On the number of prime factors of integers II.

By Minoru TANAKA

(Received Jan. 18, 1957)

1. Introduction.

Let P be the set of all rational prime numbers, and $\{\pi_1,\dots,\pi_k\}$ a family of subsets of P satisfying the following conditions:

- (C_1) The sets π_1, \dots, π_k are mutually disjoint;
- (C_2) The series $\sum_{p\in\pi_i} \frac{1}{p}$ $(i=1,\cdots,k)$ are divergent.

We need not suppose $\pi_1 \cup \cdots \cup \pi_k = P$ for the following development. We shall suppose, except for in the last section, the family $\{\pi_1, \cdots, \pi_k\}$ as given once for all. The letter i will always represent one of the integers $1, \cdots, k$.

We denote by $\omega_i(n)$ the number of distinct prime factors of a positive integer n which belong to the set π_i :

$$\omega_i(n) = \sum_{p|n, p \in \pi_i} 1$$
.

We also put

$$y_i(n) = \sum_{p \leq n, p \in \pi_i} \frac{1}{p},$$

and denote by n_0 the least positive integer for which $y_i(n_0) > 0$ $(i=1, \dots, k)$. We further put, for $n \ge n_0$,

$$u_i(n) = \frac{\omega_i(n) - y_i(n)}{\sqrt{y_i(n)}}$$
.

Then, to each integer $n \ge n_0$, there corresponds a point $U(n) = (u_1(n), \dots, u_k(n))$ in the space R^k of k dimensions. Let E be a Jordan-measurable set, bounded or unbounded, in R^k , and let A(x; E) denote the number of integers $n, n_0 \le n \le x$, for which the corresponding points U(n) belong to the set E.

¹⁾ When it is desirable to emphasize that we are considering the relevant formulas for $i=1,\dots,k$ simultaneously, we add the expression ' $(i=1,\dots,k)$ ' to indicate the simultaneousness.

Now the purpose of this prper is to prove the following Main Theorem:

THEOREM A.

$$\lim_{x\to\infty} \frac{A(x;E)}{x} = (2\pi)^{-\frac{k}{2}} \int_{E} \exp\left(-\frac{1}{2} \sum_{i=1}^{k} u_{i}^{2}\right) du_{1} \cdots du_{k}.^{2}$$

This is a generalization of a result of Erdös and Kac [3], of which we have given another generalization in a different direction in our previous paper I.³⁾ Our method of proof is based on Brun's sieve method like in Erdös [1] and [2], and the probability theory will be nowhere used, whereas Erdös and Kac [3] makes essential use of this theory. We could prove our Theorem A without using the inequalities such as Lemmas 1 and 2 below, if we impose some additional condition on our family $\{\pi_1, \dots, \pi_k\}$.⁴⁾ But, in order to prove our Theorem A in the present form, we had to extend the inequalities (our Lemma 1), used by Erdös [1] and Landau [5], to our Lemma 2, on ground of which we could then proceed along the same line as in Erdös [2].

We shall, in section 2, prove Theorem A, and, in section 3, refer to some special cases of Theorem A.

This paper is self-contained; it may be read independently of Erdös [1], [2], and I; we shall only quote the well-known formula (8) during the proof of Theorem A in section 2.50

The author expresses his thanks to Prof. S. Iyanaga for his encouragement during the preparation of this paper.

2. The proof of the main theorem.

We shall first prove some inequalities involving binomial coefficients which will be used in Brun's sieve method.

LEMMA 1.69 Let a and b be non-negative integers. Then

$$(C_3)$$
 $\log y_i(n) = o\{\sqrt{y_j(n)}\}$ for $i, j=1,\dots, k$; $i \pm j$.

²⁾ The letter π without subscript denotes, as usual, the number 3.14...

³⁾ I. e. Tanaka [6].

⁴⁾ Such as the following:

⁵⁾ We quote also the formula (18), but this is not used in the proof of Theorem A.

⁶⁾ Cf. Erdös [1], p. 536, and Landau [5], p. 71, Satz 116.

$$\sum_{c=0}^{b} (-1)^{c} {a \choose c}^{7} \begin{cases} =1, & when \ a=0, \\ \geq 0, & when \ a>0 \ and \ b \ is \ even, \\ \leq 0, & when \ a>0 \ and \ b \ is \ odd. \end{cases}$$

PROOF. The case a=0 is trivial. The cases a>0 follow at once from the formula

$$\sum_{c=0}^{b} (-1)^{c} \begin{pmatrix} a \\ c \end{pmatrix} = (-1)^{b} \begin{pmatrix} a-1 \\ b \end{pmatrix}.$$

LEMMA 2. Let $a_i(i=1,\dots,k)$ be non-negative integers, and $b_i(i=1,\dots,k)$ be non-negative even integers. Let

$$egin{aligned} & \gamma = \gamma(\pmb{a}_1, \cdots, \pmb{a}_k \,;\, \pmb{b}_1, \cdots, \pmb{b}_k) \ & = \sum_{j=1}^k \left\{ \sum_{c_j=0}^{b_j+1} (-1)^{c_j} \left(egin{aligned} \pmb{a}_j \ \pmb{c}_j \end{aligned}
ight) oldsymbol{\cdot} \prod_{\substack{i=1 \ i
eq j}}^k \sum_{c_i=0}^{b_i} (-1)^{c_i} \left(egin{aligned} \pmb{a}_i \ \pmb{c}_i \end{aligned}
ight)
ight\} \ & - (k-1) \prod_{i=1}^k \sum_{c_i=0}^{b_i} (-1)^{c_i} \left(egin{aligned} \pmb{a}_i \ \pmb{c}_i \end{aligned}
ight) oldsymbol{\cdot} \end{aligned}$$

Then

$$\gamma \left\{ egin{array}{ll} = 1, \ when \ a_i = 0 \ (i = 1, \cdots, k) \ , \ & \leq 0, \ when \ at \ least \ one \ of \ the \ a_i \ is \ positive \ . \end{array}
ight.$$

PROOF. The case $a_i=0$ $(i=1,\dots,k)$ follows at once from the case a=0 of Lemma 1.

Now suppose that at least one of the a_i is positive. Without loss of generality, we can assume that $a_i > 0$ $(i=1,\dots,\kappa)$ and $a_i=0$ $(i=\kappa+1,\dots,k)$. Then, applying again the case a=0 of Lemma 1, we have

from which, applying this time the cases a>0 of Lemma 1, we see that $r\leq 0$. Thus the lemma is proved.

Henceforth, let x be a positive variable which will be taken sufficiently large as occasion demands. Now we define some functions and sets which will be used in the sequel.

⁷⁾ $\binom{a}{0} = 1$, and $\binom{a}{c} = 0$ for integers a, c for which $0 \le a < c$.

We put

$$y_i(x) = \sum_{p \leq x, p \in \pi_i} \frac{1}{p}.$$

This coincides with the definition of $y_i(n)$ in section 1, and the condition (C_2) is equivalent with: ' $y_i(x)$ ($i=1,\dots,k$) tend to infinity with x.' We define $\pi'_i(x)$ to be the set consisting of the p's for which

$$p \in \pi_i$$
 and $e^{4y_i(x)} .$

We denote by $\omega'_i(n;x)$ the number of distinct prime factors of a positive integer n which belong to the set $\pi'_i(x)$:

$$\omega_i'(n;x) = \sum_{p\mid n, p\in\pi_i'(x)} 1.$$

We put

$$z_i(x) = \sum_{p \in \pi_i'(x)} \frac{1}{p}.$$

We obviously have $z_i(x) \leq y_i(x)$ $(i=1,\dots,k)$ for sufficiently large values of x. Henceforth, we consider only such values of x.

For any positive integer t, we define $\mathfrak{M}_i(x;t)$ to be the set consisting of positive integers m which satisfy the following conditions:

m is composed only of primes belonging to the set $\pi'_i(x)$;

m is squarefree;

m has t prime factors.

For any positive integers t_i $(i=1,\dots,k)$, we denote by $G(x;t_1,\dots,t_k)$ the number of positive integers $n \leq x$ for which $\omega'_i(n;x) = t_i$ $(i=1,\dots,k)$.

For any positive integers m_i $(i=1,\dots,k)$ such that $m_i \in \mathfrak{M}_i(x;t_i)$ $(i=1,\dots,k)$ with some positive integers $t_i(i=1,\dots,k)$, we denote by $H(x;m_1,\dots,m_k)$ the number of positive integers $n \leq x$ for which

For any positive integers $m_i(i=1,\dots,k)$ such that $m_i \in \mathfrak{M}_i(x;t_i)$ $(i=1,\dots,k)$ with some positive integers $t_i(i=1,\dots,k)$, and for any positive integers $T_i(i=1,\dots,k)$, we put

$$egin{aligned} K_0(x\,;\,m_1,\cdots,\,m_k\,;\,\,T_1,\cdots,\,T_k) \ &= \sum_{ au_1=0}^{2\,T_1}\cdots\sum_{ au_k=0}^{2\,T_k}\,(-1)^{ au_1+\cdots+ au_k}L(x\,;\,m_1,\cdots,\,m_k\,;\, au_1,\cdots,\, au_k)\,, \end{aligned}$$

where

$$L(x; m_1, \dots, m_k; \tau_1, \dots, \tau_k) = \sum_{\substack{\mu_1 \in \mathfrak{M}_1(x; \tau_1) \\ (\mu_1, m_1) = 1}} \dots \sum_{\substack{\mu_k \in \mathfrak{M}_k(x; \tau_k) \\ (\mu_k, m_k) = 1}} \left[\frac{x}{m_1 \dots m_k \mu_1 \dots \mu_k} \right].$$

Here we denote by the square brackets [*] the largest integer not exceeding *. (Gauss's notation.) Also we put

$$K_i(x; m_1, \dots, m_k; T_1, \dots, T_k)$$

$$= \sum_{\tau_1=0}^{2T_1} \dots \sum_{\tau_j=0}^{2T_i+1} \dots \sum_{\tau_k=0}^{2T_k} (-1)^{\tau_1+\dots+\tau_k} L(x; m_1, \dots, m_k; \tau_1, \dots, \tau_k),$$

where the summation-variables $\tau_j(j=1,\dots,k;j\neq i)$ run through the integers $0,\dots,2T_j$ respectively, and in particular the summation-variable τ_i runs through the integers $0,\dots,2T_i+1$.

Now we prove

LEMMA 3. Let $m_i(i=1,\dots,k)$ be positive integers such that $m_i \in \mathfrak{M}_i(x;t_i)$ $(i=1,\dots,k)$ with some positive integers $t_i(i=1,\dots,k)$, and let $T_i(i=1,\dots,k)$ be any positive integers. Then

$$\sum_{i=1}^{k} K_{i}(x; m_{1}, \dots, m_{k}; T_{1}, \dots, T_{k}) - (k-1)K_{0}(x; m_{1}, \dots, m_{k}; T_{1}, \dots, T_{k})$$

$$\leq H(x; m_{1}, \dots, m_{k}) \leq K_{0}(x; m_{1}, \dots, m_{k}; T_{1}, \dots, T_{k}).$$

PROOF. (By Brun's sieve method.)
If we write

$$\left[\frac{x}{m_1\cdots m_k\mu_1\cdots\mu_k}\right] = \sum_{\substack{n \leq x \\ m_1\cdots m_k\mu_1\cdots\mu_k \mid n}} 1$$

in the definition of $L(x; m_1, \dots, m_k; \tau_1, \dots, \tau_k)$, then we have

$$\begin{split} L(x\,;\,m_{_{1}},\cdots,\,m_{_{k}}\,;\,\tau_{_{1}},\cdots,\,\tau_{_{k}}) &= \sum_{\substack{\mu_{_{1}} \in \mathfrak{M}_{_{1}}(x\,;\,\tau_{_{1}})\\ (\mu_{_{1}},m_{_{1}})=1}} \cdots \sum_{\substack{\mu_{_{k}} \in \mathfrak{M}_{_{k}}(x\,;\,\tau_{_{k}})\\ (\mu_{_{k}},m_{_{k}})=1}} \sum_{\substack{m \leq x\\ m_{1}\cdots m_{_{k}} \mid n}} 1 \\ &= \sum_{\substack{n \leq x\\ m_{1}\cdots m_{_{k}} \mid n}} \sum_{\substack{\mu_{_{1}} \in \mathfrak{M}_{_{1}}(x\,;\,\tau_{_{1}})\\ (\mu_{_{k}},m_{_{k}})=1\\ (\mu_{_{k}},m_{_{k}})=1}} 1 \\ &= \sum_{\substack{n \leq x\\ m_{1}\cdots m_{_{k}} \mid n}} \prod_{\substack{k \in \mathfrak{M}_{_{1}}(x\,;\,\tau_{_{1}})\\ (\mu_{_{1}},m_{_{1}})=1\\ (\mu_{_{k}},m_{_{k}})=1\\ (\mu_{_{k}},m_{_{k}})=1\\ (\mu_{_{k}},m_{_{k}})=1\\ (\mu_{_{k}},m_{_{k}})=1\\ (\mu_{_{1}},m_{_{1}}) \in \mathfrak{M}_{_{1}}(x), \\ \mu_{_{1}} \mid n \\ (\mu_{_{1}},m_{_{1}})=1\\ (\mu_{_{1}},m_{_$$

⁸⁾ We mean by $\mathfrak{M}_{i}(x;0)$ the set consisting only of the number 1.

Hence

$$K_{\scriptscriptstyle 0}(x\,;\,m_{\scriptscriptstyle 1},\cdots,\,m_{\scriptscriptstyle k}\,;\,T_{\scriptscriptstyle 1},\cdots,\,T_{\scriptscriptstyle k}) = \sum_{\substack{n\leq x \ m_{\scriptscriptstyle 1}\cdots m_{\scriptscriptstyle k}\mid\,n}} \delta(n\,;\,x)$$
 ,

where

$$\delta(n;x) = \prod_{i=1}^{k} \sum_{\tau_i=0}^{2T_i} (-1)^{\tau_i} \begin{pmatrix} \omega_i'(n;x) - t_i \\ \tau_i \end{pmatrix}.$$

Also

$$K_i(x; m_1, \dots, m_k; T_1, \dots, T_k)$$

$$=\sum_{\substack{n\leq x\\ m,\cdots m_k\mid n}}\left\{\sum_{\tau_j=0}^{{}^{?}T_j+1}(-1)^{\tau_j}\left(\omega_j'(n;x)-t_j\right)\cdot\prod_{\substack{i=1\\i\neq j}}^k\sum_{\tau_i=0}^{{}^{2}T_i}(-1)^{\tau_i}\left(\omega_i'(n;x)-t_i\right)\right\},$$

so that

$$\sum_{j=1}^{k} K_{j}(x; m_{1}, \dots, m_{k}; T_{1}, \dots, T_{k}) - (k-1)K_{0}(x; m_{1}, \dots, m_{k}; T_{1}, \dots, T_{k})$$

$$= \sum_{\substack{n \leq x \\ m_{1} \dots m_{k} \mid n}} \delta'(n; x),$$

where

$$\delta'(n;x)$$

$$= \sum_{j=1}^{k} \left\{ \sum_{\tau_{j}=0}^{2T_{j}+1} (-1)^{\tau_{j}} \begin{pmatrix} \omega_{j}'(n;x) - t_{j} \\ \tau_{j} \end{pmatrix} \cdot \prod_{\substack{i=1\\i\neq j}}^{k} \sum_{\tau_{i}=0}^{2T_{i}} (-1)^{\tau_{i}} \begin{pmatrix} \omega_{i}'(n;x) - t_{i} \\ \tau_{i} \end{pmatrix} \right\}$$

$$- (k-1) \prod_{i=1}^{k} \sum_{\tau_{i}=0}^{2T_{i}} (-1)^{\tau_{i}} \begin{pmatrix} \omega_{i}'(n;x) - t_{i} \\ \tau_{i} \end{pmatrix}.$$

The functions $\delta(n;x)$ and $\delta'(n;x)$ are defined for positive integers $n \le x$ such that $m_1 \cdots m_k | n$ and, as to their values, we can conclude from Lemmas 1 and 2 as follows:

 $\delta(n; x) = \delta'(n; x) = 1$ for positive integers $n \le x$ such that $m_1 \cdots m_k | n$ and $\omega'_i(n; x) = t_i$ $(i = 1, \dots, k)$, that is,

$$\prod_{p\mid n,p\in\pi,i'(x)} p=m_i \qquad (i=1,\cdots,k).$$

 $\delta(n; x) \ge 0$ and $\delta'(n; x) \le 0$ for positive integers $n \le x$ such that $m_1 \cdots m_k | n$ and $\omega'_i(n; x) > t_i$ for at least one *i*.

The lemma now follows from this fact and the definition of $H(x; m_1, \dots, m_k)$.

LEMMA 4. Let m_i , t_i $(i=1,\dots,k)$ be positive integers such that $m_i \in \mathfrak{M}_i(x;t_i)$, $t_i < 2y_i(x)$ $(i=1,\dots,k)$. Then

$$H(x; m_1, \dots, m_k) = \frac{xe^{-\{z_1(x)+\dots+z_k(x)\}}}{\varphi(m_1 \dots m_k)} \{1 + o(1)\}$$
,

where $\varphi(m_1 \cdots m_k)$ is Euler's function, and the term o(1) tends to zero, as $x \to \infty$, uniformly in $m_i \in \mathfrak{M}_i(x;t_i)$ with $t_i < 2y_i(x)$ $(i=1,\cdots,k)$.

PROOF. We put

$$\begin{split} L'(x\,;\,m_{\scriptscriptstyle 1},\cdots,\,m_{\scriptscriptstyle k}\,;\,\tau_{\scriptscriptstyle 1},\cdots,\,\tau_{\scriptscriptstyle k}) \\ &= \sum_{\substack{\mu_{\scriptscriptstyle 1}\in\mathfrak{M}_{\scriptscriptstyle 1}(x\,;\,\tau_{\scriptscriptstyle 1})\\ (\mu_{\scriptscriptstyle 1},\,m_{\scriptscriptstyle 1})\,=\,1}} \cdots \sum_{\substack{\mu_{\scriptscriptstyle k}\in\mathfrak{M}_{\scriptscriptstyle k}(x\,;\,\tau_{\scriptscriptstyle k})\\ (\mu_{\scriptscriptstyle k},\,m_{\scriptscriptstyle k})\,=\,1}} \frac{x}{m_{\scriptscriptstyle 1}\cdots m_{\scriptscriptstyle k}\mu_{\scriptscriptstyle 1}\cdots\mu_{\scriptscriptstyle k}}\,, \end{split}$$

removing the square brackets of the summands of $L(x; m_1, \dots, m_k; \tau_1, \dots, \tau_k)$, and put further

$$egin{aligned} K_0'(x\,;\,m_1,\cdots,\,m_k\,;\,T_1,\cdots,\,T_k) \ &= \sum_{ au_1=0}^{2T_1} \cdots \sum_{ au_k=0}^{2T_k} (-1)^{ au_1+\cdots+ au_k} L'(x\,;\,m_1,\cdots,\,m_k\,;\, au_1,\cdots,\, au_k) \,. \end{aligned}$$

For a while, T_i ($i=1,\dots,k$) may be any positive integers, and will be specified later on as suitable functions of x.

Since
$$[*] \leq * < [*] + 1$$
,

$$\begin{split} &L(x\,;\,m_{_{1}},\cdots,\,m_{_{k}}\,;\,\tau_{_{1}},\cdots,\,\tau_{_{k}}) \leq L'(x\,;\,m_{_{1}},\cdots,\,m_{_{k}}\,;\,\tau_{_{1}},\cdots,\,\tau_{_{k}}) \\ &\leq L(x\,;\,m_{_{1}},\cdots,\,m_{_{k}}\,;\,\tau_{_{1}},\cdots,\,\tau_{_{k}}) + \sum_{\substack{\mu_{_{1}} \in \mathfrak{M}_{_{1}}(x\,;\,\tau_{_{1}}) \quad \mu_{_{k}} \in \mathfrak{M}_{_{k}}(x\,;\,\tau_{_{k}}) \\ (\mu_{_{1}},m_{_{1}}) = 1 \quad (\mu_{_{k}},m_{_{k}}) = 1} \end{split}$$

$$&= L(x\,;\,m_{_{1}},\cdots,\,m_{_{k}}\,;\,\tau_{_{1}},\cdots,\,\tau_{_{k}}) + \prod_{_{i=1}}^{k} \left\{ \left| \,\pi'_{i}(x) \,\right| - t_{_{i}} \right\} \right\}$$

$$&\leq L(x\,;\,m_{_{1}},\cdots,\,m_{_{k}}\,;\,\tau_{_{1}},\cdots,\,\tau_{_{k}}) + \prod_{_{i=1}}^{k} \left\{ \left| \,\pi'_{i}(x) \,\right| - 1 \right\}^{\tau_{_{i}}}\,, \end{split}$$

where $|\pi'_i(x)|$ denotes the number of primes belonging to the set $\pi'_i(x)$. Hence

⁹⁾ More precisely we mean the following by this expression: Since the term o(1) depends on x and m_i $(i=1,\cdots,k)$, we shall put $o(1)=\delta(x;m_1,\cdots,m_k)$. Then we mean that we can take, corresponding to an arbitrarily given $\varepsilon>0$, a positive number $x_0=x_0(\varepsilon)$ such that, when $x>x_0$ and $m_i\in \mathfrak{M}_i$ $(x;t_i)$ with $t_i<2y_i$ (x) $(i=1,\cdots,k)$, we have $|\delta(x;m_1,\cdots,m_k)|<\varepsilon$. The uniformity in Lemma 5 is to be interpreted in the similar way.

$$|K_{0}(x; m_{1}, \dots, m_{k}; T_{1}, \dots, T_{k}) - K_{0}'(x; m_{1}, \dots, m_{k}; T_{1}, \dots, T_{k})|$$

$$\leq \prod_{i=1}^{k} \sum_{\tau_{i}=0}^{2T_{i}} \{|\pi_{i}'(x)| - 1\}^{\tau_{i}} \leq \prod_{i=1}^{k} |\pi_{i}'(x)|^{2T_{i}}$$

Thus we have estimated the error introduced in the value of $K_0(x; m_1, \dots, m_k; T_1, \dots, T_k)$ by reason of removing the square brackets of the summands of $L(x; m_1, \dots, m_k; \tau_1, \dots, \tau_k)$.

Now we put for brevity

$$M_i(x; m_i; \tau_i) = \sum_{\substack{\mu_i \in \mathfrak{M}_i(x; \tau_i) \ (\mu_i, m_i) = 1}} \frac{1}{\mu_i},$$

Then

$$L'(x; m_1, \dots, m_k; \tau_1, \dots, \tau_k) = \frac{x}{m_1 \dots m_k} \prod_{i=1}^k M_i(x; m_i; \tau_i),$$

so that

(2)
$$K'_{0}(x; m_{1}, \dots, m_{k}; T_{1}, \dots, T_{k}) = \frac{x}{m_{1} \dots m_{k}} \prod_{i=1}^{k} \sum_{\tau_{i}=0}^{2T_{i}} (-1)^{\tau_{i}} M_{i}(x; m_{i}; \tau_{i}).$$

Also we obviously have

$$\sum_{\tau_i=0}^{\infty} (-1)^{\tau_i} M_i(x; m_i; \tau_i)^{(0)} = \prod_{\substack{p \in \pi_i'(x) \\ p \nmid m_i}} \left(1 - \frac{1}{p}\right),$$

so that

(3)
$$\left| \sum_{\tau_i=0}^{2T_i} (-1)^{\tau_i} M_i(x; m_i; \tau_i) - \prod_{\substack{p \in \pi_i'(x) \\ p \nmid m_i}} \left(1 - \frac{1}{p} \right) \right| \leq \sum_{\tau_i=2T_i+1}^{\infty} M_i(x; m_i; \tau_i) .$$

Now, recalling the definition of $z_i(x)$, and that we are considering only so large values of x that $z_i(x) \leq y_i(x)$ holds, we have

$$M_i(x; m_i; \tau_i) \leq \frac{\{z_i(x)\}^{\tau_i}}{\tau_i!} \leq \frac{\{y_i(x)\}^{\tau_i}}{\tau_i!}$$
,

which implies

$$\sum_{\tau_i=2T_{i+1}}^{\infty} M_i(x; m_i; \tau_i) \leq \sum_{\tau_i=2T_{i+1}}^{\infty} \frac{\{y_i(x)\}^{\tau_i}}{\tau_i!}.$$

¹⁰⁾ This sum is substantially finite. In fact, when $\tau_i > |\pi'_i(x)| - t_i$, $M_i(x; m_i; \tau_i) = 0$ as an empty sum.

Till now, T_i may be any positive integer. Here we put

(4)
$$T_i = [4y_i(x)] + 1$$
.

Then

$$\begin{split} \sum_{\tau_i = 2T_i + 1}^{\infty} & \frac{\{y_i(x)\}^{\tau_i}}{\tau_i!} = \frac{\{y_i(x)\}^{2T_i + 1}}{(2T_i + 1)!} \left\{ 1 + \frac{y_i(x)}{2T_i + 2} + \frac{y_i^2(x)}{(2T_i + 2)(2T_i + 3)} + \cdots \right\} \\ & < \frac{\{y_i(x)\}^{2T_i + 1}}{(2T_i + 1)!} \left(1 + \frac{1}{2} + \frac{1}{4} + \cdots \right) = \frac{2\{y_i(x)\}^{2T_i + 1}}{(2T_i + 1)!} \\ & < \frac{2e^{2T_i + 1}\{y_i(x)\}^{2T_i + 1}}{(2T_i + 1)^{2T_i + 1}} = \frac{2\{ey_i(x)\}^{2[4y_i(x)] + 3}}{\{2[4y_i(x)] + 3\}^{2[4y_i(x)] + 3}} \\ & < \frac{2\{ey_i(x)\}^{8y_i(x) + 3}}{\{8y_i(x)\}^{8y_i(x)}} = 2e^{3}y_i^3(x) \left(\frac{e}{8} \right)^{8y_i(x)} \\ & < 2e^{3}y_i^3(x)e^{-8y_i(x)} = o(e^{-y_i(x)}) \; . \end{split}$$

Thus we obtain, as the estimation of the right-hand side of (3),

(5)
$$\sum_{\tau_i=2T_i+1}^{\infty} M_i(x; m_i; \tau_i) = o(e^{-y_i(x)}).$$

Here and in the rest of the proof of the present lemma, the positive integers T_i $(i=1,\dots,k)$ are always considered as the functions of x defined by (4). Next we shall transform the product on the left-hand side of (3). Recalling the definition of the set $\pi'_i(x)$, we have

$$\sum_{p \in \pi_i'(x)} \frac{1}{p^2} < \sum_{p > \exp\{4y_i(x)\}} \frac{1}{p^2} = O(e^{-4y_i(x)}) = o(1),$$

and hence

$$\prod_{p \in \pi_{i'}(x)} \left(1 - \frac{1}{p} \right) = \exp \left\{ \sum_{p \in \pi_{i'}(x)} \log \left(1 - \frac{1}{p} \right) \right\}$$

$$= \exp \left\{ - \sum_{p \in \pi_{i'}(x)} \frac{1}{p} + O\left(\sum_{p \in \pi_{i'}(x)} \frac{1}{p^2} \right) \right\}$$

$$= \exp \left\{ -z_i(x) + o(1) \right\},$$

which implies that

$$\prod_{\substack{p \in \pi_{i'}(x) \\ p \nmid m_i}} \left(1 - \frac{1}{p} \right) = \{1 + o(1)\} e^{-z_i(x)} \prod_{\substack{p \mid m_i}} \left(1 - \frac{1}{p} \right)^{-1}.$$

¹¹⁾ By the well-known formula $t! > t^t e^{-t}$ for positive integer t.

By this and (3) and (5),

$$\sum_{\tau_i=0}^{2T_i} (-1)^{\tau_i} M_i(x; m_i; \tau_i) = \{1+o(1)\}e^{-z_i(x)} \prod_{p \mid m_i} \left(1-\frac{1}{p}\right)^{-1} + o(e^{-y_i(x)}).$$

Moreover, since $z_i(x) \leq y_i(x)$, the term $o(e^{-y_i(x)})$ in this formula can be absorbed in the first term of the right-hand side. Hence

$$\sum_{\tau_i=0}^{2T_i} (-1)^{\tau_i} M_i(x; m_i; \tau_i) = (1+o(1))e^{-z_i(x)} \prod_{p \mid m_i} \left(1 - \frac{1}{p}\right)^{-1}.$$

Putting this in (2), we now obtain 12)

(6)
$$K'_0(x; m_1, \dots, m_k; T_1, \dots, T_k) = \frac{xe^{-\{z_1(x)+\dots+z_k(x)\}}}{\varphi(m_1 \dots m_k)} \{1+o(1)\}.$$

Our next step is to obtain, from (6), a similar formula for $K_0(x; m_1, \dots, m_k; T_1, \dots, T_k)$, and (1) will serve for this purpose. Now, since T_i is defined by (4), we have $T_i < 5y_i(x)$ for sufficiently large values of x. Also $|\pi_i'(x)| < x^{1/20ky_i(x)}$ by the definition of the set $\pi_i'(x)$. Hence

$$\prod_{i=1}^{k} |\pi_i'(x)|^{2T_i} < \prod_{i=1}^{k} (x^{1/20ky_i(x)})^{10y_i(x)} = \sqrt{x}.$$

Hence, by (1) and (6),

(7)
$$K_0(x; m_1, \dots, m_k; T_1, \dots, T_k) = \frac{xe^{-\{z_1(x) + \dots + z_k(x)\}}}{\varphi(m_1 \cdots m_k)} \{1 + o(1)\} + O(\sqrt{x}).$$

As a matter of fact, the term $O(\sqrt{x})$ in this formula can be absorbed in the first term on the right-hand side. To see this, we quote the well-known formula¹³⁾

(8)
$$\sum_{p \leq x} \frac{1}{p} = \log \log x + O(1).$$

By this formula and

$$z_i(x) \leq y_i(x) \leq \sum_{p \leq x} \frac{1}{p}$$
,

we have

$$z_i(x) \leq \log \log x + O(1)$$
,

¹²⁾ Notice that $m_i(i=1,\dots,k)$ are squarefree, and relatively prime in pairs

¹³⁾ Cf., for instance, Landau [4], pp. 100-102, § 28.

which implies that

$$e^{-z_i(x)} > \frac{1}{c \log x}$$
,

where c is a suitable positive number independent of x. On the other hand, since m_i is assumed to belong to the set $\mathfrak{M}_i(x;t_i)$ with $t_i < 2y_i(x)$, we have

$$m_1 \cdots m_k < \prod_{i=1}^k (x^{1/20ky} i^{(x)})^{2y} i^{(x)} = x^{1/10}$$
,

recalling the definitions of the sets $\pi_i(x)$, $\mathfrak{M}_i(x;t_i)$. Thus

$$\frac{xe^{-\{z_1(x)+\cdots+z_{k}(x)\}}}{m_1\cdots m_k} > \frac{x^{9/10}}{c^k \log^k x}$$
,

and a fortiori

$$\frac{xe^{-\{z_1(x)+\cdots+z_k(x)\}}}{\varphi(m_1\cdots m_k)} > \frac{x^{9/10}}{c^k \log^k x} ,$$

which now shows that we may omit the term $O(\sqrt{x})$ in (7), and write

(9)
$$K_0(x; m_1, \dots, m_k; T_1, \dots, T_k) = \frac{xe^{-\{z_1(x)+\dots+z_k(x)\}}}{\varphi(m_1 \dots m_k)} \{1+o(1)\}.$$

During the above argument, I have not referred to the uniformity of the O and o terms in m_i as yet. But, if we review the course through which (9) has been derived, then we easily see that the term o(1) on the right-hand side of (9) tends to zero, as $x \to \infty$, uniformly in $m_i \in \mathfrak{M}_i(x;t_i)$ with $t_i < 2y_i(x)$ $(i=1,\cdots,k)$.

Quite similarly we can derive

(10)
$$K_i(x; m_1, \dots, m_k; T_1, \dots, T_k) = \frac{xe^{-\{z_1(x)+\dots+z_k(x)\}}}{\varphi(m_1 \dots m_k)} \{1+o(1)\},$$

the term o(1) tending uniformly to zero, as $x \to \infty$, in the same sense as in (9).

Our Lemma 3, which was proved by the sieve method, yields now at once Lemma 4 in view of (9) and (10).

LEMMA 5. Let t_i ($i=1,\dots,k$) be positive integers such that $t_i < 2y_i(x)$ ($i=1,\dots,k$). Then

$$G(x;t_1,\dots,t_k) = \frac{x\{z_1(x)\}^{t_1}\dots\{z_k(x)\}^{t_k}e^{-\{z_1(x)+\dots+z_k(x)\}}}{t_1!\dots t_k!} \{1+o(1)\},$$

the term o(1) tending to zero, as $x \to \infty$, uniformly in $t_i < 2y_i(x)$ $(i=1, \dots, k)$.

PROOF. We have

$$G(x;t_1,\cdots,t_k) = \sum_{m_1 \in \mathfrak{M}_1(x;t_1)} \cdots \sum_{m_b \in \mathfrak{M}_b(x;t_b)} H(x;m_1,\cdots,m_k),$$

by the definitions of $G(x; t_1, \dots, t_k)$ and $H(x; m_1, \dots, m_k)$. Hence by Lemma 4,

(11)
$$G(x; t_1, \dots, t_k) = \{1 + o(1)\} x e^{-\{z_1(x) + \dots + z_k(x)\}} \prod_{i=1}^k \sum_{m_i \in \mathfrak{M}_i(x; t_i)} \frac{1}{\varphi(m_i)},$$

where the term o(1) tends to zero, as $x \to \infty$, uniformly in $t_i < 2y_i(x)$ $(i=1,\dots,k)$.

We shall be, for a while, concerned with the inner sums on the right-hand side of (11). Now by the multinomial theorem,

(12)
$$\sum_{m_i \in \mathfrak{M}_i(x; t_i)} \frac{1}{m_i} \leq \frac{\{z_i(x)\}^{t_i}}{t_i!} \leq \sum_{m_i \in \mathfrak{M}_i(x; t_i)} \frac{1}{m_i} + \sum_{w}' \frac{1}{w},$$

where the prime attached to the second summation on the right-hand side means that the summation-variable w runs through positive integers satisfying the following conditions:

w is composed only of primes belonging to the set $\pi_i(x)$;

w is not squarefree;

w has t_i prime factors, multiple factors being counted multiply. For each of these w, we can put $w = d^2q$ with positive integers d and q satisfying the following conditions:

d is composed only of primes belonging to the set $\pi'_i(x)$, and d>1, so that $d>e^{4y_i(x)}$ by the definition of the set $\pi'_i(x)$; q is composed only of primes belonging to the set $\pi'_i(x)$, and is squarefree.

Hence we have

$$\sum_{w}' \frac{1}{w} \leq \sum_{d} \frac{1}{d^2} \sum_{q} \frac{1}{q},$$

where

$$\sum_{d} \frac{1}{d^2} \leq \sum_{a=[\exp\{4y_i(x)\}\}+1}^{\infty} \frac{1}{a^2} = O(e^{-4y_i(x)}),$$

and, by the definition of $z_i(x)$,

$$\sum_{q} \frac{1}{q} \leq 1 + z_{i}(x) + \frac{z_{i}^{2}(x)}{2!} + \dots = e^{z_{i}(x)} \leq e^{y_{i}(x)}.$$

Thus we obtain

(13)
$$\sum_{w}' \frac{1}{w} = O(e^{-3y_i(x)}).$$

On the other hand, by (8) and by the definitions of $z_i(x)$ and of the set $\pi'_i(x)$, we have

(14)
$$y_{i}(x) - z_{i}(x) = \sum_{p \leq x, p \in \pi_{i} - \pi_{i}'(x)} \frac{1}{p}$$

$$\leq \sum_{p \leq \exp\{4y_{i}(x)\}} \frac{1}{p} + \sum_{\exp\{\log x/20ky_{i}(x)\} \leq p \leq x} \frac{1}{p}$$

$$= \log 4y_{i}(x) + \log \log x - \log \frac{\log x}{20ky_{i}(x)} + O(1)$$

$$= O\{\log y_{i}(x)\}.$$

Hence, for sufficiently large values of x, the assumption $t_i < 2y_i(x)$ implies $t_i < ez_i(x)$, and therefore implies

$$\frac{\{z_i(x)\}^{t_i}}{t_i!} > \left(\frac{t_i}{e}\right)^{t_i} \cdot \frac{1}{t_i^{t_i}} = e^{-t_i} > e^{-2y_i(x)}.$$

Now, by this and (13), we can write

$$\sum_{w}' \frac{1}{w} = \frac{\{z_{i}(x)\}^{t_{i}}}{t_{i}!} \cdot O(e^{-y_{i}(x)}),$$

and a fortiori

$$\sum_{w}' \frac{1}{w} = \frac{\{z_{i}(x)\}^{t_{i}}}{t_{i}!} \cdot o(1),$$

which, combined with (12), gives

(15)
$$\sum_{m_i \in \mathfrak{M}_i(x; t_i)} \frac{1}{m_i} = \frac{\{z_i(x)\}^{t_i}}{t_i!} \{1 + o(1)\}.$$

Here we can replace the summands $1/m_i$ by $1/\varphi(m_i)$. In fact, since we assume that $t_i < 2y_i(x)$, on recalling the definitions of the sets $\pi'_i(x)$ and $\mathfrak{M}_i(x;t_i)$, we see that the number of prime factors of $m_i \in \mathfrak{M}_i(x;t_i)$ is less than $2y_i(x)$, and each of the prime factors is greater than $e^{4y_i(x)}$. Hence

$$\begin{split} 1 &\leq \frac{m_i}{\varphi(m_i)} = \prod_{p \mid m_i} \left(1 - \frac{1}{p} \right)^{-1} \leq \prod_{p \mid m_i} \left(1 + \frac{2}{p} \right) \\ &< \{ 1 + 2e^{-4y_i(x)} \}^{2y_i(x)} = 1 + O\{ y_i(x)e^{-4y_i(x)} \} = 1 + o(1) . \end{split}$$

From this and (15) we now obtain

(16)
$$\sum_{m_i \in \mathfrak{M}_i(x; t_i)} \frac{1}{\varphi(m_i)} = \frac{\{z_i(x)\}^{t_i}}{t_i!} \{1 + o(1)\}.$$

Furthermore, if we review the above process of deriving this formula, we easily see that the term o(1) tends to zere, as $x \to \infty$, uniformly in $t_i < 2y_i(x)$.

Finally, putting (16) in (11) we obtain the desired lemma.

LEMMA 6. Let $\alpha_i < \beta_i$ $(i=1,\dots,k)$ be arbitrarily given but fixed real numbers. Let t_i $(i=1,\dots,k)$ be positive integers such that $t_i=z_i(x)+u_i\sqrt{z_i(x)}$ with $\alpha_i < u_i < \beta_i$ $(i=1,\dots,k)$. Then

$$G(x;t_1,\cdots,t_k)$$

$$= (2\pi)^{-\frac{k}{2}} x \{z_1(x) \cdots z_k(x)\}^{-\frac{1}{2}} e^{-\frac{1}{2} (u_1^2 + \cdots + u_k^2)} \{1 + o(1)\},$$

the term o(1) tending to zero, as $x \to \infty$, uniformly in u_i ($i=1,\dots,k$) with $\alpha_i < u_i < \beta_i$ ($i=1,\dots,k$).

PROOF. In the Stirling's formula

$$t! = \sqrt{2\pi} t^{t+rac{1}{2}} e^{-t} iggl\{ 1 + Oiggl(rac{1}{t}iggr) iggr\}$$
 ,

we put $t=z+u\sqrt{z}$, and consider large values of z, leaving u contained in a finite interval, then easy calculations give

$$t! = \sqrt{2\pi} z^{z+u\sqrt{z}+rac{1}{2}} e^{-z+rac{u^2}{2}} iggl\{ 1 + Oiggl(rac{1}{1/z}iggr) iggr\}$$
 ,

or

$$=rac{z^t e^{-z}}{t\,!} = rac{e^{-rac{u^2}{2}}}{\sqrt{2\pi\,z}} iggl\{ 1 + Oiggl(rac{1}{\sqrt{z}}iggr) iggr\}$$

Here we put $t=t_i$, $z=z_i(x)$, $u=u_i$, and combining thus obtained formulas for $i=1,\dots,k$, we get

$$\frac{\{z_1(x)\}^{t_1}\cdots\{z_k(x)\}^{t_k}e^{-\{z_1(x)+\cdots+z_k(x)\}}}{t_1!\cdots t_k!}$$

$$=(2\pi)^{-\frac{k}{2}}\{z_1(x)\cdots z_k(x)\}^{-\frac{1}{2}}e^{-\frac{1}{2}(u_1^2+\cdots+u_k^2)}\{1+o(1)\}.$$

Now we have $t_i < 2y_i(x)$ $(i=1,\dots,k)$ for sufficiently large x, and therefore Lemma 5 can be applied to the present case. Thus, from the above formula and Lemma 5, we obtain Lemma 6, the term o(1)

tending uniformly to zero in the above-mentioned sense.

LEMMA 7. Let $\alpha_i < \beta_i$ $(i=1,\dots,k)$, and let $A^{**}(x) = A^{**}(x;\alpha_1,\beta_1,\dots,\alpha_n,\beta_k)$ denote the number of positive integers $n \leq x$ for which

$$z_i(x) + \alpha_i \sqrt{z_i(x)} < \omega'_i(n; x) < z_i(x) + \beta_i \sqrt{z_i(x)}$$
 $(i=1,\dots,k)$

simultaneously. Then

$$\lim_{x \to \infty} \frac{A^{**}(x)}{x} = (2\pi)^{-\frac{k}{2}} \prod_{i=1}^{k} \int_{\alpha_i}^{\beta_i} e^{-\frac{u_i^2}{2}} du_i.$$

PROOF. We have

(17)
$$A^{**}(x) = \sum_{t_1, \dots, t_k} G(x; t_1, \dots, t_k),$$

by the definitions of $A^{**}(x)$ and $G(x; t_1, \dots, t_k)$, the summation extending over the systems of positive integers t_i $(i=1,\dots,k)$ such that $z_i(x) + \alpha_i \sqrt{z_i(x)} < t_i < z_i(x) + \beta_i \sqrt{z_i(x)}$. Now let these values of t_i be t_{ij} $(j=1,\dots,s_i)$, and let $t_{ij}=z_i(x)+u_{ij}\sqrt{z_i(x)}$, where $s_i=[(\beta_i-\alpha_i)\sqrt{z_i(x)}]$ or $[(\beta_i-\alpha_i)\sqrt{z_i(x)}]\pm 1$. Then

$$u_{i,j+1}-u_{ij}=\frac{1}{\sqrt{z_i(x)}}$$
.

With these notations, from (17) and Lemma 6, we obtain

$$\frac{A^{**}(x)}{x} = \{1 + o(1)\}(2\pi)^{-\frac{k}{2}} \prod_{i=1}^{k} \sum_{j=1}^{s_i} e^{-\frac{u_{ij}^2}{2}} (u_{i,j+1} - u_{ij}).$$

The lemma follows at once from this formula by making $x \rightarrow \infty$.

LEMMA 8. Let $\alpha_i < \beta_i$ ($i=1,\dots,k$), and let $A^*(x) = A^*(x; \alpha_1, \beta_1,\dots,\alpha_k,\beta_k)$ denote the number of positive integers $n \leq x$ for which

$$z_i(x) + \alpha_i \sqrt{z_i(x)} < \omega_i(n) < z_i(x) + \beta_i \sqrt{z_i(x)}$$
 ($i = 1, \dots, k$)

simultaneously. Then

$$\lim_{x\to\infty}\frac{A^*(x)}{x}=(2\pi)^{-\frac{k}{2}}\prod_{i=1}^k\int_{\alpha_i}^{\beta_i}e^{-\frac{u_i^2}{2}}du_i.$$

PROOF. We have

$$\sum_{n \leq x} \{\omega_i(n) - \omega_i'(n; x)\} = \sum_{n \leq x} \sum_{p \mid n, p \in \pi_i - \pi_i'(x)} 1$$

$$= \sum_{p \leq x, p \in \pi_i - \pi_i'(x)} \left[\frac{x}{p} \right] \leq x \sum_{p \leq x, p \in \pi_i - \pi_i'(x)} \frac{1}{p},$$

and hence, by (14),

$$\sum_{n \le r} \{\omega_i(n) - \omega_i'(n; x)\} = O\{x \log y_i(x)\}.$$

Since $y_i(x) \sim z_i(x)$ as $x \to \infty$ by (14), this result can be rewritten as

$$\sum_{n \leq x} \{\omega_i(n) - \omega_i'(n; x)\} = O\{x \log z_i(x)\},$$

and a fortiori

$$\sum_{n\leq x} \{\omega_i(n) - \omega_i'(n; x)\} = o\{x\sqrt{z_i(x)}\}.$$

Now it can easily be concluded from this estimation that we can take, for an arbitrarily given $\varepsilon > 0$, a positive number $x_1 = x_1(\varepsilon)$ such that, when $x > x_1$, the number of positive integers $n \le x$, for which at least one of the inequalities $\omega_i(n) - \omega_i'(n; x) > \varepsilon \sqrt{z_i(x)}$ $(i=1,\dots,k)$ holds, is less than εx . Then, for $x > x_1$,

$$A^{**}(x; \alpha_{1}, \beta_{1} - \varepsilon, \dots, \alpha_{k}, \beta_{k} - \varepsilon) - \varepsilon x$$

$$\leq A^{*}(x; \alpha_{1}, \beta_{1}, \dots, \alpha_{k}, \beta_{k})$$

$$\leq A^{**}(x; \alpha_{1} - \varepsilon, \beta_{1}, \dots, \alpha_{k} - \varepsilon, \beta_{k}) + \varepsilon x.$$

From this and Lemma 7, we obtain

$$(2\pi)^{-\frac{k}{2}} \prod_{i=1}^{k} \int_{\alpha_{i}}^{\beta_{i}-\varepsilon} e^{-\frac{u_{i}^{2}}{2}} du_{i} - \varepsilon \leq \liminf_{x \to \infty} \frac{A^{*}(x; \alpha_{1}, \beta_{1}, \dots, \alpha_{k}, \beta_{k})}{x}$$

$$\leq \limsup_{x \to \infty} \frac{A^{*}(x; \alpha_{1}, \beta_{1}, \dots, \alpha_{k}, \beta_{k})}{x} \leq (2\pi)^{-\frac{k}{2}} \prod_{i=1}^{k} \int_{\alpha_{i}-\varepsilon}^{\beta_{i}} e^{-\frac{u_{i}^{2}}{2}} du_{i} + \varepsilon,$$

which, on making $\varepsilon \rightarrow 0$, gives the lemma.

LEMMA 9. Let $\alpha_i < \beta_i$ $(i=1,\dots,k)$ and let $A(x) = A(x; \alpha_1, \beta_1, \dots, \alpha_k, \beta_k)$ denote the number of positive integers $n \le x$ for which

$$y_i(n) + \alpha_i \sqrt{y_i(n)} < \omega_i(n) < y_i(n) + \beta_i \sqrt{y_i(n)}$$
 ($i = 1, \dots, k$)

simultaneously. Then

$$\lim_{x\to\infty}\frac{A(x)}{x}=(2\pi)^{-\frac{k}{2}}\prod_{i=1}^k\int_{\alpha_i}^{\beta_i}e^{-\frac{u_i^2}{2}}du_i$$

PROOF. If $\sqrt{x} < n \le x$, then by (8),

$$0 \leq y_i(x) - y_i(n) \leq y_i(x) - y_i(\sqrt{x}) \leq \sum_{\sqrt{x} .$$

It follows easily from this and (14) that we can take, for an arbitrarily given $\varepsilon > 0$, a positive number $x_2 = x_2(\varepsilon)$ such that, when $x > x_2$ and $\sqrt{x} < n \le x$, we have

$$egin{aligned} z_i(x) + (lpha_i - arepsilon) \sqrt{z_i(x)} &< y_i(n) + lpha_i \sqrt{y_i(n)} \ &< z_i(x) + (lpha_i + arepsilon) \sqrt{z_i(x)} \ & (i = 1, \cdots, k) \ & z_i(x) + (eta_i - arepsilon) \sqrt{z_i(x)} &< y_i(n) + eta_i \sqrt{y_i(n)} \ &< z_i(x) + (eta_i + arepsilon) \sqrt{z_i(x)} \ & (i = 1, \cdots, k) \ . \end{aligned}$$

Then, for $x > x_2$,

$$A^*(x; \alpha_1 + \varepsilon, \beta_1 - \varepsilon, \dots, \alpha_k + \varepsilon, \beta_k - \varepsilon) - \sqrt{x}$$

$$\leq A(x; \alpha_1, \beta_1, \dots, \alpha_k, \beta_k)$$

$$\leq A^*(x; \alpha_1 - \varepsilon, \beta_1 + \varepsilon, \dots, \alpha_k - \varepsilon, \beta_k + \varepsilon) + \sqrt{x}.$$

From this and Lemma 8, we obtain

$$(2\pi)^{-\frac{k}{2}} \prod_{i=1}^{k} \int_{\alpha_{i}+\varepsilon}^{\beta_{i}-\varepsilon} e^{-\frac{u_{i}^{2}}{2}} du_{i} \leq \liminf_{x \to \infty} \frac{A(x; \alpha_{1}, \beta_{1}, \dots, \alpha_{k}, \beta_{k})}{x}$$

$$\leq \limsup_{x \to \infty} \frac{A(x; \alpha_{1}, \beta_{1}, \dots, \alpha_{k}, \beta_{k})}{x} \leq (2\pi)^{-\frac{k}{2}} \prod_{i=1}^{k} \int_{\alpha_{i}-\varepsilon}^{\beta_{i}+\varepsilon} e^{-\frac{u_{i}^{2}}{2}} du_{i},$$

which, on making $x \rightarrow \infty$, gives the lemma.

Lemma 9 is the special case of Theorem A, when the set E is an interval.

THE PROOF OF THEOREM A. We are now in a position to accomplish the proof of theorem A with an arbitrarily given Jordan-measurable set E.

First we consider the case when the set E is bounded. We take two systems of intervals finite in number, say I_{μ} ($\mu=1,2,\cdots$) and I'_{μ} ($\mu=1,2,\cdots$), such that

$$\bigcup_{\mu} I_{\mu} \subset E \subset \bigcup_{\mu} I'_{\mu}$$

and any two of the intervals I_{μ} do not overlap. Then we obviously have

$$\sum_{\mu} A(x; I_{\mu}) \leq A(x; E) \leq \sum_{\mu} A(x; I_{\mu}').$$

On applying Lemma 9 to the interval I_{μ} , I'_{μ} , we obtain

$$(2\pi)^{-\frac{k}{2}} \sum_{\mu} \int_{I_{\mu}} \exp\left(-\frac{1}{2} \sum_{i=1}^{k} u_i^2\right) du_1 \cdots du_k \leq \liminf_{x \to \infty} \frac{A(x; E)}{x}$$

$$\leq \limsup_{x \to \infty} \frac{A(x; E)}{x} \leq (2\pi)^{-\frac{k}{2}} \sum_{\mu} \int_{I_{n'}} \exp\left(-\frac{1}{2} \sum_{i=1}^k u_i^2\right) du_1 \cdots du_k$$
.

But, since the set E is supposed to be Jordan-measurable, we can take, corresponding to an arbitrarily given $\varepsilon > 0$, the intervals I_{μ} , I'_{μ} such that

$$\int_E - arepsilon < \sum_{\mu} \int_{I_{\mu}} \leq \sum_{\mu} \int_{I_{\mu'}} < \int_E + arepsilon$$
 ,

omitting the common integrand

$$(2\pi)^{-\frac{k}{2}} \exp\left(-\frac{1}{2}\sum_{i=1}^{k}u_{i}^{2}\right)$$
.

Now, on combining the above inequalities, we obtain

$$\int_{E} -\varepsilon < \liminf_{x \to \infty} \frac{A(x; E)}{x} \leq \limsup_{x \to \infty} \frac{A(x; E)}{x} < \int_{E} +\varepsilon,$$

which, on making $\varepsilon \rightarrow 0$, leads to

$$\lim_{x\to\infty}\frac{A(x;E)}{x}=\int_E.$$

Next, we consider the case when the set E is not bounded. Again, let ε be an arbitrarily given positive number. If we take an interval I sufficiently large, and apply Lemma 9 to this interval, then we have

$$\lim_{x\to\infty}\frac{A(x;I)}{x}=\int_{I}>1-\varepsilon,$$

or

$$\lim_{x\to\infty}\frac{A(x;I^c)}{x}=\int_{I^c}<\varepsilon,$$

which implies that

$$\limsup_{x\to\infty} \frac{A(x;E\cap I^c)}{x} < \varepsilon$$
, $\int_{E\cap I} > \int_{E} -\varepsilon$.

Also, since the set $E \cap I$ is bounded, it is already proved that

$$\lim_{x\to\infty}\frac{A(x;E\cap I)}{x}=\int_{E\cap I}.$$

Thus we have

$$\lim \inf_{x \to \infty} \frac{A(x; E)}{x} \ge \lim_{x \to \infty} \frac{A(x; E \cap I)}{x} = \int_{E \cap I} \int_{E} -\varepsilon,$$

$$\lim \sup_{x \to \infty} \frac{A(x; E)}{x} = \lim_{x \to \infty} \frac{A(x; E \cap I)}{x} + \lim \sup_{x \to \infty} \frac{A(x; E \cap I^{c})}{x}$$

$$< \int_{E \cap I} +\varepsilon < \int_{E} +\varepsilon,$$

which, on making $\varepsilon \rightarrow 0$, leads to

$$\lim_{x\to\infty}\frac{A(x;E)}{x}=\int_E,$$

and Theorem A is completely proved.

3. Some special cases.

We shall mention some special cases of Theorem A.

THEOREM 1. Let m be a positive integer. Let C_i $(i=1,\dots,k)$ denote the residue classes modulo m and prime to m in an arbitrary order, where $k=\varphi(m)$ is Euler's function of m, and let $\omega_i(n)$ denote the number of distinct prime factors of a positive integer n which belong to the class C_i . Let $\alpha_i < \beta_i$ $(i=1,\dots,k)$, and let $A(x) = A(x;\alpha_1,\beta_1,\dots,\alpha_k,\beta_k)$ denote the number of integers n, $3 \le n \le x$, for which

$$\frac{1}{k}\log\log n + \frac{\alpha_i}{\sqrt{k}}\sqrt{\log\log n} < \omega_i(n) < \frac{1}{k}\log\log n + \frac{\beta_i}{\sqrt{k}}\sqrt{\log\log n}$$

$$(i=1,\dots,k)$$

simultaneously. Then

$$\lim_{x \to \infty} \frac{A(x)}{x} = (2\pi)^{-\frac{k}{2}} \prod_{i=1}^{k} \int_{\alpha_i}^{\beta_i} e^{-\frac{u^2}{2}} du.$$

THEOREM 2.¹⁴⁾ Let $\omega_i(n)$ $(i=1,\dots,k)$ have the same meaning as in Theorem 1, and let B(x) denote the number of positive integers $n \leq x$ for which

¹⁴⁾ In Erdös [2], a special case of this theorem is stated as Theorem 1 without proof.

$$\omega_1(n) < \omega_2(n) < \cdots < \omega_k(n)$$
.

Then

$$\lim_{x\to\infty}\frac{B(x)}{x}=\frac{1}{k!}.$$

It is well-known that 15)

(18)
$$\sum_{p \le x, p \in C_i} \frac{1}{p} = \frac{1}{k} \log \log x + O(1).$$

Theorems 1 and 2 follow easily from (18) and Theorem A.16)

THEOREM 3. Let all the primes be numbered in the order of their magnitudes; $p_1=2, p_2=3, p_3=5, \cdots$. Let k be a positive integer. Let C_i $(i=1,\cdots,k)$ denote the residue classes modulo k in an arbitrary order, and let $\omega_i(n)$ denote the number of distinct prime factors p_j of a positive integer n for which the number j belongs to the class C_i . Let $\alpha_i < \beta_i$ $(i=1,\cdots,k)$, and let $A(x)=A(x;\alpha_1,\beta_1,\cdots,\alpha_k,\beta_k)$ denote the number of integers n, $3 \le n \le x$ for which

$$\frac{1}{k}\log\log n + \frac{\alpha_i}{\sqrt{k}}\sqrt{\log\log n} < \omega_i(n) < \frac{1}{k}\log\log n + \frac{\beta_i}{\sqrt{k}}\sqrt{\log\log n}$$

$$(i=1,\dots,k)$$

simultaneously. Then

$$\lim_{x\to\infty} \frac{A(x)}{x} = (2\pi)^{-\frac{k}{2}} \prod_{i=1}^{k} \int_{\alpha_i}^{\beta_i} e^{-\frac{u^2}{2}} du.$$

THEOREM 4. Let $\omega_i(n)$ $(i=1,\dots,k)$ have the same meaning as in Theorem 3, and let B(x) denote the number of positive integers $n \leq x$ for which

$$\omega_1(n) < \omega_2(n) < \cdots < \omega_k(n)$$
.

Then

$$\lim_{x\to\infty}\frac{B(x)}{x}=\frac{1}{k!}.$$

¹⁵⁾ Cf. Landau [4], pp. 449-450, § 110.

¹⁶⁾ If we aim at proving only Theorems 1 and 2, we had better proceed as follows: We first derive Theorem 1 from Lemma 8. Using (14) and (18), we can replace $z_i(x)$ in Lemma 8 by $\log \log n/k$ in a similar way as we have replaced $z_i(x)$ by $y_i(n)$ in the proof of Lemma 9. Next, we can derive, from Theorem 1, a general theorem similar to Theorem A, where $y_i(n)$ in the definition of $u_i(n)$ in section 1 is replaced by $\log \log n/k$, in just the same way as we have derived Theorem A from Lemma 9. Then Theorem 2 is a special case of thus obtained general theorem.

It easily follows from (8) that

$$\sum_{p_j \leq x, \ j \in C_i} \frac{1}{p_j} = \frac{1}{k} \log \log x + O(1).$$

Theorems 3 and 4 follow easily from this and Theorem A.17)

17) The same remark as we have given on Theorems 1 and 2 in 16) may also be given on Theorems 3 and 4.

Jiyu-Gakuen, Tokyo.

References

- [1] P. Erdös, On a problem of Chowla and some related problems, Proc. Cambridge Philos. Soc., 32 (1936), pp. 530-540.
- [2] P. Erdös, Note on the number of prime divisors of integers, J. London Math. Soc., 12 (1937), pp. 308-314.
- [3] P. Erdös and M. Kac, The Gaussian law of errors in the theory of additive number-theoretic functions, Amer. J. Math., 62 (1940), pp. 738-742.
- [4] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Bd. I, Leipzig, 1909.
- [5] E. Landau, Vorlesungen über Zahlentheorie, Bd. I, Leipzig, 1927.
- [6] M. Tanaka, On the number of prime factors of integers, Jap. J. Math., 25 (1955), pp. 1-20. This paper will be referred to as I in this paper.