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1. Introduction.

Let P be the set of all rational prime numbers, and (Tyyerey Th) @
family of subsets of P satisfying the following conditions:

(C,) The sets =,,---, 7, are mutually disjoint;

(C,) The series > i(izl,m,k) are divergent.

pEm;

We need not suppose =, U---U=n,=P for the following development.
We shall suppose, except for in the last section, the family {z,-.-, z,}
as given once for all. The letter ¢ will always represent one of the
integers 1,.--, k.

We denote by w;n) the number of distinet prime factors of a
positive integer » which belong to the set z;:

ﬂll’lyl)eﬂ,‘
We also put
1
\n)= ’
yi(n) psuipen; P

and denote by z, the least positive integer for which y,(n,)>0 (i=1,
.-, k)." We further put, for n>n,

u,(n) = _wJ(n) "'yi(n)“ .

Then, to each integer n>=#n,, there corresponds a point U(n)=(u(n),
<o, %,(n)) in the space R* of k dimensions. Let E be a Jordan-
measurable set, bounded or unbounded, in R%* and let A(x; E) denote
the number of integers n,n,<<n<x, for which the corresponding
points U(n) belong to the set E.

1) When it is desirable to emphasize that we are considering the relevant
formulas for ¢=1,..-, 2 simultaneously, we add the expression ‘ ({=1,---, &)’ to indicate
the simultaneousness,
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Now the purpose of this prper is to prove the following Main

Theoreml:
THEOREM A.

lim Ax; E)
x

X—ree

— (@) fg exp
E

h% f} uf--) du,---du, .
i=1

This is a generalization of a result of Erdés and Kac [3], of
which we have given another generalization in a different direction
in our previous paper LI.*» Our method of proof is based on Brun’s
sieve method like in Erdos and [2], and the probability theory
will be nowhere used, whereas Erdos and Kac [3] makes essential use
of this theory. We could prove our A without using the
inequalities such as Lemmas 1 and 2 below, if we impose some addi-
tional condition on our family {z,-.-,z,}.? But, in order to prove our
Theorem A in the present form, we had to extend the inequalities
(our Lemma 1), used by Erdos [1] and Landau [5], to our Lemma 2,
on ground of which we could then proceed along the same line as in
Erdos [2].

We shall, in section 2, prove Theorem A, and, in section 3, refer
to some special cases of Theorem A.

This paper is self-contained; it may be read independently of
Erdos [1], [2], and I; we shall only quote the well-known formula (8)
during the proof of Theorem A in section 2.9

The author expresses his thanks to Prof. 8. Iyanaga for his
encouragement during the preparation of this paper.

2. The proof of the main theorem.

We shall first prove some inequalities involving binomial coeffi-
cients which will be used in Brun’s sieve method.
LEMMA 1. Let a and b be non-negalive integers. Then

2) The letter = without subscript denotes, as usual, the number 3.14...
3) I.e. Tanaka [6].
4) Such as the following:

(Cy) logy; m)=0f{ Vy;(m)} for i,j=1, k;itj.
5) We quote also the formula (18), but this is not used in the proof of Theorem A.
6) Cf. Erdos [17, p. 536, and Landau [5], p. 71, Satz 116.
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=1, when a=0,
b b))
Z(—l)C(Z) >0, when a>0 and b is even,
- =0, when a0 and b is odd.

ProO¥. The case a¢=0 is trivial. The cases >0 follow at once
from the formula

22 ) G).
LEMMA 2. Let a(i=1,---, k) be non-negative integers, and b(i=1,
-, k) be non-negative even integers. Let
7:7(a1, ,ak’ k)

Zk{bZ( 1)0( ')-flﬁ(—lw(?)}

j=1|c

DTS (- s (&),

=lc =0

Then
=1, when a;=0 (i=1,--,k),

<0, when at least one of the a; is positive .

ProoF. The case @;=0 (1=1,.--, k) follows at once from the case
a=0 of Lemma 1.

Now suppose that at least one of the @; is positive. Without
loss of generality, we can assume that ¢;>0 (i=1,---,¢) and ;=0
(¢=x41,---, k). Then, applying again the case a=0 of Lemma 1, we
have

7=1 1=lc=0 =1 ¢c.=0

r= i{x 1y (&) 1135, [ € f)]—(x—lmz( v (&),

from which, applying this time the cases a>0 of Lemma 1, we see
that r<0. Thus the lemma is proved.

Henceforth, let ¥ be a positive variable which will be taken
sufficiently large as occasion demands. Now we define some functions
and sets which will be used in the sequel.

7 (3):1, and (‘c‘):o for integers @, ¢ for which 0 Za<e,
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We put
yix)= >
X pER

1
p= i D
This coincides with the definition of y,(#) in section 1, and the condi-
tion (C,) is equivalent with: ¢y,(x) (¢=1,---, k) tend to infinity with x.
We define #/(x) to be the set consisting of the p’s for which

P& and eVi® < paV/Whyi@ 3,

We denote by w/(n; x) the number of distinct prime factors of a
positive integer »# which belong to the set #i(x):

oin;x)= >, 1.
pln.pEn (1)

We put

1
zi(x) —peni’ (x) 7 )
We obviously have z;(x)<y,(x) (¢t=1,.--, k) for sufficiently large values
of x. Henceforth, we consider only such values of x.

For any positive integer #, we define M, (x;¢) to be the set
consisting of positive integers m which satisfy the following condi-
tions:

m is composed only of primes belonging to the set #/(x);

m is squarefree;

m has f prime factors.

For any positive integers ¢; (:=1,---, k), we denote by G(x;1,,---, 1))
the number of positive integers » < x for which oi(n; x)=t; (1=1,---, k).

For any positive integers ms; (i=1,---, k) such that m,&M(x;t)
(¢=1,---,k) with some positive integers #;,i=1,.--, k), we denote by
H(x;m,,---,m,) the number of positive integers n<x for which

b=m; (i:]-""’k)'
pln,pEx; (x)

For any positive integers m (i=1,---, k) such that m,= N (x; 1))
(¢=1,---,k) with some positive integers ¢;¢=1,---,k), and for any
positive integers T (i=1,.--, k), we put

Ko(x; Whyye-y My 5 Tn"" Tk)
‘JT1 2Tk

— “oe Z (—-1)71"'"'”kL(x; ml"”’ mk; Tl,“" Tk) 14
0 Tk'=0

Tl:
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where
L(x; Myyeey My 5 Tyyeesy Tp)

= 8) [ - x ]
ﬂleﬂnl(x;rl) ,uke‘mk(x;rk) ml'"mkﬂf"#k
(pyrmy) =1 (gomp) =1

Here we denote by the square brackets [ ] the largest integer not
exceeding . (Gauss’s notation.) Also we put

Ki(x;m,--, my; Tyeoey T)

2Ty 2T;+1
_20 2 20( 1)T1+ TR L(x ml’ ) mk; Tis® Tk) ’
7= Tp=

where the summation-variables r/(j=1,---,k;j==i) run through the
integers 0,..,27; respectively, and in particular the summation-
variable r; runs through the integers 0,-.-,27;+1.

Now we prove

LEMMA 8. Let m(i=1,---,k) be positive integers such tlhat m;,=
Mi(x;t) (@=1,---, k) with some posilive integers t(i=1,---, k), and let
T,(¢=1,---, k) be any positive integers. Then

k
; Ki(x; Myyeosy My, 5 Tu"': Tk)—(k""l)Ko(x; Myyeeey My, Tl"") Tk)
gH(x; Myy--+y Wlk) = Ko(x; Myyeeey My 5 k)

Proor. (By Brun’s sieve method.)

If we write
[_ ) v,__.’ii_]: > 1

My, i ppln

in the definition of L(x;m,,--, m,; 7, -+, 7,), then we have

L(x;ml,...,mk;z-l,..., )= > T > 1
# €M sy)  ppeMy(x; 'rk) n=x
(uypmp)=1 (.ak,mk)=l mymg, gy ,akln
_— S 1= é[(“’(” ;%) — t)
n=x m €M (iT)  ppEM(x; Ty n=x i Ti
mympln (upmy) =1 (ppomp) =1 mympln
ﬂll n ﬂkl n

8) We mean by 3;(x;0) the set consisting only of the number 1.
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Hence
Ko(x; Myyeey My ;5 Ty Tk): Z: o(n; x),
ml'-'mkl n
where
k o'(n: x)—1.
s -1 24 - (4097,
Also

Kj(x; Myyeery My ;5 Tn"'; Tk)

2 {?gl(—lr( iD=h). 1S -1y ( 5(”i?‘)_t‘)],

nE=X T,=0 i=1 = z
mymy| n J ixj

so that
121 K (x mp mk ’ T1:"'7 Tk) _(k—l)Ko(x; My, mk ; Tl,"" Tk)
= Z 5’(% 1 X)),

where
o'(m; x)
e [* ol x)—t\ &G [oh(n; x)—t;
S B (g B 09
%]

(n; x)—t;
—(k—1) 1=11 2( 1) (w,(n M 1.

The functions d(z;x) and & (n;x) are defined for positive integers
n<x such that m,---m,|n and, as to their values, we can conclude
from Lemmas 1 and 2 as follows:

d(n;x)=06m;x)=1 for positive integers n= x such that m,-.-m,|n
and oi(n;x)=t; (t=1,---, k), that is,

p:mi (221’:k)
pln,pEn; (x)

0(n;x)=0 and o'(n;x)<0 for positive integers n=<"x such that
m---m,|n and oi(n;x)>1; for at least one .

The lemma now follows from this fact and the definition of
H(x » Myyeeny mk)- |
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LEMMA 4. Let m,t,(i=1,---, k) be positive infegers such ihat
m; =M (x;51,),t,<2y,(x) t=1,---, k). Then
={z @) +Fzp (1) }
Hx; myyeeymy) =267 R (1))
p(m,---1my)
where ¢(m,---m,) is Euler’s function, and the term o(1) tends to zero,
as x— oo, uniformly in m;=M(x;t,) with t,<2y,(x) (i=1,---, k).”
Proor. We put

L,(x; ml""a mk s Ty Tk)

_ < X
= ) ,
2 €M (x5 7)) /Akemk(x;rk) ml'“mkﬂl"'/a/e
(uty,my) =1 (ppomp) =1

removing the square brackets of the summands of L(x;m,,---, m,;
T+ 7;), and put further

K{)(x; Mhyyeeey My, ; Tn"" Tle)
QTI ZTk
= ZO ZU(-1)71+"'+T/¢L’(x; Myyeeny B3 T yeeey Tp)
Ty = Th=
For a while, T; (¢=1,---, k) may be any positive integers, and will be
specified later on as suitable functions of x.
Since []= % <<[*k]+1,

L(x Sy T3 Tty Ty) = L/(x 3yt My 5 Tyeeey Tk)

. . v\ “
gL(x’m”...’mk,T“..., z-k),{_ Z 1
2EM (x5 7)) ukemk(l;rk)
(peppmy) =1 (ppomp) =1

k / —1.
—L(x;m,y my; Ty, Tk)_i_];]l: (]n,(xf)'l z’,)

H

k
gL(x’ mn“" mk ; Timy Tk)'}"[;ll {'”{(x)l_l}r’ ’

where |7/(x)| denotes the number of primes belonging to the set
7i(x). Hence

9) More precisely we mean the following by this expression: Since the term
0o(1) depends on x and m; (/=1,---, k), we shall put o(1)=d(x;my,---,mz). Then we
mean that we can take, corresponding to an arbitrarily given ¢>>0, a positive num-
ber xy=x,(¢) such that, when x >x, and m; & ;' (x; ¢ ) with & <2y; (x) (¢=1,--, k),
we have |6(x ;my, -, mp) | < e The uniformity in Lemma 5 is to be interpreted in
the similar way.
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(1) IKO(x; Phize=s M s Tl’.”’ Tk)_K{)(x; Mgy My 5 Tp"" Tk)l
r 2T; .
<113 (=00 -1 < [T =@ %

Thus we have estimated the error introduced in the value of K(x;
My my,; Ty, T,) by reason of removing the square brackets of
the summands of L(x;m,,---, m,; t,,--+, 7,).

Now we put for brevity

1
Mx;m;;7)= ey
gieﬂn‘-(x;ri) ‘[’tl
(ui,mi)=1
Then
’ X k
L'(x;m,-ymy;tyyt)=— " TIMx;m;;7,),
1 my, il
so that
(2) K{)(x s Myyeey mk ; Tu'“y Tk)

2Ti
S (—yi M mg ;e

» ml-.-mk i=1 -;-l,=()

Also we obviously have

S (=1 Mwim 7)== 1] (1—~ L )
;=0 i)En'i’(x) p

ptm;

so that

°T; 1 _
3) (=1 i Myx;m; ;7;)— [1 (1“—))§ > M(x;m; ;).
;=0 per () p ;=27 ;+1

Now, recalling the definition of z,(x), and that we are considering
only so large values of x that z,(x)=< y,(x) holds, we have

i

Mx;m; ;)< Zi(0))7 - 194%)}
A 1y 1) = T','-’ = Ti!

which implies

S Mwsmie)< S, ONT

.= 23T .1
T QTi+ T 2T1+1 Tz.

10) This sum is substantially finite. In fact, when +; >| ﬂ;(x) | —8;, M;(x;m;;T;)
=0 as an empty sum.
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Till now, T; may be any positive integer. Here we put
4) T;,=[4y(x)]+1.
Then
&y {(ya(x))P T {1 yi(x) Yi(x)
ri=§'l‘i+1 z;! @27;+-1)! * 2T;+2 N Q2T;+2)2T;+3)

GPT (1 1) 2T
B TR S w7 et?

2 4

20T+ ()T 0 2fey,(x)p i1+

@T,+1)T (2lhy 0]+ 8l
2{ey (x)}rri+e ) 8y;(2)
By}
<2e*yi(x)e¥i® =o(e¥i¥) .

=2e3§x(-e—
Vi(%) 3

Thus we obtain, as the estimation of the right-hand side of (3),
(5) i M(x; mi N ri):o(e—y,-(x)) .
7i=2Ti+1

Here and in the rest of the proof of the present lemma, the
positive integers 7 (t=1,---, k) are always considered as the functions
of x defined by (4). Next we shall transform the product on the
left-hand side of (8). Recalling the definition of the set #/(x), we have

1 1 (.
1 L o) ~a),
vz PP poexpity;y P
and hence

AL, (1) el 3 Jost—)]

1 1
el 3, 03, )
exp[ peEn,-'u) b i pezn,/(x) p’
=exp{—2z/(x)+o(1)},
which implies that

Iﬁg;[,"(x) (1—%) :{1—{—0(1)}6—21‘(16)1)][;% (1_71;)—1.

b'f’mi

11) By the well-known formula #!>> #fe~t for positive integer £
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By this and (3) and (5),

2Ti -1
S 1) M m, s 7) = (1+o(L)jes [ (1—%) +o(e=niw) .
T;=0 Dlm;
Moreover, since z,(x)<y,(x), the term o(e~*i¥) in this formula can be
absorbed in the first term of the right-hand side. Hence
-1

2T, 1
(= 1)% My my ;o) =(1+o(Lje-= [ (1-'—) :

Tl-’=0 p]mi p
Putting this in (2), we now obtain'®

“{z @ +-t+z,(x)
(6) K5 myyeeeymy; Typeesy T =20 20 200 (1 o(1))

p(m,---m,)

Our next step is to obtain, from (6), a similar formula for
K,x;m,-,m;; Ty, T,), and (1) will serve for this purpose. Now,
since 7, is defined by (4), we have T,;<5y,(x) for sufficiently large
values of x. Also |zi(x)| <<x'/**® by the definition of the set =/(x).
Hence

k k —
LTI [T < T ()i /i
i=1 i=1

Hence, by (1) and (6),

xe~ {ZJ(X) ' ~"+zk(x) 3

(7) Ko(x TR (T T17"" Tk) e {1+0(1)} "I"O('l/f) .

o(m,---my)

As a matter of fact, the term O(/x) in this formula can be
absorbed in the first term on the right-hand side. To see this, we
quote the well-known formula'®

@) > %:log log %+ O(1).

p=x

By this formula and
zm=ymn=> 1,
p=x P
we have
z,(x)<loglog x+0O(1),

12) Notice that m;(7=1,---, &) are squarefree, and relatively prime in pairs
13) Cf., for instance, Landau [4], pp. 100-102, § 28.
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which implies that

1

e—zi(x) =~ ,
clogx

where ¢ is a suitable positive number independent of x. On the
other hand, since m,; is assumed to belong to the set M;(x;¢) with
[, <2y(x), we have

k
m,---m;, < H (xl/zokyl-(x))‘lyi(x) = xl/10 ,
=1

recalling the definitions of the sets =zj(x), M, (x;¢,). Thus

xe“{zl(x)+'*'+zk(x)} x9/10
’
M-, cklogkx
and a fortiori
xe~ {2 @ ++z,00} x°/10
e A A
e(m,--m,) ctlogkx

which now shows that we may omit the term O/ %) in (7), and
write

xe - {z@+mrzp(0}

- {1+o(1)}.

9 K (x: e, M ;T,...,T —
( ) o( mn k 1 Ie) @(ml"'mk)

During the above argument, I have not referred to the uniformity
of the O aud o terms in m; as yet. But, if we review the course
through which (9) has been derived, then we easily see that the term
0(1) on the right-hand side of (9) tends to zero, as x— co, uniformly
in m,&M(x;t,) with t,<<2y,(x) (¢=1,--, k).

Quite similarly we can derive
xe-{zl(X)"'""“Zk(x)}

p(m,---my)

the term o(1) tending uniformly to zero, as x— co, in the same sense
as in (9).

Our which was proved by the sieve method, yields now
at once in view of (9) and [(10).

LEMMA b. Let t;(i=1,---, k) be positive integers such that t;<<2y,(x)
E=1,-, k). Then

(10) I(z(x; Myyeeey My, Tn"’s Tk): {1+0(1)} ’

ves = {zi(x) Fo 2y (x
G 3 t,yer, 1) — FERN (2R re” Ttom )

i (L+o)},
ot
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the term o(1) lending to zero, as x— oo, uniformly in t;<<2y(x) (i=1,

- k).

3

ProOF. We have
G(x;tl""; lk)“ E o Z H(x ml’ ’mk)J
m EM (x; tl) mpeMy (x5 1)

by the definitions of G(x;?,---,¢,) and H(x;m,,---,m,). Hence by
Lemma 4,

(11) G(x; e, 1) ={L+0(1))xe~ (a@* +zk(x)}n 1
i=1 miEM,(x; 1) go(m)

where the term o(1) tends to zero, as x— co, uniformly in #;<<2y,(x)
(=1, k).

We shall be, for a while, concerned with the inner sums on the
right-hand side of (11). Now by the multinomial theorem,

(12) > *1ﬁ§ {zi(%)} < Z,

mie‘mi(x;tl-) m" tl! m; E?R (x; l) m w

where the prime attached to the second summation on the right-hand
side means that the summation-variable w runs through positive
integers satisfying the following conditions:

w is composed only of primes belonging to the set #/(x);

w is not squarefree ;

w has ¢; prime factors, multiple factors being counted multiply.
For each of these w, we can put w=d’q with positive integers d and
q satisfying the following conditions:

d is composed only of primes belonging to the set z/(x), and d>1,

so that d>e'i® by the definition of the set #/(x); q is composed

only of primes belonging to the set zi(x), and is squarefree.
Hence we have

D

w

where

sie $ L oew,

d® " asleipliy 3141 @

and, by the definition of z;(x),

2** <1+2z(x)+ zz(x) o= enW L eu |
q !
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Thus we obtain

(13) > L 0w,
w

w

On the other hand, by (8) and by the definitions of z(x) and of the
set #/(x), we have

1
psx.pEr;~n /(1) p
1 1

(14) Yi(%) —z,(x) =

©p=esp{iy;(0} P exp{log x/0ky;(x) yspsx P

log x
=log 4y,(x) +1log log x—log — o1
g 4y,(x) + log log g20ky,-(x)+ (1)

=Of{log y,(x)} .
Hence, for sufficiently large values of x, the assumption ¢;,<<2y,(x)
implies #;<<ez(x), and therefore implies

. t; .\
e

Now, by this and we can write

1_1_: {Zi(x)}". . -y;(x)
; w t;! Ot )

1

and a fortiori

> 1tz o(1),
w W ti !

which, combined with gives

jlm — {zz'

(15) L 1oy

mEM; (x5 8) M
Here we can replace the summands 1/m; by 1/¢(m;). In fact,
since we assume that f{,<72y,(x), on recalling the definitions of the
sets #i(x) and M,(x;Z;), we see that the number of prime factors of
m; & M;(x;1;) is less than 2y,(x), and each of the prime factors is
greater than e':®, Hence

m; 1___1H —lg 2
T p(m,) }111-( p ) _plnmi(lJr p )
< (14 2600 =11 Oly(®e~?) =1+ o(1).
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From this and we now obtain

< 1 {z;(x)}t
16 =R 4 o(1)Y.
( ) nzié%l-;(x;ti) QJ(mz-) i,’ { + ( )}

Furthermore, if we review the above process of deriving this
formula, we easily see that the term o(1) tends to zere, as x— oo,
uniformly in f,<<2y,(x).

Finally, putting in we obtain the desired lemma.

LEMMA 6. Let «o;,<<B; (1=1,---,k) be arbitrarily given but fixed
real numbers. Let t; (i=1,---, k) be posilive inlegers such thal t;=z,(x)
+u/ 2 (%) with a;<<u;<<8; G=1,---,k). Then

G(x;tn"'7tk)

?4. see o ui)

=(20) ¥ (2, ()20} € TR 101y,

the term o(l) tending lo zero, as x— oo, uniformly in w;(i=1,---, k)
with o, <<u;<<p; G=1,---, k).
ProOF. In the Stirling’s formula

t!:«é{z—“’i‘e-t{no(%) } ,

we put 1=z-+uy/z, and consider large values of z, leaving # contained
in a finite interval, then easy calculations give

oz et 1o 1)
1 2

or

zle~* e'% { 1
s ot o)
! vV 2x V'z
Here we put {=1,, 2=2/(x), u=u,, and combining thus obtained for-
mulas for i=1,---, B, we get

{Zl(x)}tl- . .{Zk(x)}tke- {zl(x)-’.... +zk(")}
tl !"'tk!

= @0) a2y e T Lo

Now we have f;<<2y,(x) (¢=1,---,k) for sufficiently large x, and
therefore Lemma 5 can be applied to the present case. Thus, from
the above formula and Lemma 5, we obtain Lemma 6, the term o(1)
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tending uniformly to zero in the above-mentioned sense.
LEMMA 7. Let a;<<p; (t1=1,--, k), and let A**(x)=A**(x;a,, f,, -,
« , B,) denote the number of positive integers n<x for which

2,(%) +ap/ z(%) <o(n; %) <2,(%)+ B/ 2(%) (=1, k)
simultaneously. Then

Bi o}
A¥ (x)-(zn) 2HSe = du, .

Iim -
X oo

Proor. We have
(17) A**(x): 2 G(x; tl"": tk) ’
tl""’tk

by the definitions of A**(x) and G(x;¢, -+, t,), the summation extend-
ing over the systems of positive integers ¢ (i=1,.--,k) such that

2 (%) +an/ z(x) <t;<<z(%)+ B/ z(x). Now let these values of £, be
tij(jzly"', Si), and let t”:Zl(x)—l—ul]-l/ZiWCI Where s::[(ﬁ,—a,)ﬂzj(m or
[(8;—a,)V/ z{x)] 1. Then

1
ui,j+1 Ujj=———

vz, (x)
With these notations, from (17) and Lemma 6, we obtain

2
S; l]

k
]__l e 1]_,.1"‘%,']') .

i=1 5=1

m'k‘

Ar (x) — {1+ 0(1)}(27)"

The lemma follows at once from this formula by making x— co.
LEMMA 8. Let «;,<<B;(t=1,--, k), and let A*(x)=A*(x;c, B,y
ay, B,) denote the number of posilive infegers n=<x for which

2,(%) + oty 2,(x) <wi(m) <z,(x)+ B/ 2(%) (@=1,-, k)
simultaneously. Then
B; “12
lim == a* (x) —(2r) 2 ]ﬁS e ?du;.
x>0 i=1 @;

Proor. We have

S {wim)—oln; )= > 1

nsx n=x plu.pex;~n; (x)

2 [—]éx > =
p=x.penn/ L P p=i.pen;~ny/ () P



186 M. Tanaka

and hence, by [(14),
2, {0 (n) —wi(n; 2)) = Ofxlog y,(%)} .

Since y;(x)~z,(x) as x— oo by this result can be rewritten as
> {win) —ol{n; x)} =Ofxlog z,(x)} ,

n=EX
and a fortiori

> {o,(m) —l(n; 0)} = 0%V z/(n)} .

Now it can easily be concluded from this estimation that we can
take, for an arbitrarily given ¢>0, a positive number x, =x,(¢) such
that, when x> x,, the number of positive integers n<x, for which

at least one of the inequalities wi(n)—-cuﬁ(n 1 %) >y 2, (%) (=1, k)
holds, is less than ex. Then, for x>x,,

A**(x ; a], ﬂl _5,"', ak’ ﬂk—é‘)—é'x
gA*(x y &y Bn"'; 1£9%) ﬂk)

gA**(x; o, —¢, Bu"', op—¢, .@k)—i—e'x .

From this and we obtain
B:~e 2
- k k ! - “ M coe )
(27) 7[18 e du;—e= liminf A*(x 5ty By Ay By)
i=1 Jao, Koo x
* ko (P _ul
< limsup A5E Q0 B0 @ Br) — (9775 Il S ¢t du e,
oo x L .

which, on making ¢—0, gives the lemma.
LEMMA 9. Let a;<<B; (1=1,---, k) and let A(x)=A(%; @, Byy++y Ay B)
denote the number of positive integers n<x for which

Yin)+ay/ yi(n) <o;(n) <yin)+ B y,(n) (=1, k)
simultaneously. Then

2

B; u;
lim Ab(cx')h: (2r) 2 [kI S e *du;

i
x—co i=1 @;

ProoF. If /x <<n=<x, then by (8),

0=y,(0)-ymM=y,H-9V/H<S - -0q).
Vx<lpsx P
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It follows easily from this and that we can take, for an arbi-
trarily given ¢>0, a positive number x,=x,(¢) such that, when x>x,

and v/x <<n<x, we have

2/(%) + (at;— €)1/ 2{(x) < yi(m) + /v, (n)

<2(%) + (a;+ €)1 2,(%) (=1, k)
2,(%) + (B;— )V 2,(%) < y,(m) + BV y:(m)
<Z,~(.”C)+(,B,-+ 6)/2@ (i:]-’"'y k) .

Then, for x>x,,
A*(X; 0,46 B —6 ey Ayt 6 B—)—V X
SA(x5 0y, Bryeey @y By)
S A¥X; QA —6 B+ ey Ay—e, Bpt )+ 1V X
From this and we obtain

B;~e 2

_i k —ﬁ M s o0
@) E 11 ¢ duy < tim g AC i B 0 B
i=1 ¢i4s g—ro00 x
k k ﬁi+e w?
< limsup A& % Bires Qo Py é(zrc)’?ﬂg e du;,
e x i=-1 Ja:—¢

[

which, on making x-— co, gives the lemma.

is the special case of A, when the set E is
an interval.

THE PROOF OF THEOREM A. We are now in a position to accom-
plish the proof of theorem A with an arbitrarily given Jordan-
measurable set E.

First we consider the case when the set E is bounded. We take
two systems of intervals finite in number, say I,(z=1,2,---) and
I (n=1,2,..-), such that

\JI,cEcC\UI

and any two of the intervals I, do not overlap. Then we obviously
have

DA L)<=A(x; E)< 2 Ax; 1)),
o “
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On applying to the interval I, I/, we obtain

nr tu?
(27) b > S exp ( ———%_ _Zk) uf.) du,---du, <lim inf A(x; E)

” Iﬂ x—o0 X

x—>o0 X u i=1

< lim sup Ax; E) < (2r) i > S eXp( — ; zkl %?) du,---du,, .
Iﬂ' ]

But, since the set E is supposed to be Jordan-measurable, we can
take, corresponding to an arbitrarily given ¢>0, the intervals I, I
such that

=3 ER, <L

I” I'u’

omitting the common integrand

20" exp(——;— Z’k) Z) .

=1

Now, on combining the above inequalities, we obtain

S —e<liminf A% E) 1y gup AW E) <S +e,
E X E

xoo X oo
which, on making ¢—0, leads to
A E) _

lim =2 S .
x—ee X E

Next, we consider the case when the set E is not bounded.

Again, let ¢ be an arbitrarily given positive number. If we take

an interval I sufficiently large, and apply to this interval,

then we have

lim Al D :S >1-—¢,
x—>00 x I

or
lim A®; ) _ S <e,
x~>°°' x IC

which implies that

lim sup ﬂ’—fﬂﬂ <&, SEM>SE—5 .

K00

Also, since the set EN I is bounded, it is already proved that
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lim A®EQT) :S .
x>0 X ENI

Thus we have

lim inf = A(x E) >1lim == Alx ,EQD* S >S e,
o x—ee EnI JE
lim sup A(x E) _jim A®END) EDI) 4 limsup A EQL)
x—re0 x—00 Koroo x
<S +6<S +e,
Enr E
which, on making ¢—0, leads to
lim AGE) S ,
%o X E

and A is completely proved.

3. Some special cases.

We shall mention some special cases of A.

THEOREM 1. Let m be a positive integer. Let C;(i=1,---, k) denote
the residue classes modulo m and prime to m in an arbitrary order,
where k=qo(m) is Euler's function of m, and let »,(n) denote the number
of distinct prime factors of a posilive integer n which belong to the
class C,. Let a,<<p;(i=1,--,k), and let A(x)=A(x;a, B,y O B)
denote the number of integers n, 3<n=<x, for which

1
k 1/*

simultaneously. Then

k u?
lim A% A(") —(2n) HS ¢ du.
X 90 1=l wi

THEOREM 2." Letl o,(n) (i=1,---, k) have the same meaning as in
Theorem 1, and let B(x) denole the number of positive infegers n<x
for which

14) In Erdés [2], a special case of this theorem is stated as[Theorem 1l without
proof,
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0 (1) <w,(n) <-<w,n).
Then
Bx) 1

lim = Sl
x>0 X k’

It is well-known that!'®

(18) > 1 :\;« log log x+0(1) .

psipec; P

Theorems 1 and 2 follow easily from (18) and Theorem A.'®

THEOREM 8. Let all the primes be numbeved in the orvder of their
magniludes; p,=2,p,=8,p,=5,---. Let k be a positive integer. Let
C;(i=1,.-+, k) denole the residue classes modulo k in an arbitvary ovder,
and let w(n) denole the number of distinct prime factors p; of a positive
integer n for which the number j belongs to the class C;. Let a;<<p;
(i=1,---, k), and let A(x)=A@x;a, B, B, denole the number of
integers n, 3=n=<x for which

1 o e 1 B; S
-~ log1 +-—L1/]loglog n [(n)<< ——logl +-7L y/log]
2 o0g logn 1/k1/08' og n < w,(n) << 2 oglogn 1/k1/0g ogn
(Z=1,- ,k)
simultancously. Then
lim Al _ (275)—% [é[ gﬁi e_ungu .
] X i=1 Jay;

THEOREM 4. Let w/n) (i=1,--,k) have the same meaning as in
Theorem 3, and let B(x) denote the number of positive inlegers n<x
for which

®,(n) <<w,(n) <-<on).
Then
B _ 1

lim = _
x>0 X k!

15) Cf. Landau {4], pp. 449-450, § 110.

16) If we aim at proving only Theorems 1 and 2, we had better proceed as fol-
lows: We first derive Theorem 1 from Lemma 8. Using (14) and (18), we can
replace z; (x¢) in Lemma 8 by log log #/k in a similar way as we have replaced z; (x)
by »; (n) in the proof of Lemma 9. Next, we can derive, from Theorem 1, a general
theorem similar to Theorem A, where y; (#) in the definition of #; (#) in section 1
is replaced by loglogn/k, in just the same way as we have derived Theorem A
from Lemma 9, Then Theorem 2 is a special case of thus obtained general theorem.
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It easily follows from (8) that

11 loglog x+0(@1).

viinjec; p, R

Theorems 3 and 4 follow easily from this and Theorem A.!"

17) The same remark as we have given on Theorems 1 and 2 in 16) may also
be given on Theorems 3 and 4.

Jiyu-Gakuen, Tokyo.
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