-u^{\prime}(u_{\alpha}^{\gamma*}u_{\alpha^{\prime}})^{c}=u-u(u_{\alpha}^{*}u_{a})^{r}=u_{\alpha}$ .

The proof of (3.3) and (3.4). To see (3.3), we have $e_{*}(a)=e_{*}(a^{*}a)$

$=e_{*}(\int_{0^{\infty}}\alpha^{2}de_{*}(u_{\alpha}))=\int_{0^{\infty}}de_{*}(u_{a})$ . Thus, we have (3.3). Similarly, we get (3.4).

The proof of (3.5) and (3.6). To see (3.5), we have $uh=\int_{0}^{\infty}du_{a}\int_{0^{\infty}}\alpha de_{*}(u_{\alpha})$

$=\int_{0}^{\infty}\alpha du_{\alpha}=a$ . Moreover, we have $u^{*}aa^{*}u=\int_{0^{\infty}}\alpha^{2}du^{*}u_{a}u_{\alpha}^{*}u=\int_{0}^{\infty}\alpha^{2}du_{a}^{*}u_{\alpha}=a^{*}a$ ,

because $u^{*}u_{\alpha}u_{\alpha}^{*}u=u^{*}ue_{a}u^{\{\prime}\backslash u=e_{a}e_{0}^{c}=u_{a^{-\gamma}}u_{\alpha}$ . $q$ . $e$ . $d$ .
COROLLARY 1. It holds that $e_{1}\sim e_{2}$ if and only if there exists an element a

of $R$ with $e_{1}=e_{*}(a)$ and $e_{2}=e(a)$ .
PROOF. We need only to see the sufficiency. By (3.3) and by (3.4), we

have $e_{*}(a)=e_{\star}(u)$ and $e(a)=e(u)$ . $q$ . $e$ . $d$ .
COROLLARY 2. For any equi-bounded orthogonal system $(a_{\iota} ; f\in I)$ of elements

of $R$ , there exists an element $a$ of $R$ satisfying $e(a_{\iota})a=ae_{\star}(a_{\iota})=a_{\iota}$ ] $or$ any $f\in I$.
PROOF. We denote by $(u_{a}(a_{\iota});0\leqq\alpha<\infty)$ the system of elements of $U$ for

$a_{\iota}$ satisfying (1)$-(3)$ and (3.2). Since $(a_{t} ; \ell\in I)$ is an orthogonal system of
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elements of $R,$ $(u_{a}(a_{\iota});\ell\in I)$ is that of elements of $U$. We denote its supre-

mum in $U$ by $u_{\alpha}$ . Then, $(u_{a} ; 0\leqq\alpha<\infty)$ satisfies (1)$-(3)$ . We put $a=\int_{0}^{\infty}\alpha du_{\alpha}$ .
It is easy to see that it holds that $e(a_{\iota})a=ae_{*}(a_{\iota})=a_{\iota}$ for any $\ell\in I$. q. e. d.

The element $a$ is called the direct sum of $(a_{\iota} ; f\in I)$ .
After F. J. Murray-J. $v$ . Neumann [1], J. Dixmier [5], and I. Kaplansky

[6], we shall introduce the following
DEFINITION 3.3. A mapping $d$, which carries $E$ onto some semi-ordered set,

satisfying the following condition:
(3.7) $d(e_{1})\leqq d(e_{:)_{\text{E}}})$ if and only if $e_{1}\sim e_{2}^{\prime}\leqq e_{2}$ for some $e_{2}^{\prime}$ of $E$,

is called a relative dimension of $R$ .
By virtue of the complete additivity of equivalence, it is easy to verify

that there exists one and only one relative dimension in $R$ (except for
isomorphism of the semi-ordered set as structure of semi-ordered set). We
denote it by $d$.

DEFINITION 3.4. A mapping $d_{\lambda}$ , which carries $E$ onto some semi-ordered set
and satisfies the following condition:

(3.8) $d_{\lambda}(e_{1})\leqq d_{\Lambda}(e_{2})$ if and only if $e_{1^{\sim}\lambda}e_{2}^{\prime}\leqq e_{2}$ for some $e_{2}^{\prime}$ of $E$,
is called a local relative dimension of $R$ , where $e_{1}\sim_{\lambda}e_{2^{\prime}}$ means that $e_{1}$ is locally
equivalent to $e_{2}^{\prime}$ .

It is easy to see that there exists one and only one local relative di-
mension in $R$ (except for isomorphism of the semi-ordered set as structure
of semi-ordered set). We denote it by $d_{\lambda}$ .

As to $d_{\lambda}$ , we have the following important
PROPOSITION 3.7. The semi-order of $d_{\lambda}(E)$ introduced by $d_{\lambda}$ is linealy ordered.
PROOF. Por any two projections $e_{i}(i=1,2)$ of $R$ , we may find a maximal

pair $(e_{1^{\prime}}, e_{\triangleleft^{)}}^{\prime})$ of projections of $R$ with $e_{1}\geqq e_{1}^{\prime}\sim e_{2}^{\prime}\leqq e_{2}$ . By Prop. 3.2, we have
$(e_{1}e_{1}^{\prime c})^{\mathfrak{h}}(e_{2}e_{2}^{\prime c})^{\mathfrak{h}}=0$ . Hence, it holds either $e_{1}e_{1}^{\prime c}=_{\lambda}0$ or $e_{2}e_{2}^{c}=\lambda 0$ . q. e. d.

The property $d_{\lambda}(e_{1})\leqq d_{\lambda}(e_{-y})$ concerned with a pair $(e_{1}, e_{2})$ of projections
is the local property of the property $d(e_{1})\leqq d(e_{2})$ concerned with a pair
$(e,, e_{2})$ of projections. Hence, we have $d(e_{1})\leqq d(e_{2})$ if and only if $d_{\lambda}(e_{1})\leqq d_{\lambda}(e_{2})$

with respect to any spectre $\lambda$ of $R$ by Prop. 1.1.
PROPOSITION 3.8. (1) A projection $e$ of $R$ is locally finite if and only if

$e_{1}=\lambda e$ follows from $e_{1}\leqq_{\lambda}e$ and $e_{1^{-\lambda}}e$ .
(2) A projection $e$ of $R$ is locally normally infinite if and only if there

exists a decomposition $e=\lambda e_{1}\oplus e_{2}$ with $e\sim e\sim e_{2}$ .
(3) A projection $e$ of $R$ is locally irreducible if and only if it is locally zero

or locally minimal.
PROOF. The proof of (1). We need only to prove the sufficiency. If $e$

is not locally finite, then $e$ is locally normally infinite. Hence, from Prop.
3.2, we may find a decomposition $e=\lambda e_{1}\oplus e_{2}$ with $e\sim_{\lambda}e_{1^{\sim}\lambda}e_{2}$ . Therefore, it
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holds that $e_{1}\leqq_{\lambda}e,$ $e_{1}\sim_{\lambda}e$ , and $e_{1}\neq_{\lambda}e$ . The statement (2) is an immediate con-
sequence of (1) and Prop. 3.2.

The proof of (3). We have already proved the necessity (cf. Prop. 3.3).
Hence, we need only to prove the sufficiency. Let $e$ be locally minimal.
Then, in the same way as J. Dixmier [5] has done, we may find a maximal
orthogonal pair $(e_{1}, e_{2})$ of projections of $R$ satisfying $e\geqq e_{1}\sim e_{2}\leqq e$ and hence
$e_{3}=e-(e_{1}\oplus e_{o}))$ is irreducible. Since $e$ is locally minimal, we have $e=\lambda e_{3}$ .
For otherwise, it holds that $e_{1}=\lambda e$ , which leads to a contradiction. Thus,
$e$ is locally irreducible. $q$ . $e$ . $d$ .

PROPOSI $\Gamma ION3.9$ . The following statements are equivalent to each other.
(1) A projection $e$ of $R$ is irreducble,
(2) $e_{1}=e_{2}$ follows from $e\geqq e_{1}\sim e_{2}\leqq e$ ,
(3) $eRe$ is commutative.
PROOF. It is obvious that (2) implies (1). New we shall prove that (1)

implies (3). In fact, for any $e_{1}\leqq e$ and any $e_{2}\leqq e$ , we have $e_{1}=\lambda 0$ or $e$ and
$e_{2}=_{\Lambda}0$ or $e$ with respect to $\lambda$ and hence $e_{1}e_{2}=\lambda e_{2}e_{1}$ , from which follows $e_{1}e_{2}$

$=e_{2}e_{1}$ by Prop. 1.1. Next we shall prove that (3) implies (2). In fact, from
$e\geqq e_{1}-e_{2}\leqq e$ it follows that there is a partial isometry $u$ of $eRe$ satisfying
$u^{- k}u=e_{1}$ and $uu^{*}=e$

)
$\lrcorner$

and hence $e_{1}=e_{2}$ by (3). $q$ . $e$ . $d$ .
Under these definitions, we may classify $AW^{*}$-algebras into six local

types (analoguous to F. J. Murray-J. $v$ . Neumann [1], cf. J. Dixmier [5] and
I. Kaplansky [6]):

DEFINITION 3.5. (a) $R$ is called of locally finite discrete type $(I_{n})_{\lambda}$ (or locally
homogenous type of order n) if $R$ is locally finite and there exists a locally
irreducible and locally simple projection of order $n$ .

(b) $R$ is called of locally finite discrete limiting type $(I_{0})_{\lambda}$ if $R$ is locally

finite and there exists a locally irreducible projection, which is never locally
simple of order $n$ for any natural number $n$ .

(c) $R$ is called of locally infnite discrete type $(I_{\infty})_{\lambda}$ if $R$ is locally discrete
and locally normally infinite.

(d) $R$ is called of locally finite continuous type $(II_{1})_{\lambda}$ if $R$ is locally non-
discrete and locally finite.

(e) $R$ is called of locally infmite continuous type $(II_{\infty})_{\lambda}$ if $R$ is locally non-
discrete, locally normally infinite, and $R$ cotains a locally finite and locally non-
zero projection.

(f) $R$ is called of locally purely infinite type $(III_{\infty})_{\text{{\it \‘{A}}}}$ if $R$ is locally normally

infinite and contains no locally finite and locally non-zero projection.
A projection $e_{0}$ of $R_{0}$ is called of local type $(^{*})$ if it holds that $\lambda(e_{0})=0$ or

that $e_{0}Re_{0}$ is of the same local type, where $*_{=I_{n},I_{0},I_{\infty},II_{1},II_{\infty},III_{\infty}}$ We define
type $(^{*})$ by globalization of local type $(^{*})_{\lambda}$ (that is to say, $R$ is called of type $(^{*})$
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if $R$ is of local type $(^{*})_{\lambda}$ with respect to any spectre $\lambda$ of $R$), except for $(I_{0})$ ,
which we define by globalization of being $(I_{0})_{\lambda}$ or $(I_{n})_{\lambda}$ for some $n$ . Finally, $a$

projection $e_{0}$ of $R_{0}$ is called of type $(^{*})$ if $e_{0}Re_{0}$ is of the same type.
Since these are normal, we have (cf. Lemma 3.3)

PROPOSITION 3.10. There exists a decomposition
(3.9) $1=\oplus(e_{0}(j|_{\backslash }\cdot); ’=I_{0}, I_{\infty}, II_{1}, II_{\infty}, III_{\infty})$ ,
(3.10) $e_{0}(I_{0})=\oplus(e_{0}(I_{n});1\leqq n<\infty)$ .

where $e_{0}(*)$ is uniquely determined as the maximal projection of $E_{0}$ of type $(*)$ .

\S 4. Local trace.

Let $R$ be a finite $AW^{*}$-algebra. First we shall introduce the following
DEFINiTION 4.1. A functional $t_{\lambda}$ of $R$ satisfying the following statements:
(4.1) $t_{\lambda}(1)=1$ ,
(4.2) $t_{\lambda}(\alpha a)=\alpha t_{\lambda}(a)$ for $a\in R$ and for any complex number $\alpha$ ,
(4.3) $t_{\lambda}(a+b)=t_{\lambda}(a)+t_{\lambda}(b)$ for $a,$ $b\in R$ ,

(4.4) $t_{\lambda}(a^{\kappa})=\overline{t_{\lambda}(a)}$ for $a\in R\overline{(t_{\lambda}(a)}=the$ complex conjugate of $t_{\lambda}(a))$ ,
(4.5) $t_{\lambda}(a^{*}\backslash a)\geqq 0$ for $a\in R$ ,
(4.6) $t_{\lambda}(e_{0}(\lambda)a)=t_{\lambda}(a)$ for $a\in R$ and $e_{0}(\lambda)\in E_{0}(\lambda)$ ,
(4.7) $t_{\lambda}(ab)=t_{\lambda}(ba)$ for $a,$ $b\in R$ ,

is called a local trace of $R$ (with respect to $\lambda$ ).

By virtue of Prop. 3.2, a local trace of $R$ may exist only if $R$ is locally
finite. Concerning this trace, in this \S , we shall prove the following

PROPOSITION 4.1. There exists a local trace of $R$ if and only if there exists
a locally non-zero and locally simple projection $e$ of $R$ with $\overline{t}_{\lambda}(e)<1$ . (cf. Def.
4.5 as to $\overline{t}_{\lambda}.$ )

We denote by $N$ the set of hermitian elements of $R$ , by $N_{0}$ the set of
hermitian elements of $R_{0}$ , and by $\Sigma$ the set of (real-coefficient) linear
operators $\sigma’ s$ of $R$ defined by

(4.8) $\sigma(a)=\sum_{\nu=1}^{n}\alpha_{\nu}s_{\nu}^{*}as_{\nu}$ for any $a$ of $N$,

where $s_{1},$ $s_{2},\cdots,$ $s_{n}$ are unitary elements of $R$ and $\alpha_{1},$ $\alpha_{2},\cdots,$ $\alpha_{n}$ are positive
numbers with $\Sigma_{\nu=}^{n_{1}}\alpha_{\nu}=1$ .

The following proposition is due to J. Dixmier ([5], th\’eor\‘eme 7). His
proof was based on an $AW^{*}$-algebra. Recently, M. Goldman [9] has given
a proof of this theorem in algebras satisfying weaker conditions than
$AW^{*}$-algebras by a similar method of J. Dixmier [5]. Here, we shall give
an alternative proof of this theorem in an $AW^{*}$-algebra.

PROPOSITION 4.2. For any element $a$ of $N$ and for any number $\epsilon>0$ there
exisl an element $a_{0}$ of $N_{0}$ and a linear operator $\sigma\in\Sigma$ satisfying

(4.9) $||\sigma(a)-a_{0}||\leqq\epsilon$ . (Here, $R$ is not necessarily finite.)
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PROOF. Let $R$ be a (not necessarily finite) $AW^{*}$-algebra. First we shall
prove (4.9) locally for $a=e\in E$. If, for any natural number $n$ , there exists
an orthogonal $system_{\vdash}^{un_{\$^{\backslash }}}\$(e_{\nu} ; 1\leqq\nu\leqq n)$ of projection of $R$ satisfying $e=e_{1}\sim\text{{\it \‘{A}}} e_{\nu}$

$(1\leqq\nu\leqq n)$ and $\oplus(e_{\nu} ; 1\leqq\nu\leqq n)\leqq 1$ , then (4.9) holds good locally for $a_{0}=0$ , as
we can verify it by taking such an $n$ that $ n^{-1}<\epsilon$ and making $s_{\nu}=u_{\nu}^{*}+u_{\nu}$

$+(e_{\nu}\oplus e)^{c}(1\leqq\nu\leqq n)$ , where $u_{\nu}$ is a partial isometry of $R$ with $e_{*}(u_{\nu})=e_{\nu}$ and
$e(u_{\nu})=e$ . In the other case, namely, if the above-mentioned condition is not
satisfied by $e$ , there exists, for any natural number $m$ , a commutative
system $(e_{\nu} ; 1\leqq\nu\leqq n+1)$ of $projec\{ions$ of $R$ satisfying (1) $m=_{\lambda}\sum_{\nu=1}^{n+1}e_{\nu}$ , (2)
$e=e_{1},$ $e_{1}^{c}e_{\nu}\sim e_{\nu}^{c}e_{1}(1\leqq\nu\leqq n),$ (3) $d_{\lambda}(e_{n+1})\leqq d_{J_{\backslash }}(e)$ , and (4) $m\leqq n$ . We shall see it by
induction. It is obvious for $m=1$ . Por an $m$ , suppose that such a system
has been constructed. Since the system $(e_{\nu} ; 1\leqq\nu\leqq n+1)$ is $commutal\dot{i}ve$ ,
we may find an orthogonal system $P$ of projections of $R$ such that $P$ con-
sists of a finite number of projections of $R$ and that each $p_{\nu}$ is expressed
as a direct-sum of members of $P$. We denote by $P(e^{f})$ the set of projections
$e^{\gamma f}’ s$ of $P$ such that $e^{\prime\prime}\leqq e^{\prime}$ . Then, we can construct a locally equivalent
pair

$\oplus(e_{\nu}^{\prime_{f}};1\leqq\nu\leqq r^{\prime}+1),$ $\oplus(e_{\nu}^{\prime\prime} ; 1\leqq\nu\leqq\gamma^{\prime f}+1)$

$.a1$ isfying (5) $ e_{t}^{\prime}(1\leqq 1)\leqq r^{\prime})\in$

$P(ee_{n+1}),$ $e_{\nu}$
$(1\leqq\nu\leqq r^{\prime\prime})\in P(e^{r}c_{\eta+1}),$ $e$ ither (6) $e_{r’+1}^{\prime}$ being commutative $\backslash vith$

each projection of $P$ and $e_{r}=_{\lambda}0$ or (7) $2_{?’+1}’=_{\lambda}0$ and $e_{\gamma/’+1}^{\prime\prime}$ being com-
mutative with each projection of $P$ and (8) $r^{\prime}$ is best possibly maximal. By
Prop. 3.7, it is easy to see that $e=\oplus(c_{\nu}^{\prime} ; 1\leqq\nu\leqq r^{\prime}+1)\oplus(\oplus(e^{\prime} ; e^{\prime}\in P(ec_{n+1}^{c}))$

or $e_{n+1}=\oplus(e_{\nu}^{\prime\prime} ; 1\leqq\nu\leqq r^{\prime\prime}+1)\oplus(\oplus(e^{\prime} ; e^{\prime}\in P(ee_{n+1}))$ . If $ e=\oplus(e_{\nu}^{\prime} ; 1\leqq\nu\leqq r^{\prime}+1)\oplus$

$(\oplus(e^{\prime} ; c’\in P(ee_{n+1})))$ , then we have $d_{\lambda}(e)\leqq d_{\lambda}(e_{n+1})$ , and so $d_{\lambda}(e)=d_{\lambda}(e_{n+1})$ by (3).

This means that $e\sim_{\lambda}e_{n+1}$ . Starting from $e$ , we can construct a decomposi-
tion $1=\oplus(e_{\nu} ; n+2\leqq\nu\leqq r+1)$ satisfying (9) $e\sim_{\lambda}e_{\nu}(\ell\iota+2\leqq\nu\leqq r),$ (10) each $e_{\nu}$ is
expressed as a direct-sum of projections of a common orthogonal system
of projections of $R$ commutative with each projection of $P,$ (11) $ d_{\lambda}(e_{r+1})\leqq$

$d_{\lambda}(e)$ . Therefore, we can take $(e_{\nu} ; 1\leqq\nu\leqq r+1)$ as a commutative system in
question for $m+1$ . On the other hand, if $e_{n+\downarrow}=\oplus(e_{\nu}^{\prime\prime} ; 1\leqq\nu\leqq r^{\gamma f}+1)\oplus(\oplus(e^{f/};$

$e^{\prime\prime}\in P(e^{c}e_{n+1}))$ , then we have $d_{\lambda}(e_{n+1}\oplus e_{r’+1}^{\prime})=d_{\lambda}(e)$ and, by starting from
$e_{n+1}\oplus e_{r’+1}^{\prime}$ , we can construct a decomposition $1=\oplus(e_{\nu} ; n+2\leqq\nu\leqq r+1)$ satis-
fying (9)$-(11)$ by the same way as above. Hence, we can construct ( $e_{\nu}$ ;
$1\leqq\nu\leqq r+1)$ as a commutative system in question for $m+1$ . It is easy to see
that for some $\sigma\in\Sigma,$ $\sigma(e)=(1/n)\Sigma_{\nu=1}^{n}e_{\nu}$ . Thus, we have $||\sigma(e)-\alpha||_{\lambda}\leqq 1/n$ for
some scalar $\alpha$ . (Here, we denote by $||a||_{\lambda}$ the local norm of $a$ , that is,
$\inf(||e_{0}(\lambda)a||;e_{0}(\lambda)\in E_{0}(\lambda)))$ . Hence, (4.9) holds locally for $e$ .

Next we shall prove (4.9) locally for $a=\Sigma_{\mu=1}^{r}\alpha_{\mu}e_{J}$ with $e_{1}\leqq e_{2}\leqq\cdots\leqq e_{r}$ . It
is obvious for $r=1$ . Moreover, by the assumption of induction for $r$, there
exists a linear operator $\sigma\in\Sigma$ of $e_{2}Re_{2}$ with $||\sigma(e_{1})-\alpha e_{2}||\leqq{\rm Min}(\epsilon/2, \epsilon/2|\alpha_{1}|)$ .
We denote it by $\sigma(a)=\Sigma_{\nu=}^{n_{1}}r_{\nu}s_{\nu^{*}}as_{\nu}$ , where $s_{\nu}(1\leqq 1\leqq n)$ are unitary elements
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of $e_{2}Re_{2}$ and $r_{\nu}(1\leqq\nu\leqq n)$ are positive numbers with $\sum_{\nu=1}^{n}r_{\nu}=1$ . The opera-
tor $\sigma$ mav be extended to a linear operator $a\rightarrow\Sigma_{\nu=}^{n_{1}}\alpha_{\nu}s_{\nu}^{\prime*}as_{\nu}^{\prime}$ of $R$, where
$s_{\nu}^{\prime}=s_{\nu}+ee^{c}$ . We denote it again by $\sigma$ . Then, we have $\sigma(e_{J})=e_{\mu}(2\leqq\mu\leqq r)$ and
so $||\sigma(a)-\Sigma_{/1=2}^{r}\alpha_{\mu}^{\prime}e_{\mu}||_{\lambda}\leqq\epsilon/2$ , where $\alpha_{2}^{f}=\alpha_{2}-\alpha\alpha_{1}$ and $\alpha_{\mu}^{\prime}=\alpha_{\mu}(3\leqq\mu\leqq r)$ . By the
assumption of induction we have $||\sigma_{1}(\Sigma_{/’=2}^{r}\alpha_{J}^{\prime}e_{1})-\beta||_{\lambda}\leqq\epsilon/2$ for some $\sigma_{1}\in\Sigma$

and some scalar $\beta$ . Thus, we have $||\sigma_{1}\sigma(a)-\beta||_{\lambda}\leqq\epsilon$ . Hence, we have (4.9)
locally for such an element $a$ of $N$ as before. Since any element $a$ of $N$ is
uniformly approximated by those elements as before, we get (4.9) locally.

Finally, we shall prove (4.9) globally. Since we have already proved
(4.9) locally, for any spectre $\lambda$ of $R$, we may find $\sigma_{\lambda}\in\Sigma$ such that $||\sigma_{\lambda}(a)$

$-\alpha_{\lambda}||_{\lambda}\leqq\epsilon/2$ for some scalar $\alpha_{\lambda}$ . Hence, we have $||e_{0}(\lambda)(\sigma_{\lambda}(a)-\alpha_{\lambda})||\leqq\epsilon$ for
some $e_{0}(\lambda)\in E_{0}(\lambda)$ . As we know, J2 is compact and so we get $1=\cup(e_{0}(\lambda_{i})$ ;
$1\leqq i\leqq m)$ for some $\lambda_{t}\in\Omega$ and some $e_{0}(\lambda_{i})\in E_{0}(\lambda_{i})$ . We put $e_{0^{(1)}}=e_{0}(\lambda_{1})$ and
$e_{0}^{(?)}=e_{0}(\lambda_{i})(\cup(e_{0}(\lambda_{j});1\leqq j\leqq i-1))^{c}(1\leqq i\leqq n)$ . Then, we have $||e_{0}^{()}i(\sigma_{\lambda i}(a)-\alpha_{\lambda i})||\leqq\epsilon$.
Suppose that $\sigma_{\lambda i}$ is defined by $\sigma_{\lambda i}(a)=\Sigma_{\nu i=1}^{n(i)}\alpha_{\nu i}^{(i)}s_{\nu i}(i)^{*}as_{\nu i}(i)$ , where $e_{0}(\lambda_{i})s_{\nu i}(i)$

is a unitary element of $e_{0}(\lambda_{i})R$ . Then, we may find a unitary element $s(\nu_{1}$ ,
$\nu_{2},\cdots,$ $\nu_{m}$) of $R$ satisfying that $e_{0}^{()}\iota s(\nu_{1}, \nu_{2},\cdots, \nu_{m})e_{0}^{()}\iota s_{\nu i}(i)(1\leqq i\leqq m)$ for any $\nu_{1}$ ,
$\nu_{2},\cdots,$ $\nu_{m}$ with

$1\leqq\nu_{i}\leqq n_{i}(1\leqq_{n}i\leqq m)$
. We denote by $\sigma$ the linear operator of $R$

defined by $\sigma(a)=\Sigma_{\nu_{1}=1}^{\eta_{1}}\Sigma_{\nu_{2}=1}\cdots\Sigma_{\nu n\Leftarrow}^{n_{1^{m}}}\alpha_{\nu_{1}}(1)\alpha_{\nu_{2}}(2)\cdots\alpha_{\nu m}(m)s(\nu_{\rfloor}, \nu_{2},\cdots, \nu_{m})^{*}as(\nu_{1},$
$\nu_{2},\cdots$ ,

$\nu_{m})$ and by $a_{0}$ the element $\Sigma(\alpha_{\lambda i}e_{0}^{()} ;i 1\leqq i\leqq m)$ of $R_{0}$ . Thus, we have $||e_{0}^{()}i(\sigma(a)$

$-a_{0})||=||e_{0}(\lambda_{i})(\sigma_{\lambda i}(a)-\alpha_{\lambda i})||\leqq\epsilon$ and so $||\sigma(a)-a_{0}||\leqq\epsilon$, $q$ . $e$ . $d$ .
LEMMA 4.1. There exists a local trace of $R$, if $R$ is of local type $(I_{n})_{\lambda}$ .
PROOF. It is easy to see that $R$ is locally isomorphic to the full matric

algebra of degree $n$ over the complex number field, whose local isomorphism
is denoted by $\varphi(a)=\Sigma_{i,j-}^{n_{1}}\alpha_{ij}e_{ij}$ , where $(\alpha_{ij} ; 1\leqq i,j\leqq n)$ is a system of complex
numbers and $(e_{ij} ; 1\leqq i,j\leqq n)$ is a system of matrix units. Thus, we have
$t_{\lambda}(a)=\Sigma_{i=}^{n_{1}}\alpha_{ii}$ as a local trace of R. $q$ . $e$ . $d$ .

For a while, we denote by $R$ a finite and non-discrete $AW^{*}$-algebra.
But we notice that the results in this \S are all valid, even if we drop the
non-discreteness assumption and assume simply that $R$ is finite.

Since $R$ has the unit 1, we may assume without loss of generality that
$R$ contains the complex number field and so the unit 1 may consider as
coinciding with the number 1.

DEFINITION 4.2. (1) A projection $e$ of $R$ is called elementary if it is simple

of order $2^{n}$ . We put $2^{-n}e^{\mathfrak{h}}=D(e)$ and $2^{-n}\lambda(e^{\mathfrak{h}})=D(e)$ .
(2) $\Lambda$ projection $e$ of $R$ is called locally singular if $d_{\lambda}(e)\leqq d_{\lambda}(e_{1})$ for any

locally non-zero and locally elementary projection $e_{1}$ of $R$ .
The projection $0$ is considered as simple of order $n$ for any $n$ . In this

way, the elementarity of a projection of $R$ is a normal (global) property
concerning a projection of $R$ . Hence, we say about being locally elementary.
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The local singularity of a projection of $R$ is a local property concerning a
projection of $R$ . Hence, the property concerning a projection of $R$ that the
projection is not locally singular, is never a local property. But, for con-
venience, we call this property the local non-singularity. What property
is the global form of local singularity ? The following lemma is an answer
to this question. Here is a property, which does not coincide with the
local form of its global form (cf. \S 1).

LEMMA 4.2. If $e$ is a locally singular projection of $R$ with respect to any
spectre of $R$ , then $e=0$ .

PROOF. Using Prop. 3.4 step by step, we find a decomposition $1=\oplus(e_{n}$ ;
$1\leqq n<\infty)$ with $D(e_{n})=2^{-n}(1\leqq n<\infty)$ , Since $e$ is locally singular with respect
to any spectre of $R$ , we may find a projection $e_{n}^{\prime}$ with $e-e_{n}^{\prime}\leqq e_{n}$ for each
natural number $n$ . If $e$ is a non-zero projection, then $\oplus(e_{n}^{\prime} ; 1\leqq n<\infty)$ is
also a non-zero projection. According to Prop. 3.2, $\oplus(e_{n}^{\prime} ; 1\leqq n<\infty)$ is nor-
mally infinite, and we arrive at a contradiction. $q$ . $e$ . $d$ .

As an immediate consequence of Lemma 4.2, we have the following
$CoROLLARY$ . Every projection of $R$ is expressed as a direct-sum of elementary

projections of $R$ .
The following lemma is due to J. Dixmier [5] and the present proof is

essentially the same as his.
LEMMA 4.3. For a decomposition $1=\oplus(e_{\iota} ; f\in I)$ we have
(4.10) $1=\Sigma(D(e_{\iota});\ell\in I)$

where each $e_{\iota}$ is an elementary projection of $R$ .
PROOF. We denote by $I_{n}$ the set of indices $\ell s$ of $I$ with $D(e_{\iota})=2^{-n}e_{\iota}^{\mathfrak{h}}$ and

by $P_{n}$ the set of projections $e_{0}e_{\iota}’ s$ of $R$ for $f\in I_{n}$ and $e_{0}\in E_{0}$ . Then, there
exists a maximal orthogonal system $P_{n}^{(1)}$ of projections of $P_{n}$ with $e_{1}^{\mathfrak{h}}e_{2}^{\mathfrak{h}}=0$

for $e_{1}\neq e_{2}(e_{1}, e_{2}\in P_{n}^{(1)})$ . Furthermore, by induction, we may find a maximal
orthogonal system $P_{n}^{()}k(k\geqq 2)$ of projections of $P_{n}$ with $e_{1}^{\mathfrak{h}}e_{2}^{\mathfrak{h}}=0$ for $e_{1}\neq e_{2}$

$(e_{1}, e_{2}\in P_{n}^{()}k)$ and orthogonal to $P_{n}^{(\nu)}(1\leqq\nu\leqq k-1)$ . We $put\oplus(e;e\in P_{n}^{()}k)=e_{n}^{()}k$

Then, we have $D(e.(k))=2ne.(k)h$ because the simplicity is normal. Moreover,
it holds that $ e_{n}^{(1)\#}\geqq e_{n}^{(2)\mathfrak{h}}\geqq\cdots$ . If $\cap$ $(e_{n}^{()\#}k ; 1\leqq k\leqq 2^{n}+1)$ (say $=e_{0}$) is not $0$ , we
must have $\oplus(e_{n}^{()}k ; 1\leqq k\leqq 2^{n}+1)\leqq 1\cdot andD_{\lambda}(e_{n}^{()}k)=2^{-n}$ for a spectre $\lambda$ of $R$

with $\lambda(e_{0})=1$ . This leads to a contradiction. Hence, we may find a natural
number $k(n)$ with $e_{n}^{()}k\neq 0(1\leqq k\leqq k(n))$ and $e_{n}^{()}k=0(k(n)<k)$ . This implies
that $\oplus(e_{\iota} ; f\in I_{n})=\oplus(e_{n}^{()}k ; 1\leqq h\leqq k(n))$ . Since it holds that $e_{\iota}=\oplus(e_{\iota}e_{n}^{()}k$ ; $1\leqq k$

$\leqq k(n))$ for $f\in I_{\eta}$ , we see that $D(e_{\iota})=\sum(D(e_{\iota}e_{n}^{()}k);1\leqq k\leqq k(n))$ (finite sum). On
the other hand, we have $D(e_{n}^{()}k)=\Sigma(D(e_{\iota}e_{n}^{()}k);f\in I_{n})$ (direct sum). Thus, the
equality $\Sigma(D(e_{\iota});\ell\in I)=\sum(D(e_{n}^{()}k);1\leqq k\leqq k(n), 1\leqq n<\infty)$ is obtained.

By the above arguement, we may assume without loss of generality
that $I$ is a countable set (say$(n;1\leqq n<\infty)$). If it does not hold that $1=$
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$\sum(D(e_{n});1\leqq n<\infty)$ , we may find a non-zero elementary projection $e$ of $R$

such that $1\geqq D(e)+\Sigma(D(e_{n});1\leqq n<\infty)$ . For, putting $e_{0}=\Sigma(D(e_{n});1\leqq n<\infty)$ ,
we have $\lambda(1-e_{0})>0$ for fome $\lambda\in\Omega$ , that is, $e_{0}(\lambda)((1-e_{0})2^{-n})\geqq 0$ for some
$e_{0}(\lambda)\in E_{0}(\lambda)$ and some natural number $n$ . Hence, we have $e_{0}(\lambda)(1-e_{0}-D(e))$

$\geqq 0$ for any elementary projection $e$ of order $n$ with $c^{\#}’=e_{0}(\lambda)$ . Thus, we get
$1-e_{0}\geqq e_{0}(\text{{\it \‘{A}}})(1-e_{0})\geqq e_{0}(\lambda)D(e)=D(e)$ .

We shall prove that there exists an orthogonal system $(e_{n}^{\prime} ; 1\leqq n<\infty)$ of
projections of $R$ satisfying $e_{n}\sim e_{n}^{\prime}$ and $\oplus(e_{n}^{\prime} ; 1\leqq n<\infty)\leqq e^{c}$ by induction.
For an $n$ , suppose that we have construct already an orthogonal system
$(e_{i}^{\prime} ; 1\leqq i\leqq n)$ of projections of $R$ satisfying $e_{i}\sim e_{i}^{\prime}(1\leqq i\leqq n)and\oplus(e_{i^{\prime}} ; 1\leqq i\leqq n)$

$\leqq e^{c}$ . Then, denoting ($e\oplus(\oplus(e_{i^{\prime}} ; 1\leqq i\leqq n))^{c}$ briefly by $e^{\prime}$ , we have $D(e^{\prime})=1-$

$D(e)-\Sigma(D(e_{i}^{\prime});1\leqq i\leqq n)=1-D(e)-\Sigma(D(e_{i});1\leqq i\leqq n)\geqq D(e_{n+1})$ . Since $e^{\prime},$

$e_{n+1}$ are
expressed as a direct-sum of a finite number of elementary projections, for
any spectre $\lambda$ of $R$ , we have $e_{n+1}\sim_{\lambda}e_{n+\iota^{\prime}}\leqq e^{\prime}$ for some $e_{n+1}^{\prime}\in E$ by Prop. 3.7.
Hence, we have $e_{n+1}\sim e_{n+1}^{\prime}\leqq e^{\prime}$ for some $e_{n+1}^{f}\in E$ by Prop. 1.1. The proof for
$n=1$ is obtained by making $e^{\prime}=e^{c}$ . Thus, we can construct the system
$(e_{n}^{\prime} ; 1\leqq n<\infty)$ in question. From this it follows that $1=\oplus(e_{n} ; 1\leqq n<\infty)$

$\sim\oplus(e_{n^{\prime}} ; 1\leqq n<\infty)\leqq e^{c}\mp^{l}1$ . This is a contradiction. Therefore, we arrive at
the assertion. $q$ . $e$ . $d$ .

Now, we shall introduce the following
DEFINITION 4.3. An operator $D$ from $E$ into $R_{0}$ satisfying the following
(4.11) $D(1)=1$ ,
(4.12) $D(\oplus(e_{\iota} ; f\in I))=\Sigma(D(e_{\iota});f\in I)$ ,

(4.13) $D(e_{0}e)=e_{0}D(e)$ for $e_{0}\in E_{0}$ ,

(4.14) $D(e_{1})=D(e_{2})$ if and only if $e_{1}\sim e_{2}$ ,

is called a relative dimension function of $R$ (after J. Dixmier [5]). From this
definition, it follows $D(e_{0})=e_{0}$ for $e_{0}\in E_{0}$ .

PROPOSITION 4.3. There exists one (and only one) relative dimension function
of $R$ if and only if $R$ is finite.

PROOF. Necessity. If $R$ is not finite, then we may find a projection $e$

of $R$ and a non-zero projection $e_{0}$ of $R_{0}$ with $e_{0}e\sim e_{0}\sim e_{0}e^{c}$ by Prop. 3.2. Thus,

we have $e_{0}=D(e_{0})=D(e_{0}e)+D(e_{0}e^{c})=2e_{0}$ if $R$ has a relative dimension function
$D$ . This is a contradiction. Sufficiency. For any projection $e$ of $R$ there
is a decomposition $e=\oplus(e_{\iota} ; \ell\in I)$ by the Corollary of Lemma 4.2, where each
$e_{\iota}$ is an elementary projection of $R$ . We denote $\sum(D(e_{\iota});t\in I)$ by $D(e)$ . For
another decomposition $e=\oplus(e_{\iota}^{f} ; f^{\prime}\in I^{f})$ combining with a decomposition $e^{c}$

$=\oplus(e_{\iota}^{\prime\prime} ; \ell^{\prime\prime}\in I^{\prime\prime})$ , we have $\Sigma(D(e_{\iota});f\in I)+\Sigma(D(e_{\iota}^{\prime f});\ell^{\prime\prime}\in I^{\prime/})=(D(e_{\iota}):c^{\prime}\in I^{\prime})+$

$\sum(D(e_{\iota}^{\prime\prime});\ell^{\prime\prime}\in I^{\prime f})$ , by Lemma 4.3. Hence, we have $\Sigma(D(e_{\iota});\iota\in I)=\sum(D(e_{\iota}^{\prime})$ ;
$\ell^{\prime}\in I^{\prime})$ . This means that $D(e)$ is well-defined. It is easy to see $(4.11)-(4.14)$ .
Uniqueness. For another relative dimension function $D^{\prime}$ of $R$, we have
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$D(e_{\iota})=D^{\prime}(e_{\iota})$ for an elementary projection $e_{\iota}$ of $R$. For an arbitrary projec-
tion $e$ , we may find a decomposition $e=\oplus(e_{\iota} ; \ell\in I)$ , where each $e_{\iota}$ is an
elementary projection of $R$ by the Corollary of Lemma 4.2, and so we have
$D(e)=D^{\prime}(e)$ by (4.12). This completes the proof. $q$ . $e$ . $d$ .

We now establish the local forms of Lemma 4.3, Def. 4.3, and Prop. 4.3.
LEMMA 4.4. We have $1=\sum(D_{\lambda}(e_{\iota});f\in I)$ for any maximal orthogonal system

$(e_{\iota} ; f\in I)$ of elementary projections $e_{\iota}’ s$ of $R$ with $\lambda(e_{\iota}^{\mathfrak{h}})=1$ .
PROOF. It is easy to see that $1\geqq\Sigma(D(e_{\iota});f\in I^{\prime})$ for any finite subset $I$‘

of $I$. Hence, we may assume without loss of generality that $I$ is a coun-
table set (say $I=(n;1\leqq n<\infty)$). Thus, we have $1\geqq\Sigma_{n=1}^{\infty}D_{\lambda}(e_{n})$ . Moreover,
we may assume without loss of generality that $D_{\lambda}(e_{n})\geqq D_{\lambda}(e_{n+1})$ for $n\geqq 1$ .
If $\Sigma_{n=1}^{\infty}D_{\lambda}(e_{n})<1$ , we may find a natural number $k\geqq 2$ with $\Sigma_{n=1}^{\infty}D_{\lambda}(e_{n})+2^{-(k-1)}$

$<1$ . There exists a system $(e_{n}^{()} ;i 1\leqq i\leqq 2^{n}, 1\leqq n<\infty)$ of elementary projec-
tions of $R$, which satisfies the following conditions: (1) $D(e_{n}^{()}i)=2^{-n}$ , (2)
$e_{n}^{()}e_{n}^{(j)}i=0$ for $i\neq j$, and $e_{m}^{()}e_{n}^{(J)}i=0$ or $e_{n}^{(j)}$ for $m<n$ . Then, it is easily seen
that there exists an orthogonal subsystem $(e_{n}^{\prime} ; 1\leqq n<\infty)$ of the above system
$(e_{n}^{()}\iota ; 1\leqq i\leqq 2^{n}, 1\leqq n<\infty)$ satisfying $e_{n}\sim e_{n^{\prime\gamma}}\leqq e_{n}^{\prime}$ and $e_{n}^{\prime}(e_{k}^{(1)}\oplus e_{k}^{(2)})=0$ . Since
$(\oplus(e_{n} ; 1\leqq n<\infty))^{c}$ is locally singular, we have $d_{\lambda}((\oplus(e_{n} ; 1\leqq n<\infty)^{c})\leqq d_{\lambda}(e_{k}^{(1)})$ .
Thus, we have $d_{\lambda}(1)\leqq d_{\lambda}(e_{k}^{(2)^{c}})$ , which is a contradiction. $q$ . $e$ . $d$ .

DEFINITION 4.4. A functional $D_{\lambda}$ of $E$ satisfying the following
(4.15) $D_{\lambda}(1)=1$ ,
(4.16) $D_{\lambda}(\oplus(e_{\iota} ; f\in I))=\sum(D_{\lambda}(e_{\iota});c\in I)$ for mutually orthogonal elementary

projections $e_{\iota}’ s$ of $R$ with $\lambda(e_{\iota}^{\eta})=1$ except for at most a finite number of projec-
tions,

(4.17) $D_{\lambda}(e)=D_{\Lambda}(e_{()}(\lambda)e)$ for $e_{0}(\lambda)\in E_{0}(\lambda)$ ,
(4.18) $D_{\lambda}(e_{1})=D_{\lambda}(e_{2})$ for $e_{1^{\sim}\lambda}e_{2}$ ,

is called a local relative dimension function of $R$ (after F.J. Murray and J. $v$ .
Neumann [1]).

$p_{ROPOSITION}4.4$ . There exists one (and only one) local relative dimension
function of $R$ if and only if $R$ is locally finite.

PROOF. We can prove the assertion by a similar argument as in the
proof of Prop. 4.3. $q$ . $e$ . $d$ .

For any projection $e$ of $R$ , the center of $eRe$ is isomorphic to that of
$e^{\eta}R$. In fact, putting $R_{1}=e^{\mathfrak{h}}R,$ $R_{2}=eRe$ , and $A=eR$, we have $b^{*}a\in R_{1},$ $ab^{*}\in R_{2}$ ,
and $ R_{A}\ulcorner$

)
$aR_{1}\subseteqq A$ for any $a,$ $b\in A$ , that is, we see that $A$ satisfies the conditions

of $A$ in 2. Under the same terminologies as in \S 2, we have $I_{1}\#=e=I_{2}$ and
$I_{2}\#=e^{\mathfrak{h}}=I_{1}$ . Hence, the center of $e^{\mathfrak{h}}R$ is isomorphic to that of $eRe$ by $\#$ (cf.
Prop. 2.8). Thus, $\#$ induces a homeomorphism between the spectrum of the
center $e^{\mathfrak{h}}R_{0}$ of $e^{\#}R$ and that of $eRe$ . Therefore we may identify a spectre
of $e^{\mathfrak{h}}R$ and its image by the induced homeomorphism,
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We denote by $\mathfrak{R}$ the real number field, which we consider as being
imbedded in $N_{0}$ .

Now, we shall introduce the following important tool for the proof of
Prop. 4.1.

DEFINI $r_{\Gamma ION}4.5$ . $Fo$ ’ an elementa of $N$, we write
(4.19) $\overline{t}_{\lambda}(a, \sigma)=\sup(\alpha;\sigma(a)\geqq\lambda\alpha, \alpha\in \mathfrak{R}),\overline{t}_{\lambda}(a, \sigma)=\inf(\alpha;\sigma(a)\leqq\lambda\alpha, \alpha\in \mathfrak{R})$ , for

$\sigma\in\Sigma$ ,
(4.20) $\overline{t}_{A}(a)=\sup(t_{\lambda}(a, \sigma);\sigma\in\Sigma),$ $\underline{t}_{\lambda}(a)=\inf(t_{\lambda}(a, \sigma);\sigma\in\Sigma)$ .

Moreover, we use the notation $\overline{t}_{\lambda}(a, e)$ instead of $\overline{t}_{\lambda}(a)$ of $eRe$ and the notation
$\overline{t}_{\Lambda}(a, e)$ instead of $\overline{t}_{\lambda}(a)$ of $eRe$ for an element $a$ of $eRe$ .

In order to prove Prop. 4.1, we use the following three lemmas.
LEMMA 4.5. For $a,$ $b\in N,$ $e_{i}\in E(i=1,2,3)$ and $\alpha\in \mathfrak{R}$, we have
(1) $\overline{t}_{\lambda}(s^{*}as)=\overline{t}_{\Lambda}(a)$ for any unitary element $s$ of $R$ ,
(2) $\overline{t}_{\lambda}(\alpha a)=\alpha\overline{t}_{\lambda}(a)$ for $\alpha\geqq 0,$ (3) $\overline{t}_{\lambda}(a)\geqq 0$ for $a\geqq 0$ ,

(4) $\overline{t}_{\lambda}(a-\alpha)=t_{\lambda}(a)-\alpha,$ (5) $\overline{t}_{\lambda}(a+b)\leqq\overline{t}_{\lambda}(a)+\overline{t}_{\lambda}(b)$ ,
(6) $\overline{t}_{\lambda}(a)\geqq\underline{t}_{\lambda}(a),$ (7) $\overline{t}_{\lambda}(e_{1}, e_{2})\overline{t}_{\lambda}(e_{2}, e_{3})\leqq\overline{t}_{\lambda}(e_{1}, e_{3})$ for $e_{1}\leqq e_{2}\leqq e_{3}$ , (8) $\overline{t}_{\lambda}(e_{1})/D_{\lambda}(e_{1})$

$\leqq\overline{t}_{\lambda}(e_{2})/D_{\lambda}(e_{2})$ for locally elementary projections $e_{i}(i=1,2)$ with $0<D_{\lambda}(e_{2})\leqq D_{\lambda}(e_{1})$ ,

and hence $\overline{t}_{\lambda}(e_{1})=\overline{t}_{\lambda}(e_{2})$ when $D_{\lambda}(e_{1})=D_{\lambda}(e_{2})$ , and (9) $\overline{t}_{\lambda}(e)=0$ for every locally
singular projection $e$ of $N$.

PROOF. It is easy to see (1)$-(4)$ . In order to show (5), we may find
$\sigma_{i}\in\Sigma(i=1,2,3)$ and $\alpha_{j}\in \mathfrak{R}(j=1,2)$ for a positive number $\epsilon$ such that $\overline{t}_{\lambda}(a$

$+b)-\epsilon\leqq\lambda\sigma_{1}(a+b)$ by the definition of $\overline{t}_{\lambda},$ $||\sigma_{2}\sigma_{1}(a)-\alpha_{1}||_{\lambda}\leqq\epsilon$ by Prop. 4.2, and
$||\sigma_{3}\sigma_{2}\sigma_{1}(b)-\alpha_{2}||_{\lambda}\leqq\epsilon$ by Prop. 4.2. Hence, we have $\overline{t}_{\lambda}(a+b)-\epsilon\leqq\alpha_{1}+\alpha_{2}+2e$ by
an easy computation. Since $\alpha_{1}-\epsilon\leqq\overline{t}_{\lambda}(a)$ and $\alpha_{2}-\epsilon\leqq\overline{t}_{\lambda}(b)$ , we get $\overline{t}_{\lambda}(a+b)\leqq$

$\overline{t}_{\lambda}(a)+\overline{t}_{\lambda}(b)+4e$ . Making $\epsilon\downarrow 0$ , we have (5).
In order to see (6), we may find $\sigma\in\Sigma$ and $\alpha\in \mathfrak{R}$ for a positive number

$e$ such that $||\sigma(a)-\alpha||_{\lambda}\leqq\epsilon$ by Prop. 4.2. Therefore, we have $\alpha-\epsilon\leqq\overline{t}_{\lambda}(a)$ and
$\alpha+\epsilon\geqq\underline{t}_{\lambda}(a)$ . Making $\epsilon\downarrow 0$ , we obtain (6).

In order to see (7), we may find $\sigma_{2}\in\Sigma$ with $\sigma_{2}(e_{2})=e_{2},$ $\sigma_{2}(e_{3})=e_{3}$ such that
$(\overline{t}_{\lambda}(e_{1}, e_{2})-\epsilon)e_{2}\leqq\sigma(e_{1})$ by Prop. 4.2 (cf. the proof of Prop. 4.2) and $\sigma_{3}\in\Sigma$ with
$\sigma_{3}(e_{3})=e_{3}$ such that $(\overline{t}_{\lambda}(e_{2}, e_{3})-\epsilon)e_{3}\leqq\sigma(e_{2})$ by Prop. 4.2. Hence, we have
$(\overline{t}_{\lambda}(e_{1}, e_{2})-\epsilon)(\overline{t}_{\lambda}(e_{2}, e_{o}\supset)-\epsilon)\leqq\overline{t}_{\lambda}(e_{1}, e_{3})$ . Making $\epsilon\downarrow 0$ , we get (7).

In order to see (8), we may find $ 0_{1}\in\Sigma$ such that $0_{1}()/D_{\lambda}(e_{1}))e_{1}$

by using the local elementarity of $e_{1},$ $e_{2}$ and $D_{\lambda}(e_{1})\geqq D_{\lambda}(e_{2})$ , and $\sigma\in\Sigma$ such
that $\overline{t}_{\lambda}(e_{1})-\epsilon\leqq\lambda o(e_{1})$ by the definition of $t_{\lambda}$ . Hence, we have $(\overline{t}_{\lambda}(e_{1})-\epsilon)D_{\lambda}(e_{3})/$

$D_{\lambda}(e_{1})\leqq\sigma\sigma(e_{2})$ . Thus, we have $(\overline{t}_{\lambda}(e_{1})-\epsilon)D_{\lambda}(e_{2})/D_{\lambda}(e_{1})\leqq\overline{t}_{\lambda}(e_{2})$ . Making $\epsilon\downarrow 0$ ,

we obtain (8).

In order to prove (9), we notice that $e_{1}\cup e_{2}$ is locally singular with $e_{i}$

$(i=1,2)$ because of $d_{\lambda}(e_{1}\cup e_{2}-e_{1})\leqq d_{\lambda}(e_{2})$ (cf. Lemma 2.5 and the Corollary 1
of Prop. 3.6.). From this, it follows easily that (9) holds. $q$ . $e$ . $d$ ,
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LEMMA 4.6. If there exists a locally non-zero and locally elementary pro-
jection $e_{1}$ of $R$ with $\overline{t}_{\lambda}(e)<1$ , then there exists a projection $e_{1}$ of $R$ and a state
$f$ of $e_{1}Re_{1}$ such that it holds $f(e_{1}^{f})=0$ if and only if $e_{1}^{\prime}$ is a locally singular
projection of $e_{1}Re_{1}$ , where we say that a linear functional $f$ of $R$ is a state of
$R$ if it satisfies that (1) $f(1)=1$ , (2) $f(\alpha a)=\alpha f(a)$ for $a\in R$ and a being any
complex number, (3) $f(a^{*})=\overline{f(a)}$ for $a\in R(\overline{f(a)}=the$ conjugate complex number of
$f(a),$ (4) $f(a^{*}a)\geqq 0$ for $a\in R$ .

PROOF. Let $E_{L}$ be the set of elementary projections $e_{1}’ s$ of $R$ with $e_{1}^{\mathfrak{h}}=1$

and let $G_{L}$ be the set of supremum of orthogonal system of projections of
$E_{L}$ . We may assume without loss of generality that $e$ is a projection of $E_{L}$ .
We note that $D(e^{\prime})=D_{\lambda}(e^{\prime})\cdot 1$ when $e^{f\#}=1$ . So we shall consider henceforth
$D(e^{\prime})$ (when $e^{\prime \mathfrak{h}}=1$ ) as a real number and then the above equality can be
written as $D(e^{\prime})=D_{\lambda}(e^{\prime})$ when $e^{f\mathfrak{g}}=1$ . Then, we can find a maximal chain $G$

of projections of $G_{L}$ containing $e$ and satisfying $(D(e^{\prime});e^{\prime}\in G)=[0,1]$ (the
closed interval of real numbers between $0$ and 1). In fact, we can find a
system $G_{0}=$ ( $e_{n}(\beta_{0});0\leqq\beta_{0}\leqq 1,2^{n}\beta_{0}$ a natural number with n) of projections of
$E_{L}$ such that (1) $e\in G_{0}$ , (2) $D(e_{n}(\beta_{0}))=2^{-n}$ , and (3) $ e_{n}(\beta_{0})=e_{n+1}(\beta_{01}-2^{-(n+)})\oplus$

$e_{n+1}(\beta_{0})$ for $0<\beta_{0}\leqq 1$ and $2^{n}\beta_{0}$ is a natural number. For any real number $\beta$

with $0\leqq\beta\leqq 1$ , we have an expression $\beta=\Sigma_{\nu=0}^{\infty}\epsilon_{\nu}2^{-\nu}$( $\epsilon_{\nu}=0$ or 1). We put $\beta_{n}=$

$\Sigma_{\nu=0}^{n}\epsilon_{\nu}2^{-\nu}$ and $ e(\beta)=\oplus$($e_{n}(\beta_{n})$ ; for $n$ such that $2^{n}\beta_{n}$ is odd) for $\beta>0$ and $e(O)$

$=0$ for $\beta=0$ . Then, $e(\beta)$ is independent on the expression of $\beta$ . We denote
$(e(\beta);0\leqq\beta\leqq 1)$ by $G$ . Then, $G$ is a chain of projections of $G_{L}$ in question.
It is easy to see that $ D(e(\beta))=\beta$ and $\lim_{\beta\downarrow\alpha}e(\beta)=e(\alpha)$ . We denote by $e_{1}$ the

supremum of $(e^{\prime} ; t_{\lambda}(e^{\prime})<1, e^{\prime}\in G)$ . Then, we have $e_{1}\in G$ and $D(e)\leqq D(e_{1})$ .
If $\overline{t}_{\lambda}(e_{1})=1$ , then we have $\overline{t}_{\lambda}(e^{\prime}, e_{1})<1$ for any projection $e^{\prime}$ of $G$ with

$D(e^{\prime})<D(e_{1})$ by (7) of Lemma 4.5. For any elementary projection $e_{I}^{\prime}$ of $e_{1}Re_{1}$

with $\lambda(e_{1}^{f\#})=1$ , we may find a projection $e^{\prime}$ of $G$ such that $D_{\lambda}(e_{1}e_{1}^{\gamma c})<D(e^{\prime})$

$<D(e_{I})$ . Hence, we have $\overline{t}_{\lambda}(e_{1}e_{1}^{fC}, e_{1})<1$ . By the extention theorem of Hahn
and Banach, there exists a state $f$ of $e_{1}Re_{1}$ with $f(a)\leqq t_{\lambda}(a, e_{1})$ for any her-
mitian element $a$ of $e_{1}Re_{1}$ by virtue of (2), (4) and (5) of Lemma 4.5. There-
fore, we have $f(e_{1}^{\prime})=1-f(e_{1}e_{1}^{fC})\geqq 1-t_{\lambda}(e_{1}e_{1}^{\prime C})<0$ , for any elementary projection
$e_{1}^{\prime}$ of $e_{1}Re_{1}$ with $\lambda(e_{1}^{f\eta})=1$ .

If $\overline{t}_{\lambda}(e_{1})<1$ , denoting by $e_{n}^{\prime/}$ the projection of $G$ with $D(e_{n}^{\gamma/})=(1+2^{=n})D(e_{1})$

for large $n$ say $n\geqq n_{0}$ , there exists a state $f_{n}$ of $e_{n^{\prime\prime}}Re_{n}^{\prime\prime}$ with $f_{n}(a)\leqq\overline{t}_{\lambda}(a, e_{n}^{\prime\prime})$

for any hermitian element $a$ of $e_{n^{\prime\prime}}Re_{n^{\prime\prime}}$ . Since $\overline{t}_{\lambda}(e_{1}, e_{n}^{\prime/})<1$ by (7) of Lem-
ma 4.5, we have $f_{n}(e_{1}^{\prime})<0$ for any elementary projection $e_{\iota^{\prime}}$ of $e_{1}Re_{1}$ with
$D_{\lambda}(e_{1}^{\prime})=2^{-n}$ . We put $f(a)=\epsilon^{-1}\Sigma_{n=n^{\infty_{0}}}2^{-n}f_{n}(a)$ for any element $a$ of $e_{1}Re_{1}$ , where
$\epsilon=\Sigma_{n=n^{\infty_{0}}}2^{-n}f_{n}(e_{1})$ . Then, $f$ is a state of $e_{1}Re_{1}$ and $f(e_{1}^{\prime})>0$ for any elementary
projection $e_{1}^{\prime}$ of $e_{1}Re_{1}$ with $\lambda(e_{1}^{f\mathfrak{h}})=1$ . This complete the proof. $q$. $e.d$ .



212 T. ONO

LEMMA 4.7. A locally finite (locally non-discrete) $AW^{*}$ -algebra $R$ has a
local trace, if $eRe$ has a local trace for a locally non-singular projection $e$ of $R$.

PROOF. Since $e$ is a locally non-singular projection of $R$ , there exists a
locally non-zero and locally elementary projection $e_{1}$ of order $2^{n}$ with $e_{1}\leqq e$ .
Then, we may find a local decomposition $1=\lambda\oplus(e_{j} ; 1\leqq j\leqq 2^{n})$ with $e_{1^{\sim}\lambda}e_{j}$

$(1\leqq j\leqq 2^{n})$ and local partial isometries $u_{j}(1\leqq j\leqq 2^{n})$ with $e_{*}(u_{j})=e_{j}$ and $e(u_{j})$

$=e_{1}$ . We put $e_{ij}=u_{i^{*}}u_{j}(1\leqq i,j<2^{n})$ . Then, $(e_{ij} ; 1\leqq i,j\leqq 2^{n})$ is a system of
matrix units of $R$ . Put $\varphi(a)=\Sigma(u_{j^{*}}au_{j};]\leqq j\leqq 2^{n})$ for each $a\in e_{1}Re_{1}$ . Then,
$\varphi$ is an isomorphism from $e_{1}Re_{1}$ onto $\varphi(e_{1}Re_{1})$ . It is easily seen that $\varphi(a)e_{ij}$

$=e_{ij}\varphi(a)(1\leqq i, j\leqq 2^{n})$ for each $a\in e_{1}Re_{1}$ and $R=\Sigma(\varphi(e_{1}Re_{1})e_{ij} ; 1\leqq i,j\leqq 2^{n})$ , the
full matric algebra of order $2^{n}$ over $e_{1}Re_{1}$ . Since a local trace of $eRe$ is
that of $e_{1}Re_{1}$ by restriction with neglect to constant multiplier, we may
assume without loss of generality that $\varphi(e_{1}Re_{1})$ has a local trace (say $t_{\lambda^{f}}$ ).

We put $t_{\lambda}(a)=\Sigma(t_{\lambda^{\prime}}(a_{jj});1\leqq j\leqq 2^{n})$ , where $a=\Sigma(a_{ij}e_{lj} ; 1\leqq i, j\leqq 2^{n}, a_{ij}\in\varphi(e_{1}Re_{1}))$ .
Then, it is easy to see that $t_{\lambda}$ is a local trace of R. q. e. $d$ .

The proof of Prop. 4.1. We need only to prove the sufficiency. From
Lemma 4.6, and Lemma 4.7, we may assume without loss of generality that
there exists a state $f_{\lambda}$ of $R$ such that $f_{\lambda}(e)=0$ if and only if $e$ is locally
singular.

First we shall prove that, for any positive number $\epsilon$ , there exists a
local state $g_{\lambda}$ of $R$ such that it holds

(4.21) $|g_{\lambda}(a)-g_{\lambda}(\sigma(a))|\leqq 2\epsilon||a||_{\lambda}$

for any $a$ of $N$ and for any $\sigma\in\Sigma$ , where we say that $g_{\lambda}$ is a local state of
$R$ if it is a state of $R$ with $g_{\lambda}(a)=g_{\lambda}(e_{0}(\lambda)a)$ for any $e_{0}(\lambda)\in E_{0}(\lambda)$ . By a
similar argument as in [2], we can find a locally non-zero and locally ele-
mentary projection $e$ of $R$ satisfying $f_{\lambda}(e_{1})\leqq D_{\lambda}(e_{1})$ for each locally elementary
projection $e_{1}$ of $R$ with $e_{1}$ of $R$ with $e_{1}\leqq e$ . We shall prove this fact
below. If we have a decomposition $1=\oplus(e_{\iota} ; f\in I)+e^{\prime}$ such that $f_{\lambda}(e_{\iota})>D_{\lambda}(e_{\iota})$

$(\ell\in I)$ and that $e^{\prime}$ is locally singular, then, using (4.16) and the fact that
$f_{\lambda}(e^{\prime})=0,$ $D_{\lambda}(e^{\prime})=0$ , we have $1=f_{\lambda}(1)\geqq(f_{\lambda}(e_{\iota});f\in I)>(D_{\lambda}(e_{\iota});f\in I)=D_{\lambda}(1)=1$ .
This leads to a contradiction. Hence, we get the above-mensioned fact.
For a positive number $\theta$ , we denote by $ e\leqq p\theta$ (or $ e\geqq p\theta$) if $f_{\lambda}(e_{1})\leqq\theta D_{\lambda}(e_{1})$ (or

$f_{\lambda}(e_{1})\geqq\theta D_{\lambda}(e_{1}))$ for any projection $e_{1}$ of $eRe$ after F. J. Murray-J. $v$ . Neumann
[2], J. Dixmier [5], Ti. Yen [8], and M. Goldman [9]. Then we can write
$e\leqq p1$ . In this case, moreover, for any decomposition (4.16) in $eRe$ , we have
$f_{\lambda}(e)=\sum(f_{\lambda}(e_{\iota});t\in I)$ . In fact, by the definition of the sum of a infinite
number of positive numbers, for any $\epsilon>0$ , we can find a finite number of
projections (say $e_{1},$ $e_{2},\cdots,$ $e_{n}$) of $(e_{\iota} ; f\in I)$ such that $ D_{\lambda}(e)<\Sigma(D_{\lambda}(e_{i});1\leqq i\leqq n)+\epsilon$.
Since $ D_{\lambda}(e(\oplus(e_{i} ; 1\leqq i\leqq n))^{c})=D_{\lambda}(e)-\Sigma(D_{\lambda}(e_{i});1\leqq i\leqq n)<\epsilon$, we can find a posi-
tive number $\beta_{0}$ such that $ D_{\lambda}(e(\oplus(e_{l} ; 1\leqq i\leqq n))^{c})\leqq\beta_{0}<\epsilon$ and that $2^{n}\beta_{0}$ is a
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natural number for some natural number $n$ . In this case, we can find a
projection $e^{(0)}$ satisfying that $e(\oplus(e_{i} ; 1\leqq i\leqq n))^{c}\leqq e^{(0)}$ and that $D_{\lambda}(e^{(0)})=\beta_{0}$ .
Since $D_{\lambda}(e^{(0)})=\beta_{0}$ , we can find a local decomposition $e^{(0)}=\oplus(e^{(j)} ; 1\leqq j\leqq m)$ for
some natural number $m$ , where each $e^{(j)}$ is locally elementary. Hence, we
have $f_{\lambda}(e(\oplus(e_{i} ; 1\leqq i\leqq n))^{c})\leqq f_{\lambda}(e^{(0)})=\Sigma(f_{\lambda}(e^{(J)});1\leqq j\leqq m)=\sum(D_{\lambda}(e^{(j)} ; 1\leqq i\leqq m)=$

$ D_{\lambda}(e^{(0)})=\beta_{0}<\epsilon$ . This means that $f_{\lambda}(e)=\Sigma(f_{\lambda}(e_{i});1\leqq i\leqq n)\dashv- f_{\lambda}(e(\oplus(e_{i} ; 1\leqq i\leqq n))^{c})$

$<\Sigma(f_{\lambda}(e_{i});1\leqq i\leqq n)+\epsilon$ . On the other hand, of course, we have $f_{\lambda}(e)\geqq\sum(f_{\lambda}(e_{\iota})$ ;
$\ell\in I)$ . Thus, we get the desired equality $f_{\lambda}(e)=\sum(f_{\lambda}(e_{\iota});f\in I)$ . Put $\theta=\inf(\theta^{\prime}$ ;
$e\leqq p\theta^{f})$ . Then, for any positive number $\eta$ , we may find a locally non-zero
and locally elementary projection $e_{\eta}$ of $R$ with $\theta-\eta\leqq pe_{\eta}$ by a similar argu-
ment as in [2]. Hence, we have $|f_{\lambda}(e_{1})-\theta D_{\lambda}(e_{1})|\leqq\eta D_{\lambda}(e_{1})$ for any locally
elementary projection $e_{1}$ of $R$ with $e_{1}$ of $R$ with $e_{1}\leqq e_{\eta}$ . Therefore, we get
$|f_{\lambda}(e^{(1)})-\theta D_{\lambda}(e^{(1)})|\leqq\eta D_{\lambda}(e^{(1)})$ for any projection $e^{(1)}$ of $R$ with $e^{(1)}\leqq e_{\eta}$ . For
any element $a$ of $N$, we denote by $(e_{\alpha}(a);-\infty<\alpha<\infty)$ the resolution of the

unit for $a$ . We put $t_{\lambda^{0}}(a)=\int_{-\infty}^{\infty}\alpha dD_{\lambda}(e_{\alpha}(a))$ . Then, we have $|f_{\lambda}(a)-\theta t_{\lambda^{0}}(a)|\leqq$

$\eta t_{\lambda^{0}}(\sqrt{a)}\leqq\eta||a||_{\lambda}$ for $a\in e_{\eta}Re_{\eta}$ by an easy computation. Since $t_{\lambda}^{0}(a^{*}a)=t_{\lambda}^{0}(aa^{*})$

by (3.6) of Prop. 3.6, we have $|f_{\lambda}(a^{*}a)-f_{\lambda}(aa^{t_{\backslash }^{x}})|\leqq 2\eta t_{\lambda^{0}}(a^{t_{\backslash }^{\prime}}a)$ , that is, $ f_{\lambda}(aa^{*})\leqq$

$(1+\epsilon)f_{\lambda}(a^{*}a)$ , where $\epsilon=2\eta(\theta-\eta)^{-1}(0<\eta<\theta)$ . We denote the local order of $e_{\eta}$

by $2^{n}$ (that is, $D_{\lambda}(e_{\eta})=2^{-n}$). Then, we may find a system $(e_{ij} ; 1\leqq i,j\leqq 2^{n})$ of
matrix units of $R$ with $e_{\eta}=e_{11}$ . We shall write $g_{\lambda}(a)=\Sigma_{j=1}^{2^{n}}f_{\lambda}(e_{j1^{*}}ae_{j1})$ for
any element $a$ of $R$ . Then, $g_{\lambda}$ is a local state of $R$. Moreover, for any
element $a$ of $N$ with $a\geqq 0$ and for any unitary element $s$ of $R$, we have
$g_{\lambda}(s^{*}as)=\Sigma_{i,j=1}^{2^{n}}f_{\lambda}(e_{j1}^{*}s^{*}\sqrt{a}e_{i1}e_{i1^{*\prime}}ase_{jI})\leqq(1+\epsilon)\Sigma_{i,j=1}^{2^{n}}f_{\lambda}(e_{i1}^{t_{\backslash m_{ase_{j1}e_{j1^{*}}s}}^{\prime}}‘‘\sqrt{a}e_{i1})$

$=(1+\epsilon)g_{\lambda}(a)$ . Thus, we have $|g_{\lambda}(a)-g_{\Lambda}(s^{*}as)|\leqq\epsilon||a||_{\lambda}$ . Hence, we get $|g_{\lambda}(a)$

$-g_{\lambda}(s^{*}as)|\leqq 2\epsilon||a||\lambda$ for any element $a$ of $N$. Therefore, we obtain (4.19).
Next, we shall prove that $\overline{t}_{\lambda}(a)=\underline{t}_{\lambda}(a)$ for any element $a$ of $N$ (with $||a||_{\lambda}$

$\leqq 1)$ . For, otherwise, putting $\overline{t}_{\lambda}(a)-\sim t_{\lambda}(a)=7\epsilon>0$ , we may find $\sigma_{i}\in\Sigma(i=1,2)$

such that $\sigma_{1}(a)\geqq\overline{t}(a)-\epsilon$ and $\underline{t}_{\lambda(a)+\epsilon\geqq\sigma_{2}(a)}\lambda$ by the definition of $\overline{t}_{\lambda},$
$\underline{t}_{\lambda}$ . Since

$|g_{\lambda}(\sigma_{1}(a))-g_{\lambda}(\sigma\lrcorner)(a))|\leqq 4\epsilon$ by (4.21), we get $6\epsilon\geqq t_{\lambda}(a)-t_{\lambda}(a)$ . This leads to a
contradiction. Hence, we have $\overline{t}_{\lambda}(a)=\underline{t}_{\lambda}(a)$ .

We shall write $ t_{l(a)=t_{\lambda(\mathfrak{R}e(a))+it_{\lambda}(s^{j}m(a))}}\circ$ , where $\mathfrak{R}e(a)=\frac{1}{2}(a+a^{*})$ and

$s\propto m(a)=\frac{1}{2i}(a-a^{*})$ . Then, it is easy to see that $t_{\lambda}$ satisfies $(4.1)-(4.7)$ by

Lemma 4.5. The uniqueness of the local trace of $R$ is an immediate con-
sequence of Prop. 4.2. $q$ . $e$ . $d$ .

As a global form of Def. 4.1, we shall introduce the following
DEFINITION 4.6. An operator $t$ from $R$ onto $R_{0}$ is called a trace of $R$ if it

satisfies the following
(4.22) $t(1)=1$ ,



214 T. ONO

(4.23) $t(a\dashv- b)=t(a)+t(b)$ for $a,$ $b\in R$ ,
(4.24) $t(a^{*})=t(a)^{*}for$ $a\in R$ ,
(4.25) $t(a)\geqq 0$ for $a\geqq 0$ ,
(4.26) $l(a_{0}a)=a_{0}t(a)$ for $a\in R$ and $a_{0}\in R$ ,
(4.27) $t(ab)=t(ba)$ for $a,$ $b\in R$ .
It is normal as a property in our sence that, for a projection $e,$ $eRe$ has

a trace. The property that $R$ has a local trace with respect to a spectre $\lambda$

of $R$ is not the local property corresponding to the property that $R$ has a
trace, but we have the following

$p_{ROPOSITION}4.5$ . $R$ has a lrace if and only if $R$ has a local trace with
respect to any spectre of $R$ .

PROOF. Necessity. It is easily verified that \‘A(t(a)) $(a\in R)$ satisfies the
conditions $(4.1)-(4.7)$ of the local trace of $R$ . Sufficiency. By Prop. 4.2, for
any $a$ of $N$ and for any $n$ , there exists an element $a_{0}^{(n)}$ of $N_{0}$ and $\sigma_{n}\in\Sigma$ such
that $||\sigma_{n}(a)-a_{0}^{()}n||\leqq 1/n$ . Then, we have $||t_{\lambda}(a)-\lambda(a_{0^{()}}n)||\leqq 1/n$ for any spectre
$\lambda$ of $R$ . This means that $a_{0}^{()}n$ converges uniformly to an element (say $t(a)$)
of $R_{0}$ . Then, $t$ satisfies $(4.20)-(4.24)$ . $q$ . $e$ . $d$ .

We denote by $\Omega_{0}$ the set of spectres $\lambda’ s$ of $R$ such that $R$ has a local
trace with respect to $\lambda$ .

LEMMA 4.8. $J2_{0}$ is a closed subset of S2.
PROOF. Let $\mu$ be a limit of a hypersequence $\Lambda$ of spectres of $\Omega_{0}$ . With

the same notations as in the proof of Prop. 4.5, we have $|t_{\lambda}(a)-\lambda(a_{0}^{(n)})|\leqq 1/n$

for any spectre $\lambda$ of $\Lambda$ . This means that $t_{\lambda}(a)$ converges to a scalar (say
$t_{\mu}(a))$ . Then, $t_{\mu}$ satisfies $(4.1)-(4.7)$ . $q$ . $e$ . $d$ .

LEMMA 4.9. Let $(P)$ be a global condition of R. We assume that $R$ has at
least one local trace if $R$ has the condition $(P)$ . Then, $R$ has a trace if $R$ has
the condition $(P)$ .

PROOF. If $\Omega_{0^{c}}\neq\phi$ , we may find a non-zero projection $e_{0}$ of $R_{0}$ such that
$\lambda\in\Omega_{0}$ implies $\lambda(e_{0})=0$ . Hence, $e_{0}R$ has no local trace. This contradicts the
property of $(P)$ . $q$ . $e$ . $d$ .

THEOREM 4.1. Let $R$ be a finite $AW^{*}$-algebra with a faithful representation
$\varphi$ on a separable Hilbert space H Then, there exists a trace of $R$ .

PROOF. Let $(f_{n} ; 1\leqq n<\infty)$ be an orthogonal basis of $H$ We denote by
the same $f_{n}$ the state of $R$ defined by $f_{n}(a)=<(a)f_{n},f_{n}>$ for $a\in R$ indiffer-
ently, where we denote by $<f,$ $g>$ the inner product of $f$ and $g$ in $H$ We
put $f(a)=\Sigma_{n=1}^{\infty}2^{-n}f_{n}(a)$ . Then, $f$ is a state of $R$ satisfying that $a=0$ if and
only if $f(a^{*}a)=0$ . Hence, there exists a locally non-zero and locally ele-
mentary projection $e$ of $R$ such that $f(e_{1})\leqq D_{\lambda(e_{1})}$ for any locally elementary
projection $e_{1}$ of $R$ with $e_{1}\leqq e$ . We shall prove this fact in the below. If
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there is no projection such as $e_{1}$ in the above, we have a decomposition
$1=\oplus(e_{\iota} ; f\in I)\oplus e^{\prime}$ such that $f(e_{\iota})>D_{\lambda}(e_{\iota})(\ell\in I)$ and that $e^{\prime}$ is locally singular.
Then, using (4.16) and the fact that $D_{\lambda(e^{\prime})=0}$ , we have $I\geqq f(1)\geqq\Sigma(f(e_{\iota});f\in I)$

$>\sum(D_{\lambda}(e_{\iota});\ell\in I)=D(1)=1$ . This is a contradiction. Hence, we get the
desired projection $e$ . As we have only to prove the existence of a local trace
by Prop. 4.5 and as, for that sake, we need to show it for $eRe$ by Lemma
4.7, we may assume that $e=1$ . And moreover, from what we have seen just
above, we may assume that $\theta f(\sigma(e))\leqq D_{\lambda(e)}$ ( $\theta$ : some constant) for any $\sigma\in\Sigma$

and for any locally elementary projection $e$ of $R$ .
If $R$ has no local trace with respect to any spectre of $R$ , then, for any

elementary projection $e$ with $e^{\mathfrak{h}}=1$ and for any $\epsilon>0$ , we may find an opera-
tor $\sigma$ of $\Sigma$ such that $\sigma(e)\geqq 1-\epsilon$. Hence, we get $D_{\lambda(e)\geqq\theta(1-\epsilon)}$ . As we can
make $D_{\lambda(e)}\downarrow 0$ , this leads to a contradiction. Thus, $R$ has at least one local
trace. Since it is a global condition that $R$ has a faithful representation
on a separable Hilbert space, we arrive at the assertion by Lemma 4.9. q.e. $d$ .

Ti. Yen [8] proved that a finite $AW^{*}- a1_{o}\backslash \sigma ebra$ has a trace if it has a
complete set of $p$-normal states. The following theorem contains this result
of Ti. Yen.

THEOREM 4.2. Let $R$ be a finite $AW^{*}$ -algebra with a complete set of states
$J^{\prime}s$ of $R$ such that, for any orthogonal system $E_{1}$ of projections of $R,$ $f(\oplus(e_{1}$ ;
$e_{1}\in E_{1}))=0$ follows from $f(e_{1})=0$ for each $e_{\rfloor}\in E_{1}$ . Then, $R$ has a trace.

PROOF. Let $\Gamma$ be a complete set of states of $R$ . For any $ f\in\Gamma$ , by the
assumption for $f$, there exists the minimal projections $e(f)$ of $E$ and $e_{0}(f)$

of $E_{0}$ fixing $f$ (cf. Lemma 1.3, [15]), where we say that a projection $e$ fixes
$f$ if $f(e^{c})=0$ . It is easy to see that $f$ is a state of $e(f)Re(f)$ satisfying that
$a=0$ if and only if $f(a^{*}a)=0$ . Hence, there exists a trace of $e(f)Re(f)$ by
the proof of Theorem 4.1. Hence, there exists a local trace of $e(f)Re(f)$

with respect to any spectre of $e(f)Re(f)$ by Prop. 4.5. From this, together
with Lemma 4.2, Lemma 4.7, it follows that there exists a local trace of
$e_{0}(f)Re_{0}(f)$ with respect to some spectre of $e_{0}(f)Re_{0}(f)$ , and hence there
exists a local trace of $R$ with respect to some spectre of $R$ .

For any projection $e_{0}$ of $R_{0}$ and for any state $f$ of $\Gamma$ , we denote by $f_{e_{0}}$

the state of $e_{0}Re_{0}$ defined by $f_{Co}(a)=f(a)$ for any $a\in e_{0}Re_{0}$ . Then, it is obvious
that the system $(f_{e}. ; f\in\Gamma)$ forms a complete set of states of $e_{0}Re_{0}$ satisfying
the condition stated in the theorem. This means that the present condition
imposed on $R$ is a global condition. Thus, we arrive at the assertion by
Lemma 4.9. $q$ . $e$ . $d$ .

M. Goldman [9] proved that a finite $AW^{*}$-algebra $R$ has a trace if it
has a complete set of $p$-normal C-valued states, where $C$ is a commutative
$AW^{*}$-algebra contained in the center of $R$ . The following theorem contains
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this result of M. Goldman.
THEOREM 4.3. Let $R$ be a finite $AW^{*}$ -algebra and $C$ be a commulative

AW*-algebra contained in the center $R_{0}$ of R. Further, we assume that $R$ has
a complete set of C-valued states $f’ s$ such that $f$ is completely additive on $E_{0}$

and that, for any orthogonal system $E_{1}$ of projections of $R,f(\oplus(e_{J} ; e_{1}\in E_{1}))=0$

follows from $f(e_{1})=0$ for each $e_{1}\in E_{1}$ . Then, $R$ has a trace.
PROOF. Let $\Gamma$ be a complete set of such states of $R$ . For any $ f\in\Gamma$ ,

there exist the minimal projections $e(f)$ of $E$ and $e_{0}(f)$ of $E_{0}$ fixing $f$ (by
the similar method as in the proof of Lemma 1.3, [15]), where we say that
a projection $e$ fixes $f$ if $f(e^{c})=0$ . It is easy to see that $f$ is a state of
$e(f)Re(f)$ satisfying that $a=0$ if and only if $f(a^{*}a)=0$ . By a similar argu-
ment as in the proof of theorem 4.2, there exists a trace of $e(f)Re(f)$ .
Hence, $R$ has a trace by the same argument as in the proof of theorem 4.2.
$q$ . $e$ . $d$ .
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