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On the fundamental conjecture of $GLC$ III.
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This paper is a continuation of [1] and [2]. We use the same
notions and the notations as in these papers. See in particular [1]
as to the meaning of the fundamental conjecture. We have proved
this conjecture under several conditions in [1], [2]. In this paper, we
shall prove it under some other conditions.

\S I. Formulation of the theorem.

Until at the end of Appendex, the logical symbols $\exists$ and $\vee$ are
not used. In this section we introduce some new notions and nota-
tions.
1.1. A formula in a proof-figure and a logical symbol in a formula

We shall speak of a ‘ formula in a proof-figure ‘, when the formula
is considered together with the place where it occupies in the proof-
figure. Let $A$ and $B$ be two formulas in a proof-figure $\mathfrak{P}$ . Then $A$

is equal to $B$ if and only if $A$ is in the same place as $B$ in $\mathfrak{P}$. We
shall also speak of logical symbol in a formular or in a proof-figure
sequence and inferences etc. in a proof-figure in analogous meanings.
We use the symbols $\#$ , lt etc. as metamathematical variables to
represent logical symbols in a formula or in a proof-figure.

1.2. Semi-formula, quasi-formula.
A figure of the form $H(x,\cdots, y, \varphi,\cdots, \psi)$ with bound variables

$x,\cdots,$ $y$ and bound $f$-variables $\varphi,\cdots,$ $\psi$ is called a semi-formula, if rnd
only if $H(a,\cdots, b, \alpha,\cdots.\beta)$ obtained from $H(x,\cdots y, \varphi,\cdots, \psi)$ by substituting
free variables $a,\ldots,$

$b$ and free $f$-variables $\alpha,\ldots\beta$ for $x,\cdots,y$ and $\varphi,\ldots,$ $\psi$

is a formula and $x,\cdots,$ $y,$ $\varphi,\cdots,$ $\psi$ are difierent from each other and
are not contained in $H(a,\cdots, b, \alpha,\cdots, \beta)$ .

If $\{x,\cdots, y\}H(x,\cdots, y)$ is a formula with argument-places, then
$H(x,\cdots, y)$ is clearly a semi-formula.
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We use the word ‘ quasi-formula ‘ as the neutral word for ‘ semi-
formula ‘ or ‘ formula with argument-places’.

1.3.
Let $\#$ be a logical symbol in a semi-formula $\mathfrak{A}$. Then we define:

1.3.1. If $\#$ is the outermost logical symbol of $\mathfrak{A}$, then $\#$ is positive
in $\mathfrak{A}$ .
1.3.2. Let $\mathfrak{A}$ be of the form $\mathfrak{B}\wedge \mathfrak{E}$. If $\#$ is positive in $\mathfrak{B}$ or $\mathfrak{C}$ , then
$\#$ is positive in $\mathfrak{A}$. If $\#$ is negative in $\mathfrak{B}$ or $\mathfrak{C}$ , then $\#$ is negative in $\mathfrak{A}$.
1.3.3. Let $\mathfrak{A}$ be of the form 7 $\mathfrak{B}$ and $\#$ be not the outermost logical
symbol of $\mathfrak{A}$. Then $\#$ is positive or negative in $\mathfrak{A}$, according as $\#$

is negative or positive in $\mathfrak{B}$ .
1.3.4. Let $\mathfrak{A}$ be of the form $\forall x\mathfrak{B}(x)$ or $\forall\varphi \mathfrak{C}(\varphi)$ and $\#$ be not the
outermost logical symbol of $\mathfrak{A}$ . Then $\#$ is positive or negative in $\mathfrak{A}$,
according as $\#$ is positive or negative in $\mathfrak{B}(x)$ or $\mathfrak{E}(\varphi)$ respectively.

Let $\#$ be a logical symbol in a formula with $i$ argument-places
$\{x,\cdots,y\}H(x,\ldots, y)$ . Then we say that $\#$ is positive or negative in
$\{x,\cdots, y\}H(x,\cdots, y)$ according as $\#$ is positive or negative in $H(x,\cdots, y)$ .

Let $\#$ and lt be two logical symbols in a quasi-formula $\mathfrak{A}$. If
$\#$ and lt are positive in $\mathfrak{A}$ or $\#$ and A are negative in $\mathfrak{A}$ , then we
say that $\#$ is positive to $\mathfrak{h}$ . If fl is not positive to $\mathfrak{h}$ , then we
say that $\#$ is negative to $\mathfrak{h}$ .

1.4.
Let $\mathfrak{A}$ be a quasi-formula, and $\mathfrak{B}$ be a semi-formula of the $\forall\varphi \mathfrak{C}(\varphi)$

contained in $\mathfrak{A}$ and, moreover, $\#$ be the outermost logical symbol of
$\mathfrak{B}$ . Then all the variables, $f$-variables, functions and logical symbols
in $\mathfrak{C}(\varphi)$ are said to be ‘ tied by $\#$ in $\mathfrak{A}$ ’.

Let $\mathfrak{A}$ be a quasi-formula, and $\mathfrak{B}$ be a semi-formula of the form
$\forall\varphi \mathfrak{E}(\varphi)$ contained in $\mathfrak{A}$ and, moreover, $\mathfrak{h}$ be a $\forall$ on an $f$-variable
in $\mathfrak{E}(\varphi)$ and $\#$ be the outermost logical symbol of $\mathfrak{B}$ . Then we say.

$\#$ affects $h’$ , if and only if $h$ ties an $f$-variable of the form $\varphi$.
1.5.

Let $\mathfrak{A}$ be a quasi.formula and $\#$ be a logical symbol $\forall$ on an
$f$-variable in $\mathfrak{A}$. $\#$ is called ‘ semi-simple in $\mathfrak{A}$ , if and only if the
following conditions are fulfilled:
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1.5.1. If $\#$ ties a $\forall$ on an $f$-variable denoted by $\mathfrak{h}$ , then $\mathfrak{h}$ is positive
to $\#$ .
1.5.2. Let lt be $\#$ itself or be tied by $\#$ . Then lt does not affect,
and is not affected by any $\forall$ on an $f$-variable.

A quasi-formula $\mathfrak{A}$ is called ‘ semi-simple ‘ if and only if every
$\forall$ on $f$-variable in $\mathfrak{A}$ is semi-simple in $\mathfrak{A}$.

Then we prove easily the following lemma by the method of [1].
LEMMA. The end-sequence of a proof-figure, in which every implicit

formula is semi-simple, is provable withbut cut.
In fact the lemma can be still generalized. The author has in

mind to publish a proof of the lemma in its generalized form in a
forth coming paper.

1.6.

Let $\mathfrak{A}$ be a quasi-formula and $\#$ be a logical symbol $\forall$ on an
$f$-variable in $\mathfrak{A}$. $\#$ is called ‘simple in $\mathfrak{A}$ , if and only if the fol-
lowing conditions are fulfilled:
1.6.1. $\#$ is semi-simple in $\mathfrak{A}$.
1.6.2. $\#$ ties no free $f$-variable.

A quasi-formula $A$ is called ‘ simple ‘ if and only if every $\forall$ on
$f$-variable in $\mathfrak{A}$ is simple in $\mathfrak{A}$.

An inference left on $f$-variable of the following form

$\frac{F(H),\Gamma\rightarrow\Delta}{\forall\varphi F(\varphi),\Gamma\rightarrow\Delta}$

is called ‘ simple ‘, if and only if $H$ is simple.
A proof-figure $\mathfrak{P}$ is called ‘ simple ’, if and only if every implicit

inference $\forall$ left on $f$-variable in $\mathfrak{P}$ is simple.
Now the aim of this paper is to prove the following theorem:
THEOREM. The end-sequence of a simple proof-figure is provable

without $c\tau d$ .
1.7. Grade

Let $\mathfrak{A}$ be a quasi-formula. The first grade of $\mathfrak{A}$ is the number
of the logical symbols $\forall$ on $f$-variables in $\mathfrak{A}$, which are not simple
in $\mathfrak{A}$. The second grade of $\mathfrak{A}$ is the number ot the logical symbols
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in $\mathfrak{A}$. The grade of $\mathfrak{A}$ is the ordinal number $\omega m+n$, there $m$ is the
first grade of $\mathfrak{A}$ and $n$ the second grade of $\mathfrak{A}$.

Now, we have several propositions concerning the grade.
1.7.1. Let $H$ be a simple formula with $i$ argument-places and $\alpha$ be
a free $f$-variable with $i$ argument-places. Then the first grade of
$F(H)$ is not greater than the first grade of $F(\alpha)$ .

PROOF. Let $\#$ be a $\forall$ on an $f$-variable in $F(H)$ . If is $\#$ con-
tained in $H$ which is indicated in $F(H)$ , then clearly $\#$ is simple.
If $\#$ ties a free $f$-variable in $F(H)$ , then clearly the logical symbol
$\forall$ in $F(\alpha)$ corresponding to $\#$ ties also a free $f$-variable in $F(\alpha)$ . If
$\#$ affects $\mathfrak{h}$ , then the logical symbol $\forall$ corresponding to $\#$ in $F(\alpha)$

affects also the $\forall$ corresponding to lt in $F(\alpha)$ . Therefore the pro-
position is clear.

From 1.7.1 follow immediately 1.7.2. and 1.7.3.
1.7.2. Let $H$ be a simple formula with $i$ argument-places and $F(\alpha)$

be a simple formula and, moreover, $\alpha$ be a free $f$-variable with $i$

argument-places. Then $F(H)$ is a simple formula.
1.7.3. Let $H$ be a simple formula with $i$ argument-places and $F(\alpha)$

be a not simple formula and, moreover, be a free $f$-variable with $i$

argument-places. Then the first grade of $\forall\varphi F(\varphi)$ is greater than the
first grade of $F(H)$ . Therefore the grade of $\forall\varphi F(\varphi)$ is greater than
the grade of $F(H)$ .
1.7.4. Let $A$ be an implicit simple formula in simple proof-figure $\mathfrak{P}$

and $B$ be an ancestor of $A$ . Then $B$ is a simple formula.
PROOF. Without the loss of generality, we assume that $A$ is a

chief-formula of a logical inference $s^{\infty}$ and $B$ is a subformula of $\mathfrak{J}$ .
If the outermost logical symbol of $A$ is 7, $\wedge$ or $\forall$ on a vari-

able. then the proposition is clear. If the outermost logical symbol
of $\mathfrak{A}$ is $\forall$ on an $f$-variable, then the proposition follows from 1.7.1.

\S 2. Proof of the theorem.

All the proof-figures considered in this section are simple; we
shall not mention it further.

Let $\mathfrak{P}$ be a (simple) proof-figure and $\mathfrak{J}$ be a cut in $\mathfrak{P}$ . Then $\mathfrak{J}$

is called ‘ simple ’, if and only if the cut-formula of $\mathfrak{J}$ is simple.
The grade of $\mathfrak{J}$ is defined as the grade of the cut-formula of $\mathfrak{J}$ .
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The grade of $\mathfrak{P}$ is defined as the ordinal number
$\sum_{s^{\alpha}}\omega^{\alpha_{\mathfrak{F}}}$

, where $\sum$

indicates the natural sum, $\mathfrak{J}$ runs over all the cuts which are not
simple in $\mathfrak{P}$ , and $\alpha_{\iota}\overline,$ is the grade of $\mathfrak{J}$ .

If the grade of $\mathfrak{P}$ is zero, then the theorem holds for $\mathfrak{P}$ by the
lemma and 1.7.4. Therefore we prove the theorem by the transfinite
induction on the grade of the proof-figure. Let the grade of a proof-
figure $\mathfrak{P}$ be not zero. Clearly, there exists a cut $\mathfrak{J}$ in $\mathfrak{P}$ which is
not simple and such that every cut above $\mathfrak{J}$ is simple. Then, as
other cases are easy to treat, we can assume that $\mathfrak{J}$ is of the form

$\underline{\Gamma\rightarrow\Delta},$

$\forall\underline{\varphi}_{\Gamma,\Pi}^{p(\varphi)}\rightarrow\Delta,\overline{\Lambda}\underline{\forall}\varphi F(\underline{\varphi)}\underline{\Pi\rightarrow\Lambda},\mathfrak{J}$

and the proof-figure to $\Gamma,$ $\Pi\rightarrow\Delta,$ $\Lambda$ is denoted by $\mathfrak{P}_{0}$ .
Let $A$ or $B$ be the left or the right cut-formula of $\mathfrak{J}$ respectively.

Without the loss of generality, we can assume that every leading
formula of $A$ or $B$ is not a beginning formula nor a weakening
formula, and moreover the predecessor of every leading formula of
$A$ is of the form $F(\alpha)$ .

Let $\mathfrak{P}_{1}$ be obtained from the proof-figure to $\Gamma\rightarrow\Delta,$ $\forall\varphi F(\varphi)$ by
substituting $F(\alpha)$ for each formula equivalent to $A$ . Then, the end-
sequence of $\mathfrak{P}_{1}$ is $\Gamma\rightarrow\Delta,$ $F(\alpha)$ .

Let $\Pi_{1}\rightarrow\Lambda_{1}$ be an arbitrary sequence above the right upper
sequence of $\mathfrak{J}$ . Now, we construct, recursively as follows, a proof-
figure, whose end-sequence is of the form $\Pi_{1}^{\#},$ $\Gamma\rightarrow\Delta,$ $\Lambda_{1}$ where $\Pi_{1}^{*}$ is
obtained from $\Pi_{1}$ by eliminating the formulas equivalent to $B$.
2.1. If $\Pi_{1}\rightarrow\Lambda_{1}$ is a beginning sequence, then we construct the proof-
figure of the form

$\Pi_{1}\rightarrow\Lambda_{1}$

$-So_{-}^{-}me^{-}\overline{w}eak\overline{e}ni\overline{n}^{-}g\overline{s}a\overline{n}d^{-}e\overline{x}c\overline{hanges}$

$\Pi_{\iota},$ $\Gamma\rightarrow\Delta,$ $\Lambda_{1}$

2.2. Let $\Pi_{1}\rightarrow\Lambda_{1}$ be the lower sequence of an inference $\mathfrak{J}_{1}$ , and the
construction of the proof-figure be defined for the upper sequence of
$\mathfrak{J}_{1}$ . We must consider the following three cases.
2.2.1. The case, where $\mathfrak{J}_{1}$ is a weakening, a contraction, a exchange
or a cut.
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As other cases are to be treated similarly, we assume that $\mathfrak{J}_{1}$

is of the following form

$\frac{\Pi_{2}\rightarrow\Lambda_{2},DD,\Pi s\rightarrow\Lambda_{3}}{\Pi_{23}\Pi\rightarrow\Lambda_{2},\Lambda_{3}}$

where $\Pi_{1}\rightarrow\Lambda_{1}$ is $\Pi_{2},$ $\Pi_{3}\rightarrow\Lambda_{2},$ $\Lambda_{3}$ .
By the assumption, the proof-figure $\mathfrak{Q}_{1}$ to $\Pi_{2}^{*},$ $\Gamma\rightarrow\Delta,$ $\Lambda_{2},$ $D$ and

the proof-figure $\mathfrak{Q}_{2}$ to $D,$ $\Pi_{3}^{*},$ $\Gamma\rightarrow\Delta,$ $\Lambda_{3}$ are defined. Then we con-
struct the proof-figure of the form

$\backslash |_{l^{\prime}}^{\mathfrak{Q}_{1}}$

$11111/\mathfrak{Q}_{2}$

$\backslash _{\backslash \sqrt[1]{}^{\prime}}$

$\backslash _{\backslash |,\backslash _{\backslash }1|}\sqrt[\backslash ]{}^{\prime^{\prime}}$

$\Pi_{2}^{*},\Gamma\rightarrow\Delta,\Lambda_{2},DD,\Pi 3*,\Gamma\rightarrow\Delta,$

$\Lambda_{3}\frac{\ovalbox{\tt\small REJECT}_{3^{k}}\Pi_{2}^{*},\Gamma,\Pi,\Gamma\rightarrow\Delta,\Lambda_{2},\Delta,\Lambda_{3}}{\frac{Someexchangesandcontractions}{\Pi^{*},\Pi,\Gamma\rightarrow\Delta,\Lambda_{2},\Lambda_{3}}}$

2.2.2. The case, where $\mathfrak{J}_{1}$ is a logical inference and the chief-formula
of $\mathfrak{J}_{1}$ is not equivalent to $B$.

As other cases are to be treated similaly, we assume that $\mathfrak{J}_{1}$ is
of the following form

$-\frac{G(}{xG}\frac{X}{(x)}-\frac{\Pi_{2}\rightarrow\Lambda_{2}}{\Pi_{2}\rightarrow\Lambda_{2}}\forall)$

,

where $\Pi_{1}\rightarrow\Lambda_{1}$ is $\forall xG(x),$ $\Pi_{2}\rightarrow\Lambda_{2}$ .
By the assumption, the proof-figure $\mathfrak{Q}_{1}$ to $G(X),$ $\Pi_{2}^{*},$ $\Gamma\rightarrow\Delta,$ $\Lambda_{2}$ is

defined. Then we construct the proof-figure of the form

$\backslash 1\backslash _{\backslash 1,\backslash J^{\prime}\backslash \downarrow^{l}}1_{1/^{\prime}}11$

$\mathfrak{O}_{1}$

$\frac{G(X),\Pi_{2}^{*},\Gamma\rightarrow\Delta,\Lambda_{2}}{\forall xG(x),\Pi_{2}^{*},\Gamma\rightarrow\Delta,\Lambda_{2}}$

2.2.3. The case, where $\mathfrak{J}_{1}$ is $\forall$ left on $f$-variable and the chief-
formula of $\mathfrak{J}_{2}$ is equivalent to $B$.

Without the loss of generality, we assume $\mathfrak{J}_{1}$ is of the following
form
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– $-$

F$(H),\prod_{-}2\rightarrow\Lambda_{2}$

$\forall\varphi F(\varphi),$ $\Pi_{2}\rightarrow\Lambda_{2}$

where $\Pi_{1}\rightarrow\Lambda_{1}$ is $\forall\varphi F(\varphi),$ $\Pi_{2}\rightarrow\Lambda_{2}$ .
By the assumption, the proof-figure $\mathfrak{Q}_{2}$ to $F(H),$ $\Pi_{2}^{*},$ $\Gamma\rightarrow\Delta,$ $\Lambda_{2}$

is defined. The we construct the proof-figure of the form

$\backslash 1\backslash _{\backslash }|_{1}|1_{1}\prime^{\prime}$

’

$\mathfrak{Q}_{1}$

$\backslash _{\backslash _{\backslash _{\backslash }}}|’\sqrt[\backslash ]{}^{\prime^{\prime}}|_{1^{\prime}}1_{1}11|$

$\mathfrak{Q}_{2}$

$\backslash _{\backslash \psi^{1}}J$

$---\underline{\Gamma\rightarrow\Delta},\underline{F}(H)\underline{F(H})_{-},\Gamma\rightarrow\Delta,$

$\Lambda_{\underline{2}}\Gamma,\Pi_{2}^{\overline{*}},$$\Gamma\rightarrow\Delta,\Delta_{2}^{\frac{\Pi 2*}{},,\Lambda}-$

Some exchanges and $\overline{c}ontractions$

$\Pi_{2}^{*},$ $\Gamma\rightarrow,\Delta\Lambda_{2}$

where $\mathfrak{Q}_{1}$ is obtained from $\mathfrak{P}_{1}$ by substituting $H$ for $\alpha$ after the
necessary changes of eigen-variables in $\mathfrak{P}_{1}$ .

By successive constructions 2.2.1, 2.2.2 and 2.2.3, we can form a
proof-figure $\mathfrak{Q}_{0}$ to $\Pi,$ $I^{7}\rightarrow\Delta,$ $\Lambda$ . Now, we construct the proof-figure
$\mathfrak{Q}_{0}^{\prime}$ of the following form

$\backslash |1_{1}\prime 1/$

$\mathfrak{Q}_{0}$

$\backslash \backslash \sqrt[1]{}^{\prime}$

$\Pi,$ $\Gamma\rightarrow\Delta,$ $\Lambda$

$\frac{\overline{S}0^{-}\overline{meexc}ha\overline{n}\overline{ges}^{-}}{\Gamma,\Pi\rightarrow\Delta,\Lambda}$

Then we see easily by 1.7.3, that the grade of $\mathfrak{Q}_{0}^{\prime}$ is less than
the grade of $\mathfrak{P}_{0}$ .

Let $\mathfrak{Q}$ be the proof-figure obtained from $\mathfrak{P}$ by substituting $\mathfrak{Q}_{0}^{\prime}$

for $\mathfrak{P}_{0}$ . Then clearly $\mathfrak{Q}$ is a simple proof-figure and the grade of
$\mathfrak{Q}$ is less than the grade of $\mathfrak{P}$ . Therefore the theorem is proved.

\S Appendix

A.l. A function $\gamma(A)$ of the formula or the formula with argument-
places taking ordinal numbers as values will be called monotone if
it fulfills the following conditions:
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A.l.1. $\gamma(7A)\geqq(A)$ .
A.1.2. $\gamma(A\wedge B)\geqq\max(\gamma(A), \gamma(B))$ .
A.1.3. $\gamma(\forall xG(x))\geqq\gamma(G(X))$ .
A.1.4. $\gamma(\{x_{L},\ldots, x_{i}\}H(x_{L},\cdots, x_{i}))=\gamma(H((X_{1},\ldots, X_{i}))$ .
A.1.5. If $A$ is homologous to $B$, then $\gamma(A)$ is equal to $\gamma(B)$ .
A.1.6. If $\gamma(H)=0$ and $\gamma(\forall\varphi F(\dot{\varphi}))>0$ , then $\gamma(\forall\varphi F(\varphi))>\gamma(F(H))$ .

We say that $A$ is $\gamma$-simple, if and only if $\gamma(A)=0$ . An inference
$\forall$ left on $f$-variable

$\frac{F(H),\Gamma\rightarrow\Delta}{\forall\varphi F(\varphi),\Gamma\rightarrow\Delta}$

is called $\gamma$-simple, if $H$ is $\gamma$-simple, it is called strictly $\gamma$-simple, if
$H$ and $\forall\varphi F(\varphi)$ are $\gamma$-simple. A proof-figure $\mathfrak{P}$ is called (strictly)
$\gamma$-simple, if every implicit inference $\forall$ left on $f$-variable in $\mathfrak{P}$ is
(strictly) -simple.
A.2. In the same way as in \S 2, we have then the following pro-
position:

If $\gamma$ is monotone and the fundamental conjecture is verified for
every strictly $\gamma$-simple proof-figure, then the fundamental conjecture
is verified for every $\gamma$-simply proof-figure.

A.3. Let us suppose that a set $\mathfrak{M}$ of formulas and formulas with
argument-places is given, and that $\mathfrak{M}$ is ‘closed’ in the following

some.
A.3.1. If $\forall xG(x)$ belongs to $\mathfrak{M}$, then $G(X)$ belongs to $\mathfrak{M}$.
A.3.2. If $B\wedge C$ belongs to $\mathfrak{M}$, then $B$ and $C$ belong to $\mathfrak{M}$.
A.3.3. If $7B$ belongs to $\mathfrak{M}$, then $B$ belongs to $M$.
A.3.4. If $\forall\varphi F(\varphi)$ belongs to $\mathfrak{M}$, then $F(\alpha)$ belongs to $\mathfrak{M}$ .
A.3.5. $\{x_{1},\ldots, x_{i}\}H(x_{1},\ldots, x_{i})$ belongs to $\mathfrak{M}$, if and only if $H(X_{1},\cdots, X_{i})$

belongs to $\mathfrak{M}$ .
A.3.6. If $B$ is homologous to $C$ and $B$ belongs to $\mathfrak{M}$, then $C$ belongs

to $\mathfrak{M}$.
A.3.7. If $F(\alpha)$ and $H$ belongs to $\mathfrak{M}$ and the types of $\alpha$ and $H$ are
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the same, then $F(H)$ belongs to $\mathfrak{M}$ .
A.3.8. If $A$ has no logical symbol, then $A$ belongs to $\mathfrak{M}$.
A.4. Now let us define a function $\gamma$ recursively as follows, and call
it ‘ the function determined by $\mathfrak{M}$ ‘ :
A.4.1. $\gamma(A)$ is equal to zero, if and only if $A$ belongs to $\mathfrak{M}$.
A.4.2. If $A$ is of the form $7B$ and does not belong to $\mathfrak{M}$ , then $\gamma(A)$

is equal to $\gamma(B)+1$ .
A.4.3. If $A$ is of the form $B\wedge C$ and does not belong to $\mathfrak{M}$ , then
$\gamma(A)$ is $n+1$ , where $n$ is the maximum of $\gamma(B)$ and $\gamma(C)$ .
A.4.4. If $A$ is of the form $\forall xG(x)$ and does not belong to $\mathfrak{M}$ , then
$\gamma(A)$ is equal to $\gamma(G(a))+1$ .
A.4.5. If $A$ is of the form $\{x_{1},\cdots, x_{i}\}H(x_{1},\cdots, x_{i})$ , then $\gamma(A)$ is equal

to $\gamma(H(a_{1},\cdots, a_{i}))$ .
A.4.6. If $A$ is of the form $\forall\varphi F(\varphi)$ and does not belong to $\mathfrak{M}$, then
$\gamma(A)$ is equal to $\gamma(F(\alpha))+1$ .
A.5. We shall prove the following proposition:

Let $\mathfrak{M}$ be closed and $\gamma$ be the function determined by $\mathfrak{M}$. If $H$

belongs to $\mathfrak{M}$ and has the same type as $\alpha$ , then $\gamma(F(\alpha))$ is equal to
$\gamma(F(H))$ .

PROOF. If $\gamma(F(\alpha))=0$ , the proposition is clear. Let us proceed
by the mathematical induction on $a+b$, where $a$ is $\gamma(F(\alpha))$ and $b$ is
the number of logical symbols in $F(\alpha)$ . We have several cases ac-
cording to the kind of the outermost logical symbol of $F(\alpha)$ , but, as
all cases are treated similarly we deal only with the case, where
$F(\alpha)$ is of the form $\forall\varphi G(\varphi, \alpha)$ . Then, by the hypothesis of the in-
duction, $\gamma(G(\beta, \alpha))$ is equal to $\gamma(G(\beta, H))$ , and we see easily that
$\gamma(\forall\varphi G(\varphi, \alpha))$ is equal to $\gamma(\forall\varphi G(\varphi, H))$ . Q. E. D.
A.6. From the above proposition follows immediately the following

proposition:
Let $\mathfrak{M}$ be closed and $\gamma$ be the function determined by $\mathfrak{M}$. Then

$\gamma$ is monotone.
A.7. Now we shall give several examples of sets of formulas and

formulas with argument-places, which are easily seen to be closed.
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A.7.1. The first example $\mathfrak{M}_{1}$ .
We define that belongs to $\mathfrak{M}_{1}$ , if and only if every $\forall$ on $f$-variable

in $A$ affects no $\forall$ on $f$-variable in $A$ .
A.7.2. The second example $\mathfrak{M}_{2}$ .

We define that $A$ belongs to $\mathfrak{M}_{2}$ , if and only if the following
condition is fulfilled:

Let $\#$ and lt be $\forall$ on $f$-variables in $A$ and let $\#$ affect $\mathfrak{h}$ . Then
ff is positive to $\mathfrak{h}$ , and, moreover, if $\nabla$ is an arbitrary $\forall$ on $f$-variable,
which is tied by $\#$ and ties $\mathfrak{h}$ , then $\nabla$ is positive to $\#$ .
A.7.3. The third example $\mathfrak{M}_{3}$ .

We define that $A$ belongs to $\mathfrak{M}_{s}$ , if and only if $A$ contains no
logical symbol $\forall$ on any variable.

Let $\gamma_{3}$ be the function determined by $\mathfrak{M}_{3}$ . Then from our former
paper [2] follows that the fundamental conjecture is verified for the
strictly $\gamma_{3}$-simple proof-figure. Therefore by A.2 we have the follow-
ing theorem:

THEOREM 2. Let $\mathfrak{P}$ be a proof-figure satisfying the following $ con\rightarrow$

dition: If
$\underline{F}\underline{(H),\Gamma\rightarrow\Delta}$

$\forall\varphi F(\varphi),$ $\Gamma\rightarrow\Delta$

is an implicit $\forall$ left on f-variable in $\mathfrak{P}$ , then $H$ has no $\forall$ on variable.
Then the end-sequence of $\mathfrak{P}$ is provable without cut.

Hereafter, we use the logical symbol $\exists$ and $\forall$ . Accordingly, we
define that $\mathfrak{M}$ is closed, if and only if $\mathfrak{M}$ satisfies $A.3.1-A.3.8$ and the
following conditions:
A.3.9. If $B\ovalbox{\tt\small REJECT} C$ belongs to $\mathfrak{M}$ , then $B$ and $C$ belong to $\mathfrak{M}$.
A.3.10. If $\exists^{xG(x)}$ belongs to $\mathfrak{M}$ , then $G(X)$ belongs to $\mathfrak{M}$ .
A.3.11. If $\exists\varphi F(\varphi)$ belongs to $\mathfrak{M}$ , then $F(\alpha)$ belongs to $\mathfrak{M}$.

The concept of ‘ function determined by $\mathfrak{M}$
’ should be also modi-

fied accordingly.

A.7.4. The fourth example $\mathfrak{M}_{4}$ .
We define that $A$ belong to $\mathfrak{M}_{4}$ , if and only if $A$ does not con-

tain the logical symbol 7.
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Let $\gamma_{4}$ be the function determined by $\mathfrak{M}_{4}$ . We see easily that
the fundamental conjecture holds for the strictly $\gamma_{4}$-simple proof-
figure. (the author intends to prove a theorem, implying this as a
special case in a forth coming paper). Therefore by A.2, we have
the following theorem:

THEOREM 3. Let $\mathfrak{P}$ be a proof-figure satisfying the following con-
dition: If

$--F\underline{(H}\underline{),}\Gamma\underline{\rightarrow\Delta}_{-}$

$\forall\varphi F(\varphi),$ $ I^{\gamma}\rightarrow\Delta$

is an implicit $\forall$ left on f-variable in $\mathfrak{P}$ , then $H$ has no 7. Then the
end-sequence of $\mathfrak{P}$ is provable without cut.
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