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On the change of rings in the homological algebra.
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The object of this note consists in making a response partly to
Massey’s problem 22 ([4]), generalizing the problem from the case
of the homology of groups to the case of the homological algebra.
Thus we shall study the change of rings ¢ : A—TI" in the homological
algebra by the use of algebraic mapping cylinder as was indicated
in Massey’s paper. In our description, we shall make free use of
the notations of the book of H. Cartan and S. Eilenberg ([1]).

In §1, we define the algebraic mapping cylinder by analogy of
the topological mapping cylinder (cf. p. 73, [1]). In §2, we introduce
new functors Tor¢ and Ext,, which have similar properties as the
absolute Tor- and Ext-functors, as will be shown in §3.

The functors Tor¢ and Ext, yields a “relative” theory for the
change of rings ¢: A—TI'. Another “relative” theory of the homo-
logical algebra was discussed in @. According to what is announced
in the same paper, our problems seem to be also investigated by
M. Auslander. But I have not yet access to his results. In §4, we
shall consider in particular the relative cohomology group of dimen-
sion 2, H*(®, & : M) (M being a &-module) of a group & and its
subgroup &, and bring it in relation with the classes of group
extensions of ®, which are trivial over &.

The author has in view to analyse further the relations between
the relative homology of a pair (&, & and the homology of factor
group G/ in case & is normal. We can readily see that if H"(8: M)
=0, for 0<<r<<m, then H™(S, &: M)~ H(OG/R: M%) by our reduction
theorem 3.4* in §3 and by the exact sequence of Hochschild and
Serre ([2]). These topics will be treated in a forthcoming paper.

The author wishes to express his hearty thanks to Professors
S. Iyanaga and Y. Kawada for their encouragements during the
preparation of this note. The author is also grateful to Prof. S.
Eilenberg for his helpful criticism,
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§ 1. Algebraic mapping cylinder.
Let A= > A, and C= 2] C, be chain complexes. A map

~oon t oo — oo n< + o0
¢: A—C is a homomorphism satisfying d¢p =¢0, where 9 denotes the

boundary operators in A and C respectively. For a given map
¢ : A—C, the algebraic mapping cylinder M(p)=>, M, of ¢, and the

o-relative chain complex N(go)rg)Nn are defined as follows:
Mn=AnJ'rAn_1—I—Cn, (direct sum),
{ 0.(a, b, c) =(8a—b, —0b, oc + ¢b), (a, b, c) =M,, and 8.5=0.
Nn=An_11-LCn, (direct sum),
[ 0,(by ¢)=(—0b, dc + ¢b), (b,c) =N,, and 3.0=0.

LEMMA L.1. (i) There exist maps r.: C— M(p) and v : M(p)—C such
that the composite maps pv and vy are homotopic with the identity map
of M(¢) and C respectively. (ii) By setting a(e)=(a, 0, 0) and B(a, b, c)=

(04
(b, ¢)y, we obtain an exact sequence 0— A— M(p)— N(¢)—0, where o and

B are maps. (iii) va=¢. (iv) Thus we have an exact sequence

Py
oo —> H(A)—> H(C)—> H,(N(9))—>H,_ (A)—>--,

with the induced homomorphism ¢..

PROOF. We define ¢ and v by setting u(c)=(0,0,¢), c&C, and
v(a, b, ¢)=c+ga. We define a homomorphism D : M(¢)— M(¢) of degree
+1 by setting D,(a, b, ¢)=(0, a, 0), (& b, c) =M,. Then D is the homo-
topy connecting uv with the identity map of M(¢). (ii), (iii) and (iv)
will be readily seen. _

REMARK. (1) The boundary homomorphism 8, of the homology
sequence of 0—A— M(¢)— N(¢)—0 coincides with the homomorphism
induced by the map (b,c)——b: N(¢)—A of degree —1. (2) The
boundary operator @ in M(¢) is determined by the conditions: (i)
ad=0a, (i) po=0p, (iii) wd=0au, (iv) 0D+Dd=uv—1. In fact, if we
set formally 9(a, b, ¢)=(f.a+gb+hc, f,a+gb+hygc, f.a+gb+he), then
by (i) we have f,=9; by (ii): f,=f,=0; by (iii): A,=0 and h,=h,=0;
and by (iv): g,=—1, g,=—9 and g,=o¢.

LEMMA 1.2. Let A, A’, C and C' be chain complexes and let ¢ : A—C,
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ot A—C'ys: A—A" and t: C—C' be respective maps. For the existence
of the maps u: M(e)— M(¢') and v: N(p)— N(¢') such that the diagrams

a B
0—>A —>M(p) —>N(p) —0

s| w0l
0—> A'—>M(¢')—>N(¢')—>0
al ﬁ,

and

n w
0——>C —>M(p) —>Coker u —>0

t| ul u
0——>C’—’>M(¢>’)————>Coker w—>0
. W wl

are commutative, (where Coker p and Coker p' do not depend on C, so
that we can define it by #(a, b)= (sa, sb), (a,b) = Coker p), it is necessary
and sufficient that the composed maps t¢ and ¢'s are homotopic.

PrRoOOF. If we set formally u(e, b, c)=(f,a+gb+ k., fra+g,b+h.c,
fia+gb+hyc), then we have f,=f,=0and f,=s by ua=da's; h,=h,=0
and #,=t by un=u't; g,=0, g,=s by d#w=w'u; and finally by ou=uo,
we have

08,0+ g,00=tpb—¢'sbh .

Thus #¢ and ¢'s are homotopic. Conversely, if f¢ and ¢'s are homo-
topic with the homotopy g, then we have

u(a, b, ¢) = (sa, sb, tc + g,b) and v(b, c) =(sb, tc +g.,b)

as the maps desired.

LEMMA 1.8. In the situation of the Lemma 1.2, let the maps s’ : A—A’,
t':C—C' be given. If s and t be homotopic with s’ and t' respectively,
then t'¢, u and v are homotopic with ¢'s'su' and v' rvespectively, where u'
and V' are the maps induced by (s',t').

PROOF. Let g,, 4 and 4 be homotopies of #tpo2¢’s, soes’, and
to2t’ respectively. Then g,= —4'¢+g,+¢'4 is the homotopy of Yoo
¢o's’y and D: M(p)—M(¢’) defined by D(a,b,c)=(4a, 4b, 4c) is the
homotopy of uwozu'. Q. E. D.

For the cochain complexes A=>]A" and C=2> C"* and a map

¢o:C— A, (pd=09¢), the algebraic mapping cylinder M*(¢)=>) M™ and
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p-relative cochain complex N*(go)=; N™ are defined as follows:
M"%A“J—A"'14:C”, (direct sum),
[ 0™(a, by c)=(da, —a—6b+goé, oc)y (a, b, c) =M™, and 00=0.
N*=A"14{C* (direct sum),
{ 6™(by ¢) =(—0b+¢c, 6c)y, (byc)=N", and 86=0.

In a similar manner as in the case of the chain complexes, we
can set up lemmas analogous to the Lemmas 1.1, 1.2 and We

remark only that there exists an exact sequence
*

P
o= HYN*(9))>H"(CO)—> H"(A)—H" (N*(9))—>--

with the induced homomorphism ¢*.»

§ 2. Definitions of Tor¢ and Ext,.

In the sequel, we assume that the rings 4 and I' and the ring
homomorphism ¢: A—I" are given. We will call thereby ¢: A—T
a change of rings. For the ferminology and the notations on the
change of rings in the homological algebra, we refer to the book
Chap. 1I, §5, §6, Chap. V and Chap. VI, §4.

DEFINITION of Tore.

Let X, Y be I'-projective resolutions of A and C respectively in
the situation (Ap ;C). By ¢: A—TI', the situation (A, ;C) is con-
verted to (A, 4C). Let X', Y’ be A-projective resolutions of A and
C in this situations. By virtue of the 4-projectivity of X’ and 4-
acyclicity of X, there exists a A-map F:X'—X over the identity
map of A. By the same reason, there exists a A-map G:Y'—Y
over the identity map of C. We define a map

OV X'QY' = XQrY

by 02" ) =Fx'QGy. Let M(@®) and N(®®) be the algebraic
mapping cylinder of ®® and the @®®-relative chain complex respec-
tively.

1) This exact sequence is mentioned in Exercise 3, p. 73. It is to be noticed
however that we have to change the sign of ¢, ¢ in (1) l.c,, and modify accordingly
the meaning of their notations.
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We define Tor¢(4, C) by
Torg(A, C)=H,(N(@®Y)).
From the exact sequence
0—-X"R,Y" —MPV)—>NO)—0,

we obtain the exact homology sequence:

Pn .
...Tor4(A, C)—>TorI'(4, C)—Tor¢(A, C)—TorA (A, C)—---
where ¢, is the homomorphism induced by oM.

THEOREM 2.1. (Uniqueness). (i) Let X, X and X'y, X' be respectively

the T'- and the A-projective resolutions of A. Let Y, Y and Y', Y' be
respectively the I'- and the A-projective resolutions of C. Consider the

Amaps F: X' =X, F: X'>X, G:Y'>Y and G:Y'>Y. We define

oW X'Q, Y > XQrY and 0V: X'Q,Y'—>XRQrY as above. Then we
have

H(N(©@®)) ~ HN(®M)).

(ii) We define the maps
O® : X'Q 40 =X{, rC—>XrC,
0D : AQLY' = AQr((nY) > ARrY
oW : X'Q,Y - XRrY,

and
®(5) N X®A Y, -—)X®[‘Y
by
OO(x' Q) 46) = F(x"YRrc »
(a9 =aRrG(Y)
DN (%' Q) =F(x")Rry »
and

DO(xX ") =2XG(y')
respectively. Then we have
H(N(©®™)) ~ HN(@D)), i=2,---,5.

(iii) For the given change of rings ¢ : A—T, Tore(A,C) is unique
as a functor omn the category N of right I'-modules and the category €
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of left I'-modules. ,

PrROOF. It is well-known that all the maps 09, (=1, 2,..-,5),
induce one and the same homomorphism ¢,: Tord(4, C)— Tor!'(4, C).
Since the diagram

XY — XD, T
*)
XXRxrY —>X RrY
is homotopically commutative and the diagrams
AR Y) =AR Y «—X'@ Y —> X' Q=X ()rC
q;(ihl ) o)
ARY «— XX Y —> XRC

and
XRY'—X'RY—X'R,4Y
O® l(p(l) oW
X Q®rY

are commutative, we can apply Lemma 1.2 and the Five Lemma.
Hence (i) and (ii) are proved.

To prove (iii), it remains to show that for any I'-homomor-
phisms f: A—A and g:C—C, there exists a unique homomorphism
Torg(f,g):Torg(A,C)—»Tor;q(Z,C_,‘). This can easily "be proved by
Lemmas 1.2 and 1.3 obtaining the homotopically commutative dia-
gram similar to the above one (*).

DEFINITION of Exte,

Taking a I'-projective resolution X of A, a A-projective resolu-
tion X’ of A, a I'-injective resolution Y of C and a A-injective
resolution Y’ of C, we consider the A-maps F: X' —»X,G:Y—-Y'
and the map @,: Hom, (X, Y)—Hom (X', Y’), where @, is defined
by @y(a)=GaF, a =Homp(X, Y).

We define Extgz by the cohomology modules of the @,-relative
cochain complex N*(®@,):

EXtZ(Av 0) :Hn(N*(@(x)))’ (FA7 Fc) .
From the exact sequence

0—>N*(@y)) = M* (D)) > Hom (X', ¥')—0
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we obtain the exact cohomology sequence

4

n

--—> Extr(4, C)—Ext}(4, C)

>Exta(A, C)— Extrti(4, C)—>---

where ¢ is the homomorphism induced by @,,.

THEOREM 2.1*. (i) The definition of Extl(A,C) is determined inde-
pendently of the choice of resolutions of A and C. (ii) We define the
maps

D¢,y : Homp(X, C)— Hom(,X’, C)=Hom (X', C),
O, : Homp(A4, Y)—Homp(4, ¥wY')=Hom,A4, Y'),
Dy : Homp(X, Y)—Hom (X', Y)
and
Dy s Homp(X, Y)—Hom (X, Y')
respectively by
Opa=a-F, acHomp(X, C), FGQu)=rFx"), r &I,
Oa=Gop, #CHomp(4, V), GO)1r)=G(ry) r T,
Oy =a-F, a = Hom(X,Y)
and
O a=Goa, a EHomp(X, Y).
Then we have

H(N*(Q(1)))zH(N*(d)(i))), i=2,--', 5.

§3. Properties of Tor¢ and Ext,.

Projective g¢-relative resolutions.

In the sequel, we shall consider the right I'-module A. Similar
arguments will hold for the left I'-module A.

Let X and X’ be I'- and A-projective resolutions of A respec-
tively. For a A-map F:X'—X over the identity map of A, we

define the I'-map F: XX, —X by setting F‘(x'@r)=F(x’)r, x'eX,
r&T. The algebraic mapping cylinder MAF) of F and the F-relative
chain complex N4(F) are defined as follows:
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M(F)=X/Q, +X,, (direct sum),

Bo( %/ R, £) =0, (2, RE, %,) EMF),

M,(F) =X,,’®AF—.1-X,{_1®AF +X,, (direct sum), n=>1,
0%,/ Q5 21—, Q5 %,) = (0%, YRE — 2,y —(0%/-) X »
0%+ F(x)_\@m)y (£ RE, 2/, Qm, %,) EM(F), n=2,
0,(%/ @, 2/ @7y )= (0, )QE — £,/ @1, 0%, + F(x/ D)) 5

and
N(F)=X,, 8,%,=0,
NAF)=X[_ @, +X,, (direct sum), n=1,
0]y %) = (— (0%, ) Ry 0%, + F(x/-,@m)), n=2,
8, (%, Qn, ) =0x, +F(x,Qn) -

LEMMA 3.1. The algebraic mapping cylinder MAF) of the map
F: X®,0 —X is a I'-projective resolution of A, if we define the aug-
mentation &: MA(F)—A by setting

E(xo,®5’ Xy) = 6,(-"'Co/)g + (%) »
where ¢ and ¢ are the augmentations of X and X' respectively.
PROOF. ¢ is the augmentation, since
£0,(%,/ &, %/ @, £,) = — ¢ (2 )1 + (F %/ Q)
= —&(%)7+¢ (%) =0.

We have also Img, DKerz In fact, if (x/XE, x,) =Kers then
F(x))é +x,&Kere, since &(x,/XE, x,) =€ (x,))€ +e(x,) =e(F(x,))€) +e(x,). By
the acyclicity of X, there exists x, &X, such that 0.x,=F(x/)¢+x,.
Since 9,(0, —x,/¢&, x,) = (x,/Xé, x,), we have (x,/X)E, x,) &=Ima,.

Imé,,,=Kerd,, n==1, is evident from the fact that H,(MAF))~
H,(X), n==0. Finally, M4(F) is projective by the Proposition II. 5.3
of [1]. Q. E. D.

LEMMA 8.2. (i) NAF)RC is the velative chain complex of O :
(X RR;C— XRrC, and we have H(NAF)R)C)=Torg(4,C). (il) If
Y be a I'-projective resolution of C, then N4F)R,Y is the relative chain
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complex of O : (X'QR XY —XXrY, and we have Hn(NA(F)(X)pY):
Tor¢(A4, C).
PROOF. (i) is evident. (ii):

> (XYY +_2 XQrY;

it+j=n~1 itj=n

:X0®F Yn + (-X’OI(X)AI1 +X])®F Yn—l Feee (X71{—1®AF +Xn)®1“ Yo
=2 Nt(F)®FYj . Q. E. D,

itj=n
We shall refere to N4(F) as a projective o-relative resolution for

the sake of brevity.

THEOREM 8.8. For any exact sequence 0—C'—C—C"—0, which is
composed of T'-modules and I'-homomorphisms, we have the exact sequence:

---—Tor¢(A, C')— Tor4(A4, C) —Tors(A, C")—Torg_ (A, C')—+--.

~ PROOF. There exist I'-projective resolutions Y, Y’ and Y of C, ('
and C"” such that the diagram

0—Y—Y—Y"—0

[

0—C >C—C" >0

is commutative and each row is exact. WSince N“(F) is I'-projective
by the Proposition II. 5.3. of the sequence

0—> NAF)QpY' = NAF)RQrY— NYF)QY" —0

is exact. From this exact sequence we have the exact homology
sequence of the theorem.

REMARK. (i) Since g: AKX, — A is always an epimorphism, we
have Tor#(4, C)=0 for any (A, ;C). (ii) By (ii) of the
some of the formal properties of Torg(A4,C) can be derived from
the properties of Tor[(A4, C), which are obtained by the properties
of I'-projective resolution of one of the variables. is
an example of this.

THEOREM 3.4. (Reduction theorem). If I' be A-projective as a left
A-module, then

Torg(A, O)=Tor] (K, (), n=1,
where K,=Xer(AR) I — A). '
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PROOF. By the definition

0— X' QI — M(F)— N(F)—0
is exact, and its homology sequence gives the isomorphisms

H(N(F)) = Ker(AQ I — A),
and

H(NF))~Tord (A, T), n=2.
If ' be A-projective, then
K,, n=1
0, n=1.

H,(N(F))=

. — _ 0 _
We define now a chain complex N by N,=0, NI::Ker(Nl(F)-LNO(F)),

anNn(F), n>2, the boundary operator of N being the same as
that of N(F). Let ¢/:N,—AX,I be a map defined by

&' (% QE, x,) =€ (x,)XE
where ¢ is the augmentation of X.
The proof of our theorem is then reduced to that of the follow-

ing propositions:
(1) Im 5":KA,
(ii)) Imao,=Keré’,
(iii) N, is I'-projective,
(iv) HNEF)Rr0) =~ HNRDC) .
In fact, these imply that N’ is the I'-projective resolution of K,
where N’ is defined by N/_,=N,. We prove now (i), -, (iv).
(i) Consider the diagram
I b ¢
N,——>N,—>N—>X/QQ I —>AR I
' 0, F € lg
X — X, — A

Since 0x, +F—(x0’®5) =0 for any (x,/X)&, x,) —N,=Kerd,, we have
e (%) &y ) =¢' ()¢ :5ﬁxo,®’f) = —¢e0x,=0.
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Hence Imé'c K,.

Conversely, if g(a®¢)=0, then there exists x,/Xé & X,/X) I such
that ¢(x,)RE=aX¢E.  Since eF(x/XE)=0, there exists x <X, such
that ox, +F(x/Q¢)=0. Then &' (x/RE,x,)=¢(x,)RE=aX¢E, so that
Imé' =K,.

(ii) Since &”0,(x,/Xn, x,) = —(¢0x,/)X7=0, we have Imao,cKer ¢’

Conversely, if &/(x,/X¢&, x,) =¢(x,)RE=0, then by the A-projec-
tivity of I there exists x/QnEX/Q " such that —ax/Xn=1x/X¥E.
Since (x,/&XE, x)EN, we have 8x,=—F(x,/RE)=0F(x/Qn). Hence
there exists x, X, such that ox,—x,—F(x/R7). Then 8,(x,'Qn, x,) =
(— 0%,/ R, 0%, + F(x,/ Q7)) = (%, XE, x,). Thus Ima,=Ker ¢’

(ili) For any x,&X,, there exists aXé & AR, such that e(x,) =
g(aRE), and there exists x/Qn=X/X I such that ¢(x/)Xn=aR)E.

Since e(F(x,/X7)—x,)=0, there exists ¥, & X, such that —ox,=F(x, Q1)
—x, Hence x,= 0x,+ F(x/Qn) &Ima,. Thus the sequence

0—Ker 9,— X/, +X,—X,~0
is exact. Since X, is I'-projective, this sequence splits. Hence Ker 9,
is I'-projective.
(iv) We define the chain complex N by N(F)/N, then ﬁ =0,
n=2,0,=0,n=>2, N N/Nl,N =N, and the boundary operator 9,

of N is the isomorphism NINN Hence H(N®FC) 0. On the other

hand, by the arguments in (iii), the exact sequence O—»N-—>N——+N->O
splits, and we have the exact sequence

0—NR®;C— NQC— N C—0.
By the homology sequence of this, and by the fact that H(ﬁ@,@):o,
we have the isomorphism H(N®;C)~ HINQC). Q. E. D.

For a left I'-module A, we can define the ¢-relative resolution

N, and we obtain:
THEOREM 8.4*. If I' be A-projective as a right A-module, then

Ext?(4, C)~ Exty (K, C),

where K,=Xer(I'K ,A— A).
Injective -relative resolution.
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Dually to the above, we can define an injective p-relative resolution
of left I'-module C, by taking I'- and A-injective resolutions Y, Y’
and A4-map G:Y—Y’ over the identity map of C:

NO(E) =Y" oy=(Gy, %),
N™G)=Hom (T, Y-ty 4y, (direct sum),
8(f", 3)=(—8f"+Gy, &), (f,9) ENG),

where G: Y— @Y’ =Hom,(I', Y’) is the I'map defined by (Gy)(r)=
G(ry). We can easily set up the dual theorems of the above, of
which we mention the following dual of Mheorem 3.4 :

THEOREM 38.5. If I' be A-projective as a right A-module, then we
have the isomorphisms

Exty(4, C) =~ Ext} (4, C4), n=1,
where C#=Coker(C—sHom (I, C)).

§4. Relative groﬁp extensions.

Let & be a group, & a subgroup of &, I the group ring Z(®)
of @ over the ring Z of integers. Let A4 be the group ring Z(&).
Then the homology and cohomology of & are defined by H,(&: M)=
TorI'(Z, M) and H*(S: M)=Extw(Z, M), for a I'-module M, and we
define the relative homology and relative cohomology of the pair
(S, 8) by H.(S, &: M)=Tory(Z, M) and H"(S, &: M)=Ext(Z, M), for
n>1 and a I'module M. The definition of the relative ones is due
to W.S. Massey

Let X and X' be the standard I'- and A-projective resolutions
of Z. We define the cochain complex N by

N"=Hom,(X/_,, M)J'rHomr(Xn, M), (direct sum),

o(f, &) =(—0f+res g,02), (f,9<&N",

(res =restriction homomorphism), then H*(®, & : M)=H"(N). We shall
only compute H*®,&:M) for the present. A systematic analysis
of the relative homology will be done on another occasion.

For (f, g)=Z*(N) (cocycle), it is necessary and sufficient that

08(7s 0) +&(9, 70) = &(0, 7) + &(07, 0) ,
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for any 0,7, & ®, and
(res g) (x, £') =rf(e') — flzr') + f(x)
for any k&R For (f,g) < B*(IN) (coboundary), it is necessary
and sufficient that
g(oy 1) =0h(z) — h(a7) + (o), 0, TES,
f&y=tm-—m+res h(x), mEM, t =R,
where % is a fixed element of Hom,(X,, M) and m is a fixed element

of M.

DEFINITION. We define (®, &)-extension (G, &, p)» of G-module
M by the conditions: (1) € is a multiplicative group, and € contains
M as a subgroup.” (2) p is an epimorphism €— such that Ker p=M.
(Hence p induces i: €/ M=G). (8) eme '=p(e)ym, where ecC, meM
and p(e) of the right side is the G-operator on M. (4) & is a sub-
group of & such that p|&: R~ K.

Two (®, K)-extensions (€, ®) and (&, &) of M are said to be
equivalent, if there exists an isomorphism #:E~ ¢ such that {| M=
identity, |R: 8~ & and p't=p.

Let (&, &) be a (O, K)-extension of M. Taking a complete system
of representatives of €/M, we define a mapping ¢: &—E which maps
c&=® to the representative of i~!(c) = E€/M. Then p.g=identity map
of &, and s.m=gq(oc)mg(c)™*, c &G, mc=M. The multiplication table
of the representatives defines a cocycle g&=2Z*(S: M), i.e. g is deter-
mined by

(*) q(0)q(z) =g (o, T)Q(UT),_ 0,7&G, glo,n)EM,
and satisfies the relation
g(0, ©)+g(o7, p) =0g(7, p) + &(0, T0), 0, 7, PED .

Since (G, &) is a (®, K)-extension of M, for every =R there
exists f(¢) in M such that ¢(x)=f(¢x)k, where rt=p(k). From the

(2) We abbreviate the notation (G, ®,2) as (€, %) when it does not cause any
confusion.

(3) We express the composition of the elements of M additively in the case of
the M-valued cochains and multiplicatively in the case, when M is considered as a
subgroup of the multiplicative group G.
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multiplication table (¥*), f and g are related by:

g(ry 1) = f(r) +£f (&) — f(6&")y £, 6" © K.
If we take another system of representatives »: & — € and we define

the cocycle g&=Z2%(®& : M) similarly as above, then g and g are related
by:

(**) &(0, v) =g(0, 7) +h(0) +oh(7) — h(o7), 0,7 =S,

where 7% is determined by #(o)=%A(0)q(0c), s E=® and A(c) =M. If ¢:
(€, &) ~ (&, &) be an equivalence of (®, &)-extensions of M, and we
take g: ®—€ and 7: 8—E similarly as above, then g and g, which
are determined by ¢ and 7 respectively, must satisfy (**), where %4
is determined by #(s)=#%(0)t(g(s)). On the other hand, for a (&, &)-
extension (&, &) of M, we can define an equivalent (®, &)-extension
(€, &) by putting & =m~'8m for a fixed mEM. Let ¢: (€, 8~ (G, &)
be the equivalence, then :

tq(r) =f(£)t(x) =f (&Ym= "Em=f(x)m~Emr~ & = f(£)m "' (cm)% ,
i.e., we can take f in (G, &) as
f&)=fk)—m+rm, tER.

But such change of f does not give any influence on the cocycle g,

i. €., g(x, £')=g(x, £'). Thus every equivalence class of (&, R)-extension

of M determines uniquely a cohomology class in H*®, &: M).
Conversely, we can construct as usual for (f,g)eZ%G, &: M),

a (®, ®)-extension (€, &) by the R-trivial factor set g, and if (f,2),
(f'yg') are cohomologous, we obtain equivalent (O, ®)-extensions
(G, %), (© &).

Thus we obtain the following theorem analogously as in the
absolute case.

THEOREM 4.1. Between the velative cohomology group H* (S, &: M)
and the collection of the equivalence classes of (®, K)-extensions of M
there holds a one-to-ome correspondence.

University of Tokyo.
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