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J. von Neumann has established a beautiful theory of repre-
sentation of complemented 'modular lattices, resulting in a generali-
zation of the coordinatization theorem of the projective geometry to
the case of the complemented modular lattice with homogeneous basis
of degree >4. His theory is presented in a book [2] of F. Maeda,
where simplification of proofs obtained by Kodaira and Huruya 'is
taken into accout. However, there still remain considerable difficulties
in the construction of the auxiliary ring, and also in the final step
of the induction to attain the regular ring representation of the
lattice. The purpose of this paper is to simplify further this theory
so as to obtain the same results through proofs which present no
such difficulties.

Our method is based on the fundamental theorem in §1 which
asserts the existence of the lattice-automorphisms of a certain type.
In § 2, we shall construct certain automorphism groups of the lattice
and investigate the relations among these groups which will lead us,
in § 8, naturally to the definition of the auxiliary ring. In §4, we
shall attain the coordinatization theorem; we shall meet with no
“final step difficulty’ (cf. footnote (5)).

To write this paper the author has had frequent consultations
with the book of F. Maeda [2] He also wishes to express his hearty
thanks to Professor S. Iyanaga for his encouragement and advices.

§ 1. Fundamental theorem.

Let L be a complemented modular lattice throughout this paper.
First we shall introduce some notions analogous to those used in
the combinatorial topology. Let s and ¢ be two elements of L such
that s7=1" and s=>c¢. These elements s,c will be fixed once for all

1) 1 denotes the maximum element of Z, and 0 the minimum element.
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throughout this paragraph. A finite sequence g; (:=1,2,--,p+1) of
complements of s is said to be a (oriented) p-simplex if the join of all
a; is orthogonal to ¢, and we denote it by a,a,---a, ,. (More precisely,
this must be called a p-simplex relative to s, c, but as we shall consider
only such simplexes in this paragraph, we shall not have to add this
specification.) A linear combination of p-simplexes with integral
coefficients is said to be a p-chain and the totality of p-chains will
be considered as usual as an additive group. The boundaries of

simplexes or chains are also defined as usual, i.e. 0(a@a,--a,,)=
p+1 :

D (=Li*Ya,---a; a;,,a,,,) for p=1; boundaries of 0-chains being 0.
A chain whose boundary is 0 is said to be a cycle and if a cycle C
is the boundary of some chain, then we say that C is homologous to
0 and write C~O0.

Put S={x;xNs=0} and S,={ycS;yNs=xNs} for every x<S.
Then S,y is equivalent to S,=S,. If in particular x is any com-
plement of s, then S, is the totality of complements of s. We denote
it with S°. The simplexes hitherto considered have their vertices in
S’ We shall now consider also simplexes with vertices in S, (for a
fixed x) the condition, that the join of vertices should be orthogonal
to ¢, remaining as before and the chains formed with these simplexes.
They will be called chains of S,. (When we say just simplex or
chain, we shall mean it in the original sense, i.e. that of S°.)

If any element @ of S° is decomposed in the form a=a,Pa,?
then we have a direct sum decomposition S°=S, PS,,, i.e. for every
xS we put x,=xn(a,Ns), x,=xN(a,Us) and have x=x,Px,. x; is
said to be a-part of x (1=1,2). It is evident that ¢, Ux, and a,Ux,
are in S°% Then also every chain C is decomposable in the form
C=C,®C, where C; is a chain of S, . For the purpose, we have
only to decompose every vertex of simplexes of C. We have then
0C=0C,PpoC,. To any decomposition a=a,P---Pa, of an element a
of S° corresponds thus a decomposition S°=S, @"'@Sak of S° with
which a decomposition of chains C=C,P---pC, is associated. A cycle
C is said to be semi-homologous to 0 and we denote it by C~0, if
there exists a decomposition

C= Cl@c2@ : @Ck ’

2) acb means eUb and only used in the case anb=0.
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where all C; (i=1, 2,---k) are homologous to 0.

Now we shall prove

LEMMA 1. If there exists an element p <s such that p is perspec-
live 1o a complement of s and pNc=0, then every O-chain with index 0
is homologous to O.

Proor. Let a&S® be perspective to p and x an arbitrary ele-
ment of S°. Put x,=xN(aUc), and let x, be a relative complement
of x, with respect to x, so that we have x=x,Px,. Then we obtain
the corresponding decomposition a=a,Pa, of @ and we can see easily
that (a,Ux)x is a 1-simplex. Since a is perspective to p, there exists
an element bS° such that we have aPb=bPp=pFPa and conse-
quently ab and b(a,Ux,) are simplexes. Therefore x—a is the
boundary of the 1-chain ab-+b(a,Ux,)+(a,Ux)x and x—y=(x—a)—
(y—a) is homologous to 0 for every x, y&=S°.

COROLLARY. If we have abbPc=1 and a,b and c are mulually
perspective, then they are also perspective to every complement of b\c.

PrROOF. In general we can prove easily that xUy.iLz x~y and
y~z imply x~2. As s,c¢ in the definition of simplexes and chains,
we take now bUc and ¢. Suppose xy is a simplex. It means then
that we have xUy.Lc, and that x, ¥y are complements of bUc, so that
x~y. If x~c, it follows from the above fact that we have also y~c.
Now let x be any complement of 6 yc. By our lemma x—a is the
boundary of a 1-chain ax +x%,+---+x,_.x, with x,=x. As ax, is a
1-simplex and a@~c by assumption, we have x,~c. It follows then
successively x,~¢, -+, x,=%~c. x~b follows by symmetry of our as-
sumption and x~a is obvious.

LEMMA 2. If there exist p,q<s such that we have (p,q,c)L”
and both p and q are perspective lo a complement of s (hence to all the
complements of s), then every 1-cycle is semi-homologous to 0.

ProoOF. Every 1l-cycle (or more generally l-cycle of S,) can be
represented as a linear combination of cycles of the following type

C=xy+yzt+zt+lut+-- +wx, (1)

where the number of vertices x, y, z,---, w is said to be the rank of
C. A cycle C of type (1) is said to be reducible if for some decom-
position C=C,PH---PC, every C, (i=1, 2,---, k) can be represented as a
sum of cycles whose ranks are all less than that of C. It is said to

43) w('a,hb, ¢) + means the independency of a,b,¢, i.e. that the join of any two
among a, b, ¢ is orthogonal to the resting one.
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have the property (p,), if xUc>=z; (p,) if the rank is >3, and xUc
=z, yuc=t; (p,) if the rank is >4, and xUc=z,yUc=t zUc=u;
and the property (p) if xUyUc=z2,--,w. It is to be noticed that
(D,)s (D;)s+++5 (D,-,), where 7 is the rank of C, imply (p).

We shall now show that every cycle C of rank >3 is decom-
posable in the form C=C®H---pC, where C,--,C,., are reducible
and C, has the property (p). In fact, if the rank of C defined by
(1) is >3 and xz is a simplex, then we can write

C=(xy+yz-+2x)+(x¥2+2L+- +wx),

showing that C is reducible. Suppose now xUcZJ>2. Then we have
a decomposition z=2z,@Pz, with z,=(xUc)Nz Let C=C,PC, be the
corresponding decomposition of C. We may write C,=x; v, +¥,2;,+21;+
et wix;, i=1,2. As 2,12, we have xUc.1z and so ¥, Uc.1z i.e. x2,
is a simplex. In virtue of what we have proved above, C, is reducible
and C, has the property (p,). If C, has already the properties (p,),
-+, (p,-,), we have attained our aim. - If C, has not these properties,
then we decompose it into a ‘reducible factor’ and another factor
possessing at least the property (p,), and come to our end after finite
number of steps.

Now it is sufficient to. prove the lemma for 1-cycle of rank 8 and
for 1-cycle with the property (p).

Let C=xy+yz+2x be any l-cycle of rank 8. We shali show that
either C itself has the property (p) or C is decomposable in the form
C,PC, where C, has the property (p), and C,~0. In fact,if xUyUc
2>z, we have a decomposition z2=2,Pz, with z,=(xUJyuUc)nz 1t is
easy to see that the corresponding decomposition C=C,PC, of C has
the required property, as x,¥,2, is a 2-simplex and C,=38(x,,2,)

Now let C be a 1-cycle (1) with the property (p). We shall show
C=~0, under the assumptions of our lemma. First assume xUyUcLp.
As p is perspective to x, we can find an axis @ of the perspectivity
such that a=<pUx. Then we have xPa=aPp=pPx, and all xya,
yza,---, wxa form simplexes, so that C becomes the boundary of a 2-
chain xya+yza-+----+wxa.

Next, assume (xUy)Ns=pUc. Then we have xUy_Lq as (p,q, ) L,
and so xUyUcLg. Replacing p by g in the above considerations, we
see again C~O0.

We consider now the general case. Put y,=(xUpUc)NY, y=3Py,
and let C=C,@C, be the corresponding decomposition of C. It is
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easily seen that (x, Uy)Ns=pUc x,Uy,UcLp, so that C, C, satisfy
respectively the second and first of our above assumptions. We have
therefore C,~0, C,~0, C~0. . Q. E.D.

Now we shall prove the following theorem which is fundamental
in our theory.

THEOREM 1. Under the condilions of Lemma 2, there exists for
any lwo complements a, b of s such that a\ yc=bUc one and only one
automorphism f of L which maps a lo b and satisfies the following
condition :

S=x or c<x implies f(x)=x. *)

Proor. We shall devide the proof in several steps.

(i) If xy is a simplex of S,, there exists a perspective isomor-
phism of L, " to L, by the axis (xUy)Ns. Hence if C=xu+uv+
----+wy is a chain of S,, we obtain a projective isomorphism ¢(C)=¢
of L,, to L,,,:

p=ho-ogeof, (1)

where f,g,--,h are the above perspective isomorphisms of L, to
L..,L,, toL,, - and L, to L,, respectively.

We shall prove that ¢ is determined by x and ¥ only independ-
ently of the choice of wu,w,--. For that purpose it is sufficient to
prove that ¢(C) is identity if C is a cycle. This is true if C is the
boundary of a 2-simplex xu#v, because then the intermediate perspec-
tive mappings have a common axis (x JzUv)NS. Therefore ¢(C) is
identity if C~0. By Lemma 2, we can decompose any cycle C as
C=CPpC,HPH---pC, such that C;~0(=1,2,---,k). As ¢(C) is already
shown as identity in case k=1, we shall consider now the case £>2.
Let x=x&Px,P---Px, be the corresponding decomposition of x, then
p=¢(C) is identity on every inUC. On the other hand, ¢ is also
obviously identity on L,. Now L'={y&L,,. ;¢(y)=y} is a sublattice
of L including inUC (¢t=1,2,---,k) and L,. Then we have L'D
L, o, because an arbitrary element of L
2,Uz,Uy where z,&L
and x,Jc, and hence

y=[E Uy NE U} UXINHE U NE U UL]EL .

x\Uc
nunue Can be written as
z,& L, and y is orthogonal to both x Uc

YIU[’

4) L, means the totality of the element yeZ such that y<x.
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Thus we have L'=L,, if k=2. Similarly we can conclude also in
case k>3 that L'=L, ,, that is, ¢ is identity on whole L.

The projective isomorphism ¢ defined by (1) is said to be the
canonical isomorphism (abbr. c.i.) with respect to x—y of L, to L,
or simply of x to y.

(ii) Let ¢,y be the c.i. of x to y and of y to 2z respectively.
Then .9 is the c.i. of ¥ to z. If L, =L, , the c.i. of x to y will
be called a canonical automorphism (abbr. c.a.) of L,,.. The totality
of c.a. ’s of L, constitutes a group. Now we shall prove that this
group is commutative. We can suppose x to be a complement of s
without loss of generality. For any two c.a.’s of L,,., ¢ and v,
let ¢, ¢,,¥,, and v, be the c.i. of x to ,y to ¢(x), x to z and z to
Y (x) respectively, where y (z) is an axis of the perspectivity between
x and p (q) such that y<xUp (2<2xUg). Then we have ¢=¢,-0,
Y=v,0. Since ¢, and +, are perspective mappings with axis
orthogonal to pUc, we can extend v, (y,) to the perspective isomor-
phism v, (¥,) of L,y t0 L s, (0f L,ypu, to Lywyupu)- Then we can
extend v to the automorphism v =+r,09r, of L, . (=Lywup)- Since
¢; (1=1,2) is a perspective mapping with axis in L,, and ¥ fixes

every element of L, q}o@io{[f—l is also a perspective mapping with
the same axis as ¢; and hence coincides with ¢;. Thus we have

Yrogoyp ™l = rop o oyrop oY =g 00 =0

(iii) Let ¢ be the c.i. of x to ¢(x) and suppose y.Ls,xUc=yUec.
Then ¢(x) <xUu for u<s, implies ¢(y) <yUun. In fact, if xp(x) is a
simplex of S,, then ¢ is a perspective isomorphism and our assertion
is trivial. If ¢ is a c.a. of L,,,, then ¢ commutes with the c.i. ¢
of x to y, and hence,

() =o(P (X)) =y(p@) =y(xU(@Nec))=yU(@Nec)=yUnu.

In the general case, decompose ¢(%x) into ¢(x) N (xUc)P(an element
orthogonal to ¢o(x¥)N(xUc)), and let x=xPx,, y==y,Py, be the cor-
responding decompositions of x and y. Then we have ¢(x,)=¢(x)N
(*Uc), and the c.i. of x, to ¢(x,) is the restriction of ¢ to L, and
a c.a. of L,,, whereas the c.i. of x, to ¢(x,) is a perspective iso-
morphism. By what we have seen above, we have ¢(y)=y Uu,
¢(9;)=y,Uu and hence ¢(y)=yUuwn.

(iv) Now we shall define f(x) for every xS as follows. Let
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@' and b be the x-parts of @ and b respectively and ¢ the c.i. of &
to x, then we define f(x) to be ¢(d’'). If we exchange ¢ and &, then
we obtain the inverse mapping of f. So f is a one-to-one order
preserving mapping of S onto S. We shall show that y<xU# implies
f=fx)Uu for x,y=S and u<s. Let x' be the y-part of x, and
Y the c.i. of &’ to vy, then we have (¥')<«'Uwu, and hence, (f(¥'))
< f(x') Un as proved in (iii). Since we can see easily by the definition
of f that v(f(x))=f(y), we have f(y)=<f(x)Uun.

(v) Now we shall extend f to the whole L. An arbitrary ele-
ment of L can be written as xUx# where x1s and #<s. Then we
define flxUu)=f(x) Ju. If xUu<yUv for another pair y,v such that
yis,v<s, then we have f(x)Uu<f(y)Uv as proved in (iv). Thus
flxUu) is determined only by xUw#, and f is a one-to-one order
preserving mapping of L onto L, and hence f is an automorphism of
L. f satisfies obviously the conditions of our theorem.

(vi) We have nothing more to prove than the uniqueness of f.
Suppose there exists another automorphism f’ satisfying the conditions
of the theorem. To see f=f’, we have only to prove that f(x)=f'(x)
for every complement x of s. Let ¢ be the c.i. of @ to x, then ¢ is
also the c.i. of f'(@)=0 to f'(x), since every c.i. is defined by perspec-
tive mappings between L, (y.Ls) with axis in L, and f’ keeps these
axis invariant. By the construction of f, we have

f(x)=¢(b) and hence f(x)=f'(x). Q. E. D.

An automorphism f of L is said to be normal for an element
scL, if f fixes every element x such that x<{s or x>=s, and there
exists ¢<s for which we have (yUf(»))Ns=c for every complement
y of s. If f is normal for s, then the element ¢ above is said to be
the axis of f in s and we denote c=r(f) (or simply z(f)).

Then we have

COROLLARY to Theorem 1. The automorphism f in Theorem 1 is
normal for s, and the totality of automorphisms f of L which are
normal for s and for which =(f)=<c, constilutes a commutalive group.

§ 2. Automorphism groups.

We suppose the existence of a “ homogeneous basis” of degree
n=>4 in the rest of the paper, that is, we suppose that there exist
mutually perspective elements a;(:=1,2,.--,#) such that we have



270 I. AmeEMmIvAa

a,pa,D-- ba, = 1.
We write g; for \Ja,, L, for L, and L; for L,. Let G,; be the
i : t
set of all automorphisms f of L such that f is normal for &; and
z(f)<a;. If we put s=ag; and c=a; for s and ¢ in §1, then we see
by Theorem 1 that G;; constitutes a commutative group and {f(a);

f&G,;} is the totality of complements of a; in Laanj. If feG;; and
g&G,, for j=Ek, then we have fg=gf. In fact, fgf-' is obviously
normal for @; and we have =(fgf ')<a, and hence, fgf 'c G,.
Similarly, we have gf 'g"'<G,;. Then fgf'g, being an element of
the intersection of G;; and G, is obviously identity.

Therefore the group G; which is generated by all G;; for j=i
(¢ fixed) is commutative.

Now we shall prove

PROPOSITION 1. For any two complements x,y of a; there exisls
one and only one automorphism f in G; which maps x to y.

PrOOF. In case xUa;=yUa;, our assertion is Theorem 1 itself.
If we have xUa;Ua,=yUa;Ua;, then z=(xUa,)N(yUa,) is another
complement of @; and we have xUa;=zUa;, yUa,=2Ua,, so that the
existence of our automorphism follows from the first case. Similarly
we can proceed further and prove the existence of f in the most
general case. If f fixes a complement of @; then it also fixes all the
complements of a; by virtue of the commutativity of G, and hence it
is identity. This shows also the uniqueness of above f.

PROPOSITION 2. f&G; is normal for a;, and we have n(fg)<
w(f)Un(g) for every f,g<=G;.

PrOOF. For every two complements x, ¥y such that y=g(x), g G;
we have (xUf(x))Na;=Ex)Ugf®)}Na;=(yUf(y)Na;. Thus f is nor-
mal for @;. Moreover we have, by virtue of the equality xUg(x)=
xUn(g),

2Uf2(0) < U f(%) Ufg®) =2 UfixU (@) =xU(f) Un(g) »

and hence z(fg)=(xUfg(*))Na;==(f)Un(g)-
It follows from this proposition that G;; is the totality of f=G;
whose axis z(f) is in L;, and hence G, is a direct sum of G;; (j==1).
Every automorphism f in G, preserves clearly the decomposition
relation among the complements of @, i.e. if we have x=xPx,, then
x.-part of f(x) is f(x,). For such decomposition of x, there exist f,
and f, in G; such that f,(x)=f(x,)Ux, and f,(x)=x, Uf(x,). Then f, (or
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f,) fixes all the x,-part (x,-part), and coincides with f on x,-parts (x,-
parts) of elements, and hence we have f=f,f,, We can see easily
that this decomposition of f determines a decomposition of G; to a
direct sum. We call f, the x,-part of f. 1t is determined by x, and
%X, and not by x, alone, though the x,-parts of elements are deter-
mined by x, alone.

Next we shall investigate the relation between different G; and
G;. We shall make use of the following notations: b=a;Uaq;U---Ua,
where ¢, j,---, k are all different from 1 and 2, and

FL:{fEGl ;”(f)gb}y sz{fEGz;”(f)gb} .
PROPOSITION 8. For every g= H, and f& G, we have

gfg =G, and n(gfg")=28(x=(f)).

Proor. Let x be any complement of &,. Since g~'(x) is also a
complement of @, we have

xUgfeg'(x)=g(g '(x) Ufg '(x))=g(g ' (x) Urn(f))=xU&=(f)),

and hence gfg~ is normal and =z(gfg ')=gr(f). Then applying the
uniqueness part of Theorem 1, @, as s and g(z(f)) as ¢ we see that
gfg ' isin G,

COROLLARY. FEvery element of H, is permutable with that of H,.

ProoF. If fis in H, in the proposition, then we have gfg'(a,)
=f(a,) since f(a,) is in L,, and hence gf=fg.

We write in the sequel f(Xg for fgf-'g™', then for every f& G,
and gc H, fXg is in H,, because we have g(x)=g '(x)=«x for every
x=>b and hence fXg(a Ub)=a, Ub.

In particular we have G;XG;,CG,.

PRrROPOSITION 4. For every f, f' &G, and g, g' — H,, we have

fPgg'=(fR8) (fRg),
FRI°‘q=(DL (FR8E).

PrROOF. Since fgf'=(fXg)g is permutable with H, and H,, we
have fRg=g"'fgf'=f"'g'fg, and hence f(fRg)=g 'fg. Therefore
we have (fQg) (fRg")gg'=(fef ) (fg'f)=(fRgg"gg’ and ff'(fXg)
(f'Re)=(g7"'f2) (& f'2=f"(ff"Xg. Q. E.D.

Let @ =uv. Then we can see easily that if wu-part of f is f,,

then u-part of fXg is f,Xg.
PROPOSITION b. For every f&H, and g& H,, we have n(f)<=(g)
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if and only if there exists h—G,, such that we have f=hX g.
Proor. Put f=hKg, then we have

()< a(h)Ur(gh~'g ) =n(h)Ug(x(h)<a,Uga,)=a,Uxr(g),

and hence =(f)=(a,Urn(g)Nb=xr(g). Conversely =z(f)=r(g) implies
(@, Uga))Ua,=a, Uga,) Un(g) Ua,=f(a,)Ur(f)Ug@a,) Ua,=(f(a,)Uga,))
Ua, and we have always (g, Ug(a,))Na,=2(a,)Na,=(fla,)Ug@a,))Na.
Then there exists a perspectivity between a,Ug(e;) and f(a,)U g(a,)
axis in L,, and we can find # in G,, such that k(a,) coincides with
the image of @, by this perspective mapping, in other words, we
have h(a,)Ugla)=f(a)Uga) or g'hg@)Ua,=fla)Ua,. Since the
left side of the latter equality equals to 2-'g~'hg(a,) Ua, we have
(hQg) (a,)=f(a,), that is, h(Xg=f.

COROLLARY. If we have a,Ng(a,)=0, then the mapping h—hX)g
is an isomorphism of G,, onto {f;=(f)=n=(g)}, a subgroup of H,.

ProoOF. If h(Rg is identity, then we have =n(h)=~r(ghg')=g(=(h))
and hence zn(%2)=x=(h)N g(x(h))=0. This shows that % is identity.

PRrROPOSITION 6. If we have n(h)=a, and h(a)Na,=0 for h& G,
then the mapping g—hRXg is an isomorphism of H, onto H, and we
have n(g)=r(hXg).

PrROOF. h=ghg™' implies g(a,)=g(=(h))==(h)=a, and hence the
mapping is an isomorphism. Let f be an arbitrary element of H..
Since h(a,) is a complement of &, and we have h(a,) Ub=fh(a,)Ub,
there exists g H, such that g-'h(a,)=fh(a,) (=hf(a,)). Then we have

hg(a,)=gh~'g " h(a)=gfla)=f(a)
and hence the mapping is onto. Moreover, since we have
n(f)={xUf(x)}Nb
for every complement x of a@,, putting x="%h(a,) we have
T(f)=(xUg (@) Nb=(xULX) Nb=r(g).

COROLLARY. By the perspective isomorphism of L, to L., with
axis h(a,), the image of g(a,) is hRQg(a,).
Proor. Putting f=hXg, we have

h(al) Uf(a1) =g(g" 1h(a1) Uf(al)) :gf(h(al) U a1)
:gf(h(al) U 612) :h(al) Ug(az) .

For the associativity of the operation (X) we shall prove
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PROPOSITION 7. For every f=G,;, g=Gj, and h< Gy, where i, 5, k
and I are all different, we have

(fROXDh=fX(EXh).

PrOOF. Since h~fh=f, we have
(fRORQM=h"(fROr=f I 'gh
=fR{8EeRm} =(fRONfRER ) .

§ 3. Auxiliary ring.

To establish definite isomorphisms among all G,;, we take first
from every G;(1=2,38,---,#) an automorphism I',; such that =(I"))=a,
and I' (a)Na,=0. As we have shown in §2, there exist following
isomorphisms: '

Gz‘jaf'_)rlz'@fe Glj’ and Gz‘l 9f"’f®F1;EGij'

Now we determine I';; for 7,j4=1 by the equation I',;QI';=T;.
Then we have

ryQry=ry, for every i,j, k=1, (*)
because we have I' ;Q(I'; QI ;) =T, QT ) QT ;=T

Every I';, is determined by the equation I';, QI'\;=I";;, where I';
does not depend on j, because we have for another k&

Iy QU= QI ;RQT =T QT ="
The equation I';;QT";,=TI";, is also valid since we have (I'; RQI'; )Ry,
=I';QTI;,=TI;, where kis different from 1,7 j. Therefore (*) is true
for every different i, j, k.

Since by Proposition 6 we have =(I';)=a; and I';(a)Na;=0 for
every i, j, we obtain a definite isomorphism of G;; to G,;: f—=TI',;Xf
and that of G;; to G;,: f—=fRI .

Now we consider every pair (i, j)(1<1, j<mn,i==j) as a point of
the Cartesian plane with co-ordinates iz, j, and we denote such points
by P, Q, R, S, T,---. If P=(i,j) we write G, for G;;. If P3=Q and
the line PQ is parallel to one of the co-ordinates axis, then we
assign to the vector PQ the isomorphism of G, to G, which is

defined above. If 155?, é?@,---,g‘_f“ are vectors in succession each of
which is parallel to one of the co-ordinate axis, and such that the
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end point of one vector coincides with the origin of the following
vector, then we say PQR..-ST forms a pass. To every such pass
PQR...ST we assign the isomorphism of G, to G, composed of the

isomorphisms corresponding to the vectors PZ), G—)},---,.ﬁ’. We write
PQR..ST~PQ'R'---S'T if these two passes determine the same iso-
morphism. We congsider also PP as a pass and denote it by 0, and assign
to it the identity mapping of G,. If P, @ and R are on the same
line which is parallel to one of the axis, then we have by (*), PQR
~PR and PQPR~PQR~PR and hence PQP~0. Moreover every
rectangular pass PQRSP is ~0, since we have PQR~PSR as an
immediate consequence of the associativity of the operation X. Then
we can see easily that every closed pass is ~0. We have namely
only to ‘decompose’ the closed pass into rectangular passes. In doing
so, we must take into consideration that G, is not defined for points
P=(i, 7). We can, however, easily arrange the ¢decomposition’, so
that these points do mnot appear as vectors of rectangular passes,
since we have >4 by hypothesis. Thus P=(i, j), T=(k, l) being any
two points under cosideration, every pass joining P with 7" determine
the same definite isomorphism of G, to G;.

Let R be a group which is isomorphic to Gp=G;;. The isomor-
phic image of a =R in G;; will be denoted by («);. By what we
have proved, we can take (a); for every i, j, so that the relations
I';; (), =(a);; QT s, =(a);, hold.

We write a+p8 for the group multiplication of « and B in R,
and we define the new multiplication ag as:

(af)ir= (a)ij® (2 -
We can see easily by the associativity of ) that (a),;(8);; is inde-
pendent of j, so that this definition has a sence, and by virtue of
Proposition 4 and 7, R can be considered as a ring by addition and
multiplication thus defined, and it has the unit 1 for which we have
(1);; =T}

R is said to be the auxiliary ring of L determined by the frame
{a., Fz’i ; i,j=1, 2,.--, n}.

By Proposition 6 z((a),;;) does not depend on i, so we put z(a)=
n((a);;). Then we can see easily that the image of z(a) by the per-
spective isomorphism of L; to L; with axis I'j(a;) (=I";(a))) is =)
Let a@,=u@v be a decomposition of @;. This induces the decomposi-
tion of every element of G; as defined in §2, hence in particular of
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I';. Let ¢; be the u-part of I';;, where ¢ is an element of R. Then
for every a & R, the u-part of (a),=I;Q(a);, is clearly (¢); & (@);
Since decomposition operator is idempotent, ¢ is an idempotent ele-
ment, and the v-part of (a),, is obviously ((1—¢)a),,. Moreover we
have je)=(a;U(e);f(@))Na;=wmUT,(a;))Na; and hence =(c)=u and
similarly z,(1—¢)=v. Let f&G;, and f=(a);(8);-:- be the direct sum
decomposition of G; to [;LGW a, f,--- being elements of K. Further-

VES]

more, let £ be any element of R. We shall denote with &f the ele-
ment of G; which has the decomposition (éa);;(£8);--. Then ef=
(e);i(eB);y -+ 1s obviously the wu-part of f and we have =n(f)=n(¢f)U
z((1—e¢)f) because z(ef )<< =(f).

By virtue of Proposition & we have RaDRp if and only if = (a)
>u=,(8) for any ¢ Hence Ra—rm(a) gives one-to-one and order-
preserving mapping of all principal left ideals of R onto L,. There-
fore we see that for every element o of R, there exists an idempotent
¢ such that we have Ra=Re. A ring which has this property is said
to be regular. We can see easily that the totality of the principal
left ideals of a regular ring R constitutes a complemented modular
lattice, denoting L(R), as a sublattice of the lattice of all left ideals
of R. (Also the totality of the principal right ideals of R constitutes
a complemented modular lattice, but we make exclusively use of L(R).)

Thus we have proved

THEOREM 2. The auxiliary ving R of L is regular and L(R) is
isomorphic to L; by the correspondence: RoSrl«).

§4. Representation.

Let R be a regular ring. R may be considered as a module with
the ring mutiplication from the left as operators. We write R for
the direct sum of # modules which are all isomorphic to R. L(R»)
will denote the set of all finitely generated submodules of R».

Then we shall prove

THEOREM 8. L(R") conslitutes a complemented modular latiice as
a sublattice of the lattice L(R") of all submodules of R* and it has a
frame (with a homogeneous basis of degree n) which determines (if
n=4) the auxiliary ving of L(R"), which ts isomorphic to R.

Proor. Let e;(1=1,2,.--.,n) be a basis of R* as R-module: R*=
Re,+Re,+---+Re,. Let M, (R) be the n-square matrix ring over R,
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and S a submodule of R". We denote with S the left ideal of M, (R)
consisting of all matrices whose row-vectors are in S. The corre-

spondence S+5S gives an isomorphism between the lattice of all
submodules of R~ and that of all left ideals of M, (R).

First we shall prove that every element S of L(R*) has a com-
plement in I(R”). We prove it by induction. This is true for n=1,
as R is a regular ring. We suppose that it is true for R»~! and put
R*=Re,+ R, where R,=Re,-----+Re,. Let S be an arbitrary ele-
ment of L(R*) with generators a,,a, -, a,. If S, is the image of S
by the projection of R* to Re,, we can find an idempotent ¢ in R
such that S,=Ree,. There exists an element @ in S of the form
a=ce,+--+, S0 we can determine a}(i=1,2,---,m) such that a} are in
R, and a;,=a,a+a’ for some «; in R, then a/ generate a submodule
S, which obviously coincides with SN R, Let S| be a complement of
S, in L(Re,) and S, be that of S, in L(R,), then we can see easily
that S/US, is a complement of S in L(R*).

Therefore every principal left ideal of M, (R) has a complement
in the lattice of all left ideals, and hence M (R) is a regular ring.
Then L(R"), being isomorphic to L(M (R)), is a complemented modular
lattice.

Re; (i=1, 2,-.-, n) obviously constitute a homogeneous basis of L(K»),
because R(e;--e;) is a complement of both Re; and Re; in Re,;+ Re;.

For every a R there exists an automorphism of R* (denoted
by («);;) which maps e; to e;—ae; and fixes every e, (k==i). (a); can
be considered as an automrphism of the lattice L(R”). We can see
easily that («); is normal for Z'Rej and the totality of them, for
all « & R, constitues a group isoriqorphic to the addition group of R.
This group corresponds to G;; defined in §2. Moreover by simple
calculations we have («);&(8);,=(aB);. Thus {(Re;, (1);;;4,7=1,2,---n}
constitutes a frame, which determines the auxiliary ring isomorphic
to R.

Thus the proof is completed.

The above theorem, together  with the following will complete
our theory.

THEOREM 4. Lef L and L* be complemented modular latiices with
homogeneous basis {a;;i=1,2,...,n}, {a¥;i=1,2,.--,n} of the same degree
n=4. If the auxiliary ring R of L delermined by a frame {(a,T;;
i, j=1,2,--,m} is isomorphic to the auxiliary ring R* of L* determined
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by a frame {a¥, '} ;i,j=1,2,.--,n}, then L is isomorphic to L*.

PrROOF. The isomorphic mapping of R to R* will be denoted by *.
This sign * will be also used to indicate the corresponding objects
in various senses, easy to be understood in each case. E.g. the
homogeneous basis {@;;i=1,2,-.-,n} of L will determine the groups
G;; introduced at the beginning of §2. The corresponding groups
determined by {a};i=1,2,--.,n} will be denoted by G¥%. Then there
exists an isomorphic mapping («);—(a*); of G;; to Gf; and this iso-
morphism can be extended to an isomorphism of G; to Gf. Here we
remark that if f&G,gcG, and »(g)<a,U---Ua, then we have

obviously (fRg)*=f*Xg*, and hence
) =(f(fRQD)* = fRQ*=f*(f*Rg*)=g*"'f*g*.

»n
s — — * _J* .
Putting Ly =L, ua, ,u-ve,» Go=11 1(;1'_7' and L(i)_“La;x'U---Ua:,;7 Gt =
=i

(lani

["I G}, we shall prove the following proposition (P;) for every i=1,

F=i+1
2,eee, 7.

(P;): There exists an isomorphism: L, >x—x*< L, such that
we have

(i) za)* =m;(a*) for every j=i, a&R,

(i)  fle)*=f*(x%) for every feG,,, and

(iii) =(f)*==(f*) for every f&Gy.

(P,) is true, because every element of L., may be written as
(), and m,(a)— =, (a*) gives the desired isomorphism. (P),i=1,2,
--,m—1 will be proved, if we show (P,)—(P;.,) for i=n,.-.,2. We
shall show (P,)—(P,), as (P)—(P;.,) for other i ’s will be shown in
the same way.”

Let x—x* be an isomorphism of L, to L, satisfying (i), (ii), (iii)
(for =2). We shall first prove that =(f)*==(f*) for fc G, If
n(f)<a,Ua,U---Ua, then we have I, Qf=G. and hence =(f)*=
a(ly Qf)Y =n(TERf*)==n(f*). If there exist g in G, and f,=(a),
in G,, such that f=g-'f,g, then by Proposition 8 we have =(f)=
g 'n(f))=g '(z,(x)) and hence n(f)*=g* '(z,(a*))=n(g* 'f,*g*)=xr(f*).
We can reduce the proof of z(f)*==(f*) for general f— G, to the
above two cases. An arbitrary f& G, can be written as f=(a), 2

"75) In the proof of von Neumann, the step (P,)—(P;) requires special considera-
tions, whereas (P;)—(Pj-;), i=n,---,3 are proved by the same method. In our proof,
all steps (P))—>(Pi-1), i=n,+, 2 are treated in the same way.
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where z(h)<a,U---Ua,. Let & be an element of R such that a=aéq,
then e=af¢ is idempotent. Now put g=I',,X¢éh, then g is in G, and

6f: (ect),y e eh = (a)w * a(fh) = (a)m ¢ ((a)lz ®g) :gil(a)lzg’ and hence n(ef)*
=n(e*f*). On the other hand we have

n((l_e)f):”((l'—f)h)gaa u--vea,,
so we have also z((1—e)f)*=n((1—¢*)f*). Therefore

2(f)* =z(ef )* Un((1—e)f ) =n(e*f*) Un((1 —e*)f *)=n(f*).

Now we shall extend the isomorphism x—x* of L, to L% and
r(a)—r(a*) of L, to L* (we write x—x* also in the latter case) to
an isomorphism of L, =L to L¥=L*.

Suppose we have proved the equivalency of two inequalities
f)Uu=<g(y)Uv and f*x*)Uu*<g*(y*)Uv* for every f,g=G,x,y
<a, and #,v&L,. Then the element f*(x*)UJu* of L* is determined
uniquely by an element f(x) Uz of L, independently of its expression.
Since every element of L can be written as f(x) U#, an order-preserv-
ing one-to-one mapping of L onto L* is defined by f(x) Uu—f*(x*) U n*.
For this mapping (i), (ii) and (iii) of (P,) are obviously satisfied.

Thus we have only to prove that f(x) Uu<g(y)Uv implies f*(x*)
Un* < g*¥(y*)Uv*, since the converse is then also true by reason of
symmetry.

f(x)Uu=<g(y)Uv implies obviously ¥<y, #<<v and hence x* < y*,
u*<v*., Let ¢=R be an idempotent such that = (¢)=x Then we
have

g~ 'fla)=g (%) =y Uv,

n-(gg"lf) :(eg-lf(al) Ue)na,<@ue)na=v,
and hence z(c*g*~'f*)<<v*. From the last inequality, we have

grfrxF)=e"g*f(a) = af Uv*
and -also g*-'f*(x*) < (af Uv*)N(y*Ual)=y*Uv* Thus we obtain the
inequality g*~'f*(x*)Uu* <y*Uv* which is equivalent to f*(x*)Uu*
=g*(y*)uv*
We have thus proved (P,) and this implies our theorem as L, =

L, L?‘i) :L*-
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