Proof of a special case of the fundamental conjecture of Takeuti's GLC.

By Takakazu Shimauti

(Received Nov. 25, 1955)

G. Takeuti [2] has generalized G. Gentzen's logic calculus *LK* (cf. [1]) to his *generalized logic calculus GLC*, and enounced the *fundamental conjecture of GLC*: Every provable sequence in *GLC* will be provable without cut. In [2] it is also shown that from this conjecture would follow the consistency of the analysis.

Some special cases of this conjecture have been proved by Takeuti [3], [4], [5], [6]. Another special case will be proved in this paper. After preparations in § 1, we shall formulate our theorem in § 2, and prove it by *reductions* indicated in § 3.

§ 1. Proof-figures in GLC.

We begin with listing the inference-schemata of GLC in a form slightly modified from those given in [2]. The equivalence of this system with that of [2] can be easily verified. For the meaning of terms such as "homologous", "t-variety", "f-variable" etc., we refer to [2], [3].

- 1.1. Inference-schemata
- 1.1.1. Inferences on structure
- "Version"

left:
$$A, \Gamma \to \Delta$$
 $\Gamma \to A, \Lambda$ $\Gamma \to A, \widetilde{A}$

where \widetilde{A} is a formula homologous to A. "Weakening"

left:
$$\frac{\Gamma \to \Delta}{A, \Gamma \to \Delta}$$
 right: $\frac{\Gamma \to \Delta}{\Gamma \to \Delta, A}$

"Contraction"

left:
$$A, A, \Gamma \rightarrow \Delta$$

 $A, \Gamma \rightarrow \Delta$ right: $\Gamma \rightarrow \Delta, A, A$
 $\Gamma \rightarrow \Delta, A$

" Exchange "

left:
$$\frac{\Gamma, A, B, \Pi \to \Delta}{\Gamma, B, A, \Pi \to \Delta}$$
 right: $\frac{\Gamma \to \Delta, A, B, \Lambda}{\Gamma \to \Delta, B, A, \Lambda}$

1.1.2. Cut

$$\Gamma \rightarrow \Delta$$
, A A , $\Pi \rightarrow \Lambda$
 Γ , $\Pi \rightarrow \Delta$, Λ

1.1.3. Inference on logical symbol

left:
$$\frac{\Gamma \to \Delta, A}{7A, \Gamma \to \Delta}$$
 right: $\frac{A, \Gamma \to \Delta}{\Gamma \to \Delta, 7A}$

· / "

left:
$$A, B, \Gamma \rightarrow \Delta$$

 $A \land B, \Gamma \rightarrow \Delta$ right: $\Gamma \rightarrow \Delta, A \qquad \Pi \rightarrow \Lambda, B$
 $\Gamma, \Pi \rightarrow \Delta, \Lambda, A \land B$

" \forall on t-variable"

left:
$$\frac{F(T), \Gamma \to \Delta}{\forall x F(x), \Gamma \to \Delta}$$
 right:
$$\frac{\Gamma \to \Delta, F(a)}{\Gamma \to \Delta, \forall x F(x)}$$

where T is an arbitrary t-variety of the same type as x.

" \forall on f-variable"

left:
$$F(H), \Gamma \rightarrow \Delta$$

 $\forall \varphi F(\varphi), \Gamma \rightarrow \Delta$

where H is an arbitrary f-variety of the same type as φ .

where a is a free t-variable of the same type as x, not contained in the lower sequence. (a is called the *eigenvariable* of this inference.)

right:
$$\Gamma \to \Delta$$
, $F(\alpha)$
 $\Gamma \to \Delta$, $\forall \varphi F(\varphi)$

where α is a free f-variable of the same type as φ , not contained in the lower sequence. (α is called the eigenvariable of this inference.)

- 1.2. In the above schemata, the formulas denoted by A, B, F(T), F(a), F(H) or $F(\alpha)$ in the upper sequence are called the *subformulas* of the inference, and the formulas denoted by $A, \widetilde{A}, B, \nearrow A, A \land B, \forall x F(x)$, or $\forall \varphi F(\varphi)$ in the lower sequence are called the *chief formulas* of the inference. A subformula of a cut is called a *cut-formula*, and a chief formula of a weakening is called a *weakening formula*.
- 1.3. When a formula C is contained in the upper sequence of an inference which is represented by one of the above inference-schemata, the successor of C is defined as follows: if C is a cut-formula then there is no successor of C; if C is a subformula of an inference other than cut and exchange, then the successor of C is the chief formula of the inference; if C is a subformula denoted by A (resp. B) in the schemata of exchange, then the successor of C is a chief formula denoted by A (resp. B); if C is the k-th formula of C, C, C, C in the upper sequence, then the successor of C is the C-th formula of C, C-th formula of C-th formula is a descendant of the formula; the successor of a descendant of a formula is a descendant of the formula.
- 1.4. A formula in a proof-figure is called *implicit* or *explicit* according as the formula has or has not a descendant, which is a cut-formula of a cut. An inference is called implicit or explicit according as the chief formula of the inference is implicit or explicit.
- 1.5. A sequence in a proof-figure is called *contained in the end-place* of the proof-figure, if and only if there is no implicit logical inference under the sequence. An inference in a proof-figure is called contained in the end-place of the proof-figure, if and only if the lower sequence of the inference is contained in the end-place. An inference in a proof-figure is called to *belong to the boundary* of the end-place, if and only if the lower sequence is contained in the end-place and the upper sequence is not contained in the end-place.
- 1.6. A cut in the end-place is called *suitable*, if and only if each cut-formula of the cut is a descendant of the chief formula of an inference, which belongs to the boundary of the end-place.

T. Simauti

\S 2. The formulation of the theorem and the plan of its proof.

- 2.1. THEOREM If a proof-figure \mathfrak{P} has no implicit contraction, then the end-sequence of \mathfrak{P} is provable without cut.
- 2.2. In the following, we shall prove this theorem by the mathematical induction on the *grade*, which is the sum of the numbers of cuts and logical inferences contained in the proof-figure.
- 2.3. Let \mathfrak{P} and \mathfrak{Q} (resp. \mathfrak{Q}_1 and \mathfrak{Q}_2) be proof-figures. We say that \mathfrak{P} is *reduced* to \mathfrak{Q} (resp. \mathfrak{Q}_1 and \mathfrak{Q}_2), if the following conditions (1), (2), (3) are satisfied: (1) \mathfrak{P} and \mathfrak{Q} (resp. \mathfrak{Q}_1 and \mathfrak{Q}_2) have no implicit contractions; (2) if the end-sequence of \mathfrak{Q} (resp. \mathfrak{Q}_1 and \mathfrak{Q}_2) is provable without cut then the end-sequence of \mathfrak{P} is provable without cut; (3) the grade of \mathfrak{Q} (resp. of \mathfrak{Q}_1 and of \mathfrak{Q}_2) is smaller than the grade of \mathfrak{P} .
- 2.4. Let $\mathfrak P$ be a proof-figure without implicit contraction with the grade not equal to zero. Our theorem will be proved, if we find a definite way of reduction for any such $\mathfrak P$. We may assume thereby, by a wellknown method of changing the free variables, that for every inference on \forall right its eigenvariable is contained in $\mathfrak P$ only in sequences above the inference.

§ 3. Reductions

- 3.1. The case, where the end-place of \mathfrak{P} has an explicit logical inference. Let \mathfrak{F} be the undermost logical inference contained in the end-place of \mathfrak{P} .
- 3.1.1. If \Im is an inference on \nearrow left, we can assume that \Re is of the form:

Since there is no logical inference under \Im , Υ contains $\nearrow A$. Hence \Re is reducible to the following proof-figure:

If \Im is an inference on \nearrow right, on \land left or on \forall , the reduction is similar to the above.

3.1.2. If \Im is an inference on \wedge right, and \Re is of the form

$$\frac{\Gamma \to A, A}{\Gamma, \Pi \to A, \Lambda, A \land B} \Im$$

$$\frac{\Gamma \to A, A}{\Gamma, \Pi \to A, \Lambda, A \land B} \Im$$

We reduce \$\Pi\$ to the following proof-figures:

3.2. The case where the end-place contains a beginning sequence S and no explicit logical inference. We can assume here that one of the two beginning formulas of S is implicit. In fact, if both of them are explicit, the end-sequence of \$\P\$ is obtained simply by some versions, weakenings and exchanges. Let \$\mathbb{P}\$ be of the form:

140

T. SIMAUTI

B is then reduced to the following proof-figure:

$$A, \Pi \rightarrow \Lambda$$
weakenings and exchanges
 $\Gamma, A, \Gamma', \Pi \rightarrow A, \Lambda$

The case, where the end-place contains an implicit weakening. Let \mathbb{P} be of the form:

\$\Pi\$ is then reduced to the following:

3.4. The case, where the end-place contains no beginning sequence, no explicit logical inference and no implicit weakening. We can prove by the induction on the number of inferences contained in the end-place that there is a suitable cut. Let \Im be the lowest cut in the end-place of \Re , and \Re be of the form:

We see easily that the end-place of \mathfrak{P}_i has a sequence not contained in the end-place of \mathfrak{P} , if and only if there is an inference, in the boundary of the end-place of \mathfrak{P} , and a cut-formula of \mathfrak{F} is a descendant of the chief-formula of this inference. Therefore, if \mathfrak{F} is not suitable, then the end-place \mathfrak{E} of \mathfrak{P}_i or \mathfrak{P}_2 is a subset of the end-place of \mathfrak{P} . Then, by the hypothesis of the induction, there exists a suitable cut \mathfrak{R} in \mathfrak{E} . Clearly \mathfrak{R} is a suitable cut of \mathfrak{P} .

Let \Im be a suitable cut in the end-place of \Re . 3.4.1. The case, where the outermost logical symbol of the cutformulas of \Im is \nearrow . Let \Re be of the form:

T. Simauti

We reduce \$\Pi\$ to the following proof-figure:

3.4.2. The case, where the outermost logical symbol of the cut-formulas of \Im is \wedge . Let \Re be of the form:

Proof of a special case of the fundamental conjecture of Takeuti's GLC. 143

We reduce \$\Pi\$ to the following proof-figure:

3.4.3. The case, where the outermost logical symbol of the cut-formulas of \Im is \forall . Let \Re be of the form:

T. Simauti

We reduce \$\mathbb{B}\$ to the following proof-figure:

where the part of the form:

$$\bigvee_{\Gamma \to \Delta, F(H)}$$

is obtained from the corresponding part of $\mathfrak P$ by substituting H for α .

References

- [1] G. Gentzen: Untersuchungen über das logische Schliessen, I, II, Math. Z., 39 (1935).
- [2] G. Takeuti: On a generalized logic calculus, Jap. J. Math. 23 (1953) pp. 39-96. Errata to On a Generalized Logic Calculus' Jap. J. Math. 24 (1954) pp. 149-156.
- [3] : On the fundamental conjecture of GLC I, J. Math. Soc. Japan, 7 (1955) pp. 249-275.
- [4] ----: On the fundamental conjecture of GLC II, J. Math. Soc. Japan, 7 (1955) pp. 394-408.
- [5] ———: On the fundamental conjecture of GLC III, J. Math Soc. Japan, 8 (1956) pp. 54-64.
- [6] .: On the fundamental conjecture of GLC IV, J. Math. Soc. Japan, 8 (1956) pp. 145-155.