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J. von Neumann [1] has established a beautiful theory of repre-
sentation of complemented modular lattices, resulting in a generali-
zation of the coordinatization theorem of the projective geometry to
the case of the complemented modular lattice with homogeneous basis
of degree $\geqq 4$ . His theory is presented in a book [2] of F. Maeda,
where simplification of proofs obtained by Kodaira and Huruya [3] is
taken into accout. However, there still remain considerable difficulties
in the construction of the auxiliary ring, and also in the final step
of the induction to attain the regular ring representation of the
lattice. The purpose of this paper is to simplify further this theory
so as to obtain the same results through proofs which present no
such difficulties.

Our method is based on the fundamental theorem in \S 1 which
asserts the existence of the lattice-automorphisms of a certain type.
In \S 2, we shall construct certain automorphism groups of the lattice
and investigate the relations among these groups which will lead us,
in \S 3, naturally to the definition of the auxiliary ring. In \S 4, we
shall attain the coordinatization theorem; we shall meet with no
‘ final step difficulty ’ (cf. footnote (5)).

To write this paper the author has had frequent consultations
with the book of F. Maeda [2]. He also wishes to express his hearty
thanks to Professor S. Iyanaga for his encouragement and advices.

\S 1. Fundamental theorem.

Let $L$ be a complemented modular lattice throughout this paper.
First we shall $introduce\backslash $ some notions analogous to those used in

the combinatorial topology. Let $s$ and $c$ be two elements of $L$ such
that $s\neq 1^{I)}$ and $s\geqq c$. These elements $s,$ $c$ will be fixed once for all

1) 1 denotes the maximum element of $L$, and $0$ the minimum element.
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throughout this paragraph. A finite sequence $a_{j}(i=1,2,\ldots,p+1)$ of
complements of $s$ is said to be a (oriented) p-simplex if the join of all
$a_{j}$ is orthogonal to $c$, and we denote it by $a_{1}a_{2}\cdots a_{p}1$ (More precisely,
this must be called a p-simplex relative to $s,$ $c$, but as we shall consider
only such simplexes in this paragraph, we shall not have to add this
specification.) A linear combination of $p$-simplexes with integral
coefficients is said to be a p-chain and the totality of $p$-chains will
be considered as usual as an additive group. The boundaries of
simplexes or chains are also defined as usual, i. e. $\partial(a_{1}a_{2}\cdots a_{p+1})=$

$\sum(-1)^{j+1}(a_{1}\cdots a_{j-1}a_{i+1}\cdots a_{p+1})p+\iota$ for $p\geqq 1$ ; boundaries of O-chains being $0$ .
A chain whose boundary is $0$ is said to be a cycle and if a cycle $C$

is the boundary of some chain, then we say that $C$ is homologous to
$0$ and write $C\sim O$ .

Put $S=\{x;x\cap s=0\}$ and $S_{x}=\{y\in S;y\cap s=x\cap s\}$ for every $x\in S$.
Then $S_{x}\ni y$ is equivalent to $S_{x}=S_{y}$ . If in particular $x$ Is any com-
plement of $s$, then $S_{x}$ is the totality of complements of $s$. We denote
it with $S^{0}$ . The simplexes hitherto considered have their vertices in
$S^{0}$ . We shall now consider also simplexes with vertices in $S_{x}$ (for a
fixed x) the condition, that the join of vertices should be orthogonal
to $c$, remaining as before and the chains formed with these simplexes.
They will be called chains of $S_{\chi}$ . (When we say just simplex or
chain, we shall mean it in the original sense, $i$ . $e$ . that of $S^{0}.$ )

If any element $a$ of $S^{0}$ is decomposed in the form $a=a_{1}\oplus a_{2}^{2)}$

then we have a direct sum decomposition $S^{0}=S_{a_{1}}\oplus S_{a_{2}},$ $i$ . $e$ . for every
$x\in S^{0}$ , we put $x_{1}=x\cap(a_{1}\cap s),$ $x_{2}=x\cap(a_{2}\cup s)$ and have $x=x_{1}\oplus x_{2}$ . $x_{i}$ is
said to be $a_{j}$-part of $x(i=1,2)$ . It is evident that $a_{1}\cup X_{2}$ and $a_{2}\cup x_{1}$

are in $S^{0}$ . Then also every chain $C$ Is decomposable in the form
$C=C_{1}\oplus C_{2}$ where $C_{j}$ is a chain of $S_{a_{j}}$ . For the purpose, we have
only to decompose every vertex of simplexes of $C$. We have then
$\partial C=\partial C_{1}\oplus\partial C_{2}$ . To any decomposition $a=a_{1}\oplus\cdots\oplus a_{k}$ of an element $a$

of $S^{0}$ corresponds thus a decomposition $S^{0}=S_{a_{\rfloor}}\oplus\cdots\oplus S_{a_{k}}$ of $S^{0}$, with
which a decomposition of chains $C=C_{1}\oplus\cdots\oplus C_{k}$ is associated. A cycle
$C$ is said to be semi-homologous to $0$ and we denote it by $C\approx O$, if
there exists a decomposition

$C=C_{1}\oplus C_{2}\oplus\cdots\oplus C_{k}$ ,

2) $a\oplus b$ means $a\cup b$ and only used in the case $a\cap b=0$ .
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where all $C_{j}(i=1,2,\ldots k)$ are homologous to $0$ .
Now we shall prove
LEMMA 1. If there exists an element $p\leqq s$ such that $p$ is perspec-

tive to a complement of $s$ and $p\cap c=0$ , then every O-chain with index $0$

is homologous to $0$ .
PROOF. Let $a\in S^{0}$ be perspective to $p$ and $x$ an arbitrary ele-

ment of $S^{0}$ . Put $x_{1}=x\cap(a\cup c)$ , and let $x_{2}$ be a relative complement
of $x_{1}$ with respect to $x$, so that we have $x=x_{1}\oplus x_{2}$ . Then we obtain
the corresponding decomposition $a=a_{1}\oplus a_{2}$ of $a$ and we can see easily
that $(a_{2}\cup x_{1})x$ is a l-simplex. Since $a$ is perspective to $p$, there exists
an element $b\in S^{0}$ such that we have $a\oplus b=b\oplus p=p\oplus a$ and conse-
quently $ab$ and $b(a_{2}\cup x_{1})$ are simplexes. Therefore $x-a$ is the
boundary of the l-chain $ab+b(a_{2}\cup x_{1})+(a_{2}\cup x_{1})x$ and $x-y=(x-a)-$
$(y-a)$ is homologous to $0$ for every $x,$ $y\in S^{0}$ .

$CoROLLARY$ . If we have $a\oplus b\oplus c=1$ and $a,$
$b$ and $ca\gamma e$ mulually

perspective, then they are also perspective to every complement of $b\cup c$.
PROOF. In general we can prove easily that $x\cup y\perp z,$ $x-y$ and

$y-z$ imply $x-z$. As $s,$ $c$ in the definition of simplexes and chains,
we take now $b\cup c$ and $c$ . Suppose $xy$ is a simplex. It means then
that we have $x\cup y\perp c$, and that $x,$ $y$ are complements of $b\cup c$ , so that
$x-y$. If $x\sim c$, it follows from the above fact that we have also $y\sim c$ .
Now let $x$ be any complement of $b\cup C$. By our lemma $x-a$ is the
boundary of a l-chain $ax_{1}+x_{1}x_{2}+\cdots+x_{\gamma-1}x_{r}$ with $x_{\gamma}=x$. As $ax_{1}$ is a
l-simplex and $a\sim c$ by assumption, we have $x_{1}\sim c$. It follows then
successively $x_{2}\sim c,\ldots,$ $x_{r}=x\sim c$ . $x-b$ follows by symmetry of our as-
sumption and $x\sim a$ is obvious.

LEMMA 2. If there exist $p,$ $q\leqq s$ such that we have $(p, q, c)\perp^{3)}$

and both $p$ and $q$ are perspective to a complement of $s$ (hence to all the
complements of $s$), then every l-cycle is semi-homologous to $0$ .

PROOF. Every l-cycle (or more generally l-cycle of $S_{x}$ ) can be
represented as a linear combination of cycles of the following type

$C=xy+yz+zt+lu+\cdots+wx$ , (1)

where the number of vertices $x,$ $y,$ $z,\cdots,$ $w$ is said to be the rank of
$C$. A cycle $C$ of type (1) is said to be reducible if for some decom-
position $C=C_{1}\oplus\cdots\oplus C_{k}$ every $C_{i}(i=1,2,\ldots, k)$ can be represented as a
sum of cycles whose ranks are all less than that of $C$. It is said to

3) $(a, b, c)\perp$ means the independency of $a,$ $b,$ $c,$
$i$ . $e$ . that the join of any two

among $a,$ $b,$ $c$ is orthogonal to the resting one.
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have the property $(p_{1})$ , if $x\cup c_{-}\geq_{-}z;(p_{2})$ if the rank is $>3$ , and $x\cup c$

$\geqq z,$ $y\cup c\geqq t;(p_{3})$ if the rank is $>4$ , and $x\cup c\geqq z,$ $y\cup c\geqq t,$ $z\cup c\geqq u$ ;
and the property $(p)$ if $x\cup y\cup c\geqq z,\ldots,$ $w$. It is to be noticed that
$(p_{1}),$ $(p_{2}),\ldots,$ $(p_{\gamma-2})$ , where $r$ is the rank of $C$, imply $(p)$ .

We shall now show that every cycle $C$ of rank $>3$ is decom-
posable in the form $C=C_{1}\oplus\cdots\oplus C_{k}$ where $C_{1},\cdots,$ $C_{h-1}$ are reducible
and $C_{k}$ has the property $(p)$ . In fact, if the rank of $C$ defined by
(1) is $>3$ and $xz$ Is a simplex, then we can write

$C=(xy+yz+zx)+(xz+zt+\cdots+wx)$ ,

showing that $C$ is reducible. Suppose now $x\cup c\geqq z$. Then we have
a decomposition $z=z_{1}\oplus z_{2}$ with $z_{2}=(x\cup c)\cap z$. Let $C=C_{1}\oplus C_{2}$ be the
corresponding decomposition of $C$. We may write $C_{j}=x_{i}y_{j}+y_{i}z_{j}+z_{i}t_{j}+$

$...+w_{i}x_{i},$ $i=1,2$ . As $z_{1}\perp z_{2}$ , we have $x\cup c\perp z_{1}$ and so $x_{1}\cup c\perp z_{1}i$ . $e$ . $x_{1}z_{1}$

is a simplex. In virtue of what we have proved above, $C_{1}$ is reducible
and $C_{2}$ has the property $(p_{1})$ . If $C_{2}$ has already the properties $(p_{2})$ ,

$(p_{r-2})$ , we have attained our aim. If $C_{2}$ has not these properties,
then we decompose it into a ’ reducible factor ‘ and another factor
possessing at least the property $(p_{2})$ , and come to our end after finite
number of steps.

Now it is sufficient to prove the lemma for l-cycle of rank 3 and
for l-cycle with the property $(p)$ .

Let $C=xy+yz+zx$ be any l-cycle of rank 3. We shall show that
either $C$ itself has the property $(p)$ or $C$ is decomposable in the form
$C_{1}\oplus C_{2}$ where $C_{1}$ has the property $(p)$ , and $C_{2}-0$ . In fact, if $x\cup y\cup c$

$\ovalbox{\tt\small REJECT} z$, we have a decomposition $z=z_{1}\oplus z_{2}$ with $z_{1}=(x\cup y\cup c)\cap z$. It is
easy to see that the corresponding decomposition $C=C_{1}\oplus C_{2}$ of $C$ has
the required property, as $x_{2}y_{2}z_{2}$ is a 2-simplex and $C_{2}=\partial(x_{2}y_{2}z_{2})$ .

Now let $C$ be a l-cycle (1) with the property $(p)$ . We shall show
$C\approx O$ , under the assumptions of our lemma. First assume $x\cup y\cup c\perp p$.
As $p$ is perspective to $x$, we can find an axis $a$ of the perspectivity
such that $a\leqq p\cup X$. Then we have $x\oplus a=a\oplus p=p\oplus x$, and all $xya$,
$yza,\cdots,$ $wxa$ form simplexes, so that $C$ becomes the boundary of a 2-
chain $xya+yza+\cdots+wxa$.

Next, assume $(x\cup y)\cap s\leqq p\cup c$. Then we have $x\cup y\perp q$ as $(p, q, c)\perp$ ,
and so $x\cup y\cup c\perp q$ . Replacing $p$ by $q$ in the above considerations, we
see again $C-0$ .

We consider now the general case. Put $y_{1}=(x\cup p\cup c)\cap y,$ $y=y_{1}\oplus y_{2}$

and let $C=C_{1}\oplus C_{2}$ be the corresponding decomposition of $C$. It is
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easily seen that $(x_{1}\cup y_{1})\cap s\leqq p\cup c,$ $x_{2}\cup y_{2}\cup c\perp p$, so that $C_{1},$ $C_{2}$ satisfy
respectively the second and first of our above assumptions. We have
therefore $C_{1}\sim 0,$ $C_{2}\sim O,$ $C\approx O$ . Q. E. D.

Now we shall prove the following theorem which is fundamental
in our theory.

THEOREM 1. Under the condilions of Lemma 2, there exists for
any two complements $a,$

$b$ of $s$ such that $a\cup c=b\cup c$ one and only one
automorphism $f$ of $L$ which maps $a$ to $b$ and satisfies the following
condition:

$s\geqq x$ or $c\leqq x$ implies $f(x)=x$ . $(^{\star})$

PROOF. We shall devide the proof in several steps.
(i) If $xy$ is a simplex of $S_{x}$ , there exists a perspective isomor-

phism of $L_{x\cup c^{4)}}$ to $L_{y\cup c}$ by the axis $(x\cup y)\cap s$ . Hence if $C=xu+uv+$
$...+wy$ is a chain of $S_{x}$ , we obtain a projective isomorphism $\varphi(C)=\varphi$

of $L_{x\cup c}$ to $L_{y\cup c}$ :
$\varphi=h\circ\cdots\circ g\circ f$ , (1)

where $f,$ $g,\cdots,$ $h$ are the above perspective isomorphisms of $L_{x\cup c}$ to
$L_{u\cup c},$ $L_{u\cup c}$ to $ L_{v\cup c},\cdots$ and $L_{w\cup c}$ to $L_{y\cup c}$ respectively.

We shall prove that $\varphi$ is determined by $x$ and $y$ only independ-
ently of the choice of $u,$ $ v,\cdots$ . For that purpose it is sufficient to
prove that $\varphi(C)$ is identity if $C$ is a cycle. This is true if $C$ is the
boundary of a 2-simplex $xuv$, because then the intermediate perspec-
tive mappings have a common axis $(x\cup u\cup v)\cap s$ . Therefore $\varphi(C)$ is
identity if $C\sim O$ . By Lemma 2, we can decompose any cycle $C$ as
$C=C_{1}\oplus C_{2}\oplus\cdots\oplus C_{k}$ such that $C_{j}\sim 0(i=1,2,\ldots, k)$ . As $\varphi(C)$ is already
shown as identity in case $k=1$ , we shall consider now the case $k\geqq 2$.
Let $x=x_{1}\oplus x_{2}\oplus\cdots\oplus x_{k}$ be the corresponding decomposition of $x$, then
$\varphi=\varphi(C)$ is identity on every $L_{x_{j}\cup c}$ . On the other hand, $\varphi$ is also
obviously identity on $L_{\lambda}$ . Now $L^{\prime}=\{y\in L_{x\cup c} ; \varphi(y)=y\}$ is a sublattice
of $L_{x\cup c}$ including $L_{x_{i}\cup c}(i=1,2,\cdots, k)$ and $L_{x}$ . Then we have $ L^{J}\supset$

$L_{x_{1}\cup x_{2}\cup c}$ , because an arbitrary element of $L_{x1\cup X_{2}\cup C}$ can be written as
$z_{1}\cup Z_{2}\cup y$ where $z_{1}\in L_{r_{1}\cup c},$ $z_{2}\in L_{\chi_{2}\cup c}$ and $y$ is orthogonal to both $x_{1}\cup c$

and $x_{2}\cup c$, and hence
$y=[\{(x_{1}\cup y)\cap(x_{2}\cup c)\}\cup x_{1}]\cap[\{(x_{2}\cup y)\cap(x_{1}\cup c)\}\cup x_{2}]\in L^{\prime}$ .

4) $L_{x}$ means the totality of the element $y\in L$ such that $y\leqq x$ .
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Thus we have $L^{\prime}=L_{x\cup c}$ if $k=2$ . Similarly we can conclude also in
case $k\geqq 3$ that $L^{\prime}=L_{x\cup c}$ , that is, $\varphi$ is identity on whole $L_{x\cup c}$ .

The projective isomorphism $\varphi$ defined by (1) is said to be the
canonical isomorphism (abbr. $c$ . $i.$ ) with respect to $x\rightarrow y$ of $L_{x\cup c}$ to $L_{y\cup c}$ ,
or simply of $x$ to $y$.

(ii) Let $\varphi,$
$\psi$ be the c. i. of $x$ to $y$ and of $y$ to $z$ respectively.

Then $\psi\circ\varphi$ is the $c$ . $i$ . of $x$ to $z$. If $L_{x\cup c}=L_{y\cup c}$ the $c$. $i$ . of $x$ to $y$ will
be called a canonical automorphism (abbr. $c$ . $a.$ ) of $L_{x\cup c}$ . The totality
of $c$ . $a$ . $s$ of $L_{x\cup c}$ constitutes a group. Now we shall prove that this
group is commutative. We can suppose $x$ to be a complement of $s$

without loss of generality. For any two c. a. $s$ of $L_{x\cup c},$
$\varphi$ and $\psi$ ,

let $\varphi_{1},$ $\varphi_{2},$
$\psi_{1}$ , and $\psi_{2}$ be the $c$. $i$ . of $x$ to $y,$ $y$ to $\varphi(x),$ $x$ to $z$ and $z$ to

$\psi(x)$ respectively, where $y(z)$ is an axis of the perspectivity between
$x$ and $p(q)$ such that $y\leqq x\cup p(z\leqq x\cup q)$ . Then we have $\varphi=\varphi_{2}\circ\varphi_{1}$ ,
$\psi=\psi_{2}\circ\psi_{1}$ . Since $\psi_{1}$ and $\psi_{2}$ are perspective mappings with axis
orthogonal to $p\cup c$ , we can extend $\psi_{1}(\psi_{2})$ to the perspective isomor-
phism $\overline{\psi}_{1}(\overline{\psi}_{2})$ of $L_{x\cup p\cup c}$ to $L_{z\cup p\cup\subset}$ (of $L_{z\cup p\cup c}$ to $L_{\psi(x)\cup p\cup c}$). Then we can
extend $\psi$ to the automorphism $\overline{\psi}=\overline{\psi}_{2}\circ\overline{\psi}_{1}$ of $L_{x\cup p\cup c}(=L_{\psi(x)\cup p\cup c})$ . Since
$\varphi_{j}(i=1,2)$ is a perspective mapping with axis in $L_{p\cup c}$ and $\overline{\psi}$ fixes
every element of $L_{p\cup c},\overline{\psi}\circ\varphi_{i}\circ\overline{\psi}^{-1}$ is also a perspective mapping with
the same axis as $\varphi_{j}$ and hence coincides with $\varphi_{j}$ Thus we have

$\psi\circ\varphi\circ\psi^{-1}=\overline{\psi}\circ\varphi_{2}\circ\overline{\psi}^{-1}\circ\overline{\psi}\circ\varphi_{1}\circ\overline{\psi}^{-1}=\varphi_{2}\circ\varphi_{1}=\varphi$

(iii) Let $\varphi$ be the $c$ . $i$ . of $x$ to $\varphi(x)$ and suppose $y\perp s,$ $x\cup c=y\cup c$.
Then $\varphi(x)\leqq x\cup u$ for $u\leqq s$ , implies $\varphi(y)\leqq y\cup u$. In fact, if $x\varphi(x)$ is a
simplex of $S_{x}$ , then $\varphi$ is a perspective isomorphism and our assertion
is trivial. If $\varphi$ is a c. a. of $L_{\lambda\cup C}$ , then $\varphi$ commutes with the c. i. $\psi$

of $x$ to $y$ , and hence,

$\varphi(y)=\varphi(\psi(x))=\psi(\varphi(x))\leqq\psi(x\cup(u\cap c))=y\cup(u\cap c)\leqq y\cup u$ .
In the general case, decompose $\varphi(x)$ into $\varphi(x)\cap(x\cup c)\oplus(an$ element
orthogonal to $\varphi(x)\cap(x\cup c))$ , and let $x=x_{1}\oplus x_{0,\sim},$ $y=y_{1}\oplus y_{2}$ be the cor-
responding decompositions of $x$ and $y$. Then we have $\varphi(x_{1})=\varphi(x)\cap$

$(x\cup c)$ , and the c. i. of $x_{1}$ to $\varphi(x_{\rfloor})$ is the restriction of $\varphi$ to $L_{x_{1}\cup c}$ and
a c. a. of $L_{\iota_{1}\cup c}$ , whereas the c. i. of $x_{2}$ to $\varphi(x_{2})$ is a perspective iso-
morphism. By what we have seen above, we have $\varphi(y_{1})\leqq y_{1}\cup u$ ,
$\varphi(y_{2})\leqq y_{2}\cup u$ and hence $\varphi(y)\leqq y\cup u$.

(iv) Now we shall define $f(x)$ for every $x\in S$ as follows. Let
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$a^{\prime}$ and $b^{\prime}$ be the x-parts of $a$ and $b$ respectively and $\varphi$ the c. i. of $a^{\prime}$

to $x$, then we define $f(x)$ to be $\varphi(b^{\prime})$ . If we exchange $a$ and $b$ , then
we obtain the inverse mapping of $f$. So $f$ is a one-to-one order
preserving mapping of $S$ onto $S$. We shall show that $y\leqq x\cup u$ implies
$f(y)\leqq f(x)\cup u$ for $x,$ $y\in S$ and $u\leqq s$ . Let $x^{\prime}$ be the y-part of $x$, and
$\psi$ the c. i. of $x^{\prime}$ to $y$, then we have $\psi(x^{\prime})\leqq x^{\prime}\cup u$, and hence, $\psi(f(x^{\prime}))$

$\leqq f(x^{\prime})\cup u$ as proved in (iii). Since we can see easily by the definition
of $f$ that $\psi(f(x^{\prime}))=f(y)$ , we have $f(y)\leqq f(x)\cup u$ .

(v) Now we shall extend $f$ to the whole $L$. An arbitrary ele-
ment of $L$ can be written as $x\cup u$ where $x\perp s$ and $u\leqq s$ . Then we
define $f(x\cup u)=f(x)\cup u$ . If $x\cup u\leqq y\cup v$ for another pair $y,$ $v$ such that
$y\perp s,$ $v\leqq s$, then we have $f(x)\cup u\leqq f(y)\cup v$ as proved in (iv). Thus
$f(x\cup u)$ is determined only by $x\cup u$, and $f$ is a one-to-one order
preserving mapping of $L$ onto $L$, and hence $f$ is an automorphism of
L. $f$ satisfies obviously the conditions of our theorem.

(vi) We have nothing more to prove than the uniqueness of $f$.
Suppose there exists another automorphism $f^{\prime}$ satisfying the conditions
of the theorem. To see $f=f^{\prime}$ , we have only to prove that $f(x)=f^{\prime}(x)$

for every complement $x$ of $s$. Let $\varphi$ be the $c$ . $i$ . of $a$ to $x$, then $\varphi$ is
also the $c$. $i$ . of $f^{\prime}(a)=b$ to $f^{\prime}(x)$ , since every $c$ . I. is defined by perspec-
tive mappings between $L_{y\cup c}(y\perp s)$ with axis in $L_{s}$ and $f^{\prime}$ keeps these
axis invariant. By the construction of $f$, we have

$f(x)=\varphi(b)$ and hence $f(x)=f^{\prime}(x)$ . Q. E. D.

An automorphism $f$ of $L$ is said to be normal for an element
$s\in L$, if $f$ fixes every element $x$ such that $x\leqq s$ or $x\geqq s$, and there
exists $c\leqq s$ for which we have $(y\cup f(y))\cap s=c$ for every complement
$y$ of $s$. If $f$ is normal for $s$ , then the element $c$ above is said to be
the axis of $f$ in $s$ and we denote $c=\pi_{s}(f)$ (or simply $\pi(f)$ ).

Then we have
COROLLARY to Theorem 1. The automorphism $f$ in Theorem 1 is

normal for $s$, and the totality of automorphisms $f$ of $L$ which are
normal for $s$ and for which $\pi_{s}(f)\leqq c$ , constilutes a commutative group.

\S 2. Automorphism groups.

We suppose the existence of a “homogeneous basis” of degree
$n\geqq 4$ in the rest of the paper, that is, we suppose that there exist
mutually perspective elements $a_{i}(i=1,2,\cdots, n)$ such that we have
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$a_{1}\oplus a_{2}\oplus\cdots\oplus a_{n}=1$ .
We write $\overline{a}_{i}$ for

$\bigcup_{j\neq i}a_{j},$

$L_{i}$ for $L_{a_{j}}$ and $\overline{L_{i}}$ for $L_{\overline{a}_{j}}$ . Let $G_{ij}$ be the

set of all automorphisms $f$ of $L$ such that $f$ is normal for $\overline{a}_{i}$ and
$\pi(f)\leqq a_{j}$ . If we put $s=\overline{a}_{j}$ and $c=a_{j}$ for $s$ and $c$ in \S 1, then we see
by Theorem 1 that $G_{ij}$ constitutes a commutative group and { $f(a_{i})$ ;
$f\in G_{ij}\}$ is the totality of complements of $a_{j}$ in $L_{a_{j}\cup a_{j}}$ . If $f\in G_{;i}$ and
$g\in G_{ik}$ for $j\neq k$, then we have $fg=gf$. In fact, $fgf^{-1}$ is obviously
normal for $a_{i}$ and we have $\pi(fgf^{-1})\leqq a_{k}$ and hence, fgf $\in G_{ik}$ .
Similarly, we have $gf^{-1}g^{-1}\in G_{ij}$ . Then $fgf^{-1- 1}g$ , being an element of
the intersection of $G_{ij}$ and $G_{ik}$ , is obviously identity.

Therefore the group $G_{j}$ which is generated by all $G_{ij}$ for $j\neq i$

( $i$ fixed) is commutative.
Now we shall prove
PROPOSITION 1. For any two complements $x,$ $y$ of $\overline{a}_{j}$ there exists

one and only one automorphism $f$ in $G_{i}$ which maps $x$ to $y$.
PROOF. In case $x\cup a_{j}=y\cup a_{j}$ , our assertion is Theorem 1 itself.

If we have $x\cup a_{j}\cup a_{h}=y\cup a_{j}\cup a_{k}$ , then $z=(x\cup a_{j})\cap(y\cup a_{k})$ is another
complement of $a_{i}$ and we have $x\cup a_{j}=z\cup a_{j},$ $yUa_{k}=z\cup a_{k}$ , so that the
existence of our automorphism follows from the first case. Similarly
we can proceed further and prove the existence of $f$ in the most
general case. If $f$ fixes a complement of $a_{j}$ then it also fixes all the
complements of $a_{j}$ by virtue of the commutativity of $G_{j}$ and hence it
is identity. This shows also the uniqueness of above $f$.

PROPOSITION 2. $f\in G_{i}$ is normal for $\overline{a}_{j}$ , and we have $\pi(fg)\leqq$

$\pi(f)\cup\pi(g)$ for every $f,$ $g\in G_{j}$ .
PROOF. For every two complements $x,$ $y$ such that $y=g(x),$ $g\in G_{j}$

we have $(x\cup f(x))\cap a_{j}=(g\langle x)\cup gf(x)$ } $\cap a_{i}=(y\cup f(y))\cap a_{i}$ . Thus $f$ is nor-
mal for $a_{j}$ . Moreover we have, by virtue of the equality $x\cup g(x)=$

$x\cup\pi(g)$ ,

$x\cup fg(x)\leqq x\cup f(x)\cup fg(x)=x\cup f(x\cup\pi(g))=x\cup\pi(f)\cup\pi(g)$ ,

and hence $\pi(fg)=(x\cup fg(x))\cap a_{j}\leqq\pi(f)\cup\pi(g)$ .
It follows from this proposition that $G_{ij}$ is the totality of $f\in G_{j}$

whose axis $\pi(f)$ is in $L_{j}$ , and hence $G_{j}$ is a direct sum of $G_{ij}(j\neq i)$ .
Every automorphism $f$ in $G_{j}$ preserves clearly the decomposition

relation among the complements of $a_{j},$
$i$ . $e$ . if we have $x=x_{1}\oplus x_{2}$ , then

$x_{1}$-part of $f(x)$ is $f(x_{1})$ . For such decomposition of $x$, there exist $f_{1}$

and $f_{2}$ in $G_{i}$ such that $f_{1}(x)=f(x_{1})\cup x_{2}$ and $f_{2}(x)=x_{1}\cup f(x_{2})$ . Then $f_{1}$ (or
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$f_{2})$ fixes all the $x_{2}$-part ( $x_{1}$-part), and coincides with $f$ on $x_{1}$-parts $(x_{2^{-}}$

parts) of elements, and hence we have $f=f_{1}f_{2}$ . We can see easily
that this decomposition of $f$ determines a decomposition of $G_{j}$ to a
direct sum. We call $f_{1}$ the $x_{1}$ -part of $f$. It is determined by $\chi_{1}$ and
$x_{2}$ , and not by $x_{1}$ alone, though the $x_{1}$ -parts of elements are deter-
mined by $x_{1}$ alone.

Next we shall investigate the relation between different $G_{j}$ and
$G_{j}$ . We shall make use of the following notations: $b=a_{i}\cup a_{j}\cup\cdots\cup a_{k}$

where $i,$ $j,\cdots,$ $k$ are all different from 1 and 2, and

$H_{1}=\{f\in G_{1};\pi(f)\leqq b\},$ $H_{2}=\{f\in G_{2};\pi(f)\leqq b\}$ .
PROPOSITION 3. For every $g\in H_{2}$ and $f\in G_{1}$ we have

gfg $\in G_{1}$ and $\pi(gfg^{-1})=g(\pi(f))$ .
PROOF. Let $x$ be any complement of $\overline{a}_{1}$ . Since $g^{-1}(x)$ is also a

complement of $\overline{a}_{1}$ , we have

$x\cup gfg^{-1}(x)=g(g^{-1}(x)\cup fg^{-1}(x))=g(g^{-1}(x)\cup\pi(f))=x\cup g(\pi(f))$ ,

and hence $gfg^{-1}$ is normal and $\pi(gfg^{-1})=g\pi(f)$ . Then applying the
uniqueness part of Theorem 1, $\overline{a}_{1}$ as $s$ and $g(\pi(f))$ as $c$ we see that
$gfg^{-1}$ is in $G_{1}$ .

$CoROLLARY$ . Every element of $H_{1}$ is permutable with that of $H$ .
PROOF. If $f$ is in $H_{1}$ in the proposition, then we have $gfg^{-1}(a_{1})$

$=f(a_{1})$ since $f(a_{1})$ is in $\overline{L}_{2}$ , and hence $gf=fg$.
We write in the sequel $f\otimes g$ for $fgf^{-1}g^{-1}$ , then for every $f\in G_{1}$

and $g\in H_{2},$ $f\otimes g$ is in $H_{1}$ , because we have $g(x)=g^{-1}(x)=x$ for every
$x\geqq b$ and hence $f\otimes g(a_{1}\cup b)=a_{1}\cup b$.

In particular we have $G_{ij}\otimes G_{jk}\subset G_{ih}$ .
PROPOSITION 4. For every $f,$ $f^{\prime}\in G$, and $g,$ $g^{\prime}\in H_{2}$ , we have

$f\oplus gg^{\prime}=(f\otimes g)(f\otimes g^{\prime})$ ,
$ff^{\prime}\otimes g=(f\oplus g)(f^{\prime}\otimes g)$ .

PROOF. Since fgf $=(f\otimes g)g$ is permutable with $H_{1}$ and $H_{2}$ , we
have $f\otimes g=g^{-1}fgf^{-1}=f^{-1}g^{-1}fg$, and hence $f(f\otimes g)=g^{-1}fg$. Therefore
we have $(f\otimes g)(f\otimes g^{\prime})gg^{\prime}=(fgf^{-1})(fg^{\prime}f^{-1})=(f\otimes gg^{\prime})gg^{\prime}$ and $ff^{\prime}(f\otimes g)$

$(f^{\prime}\otimes g)=(g^{-1}fg)(g^{-1}f^{\prime}g)=ff^{\prime}(ff^{\prime}\otimes g)$ . Q. E. D.
Let $a_{1}=u\oplus v$ . Then we can see easily that if u-part of $f$ is $f_{1}$ ,

then u-part of $f\otimes g$ is $f_{1}\otimes g$.
PROPOSITION 5. For every $f\in H_{1}$ and $g\in H_{2}$ , we have $\pi(f)\leqq\pi(g)$
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if and only if there exists $h\in G_{12}$ such that we have $f=h\otimes g$.
PROOF. Put $f=h\otimes g$, then we have

$\pi(f)\leqq\pi(h)\cup\pi(gh^{-1}g^{-1})=\pi(h)\cup g(\pi(h))\leqq a_{2}\cup g(a_{2})=a_{2}\cup\pi(g)$ ,

and hence $\pi(f)\leqq(a_{2}\cup\pi(g))\cap b=\pi(g)$ . Conversely $\pi(f)\leqq\pi(g)$ implies
$(a_{1}\cup g(a_{2}))\cup a_{2}=a_{1}\cup g(a_{2})\cup\pi(g)\cup a_{2}=f(a_{1})\cup\pi(f)\cup g(a_{2})\cup a_{2}=(f(a_{1})\cup g(a_{2}))$

$\cup a_{2}$ , and we have always $(a_{1}\cup g(a_{2}))\cap a_{2}=g(a_{2})\cap a_{2}=(f(a_{1})\cup g(a_{2}))\cap a_{\Delta}’$ .
Then there exists a perspectivity between $a_{1}\cup g(a_{2})$ and $f(a_{1})\cup g(a_{2})$

axis in $L_{2}$ , and we can find $h$ in $G_{12}$ such that $h(a_{1})$ coincides with
the image of $a_{1}$ by this perspective mapping, in other words, we
have $h(a_{1})\cup g(a_{2})=f(a_{1})\cup g(a_{2})$ or $g^{-1}hg(a_{1})Ua_{2}=f(a_{1})\cup a_{2}$ . Since the
left side of the latter equality equals to $h^{-1}g^{-1}hg(a_{1})\cup a_{2}$ we have
$(h\otimes_{\epsilon^{\sigma}},)(a_{1})=f(a_{1})$ , that is, $h\otimes g=f$.

$CoROLLARY$. If we have $a_{2}\cap g(a_{2})=0$ , then the mapping $h\rightarrow h\otimes g$

is an isomorphism of $G_{12}$ onlo $\{f;\pi(f)\leqq\pi(g)\}$ , a subgroup of $H_{1}$ .
PROOF. If $h\otimes g$ is identity, then we have $\pi(h)=\pi(ghg^{-1})=g(\pi(h))$

and hence $\pi(h)=\pi(h)\cap g(\pi(h))=0$ . This shows that $h$ is identity.
PROPOSITION 6. If we have $\pi(h)=a_{2}$ and $h(a_{1})\cap a_{1}=0$ for $h\in G_{1_{-}^{c}}$ ,

then the mapping $g\rightarrow h\otimes g$ is an isomorphism of $H_{2}$ onto $H_{1}$ , and we
have $\pi(g)=\pi(h\otimes g)$ .

PROOF. $h=ghg^{-1}$ implies $ g(a_{2})=g(\pi(h))=\pi(h)=a\rightarrow$ ’ and hence the
mapping is an isomorphism. Let $f$ be an arbitrary element of $H_{1}$ .
Since $h(a_{1})$ is a complement of $\overline{a}_{2}$ and we have $h(a_{1})\cup b=fh(a_{1})\cup b$,
there exists $g\in H_{2}$ such that $g^{-1}h(a_{1})=fh(a_{1})(=hf(a_{1}))$ . Then we have

$h\otimes g(a_{1})=gh^{-1}g^{-1}h(a_{1})=gf(a_{1})=f(a_{1})$

and hence the mapping is onto. Moreover, since we have
$\pi(f)=\{X\cup f(x)\}\cap b$

for every complement $x$ of $a_{1}$ , putting $x=h(a_{1})$ we have

$\pi(f)=(x\cup g^{-1}(x))\cap b=(x\cup g(x))\cap b=\pi(g)$ .
$CoROLLARY$ . By the perspective isomorphism of $L_{a_{2}\cup b}$ to $L_{a_{1}\cup b}$ with

axis $h(a_{1})$ , the image of $g(a_{2})$ is $h\otimes g(a_{1})$ .
PROOF. Putting $f=h\otimes g$, we have

$h(a_{1})\cup f(a_{1})=g(g^{-1}h(a_{1})\cup f(a_{1}))=gf(h(a_{1})\cup a_{1})$

$=gf(h(a_{1})\cup a_{2})=h(a_{1})\cup g(a_{2})$ .
For the associativity of the operation $\otimes we$ shall prove
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PROPOSITION 7. For every $f\in G_{ij},$ $g\in G_{jk}$ and $h\in G_{kl}$ where $i,j,$ $h$

and $l$ are all different, we have
$(f\otimes g)\otimes h=f\otimes(g\otimes h)$ .

PROOF. Since $h^{-1}fh=f$, we have
$(f\otimes g)\{(f\otimes g)\otimes h\}=h^{-1}(f\otimes g)h=f\otimes h^{-I}gh$

$=f\otimes\{g(g\otimes h)\}=(f\otimes g)\{f\otimes(g\otimes h)\}$ .

\S 3. Auxiliary ring.

To establish definite isomorphisms among all $G_{ij}$ , we take first
from every $G_{1\oint}(i=2,3,\ldots, n)$ an automorphism $\Gamma_{1i}$ such that $\pi(\Gamma_{1i})=a_{i}$

and $\Gamma_{1i}(a_{1})\cap a_{1}=0$ . As we have shown in \S 2, there exist following
isomorphisms:

$G_{ij}\ni f\rightarrow r_{1i}\otimes f\in G_{1j}$ , and $G_{i1}\ni f\rightarrow f\otimes r_{1j}\in G_{ij}$ .
Now we determine $\Gamma_{ij}$ for $i,j\neq 1$ by the equation $\Gamma_{1i}\otimes\Gamma_{ij}=\Gamma_{1j}$ .

Then we have
$\Gamma_{ij}\otimes\Gamma_{jk}=\Gamma_{ik}$ for every $i,j,$ $k\neq 1$ , $(^{\star})$

because we have $\Gamma_{1i}\otimes(\Gamma_{ij}\otimes\Gamma_{jk})=(\Gamma_{1;}\otimes\Gamma_{ij})\otimes\Gamma_{jk}=\Gamma_{1k}$ .
Every $\Gamma_{j1}$ is determined by the equation $\Gamma_{i1}\otimes\Gamma_{1j}=\Gamma_{ij}$ , where $\Gamma_{i1}$

does not depend on $j$, because we have for another $k$

$\Gamma_{t1}\otimes\Gamma_{1k}=\Gamma_{i1}\otimes\Gamma_{1j}\otimes\Gamma_{jk}=\Gamma_{ij}\otimes\Gamma_{jk}=\Gamma_{ik}$ .
The equation $\Gamma_{ij}\otimes\Gamma_{i1}=\Gamma_{j_{1}}$ is also valid since we have $(\Gamma_{ij}\otimes\Gamma_{j1})\otimes\Gamma_{1k}$

$=\Gamma_{ij}\otimes\Gamma_{jk}=\Gamma_{ik}$ where $k$ is different from 1, $i,j$. Therefore $(^{\star})$ is true
for every different $i,$ $j,$ $k$.

Since by Proposition 6 we have $\pi(\Gamma_{ij})=a_{;}$ and $\Gamma_{ij}(a_{i})\cap a_{i}=0$ for
every $i,$ $j$, we obtain a definite isomorphism of $G_{ij}$ to $G_{kj}$ : $f\rightarrow r_{ki}\otimes f$

and that of $G_{ij}$ to $G_{ik}$ : $f\rightarrow f\otimes\Gamma_{jk}$ .
Now we consider every pair $(i, j)(1\leqq i, j\leqq n, i\neq j)$ as a point of

the Cartesian plane with co-ordinates $i,$ $j$, and we denote such points
by $P,$ $Q,$ $R,$ $S,$ $ T,\ldots$ . If $P=(i, j)$ we write $G_{P}$ for $G_{ij}$ . If $P\neq Q$ and
the line $\overline{PQ}$ is parallel to one of the co-ordinates axis, then we
assign to the vector $ PQ\rightarrow$ the isomorphism of $G_{P}$ to $G_{Q}$ which is
defined above. If $PQ,$ $QR,\cdots,$

$ ST\rightarrow\rightarrow\rightarrow$ are vectors in succession each of
which is parallel to one of the co-ordinate axis, and such that the
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end point of one vector coincides with the origin of the following
vector, then we say $PQR\cdots ST$ forms a pass. To every such pass
$PQR\cdots ST$ we assign the isomorphism of $G_{P}$ to $G_{T}$ composed of the
isomorphisms corresponding to the vectors $PQ\rightarrow,$

$QR,\ldots,$
$ ST\rightarrow\rightarrow$. We write

$PQR\cdots ST\sim PQ^{\prime}R^{\gamma}\cdots S^{\prime}T$ if these two passes determine the same iso-
morphism. We consider also $PP$ as a pass and denote it by $0$ , and assign
to it the identity mapping of $G_{P}$ . If $P,$ $Q$ and $R$ are on the same
line which is parallel to one of the axis, then we have by $(^{\star}),$ $PQR$
$\sim PR$ and $PQPR\sim PQR\sim PR$ and hence $PQP\sim O$ . Moreover every
rectangular pass PQRSP is $\sim 0$ , since we have PQR–PSR as an
immediate consequence of the associativity of the $operation\otimes\cdot$ Then
we can see easily that every closed pass is $\sim 0$ . We have namely
only to ‘ decompose ‘ the closed pass into rectangular passes. In doing
so, we must take into consideration that $G_{P}$ is not defined for points
$P=(i, i)$ . We can, however, easily arrange the ‘ decomposition’, so
that these points do not appear as vectors of rectangular passes,
since we have $n\geqq 4$ by hypothesis. Thus $P=(i, j),$ $T=(k, l)$ being any
two points under cosideration, every pass joining $P$ with $T$ determine
the same definite isomorphism of $G_{P}$ to $G_{T}$ .

Let $R$ be a group which is isomorphic to $G_{P}=G_{ij}$ . The isomor-
phic image of $\alpha\in R$ in $G_{ij}$ will be denoted by $(\alpha)_{ij}$ . By what we
have proved, we can take $(\alpha)_{ij}$ for every $i,$ $j$, so that the relations
$\Gamma_{ij}\otimes(\alpha)_{jk}=(\alpha)_{ij}\otimes\Gamma_{jk}=(\alpha)_{ik}$ hold.

We write $\alpha+\beta$ for the group multiplication of $\alpha$ and $\beta$ in $R$,
and we define the new multiplication $\alpha\beta$ as:

$(\alpha\beta)_{ik}=(\alpha)_{ij}\otimes(\beta)_{jk}$ .
We can see easily by the associativity of $\otimes that(\alpha)_{ij}\otimes(\beta)_{jk}$ is inde-
pendent of $j$, so that this definition has a sence, and by virtue of
Proposition 4 and 7, $R$ can be considered as a ring by addition and
multiplication thus defined, and it has the unit 1 for which we have
(1) $=\Gamma_{ij}$ .

$R$ is said to be the auxiliary ring of $L$ determined by the frame
$\{a.’\Gamma_{ij} ; i,j=1,2,\ldots, n\}$ .

By Proposition 6 $\pi((\alpha)_{ij})$ does not depend on $i$, so we put $\pi_{j}(\alpha)=$

$\pi((\alpha)_{jj})$ . Then we can see easily that the image of $\pi_{i}(\alpha)$ by the per-
spective isomorphism of $L_{i}$ to $L_{j}$ with axis $\Gamma_{ij}(a_{i})(=\Gamma_{j\iota}(a_{j}))$ is $\pi_{j}(\alpha)$ .
Let $a_{j}=u\oplus v$ be a decomposition of $a_{j}$ . This induces the decomposi-
tion of every element of $G_{j}$ as defined In \S 2, hence in particular of
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$\Gamma_{ij}$ . Let $\epsilon_{ij}$ be the u-part of $\Gamma_{ij}$ , where $\epsilon$ is an element of $R$. Then
for every $\alpha\in R$, the u-part of $(\alpha)_{ik}=\Gamma_{ij}\otimes(\alpha)_{jk}$ is clearly $(\epsilon)_{ij}\otimes(\alpha)_{jk}$

Since decomposition operator is idempotent, $e$ is an idempotent ele-
ment, and the v-part of $(\alpha)_{ik}$ is obviously $((1-\epsilon)\alpha)_{ih}$ . Moreover we
have $\pi_{j}(\epsilon)=(a_{i}\cup(\epsilon)_{ij}(a_{l}))\cap a_{j}=(u\cup\Gamma_{tj}(a_{i}))\cap a_{j}$ and hence $\pi_{j}(\epsilon)=u$ and
similarly $\pi_{1}(1-\epsilon)=v$ . Let $f\in G_{j}$ , and $ f=(\alpha)_{ij}(\beta)_{ik}\cdots$ be the direct sum
decomposition of $G_{i}$ to $\prod_{j\neq i}G_{ij},$

$\alpha,$ $\beta,\cdots$ being elements of $R$. Further-

more, let $\xi$ be any element of $R$. We shall denote with $\xi f$ the ele-
ment of $G_{j}$ which has the decomposition $(\xi\alpha)_{ij}(\xi\beta)_{ik}\cdots$ . Then $\mathcal{E}f=$

$(\epsilon\alpha)_{ij}(e\beta)_{lk}\cdots$ is obviously the u-part of $f$ and we have $\pi(f)=\pi(\epsilon f)\cup$

$\pi((1-\epsilon)f)$ because $\pi(\epsilon f)\leqq\pi(f)$ .
By virtue of Proposition 5 we have $ R\alpha\supset R\beta$ if and only if $\pi_{t}(\alpha)$

$\geqq\pi,(\beta)$ for any $i$. Hence $R\alpha\rightarrow\pi_{\iota}(\alpha)$ gives one-to-one and order-
preserving mapping of all principal left ideals of $R$ onto $L_{j}$ . There-
fore we see that for every element $\alpha$ of $R$, there exists an idempotent
6 such that we have $ R\alpha=R\epsilon$. A ring which has this property is said
to be regular. We can see easily that the totality of the principal
left ideals of a regular ring $R$ constitutes a complemented modular
lattice, denoting $L(R)$ , as a sublattice of the lattice of all left ideals
of R. (Also the totality of the principal right ideals of $R$ constitutes
a complemented modular lattice, but we make exclusively use of $L(R).)$

Thus we have proved
THEOREM 2. The auxiliary ring $R$ of $L$ is regular and $L(R)$ is

isomorphic to $L_{i}$ by the correspondence: $R\alpha\rightarrow\pi_{j}\leftarrow(\alpha)$ .

\S 4. Representation.

Let $R$ be a regular ring. $R$ may be considered as a module with
the ring mutiplication from the left as operators. We write $R^{n}$ for
the direct sum of $n$ modules which are all isomorphic to R. $L(R^{n})$

will denote the set of all finitely generated submodules of $R^{n}$ .
Then we shall prove
THEOREM 3. $L(R^{n})$ conslilutes a complemented modular lattice as

a sublattice of the lattice $\overline{L}(R^{n})$ of all submodules of $R^{n}$ and it has a
frame (with a homogeneous basis of degree n) which determines (if
$n\geqq 4)$ the auxiliary ring of $L(R^{n})$ , which is isomorphic to $R$.

PROOF. Let $e_{j}(i=1,2,\ldots, n)$ be a basis of $R^{n}$ as R-module: $R^{n}=$

$Re_{1}+Re_{2}+\cdots+Re_{n}$ . Let $M_{n}(R)$ be the n-square matrix ring over $R$,
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and $S$ a submodule of $R^{n}$ . We denote with $\overline{S}$ the left ideal of $M_{n}(R)$

consisting of all matrices whose row-vectors are in $S$. The corre-
spondence $S\rightarrow\leftarrow\overline{S}$ gives an isomorphism between the lattice of all
submodules of $R^{n}$ and that of all left ideals of $M_{n}(R)$ .

First we shall prove that every element $S$ of $L(R^{n})$ has a com-
plement in $\overline{L}(R^{n})$ . We prove it by induction. This is true for $n=1$ ,
as $R$ is a regular ring. We suppose that it is true for $R^{n-1}$ and put
$R^{x}=Re_{1}+R_{2}$ where $R_{2}=Re_{2}+\cdots+Re_{n}$ . Let $S$ be an arbitrary ele-
ment of $L(R^{d})$ with generators $a_{1},$ $a_{2},\cdots,$ $\alpha_{h}$ . If $S_{1}$ is the image of $S$

by the projection of $R^{n}$ to $Re_{1}$ , we can find an idempotent $\epsilon$ in $R$

such that $S_{1}=R_{6}e_{1}$ . There exists an element $a$ in $S$ of the form
$ a=\epsilon e_{1}+\cdots$ , so we can determine $a_{i}^{\prime}(i=1,2,\cdots, m)$ such that $a_{i}^{\prime}$ are in
$R_{2}$ and $a_{i}=\alpha_{i}a+a_{i}^{\prime}$ for some $\alpha_{i}$ in $R$, then $a_{i}^{\prime}$ generate a submodule
$S_{2}$ which obviously coincides with $S\cap R_{2}$ . Let $S_{1}^{\gamma}$ be a complement of
$S_{1}$ in $\overline{L}(Re_{1})$ and $S_{2}^{\prime}$ be that of $S_{2}$ in $\overline{L}(R_{2})$ , then we can see easily
that $S_{1}^{\prime}\cup S_{2}^{\prime}$ is a complement of $S$ in $\overline{L}(R^{n})$ .

Therefore every principal left ideal of $M_{n}(R)$ has a complement
in the lattice of all left ideals, and hence $M_{n}(R)$ is a regular ring.
Then $L(R^{n})$ , being isomorphic to $L(M_{n}(R))$ , is a complemented modular
lattice.

$Re_{i}(i=1,2,\cdots, n)$ obviously constitute a homogeneous basis of $L(R^{n})$ ,
because $R(e_{i}+e_{j})$ is a complement of both $Re_{i}$ and $Re_{j}$ in $Re_{i}+Re_{j}$ .

For every $\alpha\in R$ there exists an automorphism of $R^{n}$ (denoted
by $(\alpha)_{ij})$ which maps $e_{j}$ to $e_{i}-\alpha e_{j}$ and fixes every $e_{k}(k\neq i)$ . $(\alpha)_{ij}$ can
be considered as an automrphism of the lattice $L(R^{n})$ . We can see
easily that $(\alpha)_{ij}$ is normal for $\sum_{j\neq i}Re_{j}$ and the totality of them, for

all $\alpha\in R$, constitues a group isomorphic to the addition group of $R$.
This group corresponds to $G_{ij}$ defined in \S 2. Moreover by simple
calculations we have $(\alpha)_{ij}\otimes(\beta)_{jk}=(\alpha\beta)_{ik}$ . Thus $\{Re_{j}, $(1) $ ; i,j=1,2,\ldots n\}$

constitutes a frame, which determines the auxiliary ring isomorphic
to $R$.

Thus the proof is completed.
The above theorem, together with the following will complete

our theory.
THEOREM 4. Let $L$ and $L^{\star}$ be complemenfed modular latlices with

homogeneous basis $\{a_{j} ; i=1,2,\cdots, n\},$ $\{a_{i}^{\star} ; i=1,2,\ldots, n\}$ of the same degree
$n\geqq 4$ . If the auxiliary ring $R$ of $L$ determined by a frame { $a_{i},$ $\Gamma_{ij}$ ;
$i,$ $j=1,2,\cdots,$ $n$ } is isomorphic to the auxiliary ring $R^{\star}$ of $L^{\star}$ determined
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by a frame $\{a_{i}^{\star}, \Gamma_{rj}^{\epsilon} ; i,j=1,2,\cdots, n\}$ , then $L$ is isomorphic to $L^{\star}$ .
PROOF. The isomorphic mapping of $R$ to $R^{\star}$ will be denoted by $\star$

This sign ee will be also used to indicate the corresponding objects
in various $\vee Qenses$, easy to be understood in each case. E. g. the
homogeneous basis $\{a_{i} ; i=1,2,\ldots, n\}$ of $L$ will determine the groups
$G_{ij}$ introduced at the beginning of \S 2. The corresponding groups
determined by $\{a_{i}^{\star} ; i=1,2,\cdots, n\}$ will be denoted by $G_{ij}^{\star}$ . Then there
exists an isomorphic mapping $(\alpha)_{ij}\rightarrow(\alpha^{\star})_{ij}$ of $G_{ij}$ to $G_{\dot{r}j}^{\star}$ and this iso-
morphism can be extended to an isomorphism of $G_{j}$ to $G_{i^{\$}}^{i}$ . Here we
remark that if $f\in G_{1_{\angle}^{r}},$ $g\in G_{2}$ and $\pi(g)\leqq a_{3}\cup\cdots\cup a_{n}$ , then we have
obviously $(f\otimes g)^{\star}=f^{\star}\otimes g^{\star}$ , and hence

$(g^{-1}fg)^{\star}=(f(f\otimes g))^{\star}=f^{\star}(f\otimes g)^{\star}=f^{\star}(f^{\star}\otimes g^{\star})=g^{\star-1}f^{\star}g^{\star}$ .
Putting $L_{(i)}=L_{a_{i}\cup a_{i}}1^{\cup\cdot\cdot\cup a_{n}}$ $G_{(i)}=\prod_{tj=1}^{7}G_{ij}$ and $L_{(i)}^{\star}=L_{a_{i}^{\star}\cup\cdots\cup a_{n}^{\star}}^{\star},$ $G_{(i)}^{\#}=$

$\prod_{j=i+1}^{n}G_{ij}^{\epsilon}$ , we shall prove the following proposition $(P_{i})$ for every $i=1$ ,
2, $\cdots$ , $n$ .

$(P_{j})$ : There exists an isomorphism: $L_{(j)}\ni x\rightarrow x^{\star}\in L_{(i)}^{*}$ such that
we have

(i) $\pi_{j}(\alpha)^{\star}=\pi_{j}(\alpha^{\star})$ for every $j\geqq i,$ $\alpha\in R$ ,
(ii) $f(x)^{\star}=f^{\star}(x^{\star})$ for every $f\in G_{(\prime)}$ , and
(iii) $\pi(f)^{\star}=\pi(f^{\star})$ for every $f\in G_{(j)}$ .
$(P_{n})$ is true, because every element of $L_{(n)}$ may be written as

$\pi_{n}(\alpha)$ , and $\pi_{n}(\alpha)\rightarrow\pi_{n}(\alpha^{\star})$ gives the desired isomorphism. $(P_{j}),$ $i=1,2$,
.. , $n-1$ will be proved, if we show $(P_{i})\rightarrow(P_{i-1})$ for $i=n,\cdots,$ $2$. We
shall show $(P_{2})\rightarrow(P_{1})$ , as $(P_{\iota}\cdot)\rightarrow(P_{i-1})$ for other $is$ will be shown in
the same way.5)

Let $x\rightarrow x^{\star}$ be an isomorphism of $L_{(2)}$ to $L_{(2)}^{\star}$ satisfying (i), (ii), (iii)
(for $i=2$ ). We shall first prove that $\pi(f)^{\star}=\pi(f^{\star})$ for $f\in G_{1}$ . If
$\pi(f)\leqq a_{3}\cup a_{4}\cup\cdots\cup a_{n}$ then we have $\Gamma_{21}\otimes f\in G_{(2)}$ and hence $\pi(f)^{\star}=$

$\pi(\Gamma_{21}\otimes f)^{\star}=\pi(\Gamma_{21}^{\star}\otimes f^{\star})=\pi(f^{\star})$ . If there exist $g$ in $G_{(2)}$ and $f_{1}=(\alpha)_{12}$

In $G_{12}$ such that $f=g^{-1}f_{1}g$, then by Proposition 3 we have $\pi(f)=$

$g^{-1}\pi(f_{1})=g^{-1}(\pi_{2}(\alpha))$ and hence $\pi(f)^{\star}=g^{\star-1}(\pi_{2}(\alpha^{\star}))=\pi(g^{\star-1}f_{1}^{\star}g^{\star})=\pi(f^{\star})$ .
We can reduce the proof of $\pi(f)^{\star}=\pi(f^{\star})$ for general $f\in G_{1}$ to the
above two cases. An arbitrary $f\in G_{1}$ can be written as $f=(\alpha)_{12}\cdot h$

5) In the proof of von Neumann, the step $(P_{2})\rightarrow(P_{1})$ requires special considera-
tions, whereas $(P_{i})\rightarrow(P_{i-1}),$ $i=n,\cdots,$ $3$ are proved by the same method. In our proof,
all steps $(P_{i})\rightarrow(P_{i-1}),$ $i=n,\cdots,$ $2$ are treated in the same way.



278 I. AMEMIYA

where $\pi(h)\leqq a_{3}\cup\cdots\cup a_{n}$ . Let $\xi$ be an element of $R$ such that $\alpha=\alpha\xi\alpha$ ,
then $\epsilon=\alpha\xi$ is idempotent. Now put $g=\Gamma_{21}\otimes\xi h$, then $g$ is in $G_{(2)}$ and
$\mathcal{E}f=(\epsilon\alpha)_{12}\cdot\epsilon h=(\alpha)_{12}\cdot\alpha(\xi h)=(\alpha)_{12}\cdot((\alpha)_{12}\otimes g)=g^{-1}(\alpha)_{12}g$, and hence $\pi(\epsilon f)^{\star}$

$=\pi(\epsilon^{\star}f^{\star})$ . On the other hand we have

$\pi((1-e)f)=\pi((1-\epsilon)h)\leqq a_{3}\cup\cdots\cup a_{n}$ ,

so we have also $\pi((1-\epsilon)f)^{\star}=\pi((1-\epsilon^{\star})f^{\star})$ . Therefore
$\pi(f)^{\star}=\pi(\epsilon f\cup((1-\epsilon)f)^{\star}=\pi(\epsilon^{\star}f^{\star})\cup\pi((1-\epsilon^{\star})f^{\star})=\pi(f^{\star})$ .

Now we shall extend the isomorphism $x\rightarrow x^{\star}$ of $L_{(2)}$ to $L_{(2)}^{*}$ and
$\pi_{1}(\alpha)\rightarrow\pi_{1}(\alpha^{\star})$ of $L_{1}$ to $L_{1}^{\star}$ (we write $x\rightarrow x^{\star}$ also in the latter case) to
an isomorphism of $L_{(1)}=L$ to $L_{(1)}^{\star}=L^{\star}$ .

Suppose we have proved the equivalency of two inequalities
$f(x)\cup u\leqq g(y)\cup v$ and $f^{\star}(x^{\star})\cup u^{\star}\leqq g^{\star}(y^{\star})\cup v^{\star}$ for every $f,$ $g\in G_{1},$ $x,$ $y$

$\leqq a_{1}$ , and $u,$ $v\in L_{(2)}$ . Then the element $f^{\star}(x^{\star})\cup u^{\star}$ of $L^{\star}$ is determined
uniquely by an element $f(x)\cup u$ of $L$, independently of its expression.
Since every element of $L$ can be written as $f(x)\cup u$, an order-preserv-
ing one-to-one mapping of $L$ onto $L^{\star}$ is defined by $f(x)\cup u\rightarrow f^{\star}(x^{\star})\cup u^{\star}$ .
For this mapping (i), (ii) and (iii) of $(P_{1})$ are obviously satisfied.

Thus we have only to prove that $f(x)\cup u\leqq g(y)\cup v$ implies $f^{\star}(x^{\star})$

$\cup u^{\star}\leqq g^{\star}(y^{\star})\cup v^{\star}$ , since the converse is then also true by reason of
symmetry.

$f(x)\cup u\leqq g(y)\cup v$ implies obviously $x\leqq y,$ $u\leqq v$ and hence $x^{\star}\leqq y^{\star}$ ,
$u^{\star}\leqq v^{\star}$ . Let $\epsilon\in R$ be an idempotent such that $\pi_{1}(\epsilon)=X$. Then we
have

$\epsilon g^{-1}f(a_{1})=g^{-1}f(x)\leqq y\cup v$,
$\pi(\epsilon g^{-1}f)=(\epsilon g^{-1}f(a_{1})\cup a_{1})\cap\overline{a}_{1}\leqq(v\cup a_{1})\cap\overline{a}_{1}=v$ ,

and hence $\pi(\epsilon^{\star}g^{\star-1}f^{\star})\leqq v^{\star}$ . From the last inequality, we have
$g^{\star-1}f^{\star}(x^{\star})=\epsilon^{\star}g^{*-1}f^{\star}(a_{1}^{\star})\leqq a_{1}^{\star}\cup v^{\star}$

and also $g^{\star-1}f^{\star}(x^{\star})\leqq(a_{1}^{\star}\cup v^{\star})\cap(y^{\star}\cup\overline{a}_{1}^{\star})=y^{\star}\cup v^{k}$ . Thus we obtain the
inequality $g^{\star-1}f^{\star}(x^{\star})\cup u^{\star}\leqq y^{\star}\cup v^{\star}$ which is equivalent to $f^{\star}(x^{\star})\cup u^{\star}$

$\leqq g^{\star}(y^{\star})\cup v^{\star}$ .
We have thus proved $(P_{1})$ and this implies our theorem as $L_{t1)}=$

$L,$ $L_{(1)}^{\star}=L^{\star}$ .
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