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On finite-dimensional perturbations
of self-adjoint operators.
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\S 1. Introduction. The purpose of the present paper is to show
that a perturbation of finite rank does not change the main structure
of a self-adjoint operator in a sense to be specified below1), and to
deduce certain asymptotic relationships between the one-parameter
continuous groups generated by the unperturbed and perturbed self-
adjoint operators.

Let $\mathfrak{H}$ be a (not necessarily separable) Hilbert space, $H_{0}$ a (not
necessarily bounded) self-adjoint operator in $\mathfrak{H}$ and $V$ a self-adjoint
operator with finite rank $m$ . Then $H_{1}=H_{0}+V$ is also self-adjoint
with domain $\mathfrak{D}$ identical with that of $H_{0}$ . We assert that $H_{1}$ and $H_{0}$

are unitarily equivalent to each other except for separable, singular
parts with multiplicities not exceeding $m$. A more precise expression
is given by

THEOREM 1. Let $H_{0}$ , $H_{1}$ be as above. Then there exist two sub-
spaces2)

$\mathfrak{M}_{0},$ $\mathfrak{M}_{1}$ with respective projeclions $P_{0},$ $P_{1}$ and a subspace $\mathfrak{M}_{01}\subset$

$\mathfrak{M}_{0}\cap \mathfrak{M}_{1}$ with the following properties.
1) $\mathfrak{M}_{01}$ reduces both $H_{0}$ and $H_{1}$ ; the parts of $H_{0}$ and $H_{1}$ in $\mathfrak{M}_{01}$

are identical.
2) $\mathfrak{H}\ominus \mathfrak{M}_{01}$ is (and hence $\mathfrak{H}\ominus \mathfrak{M}_{0}$ and $\mathfrak{H}\ominus \mathfrak{M}_{1}$ are a fortiori) separa-

ble; the parts of $H_{0}$ and $H_{1}$ in $\mathfrak{H}\ominus \mathfrak{M}_{01}$ have spectra with mulliplicities
not exceeding $m$ .

3) $\mathfrak{M}_{0}$ and $\mathfrak{M}_{1}$ reduce $H_{0}$ resp. $H_{1}$ ; the parts of $H_{0}$ and $H_{1}$ in $\mathfrak{M}_{0}$

resp. $\mathfrak{M}_{1}$ are unitarily equivalent to each other.
4) The parts of $H_{0}$ and $H_{1}$ in $\mathfrak{H}\ominus \mathfrak{M}_{0}$ resp. $\mathfrak{H}\ominus \mathfrak{M}_{1}$ are singular.

1) In his Technical Report 17 ” On a problem of Hermann Weyl in thc theory
of singular Sturm Liouville equations, ” N. Aronszajn states that he and W. F.
Donoghue have obtained results similar to ours. Also M. Rosenblum announces in
the abstract 99 in Bull. Amer. Math. Soc. 62 (1956) p. 30 results closely related to
ours. (Added in proof) see end of paper.

2) We mean by a subspace a closed linear manifold of $\mathfrak{H}$ .
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Thus $\mathfrak{M}_{0}$ and $\mathfrak{M}_{1}$ contain the absolutely continuous parls of $\mathfrak{H}$ wilh
respect to $H_{0}$ resp. $H_{1}$ .

5) The parts of $H_{0}$ and $H_{1}$ in $\mathfrak{M}_{0}\ominus \mathfrak{M}_{01}$ resp. $\mathfrak{M}_{1}\ominus \mathfrak{M}_{01}$ are abso-
lutely continuous.

Note that $\mathfrak{H}=\mathfrak{M}_{01}\oplus[\mathfrak{M}_{0}\ominus \mathfrak{M}_{01}]\oplus[\mathfrak{H}\ominus \mathfrak{M}_{0}]$ and $\mathfrak{H}=\mathfrak{M}_{01}\oplus[\mathfrak{M}_{1}\ominus \mathfrak{M}_{01}]$

$\oplus[\mathfrak{H}\ominus \mathfrak{M}_{1}]$ .
Here and in the sequel the terms “ absolutely continuous “ and

“ singular “ are used in the following sense. With respect to a given
self-adjoint operator $H$ with the resolution of identity $\{E(\lambda)\}$ , an $x\in \mathfrak{H}$

is said to be absolutely continuous resp. singular if $(E(\lambda)x, x)$ is abso-
lutely continuous resp. singular as function of $\lambda$ . Let $\mathfrak{H}_{a}$ and $\mathfrak{H}_{s}$ be
the set of all absolutely continuous resp. singular elements. Then
these are subspaces of $\mathfrak{H}$ , both reduce $H$ and $\mathfrak{H}=\mathfrak{H}_{a}\oplus \mathfrak{H}_{s}$ . $\mathfrak{H}_{a}$ and $\mathfrak{H}_{s}$

will be called the absolutely continuous resp. singluar parts of $\mathfrak{H}$ with
respect to the operator $H$. The parts of $H$ in $\mathfrak{H}_{a}$ and $\mathfrak{H}_{s}$ will be
called the absolutely continuous resp. singular parts of $H$ If $\mathfrak{H}_{s}=\{0\}$

resp. $\mathfrak{H}_{a}=\{0\},$ $H$ is said to be absolutely continuous resp. singular, and
$\mathfrak{H}$ is said to be absolutely continuous resp. singular with respect to $H$.
Also a subspace of $\mathfrak{H}$ will be said to be absolutely continuous resp.
singular with respect to $H$ if all its elements are absolutely continuous
resp. singular.

Theorem 1 implies in particular that the absolutely continuous
part of a self-adjoint operator is stable under a perturbation of finite
rank. This is not necessarily true for perturbations $V$ with infinite
rank, even when $V$ belongs to Schmidt class. In fact, it is well
known3) that any self-adjoint operator can be changed into one with
a pure point spectrum by such a perturbation $V$ with arbitrarily
small Schmidt norm.

On the other hand, it has been shown4) that there exists a class
of perturbations with infinite rank which do not change absolutely
continuous spectra extending over an interval. These perturbations
are expressed as integral operators with H\"older continuous kernels.
In our theorem, however, we do not impose any continuity conditions
on the operator $V$, though $V$ could be given a form of integral

3) J. v. Neumann, Charakterisierung des Spektrums eines Integraloperators,
Actualit\’es scientifique et industrielles, 229, Paris, 1935.

4) K. Friedrichs, On the perturbation of continuous spectra, Communications
on Pure and Applied Mathematics 1 (1948), pp. 361-406; Ueber die Spektralzerlegung
eines Integraloperators, Math. Ann. 115 (1938), pp. 249-272.



On finite-dimensional perturbations of self-adjoint operators. 241

operator in some functional realization of $\mathfrak{H}$ .
The unitary equivalence of the parts of $H_{0}$ and $H_{1}$ in $\mathfrak{M}_{0}$ resp.

$\mathfrak{M}_{1}$ implies the existence of a partially isometric operator5) $U$ with
initial set $\mathfrak{M}_{0}$ and final set $\mathfrak{M}_{1}$ which transforms $H_{0}P_{0}$ into $H_{1}P_{1}$ .
Such a $U$ is by no means uniquely determined, even when $\mathfrak{M}_{0}$ and $\mathfrak{M}_{1}$

are given. We shall show, however, that there exist two distinguished
operators $U_{\pm}$ which play the part of $U$.

THEOREM 2. The quantities $\mathfrak{M}_{01},$ $\mathfrak{M}_{0},$ $\mathfrak{M}_{1},$ $P_{0},$ $P_{1}$ of Theorem 1 can
be chosen in the following way. The strong limits
(1.1) $s-\lim_{t\rightarrow\pm\infty}\exp(itH_{1})\exp(-itH_{0})P_{0}=U_{\pm}$

exist, are partially isometric operalors with initial set $\mathfrak{M}_{0}$ and final set
$\mathfrak{M}_{1}$ . $U_{\pm}$ transform the self-adjoint operator $H_{0}P_{0}$ into $H_{1}P_{1}$ , that is,

(1.2) $H_{1}P_{1}=U_{\pm}H_{0}P_{0}U_{\pm}^{k}$ , $H_{0}P_{0}=U_{\pm}^{*}H_{1}P_{1}U_{\pm}$ .
Their adjoints $U_{\pm}^{*}$ are also given by

(1.3) $s-\lim_{t\rightarrow\pm\infty}\exp(itH_{0})\exp(-itH_{1})P_{1}=U_{\pm}^{*}$ .
The operators $U_{\pm},$ $U_{\pm}^{*}$ are reduced by $\mathfrak{M}_{01}$ , and their parts in $\mathfrak{M}_{01}$ are
equal to the identity. The operators6) $S_{0}=U_{+}^{*}U_{-}$ and $S_{1}=U_{+}U_{-}^{\star}$ are
reduced by $\mathfrak{M}_{0}$ resp. $\mathfrak{M}_{1}$ , and their respective parts are unitary. $S_{0}$ and
$S_{1}$ commule with $H_{0}$ resp. $H_{1}$ .

It should be noted that the subspaces $\mathfrak{M}_{01},$ $\mathfrak{M}_{0},$ $\mathfrak{M}_{1}$ are not neces-
sarily uniquely determined by the given pair $H_{0},$ $H_{1}$ . In particular
if we disregard proposition 2) of Theorem 1, $\mathfrak{M}_{0}$ and $\mathfrak{M}_{1}$ can be
chosen to be the absolutely continuous parts of $\mathfrak{H}$ with respect to $H_{0}$

and $H_{1}$ respectively. This is seen by the following considerations.
Let $\mathfrak{M}_{0}$ etc. be a set of quantities satisfying these theorems.

The elements of $\mathfrak{M}_{0}$ singular with respect to $H_{0}$ belong to $\mathfrak{M}_{01}$ by
5) and these are mapped onto themselves by $U_{\pm}$ , so that they are at
the same time singular with respect to $H_{1}$ and belong to $\mathfrak{M}_{1}$ . We
denote this set by $\mathfrak{N};\mathfrak{N}$ is obviously a subspace of $\mathfrak{M}_{01}$ . Set $\mathfrak{M}_{0}^{\prime}=$

$\mathfrak{M}_{0}\ominus \mathfrak{N},$ $\mathfrak{M}_{1}^{\gamma}=\mathfrak{M}_{1}\ominus \mathfrak{N},$ $\mathfrak{M}_{01}^{\prime}=\mathfrak{M}_{01}\ominus \mathfrak{N}$ and denote by $P_{0}^{\prime},$ $P_{1}^{\prime}$ the projections
on $\mathfrak{M}(,$ $\mathfrak{M}_{1}^{\prime}$ respectively. Then both $U_{\pm}$ map $\mathfrak{M}_{0}^{\prime}$ onto $\mathfrak{M}_{1}^{\prime}$. Define the

5) F. J. Murray and J. $v$ . Neumann, On rings of operators, Ann. Math. 57 (1936),
pp. 116-229.

6) $S_{0}$ corresponds to what is called the scattering operator in quantum mecha-
nics, where $H_{0}$ and $H_{1}$ represent unperturbed and perturbed Hamiltonians of the
mechanical system. Here it is usual that $\mathfrak{M}_{0}$ coincides with $\mathfrak{H}$ so that $S_{0}$ is unitary.
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operators $U_{\pm}^{\prime}$ by
$U_{\pm}^{\prime}x=U_{\pm}x$ for $x\in \mathfrak{M}_{0}^{\prime}$ or $x\in \mathfrak{H}\ominus \mathfrak{M}_{0}$ ,
$U_{\pm}^{\prime}x=0$ for $x\in \mathfrak{N}$ .

Then $U_{\pm}^{\gamma}$ are partially isometric with initial set $\mathfrak{M}_{0}^{\prime}$ and final set $\mathfrak{M}_{1}^{\prime}$ .
It is now easily seen that Theorems 1 and 2 are true when $\mathfrak{M}_{01},$ $\mathfrak{M}_{0}$ ,
$\mathfrak{M}_{1},$ $P_{0},$ $P_{1},$ $U_{\pm}$ are replaced by the corresponding quantities with primes,
with the single exception of proposition 2) of Theorem 1, and now
$\mathfrak{M}_{0}^{\prime}$ and $\mathfrak{M}^{\prime_{1}}$ are exactly the absolutely continuous parts of $\mathfrak{H}$ with
respect to $H_{0}$ and $H_{1}$ respectively.

\S 2. Separation of the subspace $\mathfrak{M}_{01}$ . Let $\mathfrak{R}_{V}$ be the range of
$V$ ; it is an m-dimensional subspace. Let $\mathfrak{M}(V, H_{0})$ and $\mathfrak{M}(V, H_{1})$ be the
smallest subspaces containing $\mathfrak{R}_{V}$ and reducing $H_{0}$ resp. $H_{1}$ . Since
$V\mathfrak{M}(V, H_{0})\subset \mathfrak{R}_{V}\subset \mathfrak{M}(V, H_{0})$ and $V[\mathfrak{H}\ominus \mathfrak{M}(V, H_{0})]\subset V(\mathfrak{H}\ominus \mathfrak{R}_{V})=\{0\}$ on ac-
count of self-adjointness of $V_{f}\mathfrak{M}(V, H_{0})$ reduces $V$, and hence $H_{1}$ , too.
Thus we must have $\mathfrak{M}(V, H_{1})\subset \mathfrak{M}(V, H_{0})$ and, since the converse rela-
tion holds by symmetry, we have the equality $\mathfrak{M}(V, H_{0})=\mathfrak{M}(V, H_{1})$ .
We set $\mathfrak{M}_{01}=\mathfrak{H}\ominus \mathfrak{M}(V, H_{0})$ . $\mathfrak{M}_{01}$ reduces both $H_{0}$ and $H_{1}$ and it is
easily seen that $H_{0}$ and $H_{1}$ coincides in $\mathfrak{M}_{01}$ .

Furthermore, as the subspace $\mathfrak{H}\ominus \mathfrak{M}_{01}$ reducing $H_{0}$ is “ generated “

by some $m$ elements, it is separable and the part of $H_{0}$ in it has a
spectrum with multiplicity not exceeding $m$. The same is true for $H_{1}$ .

Thus we may restrict ourselves to the investigation of the opera-
tors $H_{0}$ and $H$ in the separable subspace $\mathfrak{H}\ominus \mathfrak{M}_{01}$ . For if the theorems
have been proved in the space $\mathfrak{H}\ominus \mathfrak{M}_{01}$ , we have only to set $U_{\pm}$ equal
to identity in the $comp^{1}\wedge ementary$ subspace $\mathfrak{M}_{01}$ . Without loss of
generality, we may therefore assume from the outset that $\mathfrak{H}$ is
separable and coincides with $\mathfrak{M}(V, H_{0})=\mathfrak{M}(V, H_{1})$ , and prove the
theorems with $\mathfrak{M}_{01}=\{0\}$ .

\S 3. The case $m=1$ . We first prove the theorems for $m=1$ ; the
general case will be reduced to this case in \S 6. Thus we have

$ Vx=c(x, \varphi)\varphi$ ,

where $c$ is a real number and $\varphi\neq 0$ is a fixed element of $\mathfrak{H}$ . As re-
marked in \S 2, we may and will assume that $\mathfrak{H}$ coincides with the
smallest subspace reducing $H_{0}$ and containing $\varphi$ , and that the same is
true with respect to $H_{1}$ . Thus both $H_{0}$ and $H_{1}$ have simple spectra,
and each $x\in \mathfrak{H}$ admits of two representations by complex-valued Baire
functions $f_{0}(\lambda, x),$ $f_{1}(\lambda, x)$ on reals in the form
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(3.1) $ x=\int f_{j}(\lambda, x)dE_{j}(\lambda)\varphi$ , $||x||^{2}=\int|f_{J}(\lambda, x)|^{2}d\rho_{j}(\lambda)$ , $j=0,1$ ,

where $\{E_{j}(\lambda)\}$ is the resolution of identity belonging to $H_{j}$ and $\rho_{J}(\lambda)=$

$(E_{j}(\lambda)\varphi, \varphi),$ $j=0,1$ . The non-decreasing functions $\rho_{0},$ $\rho_{1}$ determine two
measures, again denoted by $\rho_{0},$ $\rho_{1}$ , on Borel sets of real numbers. The
functions $f_{0}(\lambda, x),$ $f_{1}(\lambda, x)$ are determined by $x$ uniquely up to equivalence
with respect to the measures $\rho_{0}$ resp. $\rho_{1}$ . These functions may be
called the $H_{0^{-}}$ and $H$ -representations of $x$, and the following equations
hold at least for bounded, complex-valued Baire functions $g$.
(3.2) $f_{j}(\lambda, g(H_{j})x)=g(\lambda)f_{J}(\lambda, x)$ , $j=0,1$ .

We shall now determine the relation between the measures $\rho_{0}$

and $\rho_{1}$ . It follows from $H_{1}=H_{0}+V$ that

$(H_{1}-\zeta)^{-1}-(H_{0}-\zeta)^{-1}=-(H_{0}-\zeta)^{-1}V(H_{1}-\zeta)^{-1}$

for any non-real complex number $\zeta$, whence
$((H_{1}-\zeta)^{-1}x, \varphi)-((H_{0}-\zeta)^{-1}x, \varphi)=-c((H_{1}-\zeta)^{-1}x, \varphi)((H_{0}-\zeta)^{-1}\varphi, \varphi)$ .

On introducing the notations

$J(\zeta, f, \rho)=\int(\lambda-\zeta)^{-1}f(\lambda)d\rho(\lambda)$ , $J(\zeta, \rho)=J(\zeta, 1, \rho)$

and noting (3.1) and (3.2), the above equation can be written as
(3.3) $[1+cJ(\zeta, \rho_{0})]J(\zeta,f_{1}( x),$ $\rho_{1}$ ) $=J(\zeta,f_{0}( x),$ $\rho_{0}$).

Similarly we deduce

(3.4) $[1-cJ(\zeta, \rho_{1})]J(\zeta,f_{0}( x),$ $\rho_{0}$ ) $=J(\zeta,f_{1}( x),$ $\rho_{1}$ ).

In particular we have $f_{0}(\lambda, \varphi)=f_{1}(\lambda, \varphi)=1$ and these formulas reduce
for $ x=\varphi$ to
(3.5) $[1+cJ(\zeta, \rho_{0})][1-cJ(\zeta, \rho_{1})]=1$ .

The following properties of the function $J$ are well known.7) If
$f\in L_{2}(\rho)$ , the limits

$J(\lambda\pm i0,f, \rho)=\lim_{e\downarrow 0}J(\lambda\pm i_{6},f, \rho)$

exist and are finite for almost all real $\lambda$ , and

(3.6) $J(\lambda+iO,f, \rho)-J(\lambda-iO,f, \rho)=2\pi if(\lambda)\rho^{\prime}(\lambda)$ $a$ . $e.$ ,

7) See $e$ . $g$ . R. Nevanlinna, Eindeutige analytische Funktion, Berlin, 1936.
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where $\rho^{\prime}(\lambda)=d_{\rho}(\lambda)/d\lambda$ exists a. e. Note that $J(\lambda\pm iO,f, \rho)$ are complex
conjugates to each other whenever $f$ is real.

It follows from (3.5) and (3.6) that

(3.7) $\rho_{1}^{\prime}(\lambda)=|\omega(\lambda\pm i0)|^{-2}\rho_{0}^{\prime}(\lambda)$ a. e.,
where
(3.8) $\omega(\zeta)=1+cJ(\zeta, \rho_{0})=[1-cJ(\zeta, \rho_{1})]^{-1}$

and $\omega(\lambda\pm iO)$ are finite and non-vanishing $a$ . $e$ .
(3.7) shows that $\rho_{1}^{\prime}(\lambda)=0$ if and only if $\rho_{0}^{\prime}(\lambda)=0$ except for a null

set of $\lambda$ , that is, that the absolutely continuous parts of $\rho_{0}$ and $\rho_{1}$

are equivalent to each other. According to the theory8) of unitary
equivalence of self-adjoint operators with simple spectra, this is suf-
ficient to conclude the unitary equivalence of the absolutely continuous
parts of $H_{0}$ and $H_{1}$ . We shall, however, establish this unitary equi-
valence in the next section by a more explicit construction.

\S 4. Introduction of $U_{\pm}$ . In consequence of the equivalence of
the absolutely continuous parts of the measures $\rho_{0}$ and $\rho_{1}$ , there exist
two mutually disjoint Borel sets $A,$ $S$ of real numbers with the fol-
lowing properties. $S$ is a null set and is a support of the singular
parts of $\rho_{0}$ and $\rho_{1}$ . $A$ is a support of the absolutely continuous parts
of $\rho_{0}$ and $\rho_{1}$ , and both $\rho_{0}^{\prime}(\lambda)$ and $\rho_{1}^{\prime}(\lambda)$ exist and are positive for $\lambda\in A$ .

We denote by $E(X),j=0,1$ , the spectral measure of a Borel set
$X$ determined by $\{E_{J}(\lambda)\}$ , and set

$P_{0}=E_{0}(A)$ , $P_{1}=E_{1}(A)$ , $\mathfrak{M}_{0}=P_{0}\mathfrak{H}$ , $\mathfrak{M}_{1}=P_{1}\mathfrak{H}$ .
Then $\mathfrak{M}_{0}$ and $\mathfrak{M}_{1}$ are the absolutely continuous parts of $\mathfrak{H}$ with respect
to $H_{0}$ resp. $H_{1}$ . It should be noted that $\mathfrak{M}_{0},$ $\mathfrak{M}_{1}$ are uniquely deter-
mined by these conditions, although the set $A$ is not.

We now define two operators $U_{\pm}$ by

(4.1) $ U_{\pm}x=\int_{A}\omega(\lambda\pm i0)f_{0}(\lambda, x)dE_{1}(\lambda)\varphi$ .
This definition is permitted because $\omega(\lambda\pm iO)$ is defined $a$ . $e.$ , the spectral
measure $E_{1}$ is absolutely continuous on $A$ and

(4.2) $||U_{\pm}x||^{2}=\int_{A}|\omega(\lambda\pm i0)|^{2}|f_{0}(\lambda, x)|^{2}\rho_{1}^{\prime}(\lambda)d\lambda$

$=\int_{A}|f_{0}(\lambda, x)|^{2}\rho_{0}^{\prime}(\lambda)d\lambda=||P_{0}x||^{2}$ .
8) M. H. Stone, Linear transformations in Hilbert space, New York, 1932,
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$Th_{0}i.s\mathfrak{M}$

shows that $U_{\pm}$ are partially isometric operators with initial set

To determine the adjoints $U_{\pm}^{*}$ , we note that

$(U_{\pm}x, y)=\int_{A}\omega(\lambda\pm i0)f_{0}(\lambda, x)f_{1}(\lambda, y)^{\star}\rho_{1}^{\prime}(\lambda)d\lambda$

$=\int_{A}f_{0}(\lambda, x)[\omega(\lambda\pm i0)^{-1}f_{1}(\lambda, y)]^{\star}\rho_{0}^{\prime}(\lambda)d\lambda$

$=(x, \int_{A}\omega(\lambda\pm i0)^{-1}f_{1}(\lambda, y)dE_{0}(\lambda)\varphi)$ ,

where we used $\star$ to denote complex conjugate. Thus we obtain

(4.3) $ U_{\pm^{\xi}}y=\int_{A}\omega(\lambda\pm i0)^{-1}f_{1}(\lambda, y)d\dot{E}_{0}(\lambda)\varphi$

It follows as above that $||U_{\pm}^{*}y||=||P_{1}y||$ , showing that $U_{\pm}^{\star}$ are par-
tially isometric with initial set $\mathfrak{M}_{1}$ . Summing up, we see that $U_{\pm}$

are partially isometric operators with initial set $\mathfrak{M}_{0}$ and final set $\mathfrak{M}_{1}$ .
Thus
(4.4) $U_{\pm}^{*}U_{\pm}=P_{0},$ $U_{\pm}U_{\pm}^{*}=P_{1},$ $U_{\pm}P_{0}=P_{1}U_{\pm}=U_{\pm},$ $U_{\pm}^{*}P_{1}=P_{0}U_{\pm}^{*}=U_{\pm}^{*}$ .

Let $X$ be any Borel subset of $A$ . Then

$ U_{\pm}E_{0}(X)x=U_{\pm}\int_{X}f_{0}(\lambda, x)dE_{0}(\lambda)\varphi$

$=\int_{X}\omega(\lambda\pm i0)f_{0}(\lambda, x)dE_{1}(\lambda)\varphi=E_{1}(X)U_{\pm}x$ .
Thus we have $U_{\pm}E_{0}(X)=E_{1}(X)U_{\pm}$ and, taking the adjoint, $U_{\iota}^{\star}E_{1}(X)=$

$E_{0}(X)U_{\pm}^{\star}$ . These show explicitly that the parts of $H_{0}$ and $H_{1}$ in $\mathfrak{M}_{0}$

resp. $\mathfrak{M}_{1}$ are unitarily equivalent to each other. Combined with the
remark of \S 2, this completes the proof of Theorem 1 for $m=1$ with
$U=U_{\pm},$ $\mathfrak{M}_{01}=\{0\}$ , and also proves (1.2) of Theorem 2.

For later use we shall deduce the relation between the two
representations $f_{0}( x)$ and $f_{1}( x)$ of the same element $x$. Setting
$\zeta=\lambda\pm i0$ in (3.4) and subtracting, we easily find that $f_{1}(\lambda, x)\rho_{1}^{\prime}(\lambda)=$

$\omega(\lambda\mp i0)^{-1}f_{0}(\lambda, x)\rho_{\cup}^{\prime}(\lambda)-c\rho_{1}^{\prime}(\lambda)J(\lambda\pm i0,f_{0}( , x), \rho_{0})$ and hence, by virtue of
(3.7), that $a$ . $e$ . on $A$

(4.5) $f_{1}(\lambda, x)=\omega(\lambda\pm i0)f_{0}(\lambda, x)-cJ(\lambda\pm iO,f_{0}( x),$
$\rho_{0}$ ).

In the same way we obtain

(4.6) $f_{0}(\lambda, x)=\omega(\lambda\pm i0)^{-1}f_{1}(\lambda, x)+cJ(\lambda\pm iO,f_{1}( x),$
$\rho_{1}$ )
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$a$ . $e$ . on $A$ . These formulas are not quite complete since they are
valid only $a$ . $e$ . on $A$ , but they are sufficient to determine $P_{1}x$ or $P_{0}x$.

\S 5. Asymptotic properties of unitary groups. We next prove
Theorem 2 for $m=1$ under the same simplifying assumptions as in
\S \S 3,4. We set

$U_{t}=\exp(itH_{1})\exp(-itH_{0})$ , $-\infty<t<\infty$ ,

and note that for any $x\in \mathfrak{D}$

$dU_{l}x/dt=i\exp(itH_{1})(H_{1}-H_{0})\exp(-itH_{0})x$

$=i\exp(itH_{1})V\exp(-itH_{0})x$

$=ic(\exp(-itH_{0})x, \varphi)\exp(itH_{1})\varphi$ ,

for $\exp(-itH_{0})$ maps $\mathfrak{D}$ onto $\mathfrak{D}$ . Since the right side is strongly
continuous in $t$, we obtain

$(U_{l}x, y)-(x, y)=ic\int_{0}^{t}(\exp(-itH_{0})x, \varphi)(\exp(itH_{1})\varphi, y)dt$ .
Although $x$ was assumed to belong to $\mathfrak{D}$ above, this final result is
valid for all $x,$ $y\in \mathfrak{H}$ .

Introduction of the representations of $x$ and $y$ in conformity with
(3.1) and (3.2) leads to

$(U_{l}x, y)-(x, y)=ic\int_{0}^{l}dt[\int\exp(-it\lambda)f_{0}(\lambda, x)d\rho_{0}(\lambda)]$ .
. $[\int\exp(it\mu)f_{1}(\mu, y)^{\star}d\rho_{1}(\mu)]$ .

We now assume that $x\in \mathfrak{M}_{0}$ and $y\in \mathfrak{M}_{1}$ . Then we may write $d_{\beta_{0}}(\lambda)$

$=\rho_{\cup}^{\prime}(\lambda)d\lambda$ and $ d\rho_{1}(\mu)=\rho_{1}^{\prime}(\mu)d\mu$ on the right side, and

$(U_{t}x, y)-(x, y)$

$=c\int\int\frac{\exp[it(\mu-\lambda)]-1}{\mu-\lambda}f_{0}(\lambda, x)\rho_{\cup}^{\prime}(\lambda)f_{1}(\mu, y)^{\star}\rho_{1}^{\prime}(\mu)d\lambda d\mu$ .

This is certainly true at least if $f_{0}( x)\rho_{0}^{\prime}$ and $f_{1}( y)\rho_{1}^{\prime}$ belong to $L_{2}$

with respect to Lebesgue measure; then the order of integrations is
inessential. Moreover, it is well known9) that for $ t\rightarrow\pm\infty$

$\int|\int\frac{\exp[it(\mu-\lambda)]-1}{\mu-\lambda}f_{0}(\lambda, x)\rho_{\cup}^{\prime}(\lambda)d\lambda-J(\mu\pm i0,f_{0}( x),$ $\rho_{0}$ ) $|2d\mu\rightarrow 0$ .
9) E. C. Titchmarsh, Theory of Fourier integrals, Oxford, 1948.
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We have therefore

$\lim_{t\rightarrow f\infty}(U_{l}x, y)=(x, y)+c\int J(\mu\pm i0,f_{0}( x),$ $\rho_{0}$ )$ f_{1}(\mu, y)^{*}\rho_{1}^{\prime}(\mu)d\mu$ .
Noting (4.5) and $(x,y)=\int f_{1}(\mu, x)f_{1}(\mu, y)^{\star}\rho_{1}^{\prime}(\mu)d\mu$ , this limit is seen to be

equal to $\int\omega(\mu\pm i0)f_{0}(\mu, x)f_{1}(\mu, y)^{\star}\rho_{\perp}^{/}(\mu)d\mu$ , which is equal to $(U_{\pm}x, y)$ by

(4.1). In this way we have proved that $(U_{t}x, y)\rightarrow(U_{\pm}x, y)$ for $ t\rightarrow\pm\infty$

provided that $x\in \mathfrak{M}_{0},$ $y\in \mathfrak{M}_{1},f_{0}( x)\rho_{0}^{\prime}\in L_{2},f_{1}( y)\rho_{1}^{\prime}\in L_{2}$ . But it is
easily seen that the set of such $x$ and $y$ are dense in $\mathfrak{M}_{0}$ and $\mathfrak{M}_{1}$

respectively. Noting that $U_{t}$ is uniformly bounded, we thus obtain

(5.1) $w-\lim_{l\rightarrow\pm\infty}\exp(itH_{1})P_{1}\exp(-itH_{0})P_{0}=w-\lim_{t\rightarrow\pm\infty}P_{1}U_{l}P_{0}=U_{\pm}$ ,

where $ w-\lim$ denotes weak limit.
Actually, however, these limits are strong limits and, moreover,

the factor $P_{1}$ in (5.1) can be omitted. In fact, for any $x\in \mathfrak{H}(5.1)$

implies
$||U_{\pm}x||\leqq\lim$ $inf||\exp(itH_{1})P_{1}\exp(-itH_{0})P_{0}x||$

$=\lim$ $inf||P_{1}\exp(-itH_{0})P_{0}x||\leqq||P_{0}x||$ ,

and similar inequalities for $\lim\sup$ in place of Iim $\inf$. But we know
that $||U_{\pm}x||=||P_{0}x||$ . This implies on the one hand that the limits of
(5.1) must be strong limits by a well known theorem, and on the
other that the equality sign must hold everywhere in the above
inequalities. In particular we have $\lim||P_{1}\exp(-itH_{0})P_{0}x||=||P_{0}x||$ .
But as

$||P_{1}\exp(-itH_{0})P_{0}x||^{2}+||(1-P_{1})\exp(-itH_{0})P_{0}x||^{2}=||P_{0}x||^{2}$ ,

it follows that $(1-P_{1})\exp(-itH_{0})P_{0}x\rightarrow 0$ strongly for $ t\rightarrow\pm\infty$ . Multi-
plying from left by the uniformly bounded operator $\exp(ilH_{1})$ , we see
that $\exp(itH_{1})(1-P_{1})\exp(-itH_{0})P_{0}x\rightarrow 0$ . Combined with (5.1) of which
strong convergence has already been proved, we obtain finally the
desired result

(5.2) $s-\lim_{l\rightarrow\pm\infty}\exp(itH_{1})\exp(-itH_{0})P_{0}=U_{\pm}$ .
This proves the first statement of Theorem 2. The corresponding
result (1.3) for $U_{\pm}^{*}$ follows from the above by interchange of the
roles of $H_{0}$ and $H_{1}$ . The remaining assertions of Theorem 2 are
direct consequences of the basic properties of $U_{\pm}$ .
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It should be remarked that the above deduction of (5.2) from
(5.1) is unnecessarily complicated. But we have given this here
because the same argument is useful in the general case $m>1$ .

\S 6. The general case $m>1$ . We turn to the proof of the
theorems in the general case. For simplicity we shall give the proof
for $m=2$ , the general case offering no further difficulty. For con-
venience we write $H_{2}$ in place of $H_{1}$ of the theorems. Then $H_{2}-H_{0}$

is of rank 2, and we can find a self-adjoint operator $H_{1}$ such that
both $H_{1}-H_{0}$ and $H_{2}-H_{1}$ are of rank 1. Again we may assume that

$\check{\backslash }\rho$ is separable and the spectra of $H_{0}$ and $H_{1}$ have multiplicities $\leqq 2$ ,
and it is sufficient to prove the theorems in which $\mathfrak{M}_{02}=\{0\}$ . (We use
subscripts 2 for various quantities related to $H_{2}.$ )

Theorems 1 and 2 have been proved for the pairs $H_{0},$ $H_{1}$ and $H_{1}$ ,
$H_{\Delta}$ . We shall use the notations $\mathfrak{M}_{01},$ $\mathfrak{M}_{0},$ $\mathfrak{M}_{1},$ $P_{0},$ $P_{1},$ $U_{\pm}$ of these theorems
to describe the quantities related to the $paIrH_{0},$ $H_{1}$ and the notations
$\mathfrak{M}_{12},$ $\mathfrak{M}_{1},$ $\mathfrak{M}_{2},$ $P_{1},$ $P_{2},$ $V_{\pm}$ for the corresponding quantities for the pair
$H_{1},$ $H_{2}$ . The only objection to this would be that the subspace $\mathfrak{M}_{1}$ in the
one set need not be identical with $\mathfrak{M}_{1}$ in the other. Even if this is not
the case from the beginning, however, we can always achieve this by
suitable modification of these quantities. In fact, as was shown at
the end of \S 1, we may assume that $\mathfrak{M}_{1}$ is the set of all absolutely
continuous elements with respect to $H_{1}$ ; this set is determined by $H_{1}$

itself without reference to any other operator.
Now we have only to take the quantities $\mathfrak{M}_{02}=\{0\},$ $\mathfrak{M}_{0},$ $\mathfrak{M}_{2},$ $P_{0},$ $P_{2}$ ,

$W_{\pm}=V_{\pm}U_{\pm}$ for the pair $H_{0},$ $H_{2}$ in place of $\mathfrak{M}_{01},$ $\mathfrak{M}_{0},$ $\mathfrak{M}_{1},$ $P_{0},$ $P_{1},$ $U_{\pm}$ of
these theorems. The only propositions that possibly need proof are
(1.1) and (1.3). To prove (1.1), we note that for $ t\rightarrow\pm\infty$

$s-\lim\exp(itH_{2})\exp(-itH_{1})P_{1}=V_{\pm},$ $s-\lim\exp(itH_{1})\exp(-itH_{0})P_{0}=U_{\pm}$

have been proved. Multiplication of these two expressions yields

$s-\lim\exp(itH_{2})P_{1}\exp(-itH_{0})P_{0}=W_{\pm},$

where we have used the fact that $H_{1}$ and $P_{1}$ commute. Now the
elimination of the factor $P_{1}$ from this equation can be effected in the
same way as we have eliminated the factor $P_{1}$ from a similar equa-
tion in \S 5, thus proving (1.1) in the present case. (1.3) is reduced to
(1.1) by exchanging the roles of $H_{0}$ and $H_{2}$ .
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Added in proof. Professor M. Rosenblum has kindly sent to the writer
his paper ”Perturbation of the continuous spectrum and unitary equi-
valence”, Technical Report, Department of Mathematics, University of
California, which is also to be published in Pacific J. Math. In this paper
he proves the following theorem. Let $H_{0}$ be an absolutely continuous, self-
adjoint operator and $V$ a self-adjoint operator belonging to the trace class.
Then $H_{1}=H_{0}+V$ is unitarily equivalent to $H_{0}$ if and only if $H_{1}$ is absolutely
continuous. He also gives results corresponding to our Theorem 2 with
$P_{0}=P_{1}=1$ under the above conditions. His theorems neither imply nor are
implied by ours. Recently, however, the writer was able to extend the
results of the present paper to the case where $V$ may be any self-adjoint
operator of the trace class, thus including Rosemblum’s results as a special
case. Details will be published elsewhere.
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