On the fundamental conjecture of GLC IV.

By Gaisi Takeuti

(Received April 20, 1955)

This paper belongs to the series of papers [2], [3], [4]. In [2] the auther has proved the following theorem:

The end-sequence of a normal proof-figure in $G^{1} L C$ is proved withouot cut.

The logical system $G^{1} L C$ is a subsystem of $G L C$ defined in [1], where we have enounced the "fundamantal conjecture" that every provable sequence in GLC would be provable witrout cut. In this paper we shall generalize the above result of [2] in proving a theorem of the same form in GLC, when the meaning of "normal" is also widened than in [2] (even restricted to the case of $G^{1} L C$). We shall prove this result in Chap. II after preparations in Chap. I. At the end of the paper, we shall also prove a lemma (as Lemma 2) which we have used in [4] without proof.

Chapter I. The proof-figure of GLC

The whole paper is based on GLC as was explained in [1], chapter I. However we shall modify some notions as follows.

\S 1. Symbols

As in [1], we use the following symbols:
1.1. Variables
1.1.1. t-variables (t means 'term')
1.1.1.1. t-variables without argument-place, which is called variables of type (0) in [1].

Free ones: $a_{0}, b_{0}, c_{0}, \cdots$
Bound ones: $x_{0}, y_{0}, z_{0}, \cdots$
(In this paper, we have not to distinguish special t-variables and special f-variables, among free t-variables and free f-variables in general.)
1.1.1.2. t-variables of type $\left(n_{1}, \cdots, n_{i}\right) \quad\left(i, n_{1}, \cdots, n_{i}=1,2,3, \cdots\right)$, which is called functions of type $\left(n_{1}, \cdots, n_{i}\right)$ in [1].

Free ones: $a\left(n_{1}, \cdots, n_{i}\right), b\left(n_{1}, \cdots, n_{i}\right), \cdots$
Bound ones: $x\left(n_{1}, \cdots, n_{i}\right), y\left(n_{1}, \cdots, n_{i}\right), \cdots$
1.1.2. f-variables (f means 'formula')
1.1.2.1. f-variables without argument-place, (which is not used in [1]).

Free ones: $\alpha_{0}, \beta_{0}, \gamma_{0}, \cdots$
Bound ones: $\boldsymbol{\varphi}_{0}, \psi_{0}, \cdots$
1.1.2.2. f-variables of type $\left(n_{1}, \cdots, n_{t}\right) \quad\left(i, n_{1}, \cdots, n_{i}=1,2,3, \cdots\right)$, which is called variables of type (n_{1}, \cdots, n_{i}) in [1].

Free ones: $\alpha\left(n_{1}, \cdots, n_{i}\right), \beta\left(n_{1}, \cdots, n_{i}\right), \cdots$
Bound ones: $\varphi\left(n_{1}, \cdots, n_{i}\right), \psi\left(n_{1}, \cdots, n_{i}\right), \cdots$
1.2. Logical symbols: $7, \wedge, \forall$.
(We do not use the symbols V and \exists in this paper.)
If no confusion is likely to occur, we use $\alpha ; \beta ; \cdots ; \varphi ; \psi ; \ldots$ for $\alpha_{0}, \alpha\left(n_{1}, \cdots, n_{i}\right) ; \beta_{0}, \beta\left(n_{1}, \cdots, n_{i}\right) ; \cdots ; \varphi_{\iota}, \varphi\left(n_{1}, \cdots, n_{i}\right) ; \psi_{0}, \psi\left(n_{1}, \cdots, n_{i}\right) ; \cdots$ respectively as in [1].

§2. Several definitions

In this section, the notions and notations are as in [1] § 2, §3, $\S 4$ and §5. Now, we define some new concepts.
2.1. t-varieties, f-varieties and words

Terms and functionals will be called t-varieties. Formulas and varieties other than terms will be called f-varieties. We use the notations T, T_{1}, T_{2}, \cdots for t-varieties and F, F_{1}, F_{2}, \cdots for f-varieties

Let a be a free variable (which means a free t-variable or a free f-variable), and L be a t-variety or f-variety. L is said to be of the same type with \mathfrak{a}, if \mathfrak{a} is a t-variable and L is a t-variety with same type with \mathfrak{a}, or \mathfrak{a} is an f-variable and L is an f-variety with same type with a.

Let $L\left(a_{1}, \cdots, a_{n}, \alpha_{1}, \cdots, \alpha_{m}\right)$ be a t-variety or an f-variety. Then a figure $L\left(x_{1}, \cdots, x_{n}, \varphi_{1}, \cdots, \varphi_{m}\right)$ is called a t-word or an f-word respectively, provided that $x_{1}, \cdots, x_{n}, \varphi_{1}, \cdots, \varphi_{m}$ are not contained in $L\left(a_{1}, \cdots, a_{n}, \alpha_{1}, \cdots \alpha_{m}\right)$. A t-word or an f-word is called a word, too. A word is called an essential word, if it is neither a t-variety nor an f-variety.
2.2. Let $*$ be a logical symbol or an f-variable in a formula or an f-variety $E . \quad *$ is called improper in E, if and only if $*$ is contained in an argument-place of an f-variable or a t-variable in $E . \quad$ * is called proper in E in all other cases. Moreover, $*$ is called degenerate in E, if and only if $*$ is contained in an argument-place of a t-variable in E; non-degenerate in E in all other cases.
2.3. The indication $L(\mathfrak{a})$ is called void, if and only if the indicated place of \mathfrak{a} in $L(\mathfrak{a})$ is void.
2.4. Indication of t - or f-varieties

Let \mathfrak{a} be free variable, and L be t - or f-varieties of same type with \mathfrak{a}. If M is a t - or f-variety and is equal to $N(\mathfrak{a})\binom{\boldsymbol{L}}{\mathfrak{a}}$, then we call the totality of $M, N(\mathfrak{a}), L$ and \mathfrak{a}, which is denoted by $\{N(\mathfrak{a}) ; L ; \mathfrak{a}\}$, ' an indication of L for M '. If no confusion is likely to occur, we say that this indication is of the form $N(L)$.

An indication $\{N(\mathfrak{a}) ; L ; \mathfrak{a}\}$ is called void or non-void, according as the indicated place of \mathfrak{a} in $N(\mathfrak{a})$ is void or non-void.

§ 3. Proof-figure

The concept of proof-figure is explained as in [1], § 6. We list here the inference-schemata. Only \wedge-right schema is modified.
3.1. Inference-schemata
I) Inference-schemata on structure of sequences
' Weakening '

$$
\text { left: } \quad \begin{aligned}
& \Gamma \rightarrow \Delta \\
& D, \Gamma \rightarrow \Delta
\end{aligned} \quad \text { right : } \quad \frac{\Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta, D}
$$

' Contraction '

$$
\text { left: } \quad \frac{D, D, \Gamma \rightarrow \Delta}{D, \Gamma \rightarrow \Delta} \quad \text { right : } \quad \frac{\Gamma \rightarrow \Delta, D, D}{\Gamma \rightarrow \Delta, D}
$$

'Exchange,

$$
\text { left: } \quad \frac{\Gamma, C, D, \Pi \rightarrow \Delta}{\Gamma, D, C, \Pi \rightarrow \Delta} \quad \text { right : } \quad \frac{\Gamma \rightarrow \Delta, C, D, \Lambda}{\Gamma \rightarrow \Delta, D, C, \Lambda}
$$

'Version'

$$
\frac{\Gamma \rightarrow \Delta}{\widetilde{\Gamma} \rightarrow \check{\Delta}}
$$

In these inference-figures, C, D in the upper sequence are called the subformulas of the inference-figure, and C, D in the lower sequence are called the chief-formulas of the inference.
II) 'Cut,

$$
\Gamma \rightarrow \Delta, D \underset{\Gamma, \Pi \rightarrow \Delta, \Lambda}{D, \Pi \rightarrow \Lambda}
$$

III) Inference-schemata on logical symbols

7
left: $\quad \underset{\sim}{\Gamma \rightarrow \Delta, ~} \quad \underset{\Gamma \rightarrow \Delta}{ } \quad$ right: $\quad A, \Gamma \rightarrow \Delta$
\wedge
left (1): $\begin{array}{r}A, \Gamma \rightarrow \Delta \\ A \wedge B, \Gamma \rightarrow \Delta\end{array} \quad$ right: $\quad \begin{array}{r}\Gamma \rightarrow \Delta, A \quad \Pi \rightarrow \Lambda, B \\ \Gamma, \Pi \rightarrow \Delta, \Lambda, A \wedge B\end{array}$
left (2): $\quad B, \Gamma \rightarrow \Delta$
$A \wedge B, \Gamma \rightarrow \Delta$
\forall on t-variable
left: $\quad \begin{array}{r}F(T), \Gamma \rightarrow \Delta \\ \forall x F(x), \Gamma \rightarrow \Delta\end{array}$
right: $\quad \begin{aligned} & \Gamma \rightarrow \Delta, F(a) \\ & \Gamma \rightarrow \Delta, \forall x F(x)\end{aligned}$
(T is an arbitrary t-variety of the same type with x.)
(There is no a in the lower sequence.) a is the eigen-t-variable of this inference.
\forall on f-variable
left: $\begin{array}{r}\quad F(G), \Gamma \rightarrow \Delta \\ \forall \varphi F(\varphi), \Gamma \rightarrow \Delta\end{array}$

$$
\begin{array}{ll}
\text { right: } & \Gamma \rightarrow \Delta, F(\alpha) \\
& \Gamma \rightarrow \Delta, \forall \varphi F(\varphi)
\end{array}
$$

(G is an arbitrary f-variety of the same type with φ.) (There is no α in the lower sequence.) α is the eigen-f-variable of this inference.
3.2 Let $\begin{array}{r}F(L), \Gamma \rightarrow \Delta \\ \forall x(x), I \rightarrow \Delta\end{array}$ be an inference \forall left. Then, the indication $\{F(\mathfrak{a}) ; L ; \mathfrak{a}\}$ for the subformula of this inference is called the indication of this inference.

3.3. formula in a proof-figure

As in [4], we take acconut of the place occupied by a formula (or a sequence or an inference) A in a proof-figure \mathfrak{P}, when we speak of A in \mathfrak{F}.

Let A be a formula in a proof-figure \mathfrak{B}. If A is in the right side or in the left side of a sequence in \mathfrak{F}, then A is called in the right side or in the left side in \mathfrak{F} respectively.

3.4. Successor

We define the successor of a formula A in the upper sequence of the inferences I), II) and III) as the formula in the lower sequence of the same inferences defined as follows. (cf. [2])
3.4.1. If A is a cut-formula, then there is no successor of A.
3.4.2. If A is a subformula of the inference other than cut and exchange, then the successor of A is the chief-formula of the inference.
3.4.3. If A is a subformula of exchange, then the successor of A is a chief-formula with the same form as A in this exchange.
3.4.4. If A is a k-th formula of Γ, Π, Δ or Λ in the upper sequence, then the successor of A is the k-th formula of Γ (or $\tilde{\Gamma}$), Π, Δ (or $\widetilde{\Delta}), \Lambda$ in the lower sequence respectively.
3.5. We use the definitions in [2], 2.1, 2.2, 2.3, 2.4, 2.7, 2.8, 2.10, 6.1, 6.2 and in [3], 2.1, 2.2.

Let \mathfrak{I} be the fibre through a formula A in a proof-figure. Then the part of \mathfrak{I} beginning with the beginning formula of \mathfrak{I} and ending with A, is called a fibre to A.

§ 4. Original formula

4.1. Extension of indication

Let A be a formula in a proof-figure $\mathfrak{F}, F(H)$ an indication for A, and B the predecessor of A. Then we define the indication I of H for B over $F(H)$ as follows.
4.1.1. If B is equivalent to A, then I is same as $F(H)$.
4.1.2. Let A be the chief-formula of an inference 7 and $F(\alpha)$ have a proper logical symbol, that is, $F(\alpha)$ be of the form $>G(\alpha)$. We define the indication I as $G(H)$.
4.1.3. Let A be the chief-fromula of an inference Λ and $F(\alpha)$ have a proper logical symbol, that is, $F(\alpha)$ be of the form $G_{1}(\alpha) \wedge G_{2}(\alpha)$. Then we define the indication I as $G_{1}(H)$ or $G_{2}(H)$, according as B is the first or the second predecessor of A.
4.1.4. Let A be the chief-formula of an inference \forall and $F(\alpha)$ have a proper logical symbol, that is, $F(\alpha)$ be of the form $\forall x G(\alpha, \mathfrak{x})$, and B the subformula of the form $G(H, L)$ of this inference where L is a free variable or a variety of the same type with \mathfrak{x}. Then we define the indication I as $\{G(\alpha, L) ; H ; \alpha\}$.
4.1.5. Let A be a chief-formula of a logical inference and $F(\alpha)$ have no proper logical symbol. Then we define the indication I as the void indication, that is, as $\{B ; H ; \alpha\}$.

Let T be a fibre to A, and I an indication for A. Let A^{\prime} be the predecessor of A in $T, A^{\prime \prime}$ the predecessor of A^{\prime} in T, \cdots. Then we have the indications I^{\prime} for A^{\prime} over $I, I^{\prime \prime}$ for $A^{\prime \prime}$ over I^{\prime}, \ldots, These indications $I^{\prime}, I^{\prime \prime}, \cdots$ are called over-indications of I in T.

4.2. Original formula

Let A be a formula in a proof-figure \mathfrak{P} and $\boldsymbol{I}=\{\boldsymbol{F}(\alpha) ; H ; \alpha\}$ be a non-void indication for A. Let H be of the form $\left\{\boldsymbol{\varphi}_{1}, \cdots, \boldsymbol{\varphi}_{n}\right\}$ $G\left(\boldsymbol{\varphi}_{1}, \cdots, \varphi_{n}\right)$. If \mathfrak{T} is a fibre to A, then for every formula of T the over-indication of I is defined. Then there arise the following three cases:
4.2.1. There exists a formula D in \mathfrak{T}, for which the over-indication of I is $\left\{\alpha\left[L_{1}(\alpha), \cdots, L_{n}(\alpha)\right] ; H ; \alpha\right\}$. In this case the undermost formula B with this property is called the original formula in \mathfrak{T} for the indication I. Clearly, if \mathfrak{T} has an original formula for the indication I, then it is uniquely determined.
4.2.2. There exists no formula with the property stated in 4.1 and a non-void indication of H is defined for the beginning formula or the weakening formula of \mathfrak{T}.
4.2.3. There exists no formula with the property stated in 4.1 and the indication of H for the beginning formula or the weakening formula of \mathfrak{I} is void. In this case we say that the indication I vanishes in \mathfrak{T}. Then there exists the overmost formula C in \mathfrak{T}, for which the non-void indication is defined. Then clearly C is a subformula of an inference \wedge.
' B is an original formula of the indication I for A ' means that there exists a fibre \mathfrak{I}, which contains B and A and the original formula in \mathfrak{I} for I is B. An original formula of the indication of \forall left on f-variable is called an original formula of this inference.

§5. Logical symbol in an f-word

Let \# be a proper logical symbol in an f-word A. Then we define recursively as follows;
5.1. If $\#$ is an outermost logical symbol of A, then $\#$ is positive in A.
5.2. Let A be of the form $>B$ and \# a logical symbol of B. Then $\#$ is positive or negative in A, according as \# is negative or positive in B.
5.3. Let A be of the form $B \wedge C$ and \# a logical symbol in B or C. If $\#$ is positive in B or C, then $\#$ is positive in A. If $\#$ is negative in B or C, then \# is negative in A.
5.4. Let A be of the form $\forall x G(x)$ or $\forall \varphi F(\varphi)$ and \# a logical symbol of $G(x)$ or $F(\phi)$. Then $\#$ is positive or negative in A, according as $\#$ is positve or negative in $G(x)$ or $F(\phi)$ respectively.

Let \# be a proper logical symbol in an arbitrary f-variety $\left\{\boldsymbol{\varphi}_{1}, \cdots, \varphi_{n}\right\} F\left(\mathscr{\varphi}_{1}, \cdots, \varphi_{n}\right)$. Then we say that $\#$ is positive or negative in $\left\{\boldsymbol{\varphi}_{1}, \cdots, \varphi_{n}\right\} F\left(\mathscr{\varphi}_{1}, \cdots, \varphi_{n}\right)$ according as $\#$ is positive or negative in $F\left(\varphi_{1}, \cdots, \varphi_{n}\right)$.

Let \# and 4 be two proper logical symbols in an f-variety or an f-word A. If \# and 4 are both positive in A or $\#$ and \sharp are both negative in A, then we say that \# is positive to 4 or 4 is positive to \#. Otherwise we say that \# is negative to 4 or 4 is negative to \#.

Chapter II. The normal proof-figure

\S 1. The normal proof-figure

A proof-figure \mathfrak{P} satisfying the following conditions 1.1 and 1.2 are called normal.
1.1. Let A be a beginning formula with proper logical symbols in \mathfrak{P} and suppose that a fibre \mathfrak{I} begins with A and ends with a cutformula in a cut \mathfrak{F}. Moreover, let \mathfrak{S}^{\prime} be an arbitrary fibre beginning with a beginning formula and ending with another cut-formula of \mathfrak{J}.

Then the beginning formula of \mathfrak{T}^{\prime} contains no proper logical symbol. 1.2. Let \mathfrak{J} be an arbitrary implicit inference \forall left on f-variable in \mathfrak{P}. Let \mathfrak{J} be of the following form

$$
\begin{array}{r}
F(H), \Gamma \rightarrow \Delta \\
\forall \varphi F(\varphi), \Gamma \rightarrow \Delta
\end{array}
$$

Moreover, let \mathfrak{I} be a fibre through the chief-formula of \mathfrak{J} beginning with a beginning formula A. Then every proper \forall on f-variable in $\forall \varphi F(\varphi)$ is positive to $\forall \varphi F(\varphi)$ and A contains no proper logical symbol.

The aim of this chapter is to prove the following theorem:
THEOREM 1. The end-sequence of a normal proof-figure is provable without cut.

This is clearly a generelization of the result of [2]. As all the circumstances are as in [2], we confine ourselves to give necessary remarks on the modification of the proof.

§ 2. Rank of a formula

We define the rank of a formula A as follows.
2.1. If A contains no proper logical symbol, then the rank of A is zero.
2.2. If A is of the form $>B, \forall x C(x)$ or $\forall \varphi F(\phi)$, then the rank of A is $r+1$, where r is the rank of $B, C(a)$ or $F(\alpha)$ respectively.
2.3. If A is of the form $B \wedge C$, then the rank of A is $r+1$, where r is the maximal number of the ranks of B and C.

§ 3. Degree of a formula in a normal proof-figure

We define the degree of a formula D in a normal proof-figure as follows.
3.1. The degree of a beginning formula or a weakening formula is one.
3.2. If D is not the chief-formula of an inference on logical symbol or a contraction, then the degree of D is equal to the degree of the predecessor of D.
3.3. If D is the chief-formula of a contraction, then the degree of D is the maximal number of the degrees of the predecessors of D. 3.4. If D is the chief-formula of an inference on the logical symbol other than \forall left on f-variable, then the degree of D is $d+1$, where
d is the maximal number of the degrees of the predecessors of D. 3.5. Let D be the chief formula of an inference $\mathfrak{J} \forall$ left on f-variable and of the form $\forall \varphi F(\varphi)$. We define the degree of D as the number $\max (a+b, c+1)$ where a is the rank of $\forall \varphi F(\phi)$ and b is the maximal number of the degrees of the original formulas of \mathfrak{J} (If there is no original formulas of \mathfrak{J}, then put $b=1$), and c is the degree of the predecessor of D.

We define the degree of a cut as the maximal number of the degrees of the cut-formulas of this cut.

§4. Potential

A normal proof-figure is called a proof-fgire with potential, if to each sequence of this proof-figure is assigned the natural number called its potential satisfying the following conditions.
4.1. If a sequence \mathfrak{S}_{1} is above a sequence \mathfrak{S}_{2}, then the potential of \mathfrak{S}_{1} is not less than the potential of \mathfrak{S}_{2}.
4.2. If a sequence \mathfrak{S}_{2} is an upper sequence of an inference other than cut and a sequence \mathfrak{S}_{2} is the lower sequence of this inference, then the potential of \mathfrak{S}_{1} is equal to the potential of \mathfrak{S}_{2}.
4.3. If \mathfrak{S}_{1} and \mathfrak{S}_{2} are two upper sequences of a cut, then the potential of \mathfrak{S}_{1} is equal to the potential of \mathfrak{S}_{2}.
4.4. If a sequence \mathfrak{S} is an upper sequence of a cut, then the potential of \mathfrak{S} is not less than the degree of this cut.
4.5. If a beginning sequence $D \rightarrow D$ contains proper logical symbols, and a fibre \mathfrak{T} beginning with one of these D 's ends with a cut-formula of a cut \mathfrak{F}, then the potential of the upper sequence of \mathfrak{F} is not less than $\max (a, b+c)+1$, where a is the degree of \mathfrak{F} and b is the maximal number of the degrees of any formulas related to one of two D 's and c is the logical length of \mathfrak{T}.

We see easily that every normal proof-figure may be considered as a proof-figure with potential by introducing a potential. Therefore, to prove the theorem 1, we have only to prove that the end-sequence of a proof-figure with potential is provable without cut.

$\S 5$. The proof of theorem 1.

In this number, we shall prove the theorem 1. The proof is the same as 3.4-6.6 in [2] except using the following lemma instead of 6.6.1 in [2].

Lemma 1. Let A be a formula in a proof-figure \mathfrak{P}, and I an indication for A. Let \mathfrak{I} be a fibre to $A ; B_{\mathfrak{I}}$ will denote the original formula for I in \mathfrak{T} if such formula exists; otherwise the beginning formula or the weakening formula of \mathfrak{T}. We suppose that, for every fibre \mathfrak{I} to A, the part from $B_{\mathfrak{I}}$ to A is not affected by inference \forall left on f-variable. Put furthermore
a the degree of A,
b the maximal number of the degrees of the original formulas for I (If there is no original formula for I, then put $b=1$),
c the maximal number of the logical lengths from $B_{\mathfrak{I}}$ to A, d the rank of A.
Then we have

$$
a \leqq b+d \quad \text { and } \quad c \leqq d
$$

This lemma is easily proved by induction on d.

§ 6.

Now, we prove the lemma of [4] in a generelized form.
Let A be a formula or an f-variety and \# a proper logical symbol \forall on f-variable in A. \# is called ' semi-simple in A ', if and only if the following condition is fulfilled:

If \# ties a proper \forall on f-variable denoted by \mathfrak{q}, then \mathfrak{G} is positive to \#.

A formula or an f-variety A is called 'semi-simple' if and only if every proper \forall on f-variable in A is semi-simple in A.

According to the definition of normal proof-figure in §1 in this chapter, we have clearly the following proposition.
6.1. Let \mathfrak{P} be a proof-figure and suppose that every implicit beginning formula in \mathfrak{B} contains no proper logical symbol. If every implicit formula in \mathfrak{P} is semi-simple, then \mathfrak{F} is normal.

Moreover, we prove easily the following propositions.
6.2. If $>A$ is semi-simple, then A is semi-simple.
6.3. If $A \wedge B$ is semi-simple, then A and B are semi-simple.
6.4. If $\forall x A(x)$ is semi-simple, then $A(a)$ is semi-simple.
6.5. If $\forall \varphi F(\mathscr{P})$ is semi-simple, then $F(\alpha)$ is semi-simple.

Then by 6.1-6.5 and 6.8 in [1], we have the following lemma.

Lemma 2. The end-sequence of a proof-figure, whose every implicit formula is semi-simple, is provable without cut.

Tokyo University of Education

References

[1] G. Takeuti: On a generalized logic calculus, Jap. J. Math. 23 (1953), 39-96. Errata to ' On a Generalized Logic Calculus', Jap. J. Math. 24 (1954), 149-156.
[2] : On the fundamental conjecture of GLC I, J. Math. Soc. Japan 7 (1955), 249-275.
[3] : On the fundamental conjecture of GLC II, J. Math. Soc. Japan 7 (1955), 394-408.
[4] : On the fundamental conjecture of GLC III, J. Math. Soc. Japan 8 (1956), 54-64.

